
Grammar Based Oracle for Security Testing of Web Applications

Andrea Avancini and Mariano Ceccato
Fondazione Bruno Kessler

Trento, Italy
{anavancini,ceccato}@fbk.eu

Abstract—The goal of security testing is to detect those
defects that could be exploited to conduct attacks. Existing
works, however, address security testing mostly from the point
of view of automatic generation of test cases. Less attention
is paid to the problem of developing and integrating with a
security oracle.

In this paper we address the problem of the security oracle,
in particular for Cross-Site Scripting vulnerabilities. We rely
on existing test cases to collect HTML pages in safe conditions,
i.e. when no attack is run. Pages are then used to construct
the safe model of the application under analysis, a model that
describes the structure of an application response page for safe
input values. The oracle eventually detects a successful attack
when a test makes the application display a web page that is
not compliant with the safe model.

Keywords-security testing; test oracle; cross site scripting

I. INTRODUCTION

Web applications are continuously exposed to a poten-
tially hostile and dangerous environment. In fact, they are
often targets of attacks aiming at turning them down (denial-
of-service) or at stealing sensitive information. Cross-Site
Scripting vulnerabilities (XSS hereafter) are one of the
most common class of flaws related to web applications.
XSS are caused by improper validation of input data (e.g.,
coming from the user). Input data may contain JavaScript or
HTML fragments that could flush to the web page, altering
the resulting content such that malicious code is injected.
When executed by the user browser, such code may display
false messages or add malicious features (e.g., to disclose
sensitive data).

Goal of security testing is to guarantee a high quality
of web applications from the security point of view, so
as to limit the possibility to suffer the consequences of
attacks. In literature, many approaches [1], [2], [3], [4],
[5], [6] have been proposed for automating the generation
of security test cases. However, a reusable security oracle,
required to check whether security test cases actually expose
application vulnerabilities, is still an open problem. In fact,
the security oracle has been addressed either manually [1]
or by approaches that, even if automatic, they are tailored
on the specific test case generation algorithm [2], [3], [4],
[5], [6], so that they can not be easily reused in different
contexts. For example, in [2] the oracle consists in checking
if a web page contains the same JavaScript fragment used
for the automatic generation of a test case.

In the present paper, we cope with the problem of the
security oracle for XSS vulnerabilities, that (i) is not strictly
dependent on the test case generation step, and that (ii) is
able to detect a more broad class of code injections. Our
oracle is based on the safe model, the intended syntactic
structure of the web application in safe conditions. An attack
is classified as successful when it causes structural changes
that violate the safe model. Alterations detected by the oracle
are not just JavaScript code injections, but more generally
any HTML code injection (e.g., new links or iframes) that
modifies the intended page content.

In Section II we summarize the background on web
application vulnerabilities and security testing, required for
presenting our contribution on the security oracle in Sec-
tion III. Preliminary experimental results are presented in
Section IV. Comparison with the state of the art (Sections V)
and conclusions (Section VI) close the paper.

II. BACKGROUND

A. Cross-Site Scripting Vulnerabilities

1 $user = $ GET [”username”] ;
2 $pass = $ GET [”password”] ;
3 $pass2 = $ GET [”password2”] ;
4 i f (strpos ($user , ”<s c r i p t ”))
5 $user=htmlspecialchars($user) ;
6 i f ($user in $use r s)
7 echo ”username a l r eady taken ” ;

else
8 i f (strlen ($pass) < 5)
9 echo ”password too shor t ” ;

else
10 i f ($pass == $pass2)
11 new user ($user , $pass) ;
12 echo ”new account f o r ” ;
13 echo $user ; // s ink

else
14 echo ”passwords do not match” ;

Figure 1. Running example of a XSS vulnerability on PHP code.

Figure 1 shows a portion of PHP code fragment that
contains a reflected XSS vulnerability, i.e. there exists an
execution flow where a non validated input value (variable
$user) is displayed in the output page (line 13). Even if this

example focuses on PHP, this kind of vulnerability affects
web applications written in any programming language.

The example web page registers a new user, using input
values coming from a previous web page that contains a
form. Input values username, password and password2 from
the incoming HTML request, are represented in PHP as the
special associative array $ GET. Input values are assigned to
local variables $user, $pass and $pass2 (lines 1 to 3). These
variables should not be appended to the output response
page, because they are still not validated and may contain
HTML or JavaScript code fragments.

