
Towards a Security Oracle
Based on Tree Kernel Methods

Andrea Avancini and Mariano Ceccato1

Abstract.
The objective of software testing is to stress a program to reveal

programming defects. Goal of security testing is, more specifically,
to reveal defects that could lead to security problems. Security test-
ing, however, has been mostly interested in the automatic generation
of test cases that “try” to reveal a vulnerability, rather than assessing
if test cases actually “managed” to reveal vulnerabilities.

In this paper, we cope with the latter problem. We investigated on
the feasibility of using tree kernel methods to implement a classifier
able to evaluate if a test case revealed a vulnerability, i.e. a security
oracle for injection attacks. We compared seven different variants
of tree kernel methods in terms of their effectiveness in detecting
attacks.

1 Introduction
Among the programming defects that threat the reliability of web
applications, those that concern security aspects are probably the
most critical. In fact, vulnerabilities could be exploited by attack-
ers to block the correct execution of a business service (denial of ser-
vice) or to steal sensitive data, such as credit card numbers or medical
records.

According to statistics on open source projects [2], one of the most
severe class of vulnerabilities is Cross-site Scripting (XSS for short).
An XSS vulnerability is exploited by input values that contain ma-
licious HTML or JavaScript code. As result of the attack, the vul-
nerable page will contain the injected code and its content and/or
behavior will be controlled by the attacker.

Security testing is a process intended to spot and verify security
vulnerabilities, by showing an instance of input data that exposes the
problem. A developer requested to fix a security defect could take
advantage of a security test case to understand the problem (vulner-
abilities often involve complex mechanics) and to elaborate a patch.
Eventually, a security test can be resorted to assess if the maintenance
task has been resolutive.

There is a number of approaches for security testing of web ap-
plications [15, 9, 10, 7, 6, 8], which are mainly focused on the test
case generation phase. The problem of verifying if a test case actu-
ally exploits a vulnerability has given a marginal importance. In fact,
checking if a test case has been able to exploit a vulnerability is either
addressed by manual filtering [15] or in a way that is customized for
a specific test case generation strategy. For example, in [9], verifying
if a test case is a successful attack relies on the knowledge about how
the test case has been constructed, i.e. if the output page contains the
same JavaScript fragment that has been used to generate the test case
itself.

1 Fondazione Bruno Kessler, Trento, Italy, email: avancini, ceccato@fbk.eu

In the present paper we address the problem of developing a secu-
rity oracle, a classifier able to detect when a vulnerability is exploited
by a test case, i.e. verifying if a test case is an instance of a success-
ful attack. Our oracle is meant to be independent from the approach
deployed to generate test cases, so that it can be reused in many dif-
ferent contexts.

We propose to construct the oracle resorting to tree kernel meth-
ods. The classifier is trained on a set of test cases containing both
safe executions and successful attacks. In fact, it is quite common for
a software project to document past defects (including vulnerabili-
ties) that have already been fixed. The oracle is then deployed when
generating new security test cases, intended to identify new vulnera-
bility problems.

2 Web Application Vulnerabilities

Cross-site Scripting vulnerabilities are caused by improper or miss-
ing validation of input data (e.g., coming from the user). Input data
may contain HTML fragments that, if appended to a web page, could
alter its final content such that malicious code is injected.

Figure 1 shows an example of dynamic web page that contains a
vulnerability. The code between “<?PHP” and “?>” is interpreted
by the web server as PHP2 code and executed when processing the
web page. On incoming HTML requests, the web server executes the
PHP code in the page, which processes input values and generates a
textual output that represents the dynamic part of the requested page.
On PHP termination, the web server sends the resulting output back
to the requester web browser as an HTML response.

The example contains a reflected XSS vulnerability, i.e. there ex-
ists an execution flow along which the input value param is not ade-
quately validated before being printed (echo statement in PHP) in the
output page (line 15). Any code contained in this input value, if not
properly validated, could be added to the current page and eventually
executed.

The page accepts three parameters, param, cardinality and op, and
adopts a quite common pattern, performing different actions accord-
ing to the value of one of the parameters. In case op is set, the page
will show a table, otherwise it will display a menu. The number of
rows in the table and the number of links in the menu depend on the
value of cardinality. Parameter param is just printed.

On lines 1–3, input values are read from the incoming HTML re-
quest (represented in PHP as the special associative array $ GET)
and assigned to local variables $p, $n and $op respectively.

