
Security Testing of Web Applications:

a Search Based Approach for Cross-Site Scripting Vulnerabilities

Andrea Avancini, Mariano Ceccato

FBK-irst Trento, Italy
Email: {anavancini,ceccato}@fbk.eu

Abstract

More and more web applications suffer the presence of

cross-site scripting vulnerabilities that could be exploited

by attackers to access sensitive information (such as cre-

dentials or credit card numbers). Hence proper tests are

required to assess the security of web applications.

In this paper, we resort to a search based approach

for security testing web applications. We take advantage

of static analysis to detect candidate cross-site scripting

vulnerabilities. Input values that expose these vulnerabil-

ities are searched by a genetic algorithm and, to help

the genetic algorithm escape local optima, symbolic con-

straints are collected at run-time and passed to a solver.

Search results represent test cases to be used by software

developers to understand and fix security problems. We

implemented this approach in a prototype and evaluated it

on real world PHP code.

I. Introduction

Among all the programming errors that threaten the

reliability of web applications, security faults are probably

the most critical and latent. In fact, successful attacks may

have dramatic consequences that range from simple denial

of service (web-site is down) to sensitive information

disclosure, possibly resulting in criminal acts, such as

frauds and identity thefts.

One of the top-ranked vulnerabilities is cross-site script-

ing (XSS). This threat is due to inadequate validation of

data coming from untrusted sources (e.g. user inputs).

Tainted data may contain portions of HTML code (e.g.

java-scripts) that could flow into the page under attack.

Malicious scripts are meant to be eventually executed by

web-browsers of legitimate users who access the pages

under attack, for example to steal sensitive data.

Despite the crucial implications of security faults, man-

ual code inspection is still a largely adopted practice to

reveal and fix them. As applications are larger and larger,

static analysis represents a valuable support by suggesting

candidate vulnerabilities as starting points for the manual

review, or conditions under which a vulnerability may

appear. However, static analysis does not provide any

executable example of how these (possibly complicated)

conditions may turn into a security problem.

The main contribution of this paper is to integrate static

taint analysis, genetic algorithms and constraint solving to

automatically generate test cases that are able to expose

XSS vulnerabilities on PHP web applications.

The problem of identifying a test case that is able to

satisfy the critical conditions returned by static analysis

can be formulated as a search problem. In this paper, we

turn conditions detected by static analysis into structural

constraints, branches to be traversed. Then, we adopt a

genetic algorithm to find those input values that make the

execution take such branches. In order to avoid the genetic

algorithm to converge on local optima, we adopt a local

search strategy. Symbolic constraints are collected along

the execution as conditions on input values. A solver is

then resorted to find new input values, able to improve

the current solution and escape from the local optimum.

This approach has been implemented in a prototype and

applied on a case study. Test cases are generated that

expose reflected XSS vulnerabilities on PHP code.

Test cases generated by our approach do not actually

exploit a vulnerability, as they are not meant to inject code

into a web page. However, they represent a crucial help for

developers who need to understand vulnerabilities before

fixing them. Test cases improve the limited support offered

by static analysis.

Complicated vulnerabilities may require tainted data to

be stored into the database, before being used in actual

attacks. However, in this paper we focus on reflected

vulnerabilities, those caused directly by input data, without

considering the persistent storage.

While existing approaches for automatic generation of

test cases (such as concolic testing or evolutionary testing)

are meant to achieve a general and high structural cover-

age, we target just selected conditions. In fact, security

problems may manifest just in strange and rare paths

identified by static analysis, that even large test suites could

miss.

After recalling the background on cross-site scripting

vulnerabilities on Section II, the test case generation pro-

cedure is discussed on Section III. Then, implementation

(Section IV) and empirical results (Section V) are pre-

sented. Related works and conclusions close the paper in

Section VI and VII.