Validation starts at line 5. Possibly dangerous characters
are removed from variable $user using the PHP func-
tion htmlspecialchars. This function changes special HTML
characters (e.g. “<”, “>” and “"”) into their encoded form
(“<”, “>”, and “"”), safe when printed in a
web page. The sanitized content of variable $user is then
stored again in variable $user. Validation (line 5), however,
is done only when condition on line 4 holds. Such condition,
unfortunately, does not cover all the possible dangerous
cases. For example, harmful code containing a different tag
(e.g. <a>) or with a space between < and script would
skip sanitization.

The validation of $user continues on line 6, checking that
user name has not been already taken. Then, line 8 enforces
password length, and line 10 checks that password is typed
twice the same.

In case the validation phase passes, a user is created, the
web page notifies successful creation of such a new user
and variable $user is printed on the confirmation web page
(line 13), possibly causing a security threat. Because of
inadequate validation at lines 4 and 5, $user may contain
the original untrusted value.

B. Vulnerability Exploit

The vulnerability shown in Figure 1 can be exploited by
an attack that:

1) makes the execution follow a path that satisfies con-
ditions on username and password so that it reaches
the sink statement on line 13;

2) skips the sanitization of line 5; and
3) stores an attack vector in variable $user.

An example of successful attack is represented by
an HTML request containing the parameter username
set to <a href="" onclick="this.href=
’evil.php?data=’%2Bdocument.cookie">
click here and password and password2 equal
to xxxxx. In fact, the corresponding user name would pass
validation as it is not already in use (line 6) and it does not
contain the <script string (line 4). Then, the password
is long enough (line 8) and it is typed twice the same (line
10).

When such user name is appended to the response
page (on line 13), it alters the HTML structure (%2B

is decoded as “+”), as a brand new link (the <a> tag)
is injected, pointing to an external web site controlled
by the attacker (i.e., evil.php). In case such link is trig-
gered by the legitimate user, her/his cookie is encoded
as a page parameter and sent to attacker controlled site
(evil.php?data=’+document.cookie’). With the
stolen cookie, the attacker may pretend to be the legitimate
user, hijack her/his session and access his/her sensitive
data. This attack can be achieved, for example, by sending
the mentioned link to legitimate users by e-mail, and by
convincing them to click on it.

C. Security Test Case Generation

Static analysis
Evolutionary

algorithm
Solver

Training data
Parse tree

reduction
Safe model

Candidate

attacks

Security test case generation

Security oracle

Figure 2. Tool chain.

In previous works [7], [8] we presented an approach
for automatic generation of security test cases, based on
the integration of a genetic algorithm and a constraint
solver. The mentioned approach is summarized here for
completeness. Security test case generation is composed of
three steps: static analysis, generic algorithm and solver, as
shown in Figure 2-top.

Static analysis: the identification of vulnerabilities relies
on taint analysis [9], a static analysis technique that tracks
the tainted/untainted status of variables throughout the ap-
plication control flow. A vulnerability is reported whenever
a possibly tainted variable is used in a sink statement
(e.g. print). In case of XSS [10], tainted values are those
values that come from untrusted sources (data base and user
input) and sinks are all the print statements that append a
string into the web page. Tainted status is propagated on
assignments and tainted variables become untainted upon
sanitization (e.g., function htmlspecialchars in PHP). Taint
analysis is formulated as a flow analysis [11] problem, where
the information propagated in the control flow graph is the
set of variables holding tainted values.

Taint analysis does not provide executable test cases, but
just the data slice that gives raise to the vulnerability. The
data slice consists of the chain of those assignments that
make a tainted value flow into a sink statement, skipping
validation. This list of assignments does not identify a path
in the control flow, but a (possibly infinite) set of paths. Data
slice for Figure 1 is composed by lines {1, 13}.

We collect all the control statements that hold a control
dependence on the assignments in the data slice, because
they drive the code execution into (or away from) a vul-
nerable path. The branches to traverse in order to reach the
vulnerable statement with a tainted value are called target
branches, because they are those branches that a security
test case must take to execute the vulnerable data slice. In
the running example of Figure 1, the target branches are
{4-6, 6-8, 8-10, 10-11}. The first (4-6) is required to skip
sanitization and the others are required to pass validation
and reach the vulnerable sink.