On lines 4–7, input values are validated. In case $n contains a
value smaller than 1 or a string that does not represent a number,

2 Even if the example is in PHP, the approach is general and can be applied
on web applications implemented with server-side language.

<html>
<body>
<?php

1 $p = $ GET [’ param ’] ;
2 $n = $ GET [’ c a r d i n a l i t y ’] ;
3 $op = $ GET [’ op ’] ;
4 i f ($n < 1) // inpu t v a l i d a t i o n
5 die ;
6 i f (strpos ($p , ’<s c r i p t ’) !== fa l se)
7 $p=htmlspecialchars($p) ;
8 i f (i s set ($op)) { // p r i n t t a b l e
9 echo ’<t ab l e border=1> ’ ;

10 for ($ i =0; $ i<$n ; $ i++) {
11 echo ’<t r><td> f i r s t c e l l </td>’ .

’<td>second c e l l</td>’ .
’<td>t h i r d c e l l</td></t r>’ ;

}
12 echo ”</t ab l e>” ;

}
else { // p r i n t menu

13 for ($ i =0; $ i<$n ; $ i++) {
14 echo ’<a h r e f=f i r s t . php>l i n k #’ .

$ i . ’’ ;
}

}
15 echo $p ; // v u l n e r a b i l i t y

?>
</body>
</html>

Figure 1. Running example of a XSS vulnerability on PHP code.

the execution aborts (die statement at line 5). At line 7, the value of
variable $p is validated. Validation, however, is done only when con-
dition on line 6 holds, which is not sufficient to cover all the possible
dangerous cases. For example, harmful code containing a different
tag (e.g. <a>) or with a space between < and script could skip
the sanitization.

Depending on the value of variable $op, either a table (lines 8–12)
or a menu (lines 13–14) is shown. Eventually, variable $p is printed
at line 15 possibly causing a security threat, because of inadequate
validation at lines 6–7.

An example of successful attack is represented by an HTML
request containing the parameter param set to the subsequent
JavaScript code:

<a href="" onclick="this.href=

’www.evil.com?data=’%2Bdocument.cookie"> click

here

When such value is appended on the response page, it alters the
HTML structure (%2B is decoded as “+”), and a brand new link
“click here” (i.e., <a> tag) is injected, pointing to an external web
site controlled by the attacker (i.e., www.evil.com). In case such link
is triggered by the legitimate user, his/her cookie is encoded as a
HTML request parameter and sent to the attacker-controlled web site.
With the stolen cookie, the attacker can pretend to impersonate the
legitimate user.

The automatic generation of input values to test a vulnerable page
can be addressed in quite a cheap way. After input generation, how-
ever, output needs to be validated, i.e. a security oracle is required
to check whether code injection took place. In the subsequent sec-
tions we present our approach to use kernel methods to implement a
security oracle, i.e. to classify executions of dynamic web pages as

safe executions or as successful code injections. In the latter case, a
vulnerability is detected.

3 Security Oracle

The goal of an XSS attack is to inject JavaScript or HTML code
fragments into a web page. Thus, consequences of injection should
be evident as structural changes in the page under attack, when com-
pared with the same page running under normal conditions.

Web applications, however, are highly dynamic and their structure
or content may vary a lot, even without code injection. For instance,
on the running example of Figure 1, the same PHP script under harm-
less conditions can display different results (number of table rows)
and can take different alternative actions (showing a table or a menu).

A web page can be represented by the parse tree of the correspond-
ing HTML code. Thus, injection of malicious code corresponds to a
change in the parse tree with respect to the intended structure. Fig-
ure 2 shows the parse trees of three HTML outputs of the running
example. Figure 2(a) and (b) are the parse trees of safe executions
that contain, respectively, a table with three lines and a menu with
tree links. Figure 2(c), instead, represents the parse tree of the page
under attack, a menu with two intended links and, in addition, a ma-
licious link.

By looking at Figure 2, we can observe that the intrinsic variability
of safe executions (e.g., between (a) and (b)) can be wider than the
variability due to code injection (e.g., between (b) and (c)). So, a
similarity metric may not be adequate to detect successful attacks.

The security oracle, then, should distinguish between those vari-
ations that are safe due to the dynamic behavior of the application
and those variations caused by code injection due to successful at-
tacks. The classifier must be trained with instances from both the
classes. Under these assumptions, the security oracle problem can be
formulated as a binary classification problem, that can be addressed
by relying on kernel methods. In particular, we deal with parse trees,
so kernel methods that fit better this problem definition are tree ker-
nels [3].