II. Web site vulnerabilities

Cross-site scripting vulnerabilities (XSS for short) are

caused by improper validation of input data (e.g., coming

from the user). Input data may contain HTML fragments

that could flush to the web page, altering the resulting con-

tent such that malicious code is injected. When executed

by the user browser, such code may disclose sensitive data

to third parties. Even if this paper focuses on PHP, this

kind of vulnerability affects web applications written in

any programming language.

1 $u s e r = $ GET [” username ”] ;
2 $pa s s = $ GET [” password ”] ;
3 $pas s2 = $ GET [” password2 ”] ;
4 i f (s t rpo s ($use r , ”< s c r i p t ”))
5 $u s e r =h tm l spe c i a l char s ($ u s e r) ;
6 i f ($ u s e r i n $ u s e r s)
7 echo ” username a l r e a d y t a k en ” ;
e l s e

8 i f (s t r l e n ($pa s s) < 5)
9 echo ” password too s h o r t ” ;

e l s e
10 i f ($pa s s == $pas s2)
11 new user ($use r , $pa s s) ;
12 echo ”new accoun t f o r ” ;
13 echo $u s e r ; / / s i n k

e l s e
14 echo ” pas swords do no t match ” ;

Figure 1. Running example of a XSS vulnera-
bility on PHP code.

Figure 1 shows a portion of PHP-like code fragment

that contains a reflected XSS vulnerability. This web page

register a new user, using input values coming from a web

page that contains a form filled by the user. Input values

username, password and password2 from the incoming

HTML request, are represented in PHP as the special array

$ GET. Input values are assigned to local variables $user,

$pass and $pass2 (on lines 1 to 3).

Input values are then validated. At line 5, dangerous

characters are removed from variable $user. PHP provides

the function htmlspecialchars to sanitize strings. It changes

special HTML characters (e.g. “<”, “>” and “"”) in their

encoded form (“<”, “>”, and “"”), safe

when printed in a web page. However, the example fails

to properly validate the content of variable $user. In fact,

it is sanitized (line 5) only conditionally. The condition on

line 4 fails to cover all the dangerous cases. For example,

a string containing a different tag (e.g. <a>) or with a
space between < and script would skip sanitization.

The validation of $user continues on line 6, checking

that user name has not been already taken by other users.

After this, the password is validated. On line 8, password

length is enforced and later, on line 10, password is

checked to be typed twice the same.

In case the validation phase passes, the new user is

created1 and a web page notifies successful creation.

Notification contains the name of the new user, variable

$user is printed on the web page (line 13). This is a

potential vulnerability, because of inadequate validation at

lines 4 and 5.

The vulnerability can be exploited by executing

a path that reaches the sink statement on line

13, while skipping sanitization on line 5. An

example of successful attack is represented by an

HTML request containing the parameters username

set to <a href="" onclick="this.href=

’evil.php?data=’%2Bdocument.cookie">
click here and password and password2 equal
to xxxxx. In fact, the corresponding user name would

pass validation as it is not already in use and it does

not contain the <script string. Moreover, password is

typed twice the same and it is long enough.

When such user name is appended on the response

page, it alters the HTML structure (%2B is decoded

as “+”), as a brand new link (the <a> tag) is

injected, pointing to an external web site controlled

by the attacker (i.e., evil.php). In case such link is

triggered by the legitimate user, his/her cookie is

encode as a page parameter and sent to the attacker site

(evil.php?data=’+document.cookie’). With

the stolen cookie, the attacker can pretend to be the

legitimate user, hijack his/her session and access his/her

sensitive data from the web-site under attack. This attack

can be achieved, for example, by sending the mentioned

link to legitimate users by e-mail, and by convincing them

to click on it.

1The act of inserting tainted values in the database may result in a
different threat known as persistent XSS, which is not addressed here, as
this paper focuses on reflected XSS.