Genetic algorithm: The genetic algorithm starts from an
initial set of random tests and evolves them by combining
together the fittest solutions, with the hope of generating
fitter ones, until the final solution is found. The fitness
is computed by a fitness function that corresponds to the
approach level, i.e., the percentage of target branches that are
taken by the execution of a test case. The genetic algorithm
terminates either when a test case is found that is able to
traverse 100% of the target branches or when a time-out is
reached.

On each evolution iteration, a subset of the current pop-
ulation is selected to form the next population, by giving
more chances to those individuals that are more likely to
generate the final solution, i.e., they have a better value
of the fitness function. Selected individuals are paired to
generate offspring by crossing over their chromosomes and
by mutating them, with the hope of generating better so-
lutions. Test cases to evolve are input values for the page
under analysis. Input values are in the form of {parameter
name, parameter value}, and they can be turned directly
into HTML requests. As genetic algorithms are heuristics,
they are not ensured to converge to the final solution,
especially when input data must satisfy complex conditions.
For example, in Figure 1, condition at line 10 requires that
the two random strings on password and password2 are
equal. The probability of randomly generating two identical
strings is very low. Moreover, genetic algorithms suffer local
optimum. Whenever optimization finds a local optimum, it
could be difficult to move forward from it.

Solver based local search: When the genetic algorithm
stops improving, a local optimum or a particularly hard to
satisfy condition are probably found. In these cases, we
switch to a local search strategy based on a constraint solver.
This approach has been inspired by dynamic symbolic
execution [12].

The source code of the application under analysis is
instrumented such that, on decision points, path conditions
are collected in terms of conditions on symbolic inputs.
This requires to update a run-time map of the symbolic
values of program variables, in terms of their relation with
input values. On assignments, the dynamic map is updated
with the new symbolic values of the assigned variables.
A SMT solver would easily address constraints on string

equality (e.g., line 10). However, due to limitations of solvers
in handling complex expression on strings and non-linear
arithmetic, sometimes symbolic expressions can not be used
and concrete values are resorted. For this reason, adopting
the solver alone is of limited benefit, but it is quite helpful
when complemented by a genetic algorithm.

Path conditions are collected until the execution takes a
branch that diverges from one of the target branches. The
condition on the diverging branch is then negated before
being added to the others. All the conditions are then passed
to the solver that possibly elaborates a new test case with
input values that satisfy the missed target branch. The new
test case improves the fitness function, because it takes one
target branch more than any previously generated test. At
this stage, control passes to the genetic algorithm again for
further optimization.

Test cases generated according to this procedure show the
presence of a potential security fault. Test cases demonstrate
how untrusted input values may flow into a response page
without proper validation. These test cases, however, do not
represent actual attacks, as they do not perform any code
injection. In order to generate proof-of-concept attacks, a
security oracle is required.

III. SECURITY ORACLE

The goal of an XSS attack is to inject JavaScript or HTML
code fragments into a web page. Thus, consequences of
injection should be evident as structural changes in the parse
tree of the page under attack, when compared with the parse
tree of the same page running on normal conditions.

However, content of a dynamic web application depends
either on input values and on specific executions. The parse
tree of the same page may vary a lot, even without code
injection. The same PHP script may take different alternative
actions or, at least, display different results, because of
different queries or computations.

The security oracle should distinguish between those
variations that are safe because due to the dynamic behavior
of the web applications and those variations caused by code
injection due to successful attacks. A model of the parse
trees on safe cases is constructed according to the steps
shown in Figure 2-bottom:

1) Training data: several test cases are generated and
run on the web page under analysis. The HTML pages
resulting from the test case executions are collected;
and

2) Reduction: HTML code is parsed and each parse tree
is processed to remove all those details that are not
relevant for a code injection attack, in order to ob-
tain a more compact representation of each particular
execution; and

3) Safe model: all the reductions are combined together
into a common structure, which is abstract enough to

reasonably represent the structure of the executions of
the target branches in safe conditions.

Eventually, a new parse tree that would not satisfy the
safe model would be classified as code injection, because it
would represent a successful XSS attack.

A. Training Data

The test case generation procedure summarized in Sec-
tion II computes just few (or just one) test cases for each
vulnerability. More distinct test cases are needed to build a
model with an appropriate level of generality. All the training
test cases, however, must still cover the same vulnerability,
i.e. to satisfy the conditions on the target branches.

To increase the number of test cases, we mutate the initial
set of test case(s) using the following mutation operators:

Change parameter value: The value of a parameter is
randomly changed. One parameter is chosen with uniform
probability and its value is changed in two alternative ways.
Either (1) one character of the current string is randomly
selected and substituted with a random character or (2) a ran-
dom string is concatenated to the existing parameter value.
The same applies on numeric values, the only difference is
that just digits are used instead of characters.