We construct the security oracle according to the subsequent steps:

1. Test case generation: test cases are automatically generated for
the web page under analysis. For this purpose, any test case gen-
eration approach is applicable in principle. We reused, however, a
tool we developed in a previous work [1] that combines heuristics
(genetic algorithm) and analytic solutions (sat solvers).

2. Attack generation: some test cases are turned into candidate at-
tacks by adding selected attack strings to input values, taken from
a library of malicious fragments of HTML and JavaScript. This
library has been taken from a publicly available tool [14] for pen-
etration testing and black-box fuzzing.

3. Manual filtering: test cases and candidate attacks are run on the
web application under analysis. Results are manually classified as
safe executions or successful injection attacks. The output pages
are then parsed by using Txl [5] and the resulting HTML parse
trees are stored.

4. Training: parse trees of successful attacks and safe executions are
used respectively as positive and negative examples for the learn-
ing phase of the oracle.

5. Classification: the oracle is ready. To evaluate a new test case, the
test must be executed on the application under analysis and the
HTML output must be parsed. Eventually, the oracle relies on the
kernel to classify the HTML parse tree either as safe execution or
as successful attack.

< html >

< body >

< table >

border=1 < tr > < tr > < tr >

< td > < td > < td > < td > < td > < td > < td > < td > < td >

< html >

< body >

< a > < a > < a >

href="first.php" href="first.php" href="first.php"

< html >

< body >

< a > < a > < a >

href="first.php" href="first.php" href=""
onclick="this.href=

'www.evil.com?data='
+document.cookie"

(a) (b) (c)

Figure 2. Parse trees of output pages for the running example. Trees (a) and (b) represent safe executions. Tree (c) represents an injection attack.

4 Preliminary Results
A preliminary experimentation has been conducted using SVM-
light-TK3 version 1.5 as kernel machine. This tool extends SVM-
light tool4 with kernel support, by implementing 7 different kernel
methods:

• Standard (Tree) Kernel (SK) [3],
• Sub Tree Kernel (STK) [16],
• Subset Tree Kernel (SSTK) [4],
• Subset Tree Kernel (SSTK) with bag-of-words (BOW) feature

[17],
• Partial Tree Kernel (PTK) [11],
• Partial Tree Kernel with no leaves (uPTK) [12] and
• String Kernel (StrK) [13].

We tested the feasibility of our approach on a case study appli-
cation, a simple web application from which the running example
of Figure 1 has been extracted. It consists of a single PHP script
of 37 lines of code which represents a typical pattern of a dynamic
web page. It implements two different functionalities, according to
the value of an input parameter (generating a table or a sequence of
links). The script contains two XSS vulnerabilities.

3470 test cases have been generated for the application under test.
The test cases have been manually filtered into 600 safe executions
and 60 code injection attacks, to respect a 1:10 proportion among
the two classes5. This corpus of data has been randomly split in two
parts, 50% for training and 50% for assessment. While splitting data,
we took care of splitting attacks uniformly between the two parts.

Tuning of cost-factor value has been achieved with the following
procedure. Initially, only 80% of the training data (270 test cases,
training set) has been used to build an initial model. The remaining
20% (60 test cases, tuning) have been used to tune the cost-factor.
We used the initial model to classify the tuning set by changing it-
eratively the cost-factor value from 1 to 50. We selected the optimal
cost-factor value as the one that shown the best trade off between pre-
cision and recall in classifying the tuning data set. In case of identical
results, cost-factor value that corresponds to the shortest execution
time has been chosen.

Eventually, the final model has been constructed by using all the
training data (training set and tuning set) for learning, applying the
optimal cost-factor value. After the learning phase, performances of
the final security oracle have been assessed on the assessment data
set.
3 http://disi.unitn.it/moschitti/Tree-Kernel.htm
4 http://www.joachims.org/
5 Generating attacks is usually harder than generating safe tests

Kernel Optimal Cost-factor Precision Recall F-measure
SK 1 100% 78% 88%

STK 20 7% 100% 13%
SSTK 1 100% 78% 88%

SSTK + BOW 1 100% 78% 88%
PTK 8 100% 17% 30%

uPTK 7 100% 39% 56%
StrK 1 100% 0% 0%

Table 1. Experimental results.