III. Security testing

A. Taint analysis

Taint analysis is a static analysis technique devoted to

track the tainted/untainted status of variables throughout

the application control flow. A vulnerability is reported

whenever a possibly tainted variable is used in a sensitive

(sink) statement. In the case of XSS [1], tainted values

are those that come from the external world (data base

and user input) and sinks are all the print statements

that append a string into the web page. Tainted status

is propagated on assignments to the variable on the left

hand side, when an expression on the right hand side uses

a tainted value. Tainted variables become untainted upon

sanitization (e.g., function htmlspecialchars in PHP) and

when they are assigned untainted values, either a constant

or an expression that does not contain tainted values.

Taint analysis is formulated as a flow analysis [2] prob-

lem, where the information propagated in the control flow

graph is the set of variables holding tainted values. The

information generated and killed at each node (statement)

n can be defined as follow:

GEN [n] = {v | statement n assigns a (1)

tainted value to v}

KILL[n] = {v | statement n sanitizes (2)

the value of v}

The flow propagation is in the forward direction, with

union as the meet operator at junction nodes. Flow analysis

terminates when the following equations produce the least

fix-point:

IN [n] =
⋃

p ∈ pred(n)

OUT [p] (3)

OUT [n] = GEN [n] ∪ (IN [n] \ KILL[n]) (4)

where pred(n) indicates the set of nodes that precede

immediately n in the control flow graph. A candidate
vulnerability is reported when a tainted value reaches a

sink statement:

n is a sink for variable v (5)

v ∈ OUT [n] (6)

Static analysis is conservative and flow values propagate

also on infeasible paths. Vulnerabilities are just candidate,

because they contain false positives, i.e. vulnerabilities that

insists on infeasible paths.

Statement 13 in Figure 1 is a sink for variable $user,

because such variable is appended to the web page (echo

statement) at that line. Because such variable is pos-

sibly tainted, a candidate vulnerability is reported, i.e.

$user@13.

Taint analysis does not report executable test cases, but

just the data slice that gave raise to the vulnerability, con-

sisting of the chain of those assignments that make an input

value flow into a sink statement, skipping validation. In the

example, the assignment chain is {$user@1, $user@13}.
In general, this list of assignments does not identify a

single vulnerable path in the control flow, but a (possibly

infinite) set of paths. For example, we do not know how

many iterations to take on loops and which branch to take

in all those decision points (e.g. if-then-else) not

directly involved in the chain.

From the chain of assignments, we can compute the

list of branches to traverse in order to reach vulnerable

point with a tainted value. We call these branches target

branches. In the running example, target branches are {4-
6, 6-8, 8-10, 10-11}. The first (4-6) is required to skip
sanitization and the others are required to pass validation

and reach the vulnerable sink.

Genetic algorithms can be resorted to find proper input

values that make the execution traverse all the target

branches.

B. Genetic algorithms

1 p o p u l a t i o n = gene ra t eRandomPopu l a t i on () ;
2 f o r (T i n v u l n e r a b i l i t i e s) {
3 whi le (no t cove red (T) AND

a t t emp t < maxTry) {
4 s e l e c t i o n = s e l e c t (p o p u l a t i o n) ;
5 o f f s p r i n g = c ro s sOve r (s e l e c t i o n) ;
6 p o p u l a t i o n = muta t e (o f f s p r i n g) ;
7 a t t emp t = a t t emp t + 1 ;

} }

Figure 2. Genetic algorithm for path sensiti-
zation

The genetic algorithm evolves a set of solutions by

combining together the fittest solutions, with the hope

of generating fitter ones, until the optimum solution is

found. The details of the algorithm are shown in Figure 2.

An initial population composed of a random set of input

values (line 1), is evolved until the maximum number

of trials is completed or the solution is found (line 3).

On each evolution iteration, a subset of the population is

selected (line 4) to form the next population, by giving

more chances to those individuals that are more likely to

generate the final solution, i.e., they have a better value

of the fitness function. Selected individuals are paired to

generate offspring by crossing over their chromosomes

(line 5) and by mutating them (line 6), with the hope of

generating better solutions.