Insertion of a new parameter: A new parameter is added
to the test case. The parameter name is randomly selected
among the available parameter names and its value and type
are generated randomly.

All the constant strings that appear in the page source code
are collected and stored into a pool. When a new random
string is required, such string is either chosen from the string
pool (probability 1/2) or randomly generated (probability
1/2). In the latter case, the following algorithm is resorted
to. A character is randomly selected from a set containing
alphanumeric characters and special HTML/JavaScript char-
acters, i.e. from [a-zA-Z0-9], and [<>?&+-*/=\()[
]"’]. After the first character, a second one is added with
probability 1/2, so the probability of having a string of length
2 is 1/2. In case the second character has been added, a
third one is added with probability 1/2, so the probability
of a string of 3 characters is 1/2

2 = 1/4. More characters
are added with a probability that decays exponentially. In
general the probability of generating a string of length n is
1/2

n−1.
To generate a random numeric value, we adopt the same

algorithm, selecting random characters from the class [0-9].

B. Reduction

Test cases are executed on the instrumented web applica-
tion to record what branches are traversed at run-time. For
those tests that take 100% of the target branches, we collect
the generated HTML code and the corresponding parse tree.
Then each parse tree is reduced applying the subsequent
abstraction rules:

Remove text and formatting: The parse tree is reduced
by removing text and comments, so just HTML tags and
scripts remain. We remove also all the formatting tags (e.g.,
<tt>, <i>, , <big>, <small>,
 and <hr>) that do not
specify event attributes (onclick, ondblclick, onmousedown,
nmousemove and similar).

Compact lists: A list of tags that contains the same
elements/attributes is replaced with a repetition pattern. For
example, an item list with consecutive identical entries
is replaced by the pattern {}+.

Compact repeated sequence: When a sequence of
tags is repeated with exactly the same attributes, it is
replaced with a list pattern. For example a sequence of
many cells <td></td> in a table row is replaced by
the pattern {<td></td>}+. Possibly, a sequence of ta-
ble rows <tr>{<td></td>}+</tr> is replaced by pattern
{<tr>{<td></td>}+ </tr>}+

Merge same attribute: When previous compact rules
do not apply because matching tags have a common at-
tribute but with different values, the common attribute is
replaced by a regular expression with the alternative val-
ues and then tags are transformed. For example, tags <li
class=“c1”> <li class=“c2”> are replaced by pattern {<li
class={“c1”|“c2”}>}+

Merge different attributes: When compact rules do not
apply because matching tags have different attributes, the
attributes are replaced by a regular expression containing the
alternatives and then the previous rules apply. For example,
tags <li class=“c1”> <li lang=“EN”> are replaced by pattern
{<li {class=“c1”|lang=“EN”}>}+

A special case of this rule is when a tag misses an
attribute. In this case the pattern to use relies on the empty
alternative ε. For example, tags <li class=“c1”> are
replaced by pattern {<li {class=“c1”|ε}>}+

Pattern merge: A special case of merge attributes
may require to merge intermediate results of already
composed patterns. Since only attribute patterns use the
alternatives operator (i.e., “|”), the merge consists in
the union of all the possible alternatives. For example,
sequence of patterns {<li {class=“c1”|lang=“EN”}>}+
{<li {class=“c2”|ε}>}+ is replaced by pattern {<li
{class=“c1”|lang=“EN”|class=“c2”|ε}>}+

C. Safe Model

When parse tree reductions are available for all the test
cases, they need to be combined into a single abstraction.
This abstraction models the safe execution of the vulnerable
data slice when no injection takes place. We call this
abstraction the safe model.

Combination is done pairwise and it starts by combining
two parse tree reductions. The result is then combined with
the third tree reduction. The combination process continues
combining one reduction after the other, until the last parse
tree reduction is merged into the final model.