Table 1 reports experimental results collected on the case study
applications for the 7 different kernel methods. The first column con-
tains the name of the kernel method used, while the second column
reports the optimal cost-factor value that has been chosen to run the
experiment. Third, fourth and fifth columns report precision, recall
and F-measure, obtained by running the classifier on the assessment
data set. Results obtained by running String Kernel (StrK) method
have been added for completeness, despite the fact that the gener-
ated parse trees do not exactly fit the intended input format for this
method (trees instead of sequences of characters).

The best results have been achieved by three methods, SK, SSTK
and SSTK + BOW. By running these methods, reported precision and
recall have been 100% and 78% respectively, meaning that all the test
cases that have been classified as attacks (18) are real attacks, while 5
attacks have been classified as safe tests. After manual inspection, we
discovered the reason for not obtaining 100% recall. Despite the at-
tack library [14] contains several distinct HTML syntactic elements,
we noticed that the training set contained no instances of attacks with
the same HTML syntactic structure used in the 5 misclassified at-
tacks. A richer training set, containing at least one instance of any
possible syntactic form of attacks, would have improved the perfor-
mance of the oracle.

Despite this limit, however, the classifier assigned to the misclas-
sified attacks a prediction value that was closer to the positive class
(true attacks) rather than to the negative class (safe test cases). So, a
revision of the classification threshold may be beneficial.

Among the other tree kernel methods, the best results have been
obtained by uPTK. 9 attacks out of 23 have been classified in the
correct way, achieving a high precision (100%) but a fairly low re-
call (39%). PTK method performed slightly worse, obtaining equal
precision (100%) but even lower recall (17%). In fact, just 4 attacks
have been correctly recognized by this method.

The remaining two methods, StrK and STK, reported the worst
performance. In case of StrK, poor results were expected since the

input format adopted is not perfectly suitable for this method, as the
method classified all the candidates as safe test cases (no attacks re-
ported means 100% precision and 0% recall). For STK instead, we
observed an unstable behavior with respect to different cost-factor
values. For cost-factor values lower or equal than 8, all the objects in
the data set are classified as safe test cases (100% precision and 0%
recall) while, for values greater than 8, all the tests are classified as
attacks (low precision and 100% recall).

5 Related Works
A fundamental problem of security testing is deciding about success-
ful attacks, i.e. when a test case is able to inject malicious code and
reveal a defect. Initially, checking code injection was a manual task
delegated to programmers. For instance, in the work by Tappenden et
al. [15], security testing is approached with an agile methodology us-
ing HTTP-unit, while verification of test outcomes is a manual task.

Other approaches provide a higher level of automation. In [9], a
library of documented attacks is used to generate valid inputs for a
web application. A symbolic data base is implemented to propagate
tainted status of input values through the data base to the final at-
tack sinks. A first stage of the oracle adopts dynamic taint analysis
to verify if tainted data are used in a sink, while a second stage per-
forms a comparison of safe pages with pages generated by candidate
attacks. This check consists in verifying if pages differ with respect
to “script-inducing constructs”, i.e. new scripts or different href at-
tributes.

In other works [10, 6], the oracle consists in checking if a response
page contains the same <script> tag passed as input. McAllister et
al. [10] adopt a black-box approach to detect XSS vulnerabilities.
Data collected during the interaction with real users are subjected to
fuzzing, so as to increase test coverage. The oracle for XSS attacks
checks if the script passed as input is also present in the output page.

The paper by Halfond et al. [6] presents a complete approach to
identify XSS and SQLI vulnerabilities in Java web applications. (1)
Input vectors are identified and grouped together with their domains
into input interfaces. Then (2), attack patterns are used to generate
many attacks for these interfaces. Eventually (3), page execution is
monitored and HTTP response is inspected to verify if attacks are
successful. The oracle detects if the response page contains the same
script tag that was injected in the input data.

Limiting the check to injected script tags guarantee a high pre-
cision, but recall may be low, because of vulnerabilities depending
on other tags may not be detected by these oracles. Our approach is
more general, because it relies on structural differences among safe
executions and attacks, that are general enough to capture different
forms of code injection.