Chromosomes: Individuals are represented as chro-

mosomes. They contain the input values for the page under

analysis. A chromosome is a set of triples, each triple

contains parameter name, value and type (S for strings

and N for numbers). Individuals can be directly turned into

HTML requests for the application under test by encoding

them in the corresponding URL.

While parameter names can be found from the parame-

ters used in the web page source code, parameter values are

random values. Types are also randomly chosen, because

PHP is a loosely typed language and the same variable can

be interpreted as number or string. In fact, the language

implicitly converts variables on the fly, depending on their

use.

Fitness function: The fitness function corresponds to

the approach level, i.e., the amount of target branches that

are executed when the application is run with the inputs

from the current individual. The solution for the current

vulnerability is found when an individual is able to traverse

100% of the target branches. The more an individual is

near to this condition, the higher value of fitness function

it will have.

Selection: At each iteration a sample of the popula-

tion is selected for evolution, the probability of selecting

an individual for the next generation is proportional to

the value of its fitness function. In other words, input

values more near to cover a vulnerability are more likely to

be selected for contributing to the new generation. Then

the new generation is subject to mutation for a possible

improvement of the fitness function.

One point cross over: When two individuals

are selected for crossing over, their chromosomes

are randomly divided in two pieces. Two brand new

individuals are generated by recombining two halves

together. In the subsequent example, chromosomes A and

B have been split. C is the result of joining the first part

of A with the second part of B, while D is the union of

the remaining two parts:

Example:

A : {(name, S, “john′′), (surname, S, “smith′′), (age, N, 23)}

B : {(name, S, “mark′′), (address, S, “broad′′), (job, S, “teacher′′)}

↓

C : {(name, S, “john′′), (surname, S, “smith′′), (job, S, “teacher′′)}

D : {(name, S, “mark′′), (address, S, “broad′′), (age, N, 23)}

In case, after crossing over, the same parameter appears

twice in a chromosome (possibly with different values),

one of them is randomly removed, keeping the chromo-

some valid.

Mutation of parameter value: The value of a param-

eter is randomly changed. One pair in the chromosome is

chosen with uniform probability and its parameter value is

changed in two alternative ways. Either (1) one character

of the string is randomly selected and substituted with a

random character or (2) a random string is concatenated to

the existing parameter value. The same applies on numeric

values, the only difference is that just digits are used

instead of characters.

Mutation by insertion of a new parameter: A new

triple is added to the chromosome. The parameter name is

randomly selected among the available parameter names

and its value and type are generated randomly.

Mutation by removal of an existing parameter:

A triple is randomly selected from the chromosome and

removed.

Generation of random values: All the constant

strings that appear in the page source code are collected

and stored into a pool. When a new random string

is required, such string is either chosen from the con-

stant string pool (probability 1/2) or randomly generated

(probability 1/2). In the latter case, the following algo-

rithm is resorted to. A character is randomly selected

from a set containing alphanumeric characters and special

HTML/java-script characters, i.e. from [a-zA-Z0-9], and

[<>?&+-*/=\()[]"’]. After the first character, a sec-

ond one is added with probability 1/2, so the probability

of having a string of length 2 is 1/2. In case the second

character has been added, a third one is added with

probability 1/2, so the probability of a string of 3 characters

is 1/2
2
= 1/4. More characters are added with a probability

that decays exponentially. In general the probability of

generating a string of length n is 1/2
n−1
.

To generate a random numeric value, we adopt the

same algorithm, selecting random characters from the class

[0-9].

C. Solver based local search

As genetic algorithms are heuristics, they are not en-

sured to converge to the solution because, for example, the

optimization could end in a local optimum. When a local

optimum is found, we adopt a local search strategy based

on a constraint solver, inspired by concolic testing [3].

Relying on a solver may not be feasible to address the

full problem because (i) the search space might be too

big or involve too complex constraints; and (ii) we do

not have a full specification of the path to execute but

just of a portion of it, i.e., the target branches. However,

a solver should be adequate when the big problem is

partially solved by the genetic algorithm, and only local

improvements are demanded.