The trees to merge are visited in parallel using a breadth-
first strategy. Starting from the root, all the children nodes
are fully processed, before continuing with the grand-
children nodes. Figure 3 shows an example of the combina-
tion, reductions (a) and (b) are combined in the safe model
(c). Both of the trees start with the same <body> tag, so this
tag is reported in the safe model (c). The second level of (a)
and (b) (i.e., the children nodes of <body>) contain some
differences. The difference is computed using the longest
common subsequence algorithm [13]. The algorithm reports
nodes <table> and as common, so they are simply
copied in the result (c). Non-common nodes are combined in
patterns, before they are reported in the result (c) according
to these cases:

• If the difference consists in the substitution of consec-
utive nodes, alternatives are reported in the pattern.
In the example, the children in second position are
different, and <a>, so the result contains the
pattern {|<a>}; or

• If the difference consists in the insertion (or deletion)
of consecutive nodes, the empty alternative ε is used
in the pattern. In the example, the fourth child (<a>)
of (a) does not match any node of (b). So, the results
contains the pattern {<a>| ε}.

When two nodes are merged into a pattern, also their
children are recursively merged into patterns. In the example,
nodes and <a> are merged. The former has a child node
{}+, while the latter has no child. So, the merged node
of (c) will have a brand new child, consisting of the union
pattern with the empty alternative ε, i.e. {{}+|ε}.

D. Attack Validation

Once the safe model is available, it can be used to
assess whether a new test case is a successful attack. The
decision procedure starts by running the candidate attack
and collecting the HTML output page. Its parse tree is
then reduced and combined with the existing safe model
into a potentially different model, the evaluation model. A
difference between the safe model and the evaluation model
means that the candidate attack caused structural changes in
the page. Thus code injection took place and the attack is
classified as successful.

IV. PRELIMINARY RESULTS

A. Implementation

Security testing described in Section II relies on a previous
tool [8] for vulnerability identification and vulnerability cov-
erage. The security oracle described in Section III has been
implemented in a proof-of-concept prototype and integrated
in the security testing process.

Training data: New test cases are collected by mutating
the test cases generated by the security testing tool. Mutation
partially reuses operators available in the genetic algorithm.

Vulnerability coverage is checked using the same instrumen-
tation capabilities available in security testing.

Reduction & Safe model: The TXL language [14] is used
to implement rules for parse tree reduction and for merging
reductions into the safe model. TXL supports the definition
of grammar-based rules to perform a source-to-source code
transformation. Transformations are defined on a grammar
obtained from the base HTML grammar extended by adding
patterns for tags and attributes.

Attack generation: For turning security test cases into
code injection exploits, attack strings are injected into test
input data. Attack strings come from a library of typical
fragments of attacks (e.g., HTML tags containing scripts and
links) that were used in penetration testing and in black-
box fuzzing [15]. An attack fragment is randomly chosen
from the library and injected into one of the parameter
values of the original test case. Then, the newly created
candidate attack is executed to check if it still traverses all
the target branches. Finally, the response page is reduced
and the evaluation model based on it is compared with the
safe model to assess code injection.

B. Empirical Data

The tool-prototype is applied on a case study, Yapig ver-
sion 0.95b, an open-source PHP application that implements
an image gallery management system. It consists of 9,113
lines of code and 53 source files, with 160 user-defined
functions and 2,638 branches.

Static analysis reported a total of 25 candidate XSS
vulnerabilities (including false positives) and test cases gen-
eration was run on them. To assess the security oracle we
had to select a vulnerability among those covered by an
automatically generated test case. The selected vulnerability
was caused by a missing sanitization routine in the page
to upload pictures. An attacker may inject malicious code
into one of the parameters accepted by this page and, if the
other parameters are consistent with the application logic,
the execution proceeds. The injected code flows into the sink
and it is printed into the output page, delivering harmful code
to the victim browser. This vulnerability was covered by 7
distinct test cases, to be used for generating the safe model.

Parse tree reduction and pairwise merge into the final
safe model took just few seconds, because the HTML pages
were relatively small. In fact, the initial pages on average
consisted of 150 LoC, while their reductions consisted of 90
LoC, with a compression factor of 1.6. The most frequently
occurring reduction pattern was a sequence of <a> tags with
different attribute values, often used to build linked menus
in various parts of the web page. These tags were replaced
by a single pattern, according to the compact list rule in the
merge same attribute variant. This pattern applied 3 times
in the reduced HTML. The same reduction rule replaced
the sequences of <meta> tags in the HTML header. The
rule compact list in the merge different attributes replaced

< body >

< table > < ul > < img > < a >

{< tr >}+ {< li >}+

{< td >}+

< body >

< table > < a > < img >

{< tr >}+

{< td >}+

< body >

< table > {< ul > | < a >} < img > {< a > | �}

{< tr >}+ {{< li >}+ | �}

{< td >}+

(a) (b) (c)
Figure 3. Example of combination of two parse tree reductions (a) and (b) into the safe model (c).

a sequence of tags with different elements. The 7
reductions have been finally merged into the safe model.