6 Conclusion
In this paper, we presented a preliminary investigation on using ker-
nel methods for implementing a security oracle for web applications.
The proposed security oracle has been assessed on a simple PHP ap-
plication, with good performances in terms of precision and recall.
From this initial experiment, we learned which tree kernel methods
are the most appropriate to use in this domain. Moreover, we identi-
fied promising directions on how to improve our approach in terms
of (1) more complete training sets and (2) customized classification
threshold for the kernel methods.

As future works, we intend to experiment with customized kernel
methods to improve the performance of the security oracle. More-

over, we plan to move on to real-world web applications (possibly
written using different programming languages), to assess our ap-
proach also on bigger and realistic web applications.

Acknowledgements
The research described in this paper has been partially supported
by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under the grants #247758: ETERNALS – Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge,
and #288024: LIMOSINE – Linguistically Motivated Semantic ag-
gregation engiNes.

REFERENCES
[1] A. Avancini and M. Ceccato, ‘Security testing of web applications:

A search-based approach for cross-site scripting vulnerabilities’, in
Source Code Analysis and Manipulation (SCAM), 2011 11th IEEE In-
ternational Working Conference on, pp. 85–94. IEEE, (2011).

[2] S Christey and R A Martin, ‘Vulnerability type distributions in cve’,
Technical report, The MITRE Corporation, (2006).

[3] Michael Collins and Nigel Duffy, ‘Convolution kernels for natural lan-
guage’, in Advances in Neural Information Processing Systems 14, pp.
625–632. MIT Press, (2001).

[4] Michael Collins and Nigel Duffy, ‘New ranking algorithms for parsing
and tagging: kernels over discrete structures, and the voted perceptron’,
in Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pp. 263–270, Stroudsburg, PA, USA,
(2002). Association for Computational Linguistics.

[5] J.R. Cordy, ‘The TXL source transformation language’, Science of
Computer Programming, 61(3), 190–210, (August 2006).

[6] William G. J. Halfond, Shauvik Roy Choudhary, and Alessandro Orso,
‘Improving penetration testing through static and dynamic analysis’,
Software Testing, Verification and Reliability, 21(3), 195–214, (2011).

[7] Yao-Wen Huang, Chung-Hung Tsai, D.T. Lee, and Sy-Yen Kuo, ‘Non-
detrimental web application security scanning’, in Software Reliability
Engineering, 2004. ISSRE 2004. 15th International Symposium on, pp.
219 – 230, (nov. 2004).

[8] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic,
‘Secubat: a web vulnerability scanner’, in Proceedings of the 15th in-
ternational conference on World Wide Web, WWW ’06, pp. 247–256,
New York, NY, USA, (2006). ACM.

[9] A. Kieyzun, P.J. Guo, K. Jayaraman, and M.D. Ernst, ‘Automatic cre-
ation of sql injection and cross-site scripting attacks’, in Software Engi-
neering, 2009. ICSE 2009. IEEE 31st International Conference on, pp.
199 –209, (may 2009).

[10] Sean McAllister, Engin Kirda, and Christopher Kruegel, ‘Leveraging
user interactions for in-depth testing of web applications’, in Recent
Advances in Intrusion Detection, eds., Richard Lippmann, Engin Kirda,
and Ari Trachtenberg, volume 5230 of Lecture Notes in Computer Sci-
ence, 191–210, Springer Berlin / Heidelberg, (2008).

[11] Alessandro Moschitti, ‘Efficient convolution kernels for dependency
and constituent syntactic trees’, in Proceedings of the 17th European
conference on Machine Learning, ECML’06, pp. 318–329, Berlin, Hei-
delberg, (2006). Springer-Verlag.

[12] Aliaksei Severyn and Alessandro Moschitti, ‘Large-scale support vec-
tor learning with structural kernels’, in ECML/PKDD (3), pp. 229–244,
(2010).

[13] John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, New York, NY, USA, 2004.

[14] N. Surribas. Wapiti, web application vulnerability scanner/security au-
ditor, 2006-2010.

[15] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith, ‘Agile se-
curity testing of web-based systems via httpunit’, in Agile Conference,
2005. Proceedings, pp. 29 – 38, (july 2005).

[16] S.V.N. Vishwanathan and A.J. Smola, ‘Fast kernels on strings and
trees’, in In proceedings of Neural Information Processing Systems,
(2002).

[17] Dell Zhang and Wee Sun Lee, ‘Question classification using support
vector machines’, in Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion
retrieval, SIGIR ’03, pp. 26–32, New York, NY, USA, (2003). ACM.