Then, the library of attack patterns was used to mutate test
case input values and generate candidate attacks. Out of 19
candidate attacks, only 5 of them were still covering all the
target branches. We collected the output pages produced by
them, we transformed them into 5 reductions and then into
5 evaluation model. None of the 5 models satisfied the safe
model, so attacks were classified by the oracle as successful.
Manual inspection of the response pages revealed that new
code was effectively injected, although injection consisted
of always different HTML tags, because different attack
patterns were used. Thus the classification by the oracle was
correct.

V. RELATED WORKS

A fundamental part of security testing is deciding about
successful attacks, i.e. when a test case is able to inject ma-
licious code. Initially, checking code injection was a manual
task delegated to programmers. For instance, in the work by
Tappenden et al. [1] security testing is approached with an
agile methodology using HTTP-unit and the verification of
test outcome is a manual task.

Other approaches provide a higher level of automation.
In [2] a library of documented known attacks is used to
generate valid inputs for a web application. A symbolic data
base is implemented to propagate the tainted status of input
values through the data base to the final attack sinks. A first
stage of the oracle adopts dynamic taint analysis to verify
that tainted data are used in a sink. The second stage of the
oracle is based on a comparison of safe pages with pages on
candidate attacks. This check consists in verifying if pages
differ with respect to “script-inducing constructs”, i.e. new
scripts or different href elements.

In other works [3], [4], [5], [6], the oracle consists in
checking if a response page contains the same <script>
tag passed as input. McAllister et al. [3] adopt a black-box
approach to detect XSS vulnerabilities. Data collected during
the interaction with real users are subject to fuzzing, so as

to increase test coverage. The oracle for XSS attacks checks
if the script passed as input is also present in the output
page. We adopt a similar approach to artificially multiply
the limited amount of test cases initially available, in order
to make the safe model more general.

In Huang et. al. [4] data-entry-points are identified in
web applications and attack patterns are used on them. The
oracle consists in checking that input data containing the
”<script>” substrings are sanitized before using them in
output construction.

The paper by Halfond et al. [5] presents a complete
approach to identify XSS and SQLI vulnerabilities in Java
web applications. (1) Input vectors are identified as param-
eters read by the page under analysis, together with their
expected type and domain. Flow analysis is resorted to
group input vectors and domains into input interfaces. Then
(2) attack patterns are used to generate many attacks for
these interfaces. Eventually (3) page execution is monitored
and HTTP response is inspected to verify if attacks are
successful, i.e. the executed SQL statement is dangerous or
new HTML scripts have been injected. Also in this case the
oracle consists in detecting if the response page contains a
script tag injected by input data.

In [6] a scanner identifies input fields on forms, they are
later used to mount attacks. The oracle consists in detecting
whether a script injected in a form appears in the response
page. As commented by the authors, this approach suffers
false negatives.

Limiting the check to injected script tags guarantee a high
precision, but recall may be low, because of vulnerabilities
depending on other tags may not be detected in these oracles.
Our approach is more general, because we build a model of
a safe execution that is general enough to capture any form
of code injection that does not satisfy the model of a safe
execution.

A different kind of security oracle is adopted in other
works on mutation testing [16], [17], [18]. Several mutation
operators are defined to expose SQL-injection vulnerabilities
on JSP applications [16], format string bugs on C [17] and

XSS vulnerabilities on PHP code [18]. Test case adequacy
is evaluated on the ability to kill mutants.

VI. CONCLUSION

Security testing of web applications requires the adoption
of a security oracle, able to classify test cases as successful
attacks. In this paper we propose a security oracle for Cross-
Site Scripting vulnerabilities. In order to be quite general and
not dependent on training test cases, we propose to base the
oracle on the safe model of the web application, i.e. on an
abstraction of the parse trees of the HTML code resulting
from safe executions.

The proposed security oracle has been assessed on a
proof-of-concept case study, and empirical results suggest
that the level of abstraction of the safe model is an appropri-
ate trade off between generality and ability to detect attacks.
In fact, on the one hand the oracle accepts a super-set of
the training test cases, so abstraction makes the oracle quite
independent from training data. On the other hand, even if
abstract, the oracle was effective in classifying actual code
injections as attacks.

As future works we plan to adopt the proposed oracle
on bigger case studies and investigate on how the level of
abstraction may impact precision and recall in classifying
attacks. In fact, a too abstract oracle would be independent
from training tests, but it could be too generic and miss real
attacks. However, a too concrete model will not miss any
attack, but it could also classify safe test cases as attacks.

REFERENCES

[1] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith,
“Agile security testing of web-based systems via httpunit,” in
Agile Conference, 2005. Proceedings, july 2005, pp. 29 – 38.

[2] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic
creation of sql injection and cross-site scripting attacks,” in
Software Engineering, 2009. ICSE 2009. IEEE 31st Interna-
tional Conference on, may 2009, pp. 199 –209.

[3] S. McAllister, E. Kirda, and C. Kruegel, “Leveraging user
interactions for in-depth testing of web applications,” in
Recent Advances in Intrusion Detection, ser. Lecture Notes
in Computer Science, R. Lippmann, E. Kirda, and A. Tracht-
enberg, Eds. Springer Berlin / Heidelberg, 2008, vol. 5230,
pp. 191–210.

[4] Y.-W. Huang, C.-H. Tsai, D. Lee, and S.-Y. Kuo, “Non-
detrimental web application security scanning,” in Software
Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on, nov. 2004, pp. 219 – 230.

[5] W. G. J. Halfond, S. R. Choudhary, and A. Orso,
“Improving penetration testing through static and dynamic
analysis,” Software Testing, Verification and Reliability,
vol. 21, no. 3, pp. 195–214, 2011. [Online]. Available:
http://dx.doi.org/10.1002/stvr.450

[6] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat:
a web vulnerability scanner,” in Proceedings of the 15th
international conference on World Wide Web, ser. WWW ’06.
New York, NY, USA: ACM, 2006, pp. 247–256. [Online].
Available: http://doi.acm.org/10.1145/1135777.1135817

[7] A. Avancini and M. Ceccato, “Towards security testing with
taint analysis and genetic algorithms,” in Proceedings of the
2010 ICSE Workshop on Software Engineering for Secure
Systems. ACM, 2010, pp. 65–71.

[8] ——, “Security testing of web applications: A search-based
approach for cross-site scripting vulnerabilities,” in Source
Code Analysis and Manipulation (SCAM), 2011 11th IEEE
International Working Conference on. IEEE, 2011, pp. 85–
94.

[9] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static
analysis tool for detecting web application vulnerabilities
(short paper),” in SP ’06: Proceedings of the 2006 IEEE
Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 258–263.

[10] G. Wassermann and Z. Su, “Static detection of cross-site
scripting vulnerabilities,” in ICSE ’08: Proceedings of the
30th international conference on Software engineering. New
York, NY, USA: ACM, 2008, pp. 171–180.

[11] M. Sharir and A. Pnueli, Program Flow Analysis: Theory
and Applications. Prentice Hall, 1981, ch. Two approaches
to interprocedural data flow analysis, pp. 189–233.

[12] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit
testing engine for c,” in Proceedings of the 10th European
software engineering conference. New York, NY, USA:
ACM, 2005, pp. 263–272.

[13] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest
common subsequence algorithms,” in String Processing and
Information Retrieval, 2000. SPIRE 2000. Proceedings. Sev-
enth International Symposium on, 2000, pp. 39 –48.

[14] J. Cordy, “The TXL source transformation language,” Science
of Computer Programming, vol. 61, no. 3, pp. 190–210,
August 2006.

[15] N. Surribas, “Wapiti, web application vulnerability
scanner/security auditor,” 2006-2010. [Online]. Available:
http://www.ict-romulus.eu/web/wapiti

[16] H. Shahriar and M. Zulkernine, “Music: Mutation-based sql
injection vulnerability checking,” in Quality Software, 2008.
QSIC ’08. The Eighth International Conference on, aug. 2008,
pp. 77 –86.

[17] ——, “Mutation-based testing of format string bugs,” in High
Assurance Systems Engineering Symposium, 2008. HASE
2008. 11th IEEE, dec. 2008, pp. 229 –238.

[18] ——, “Mutec: Mutation-based testing of cross site
scripting,” in Proceedings of the 2009 ICSE
Workshop on Software Engineering for Secure Systems,
ser. IWSESS ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 47–53. [Online]. Available:
http://dx.doi.org/10.1109/IWSESS.2009.5068458