In particular, considering the running example, the

genetic algorithm should generate quite easily a test case

like this:

{(username, S, “ddeerer′′), (password, S, “xxsdsed′′),

(password2, S, “dded33e′′)} (7)

A similar test case would traverse most of the target

branches, but the last one. The last branch, namely branch

10-11, is quite hard because it requires two strings to be

equal. As strings are randomly generated, it is very unlikely

that they contain exactly the same characters. However, a

solver will address quite easily this kind of constraint.
Symbolic values: Path conditions are collected in

terms of constraints on inputs, so we trace the symbolic

values of program variables in terms of their relation with

input values. This is done by instrumenting the code.

Figure 3 shows the instrumented version of the running

example (Figure 1) to trace symbolic values. After each

assignment, a dynamic map, i.e. SYMB, is updated with

the new symbolic value of the assigned variables, in this

way:

• The symbolic value of an expression is the string

representing the quotation of the expression, where

variables are replaced with their symbolic values.

However, in case of operators not supported by the

solver (e.g., non-linear arithmetic) we resort to con-

crete values;

• The symbolic value of an input is the name of the

input parameter;

• The symbolic value of another variable can be found

in the SYMB map.

A simple example is on line 1, after the assignment

$user = $ GET[”username”];, the symbolic value of

$user is set to the input parameter, i.e. SYMB($user) =

”GETusername”.

A case where we have to resort to the concrete value

is on line 5, in fact the solver can not cope with reg-

ular expressions. Since the variable $user is both used

and defined, we introduce the local variable $tmp for

the intermediate result, that is later re-assigned to $user.

The assignment $tmp = htmlspecialchars($user) results

in updating the symbolic value SYMB($tmp) with the

concrete value of the expression, i.e. SYMB($tmp) = html-

specialchars($user).
Symbolic constraints: Using symbolic values of pro-

gram variables, symbolic constraints can be generated and

collected at decision points as shown in Figure 4. A

normalization step is required to add explicit clauses as

in the case of if statements without else (e.g., statement

5). Conditions are collected on decision points, they are

the strings resulting from the quotation of the decision

conditions, where variables are replaced by their symbolic

values from SYMB. However, when conditions involve

operators not supported by the solver, we resort to concrete

values. Conditions are collected together with the index

1 $u s e r = $ GET [” username ”] ;
SYMB($u s e r) = ”GETusername ” ;

2 $pa s s = $ GET [” password ”] ;
SYMB($pas s) = ”GETpassword ” ;

3 $pas s2 = $ GET [” password2 ”] ;
SYMB($pas s2) = ”GETpassword2 ” ;

4 i f (s t rpo s ($use r , ”< s c r i p t ”))
5 $tmp=h tm l spe c i a l char s ($ u s e r) ;

SYMB($tmp) = h tm l spe c i a l char s ($ u s e r) ;
$ u s e r = $tmp ;
SYMB($u s e r) = SYMB($tmp) ;

6 i f ($ u s e r i n $ u s e r s)
7 echo ” username a l r e a d y t a k en ” ;
e l s e

8 i f (s t r l e n ($pa s s) < 5)
9 echo ” password too s h o r t ” ;

e l s e
10 i f ($pa s s == $pas s2)
11 new user ($use r , $pa s s) ;
12 echo ”new accoun t f o r ” ;
13 echo $u s e r ; / / s i n k

e l s e
14 echo ” pas swords do no t match ” ;

Figure 3. Example of instrumentation to trace

symbolic values.

of the traversed branch using function COND. They are

collected as follows:

• If statements: The condition in the if is turned into a

symbolic constraint and collected in the then branch.

On the else branch, the same condition is negated

before being collected, using the negation (i.e., !)

unary operator.

• Switch statements: Decision points with just two

alternative branches can be inverted when a wrong

path is taken. So switch statements are converted to

the corresponding if-then-else chain and then instru-

mented as in the previous case.

• Cycles: We collect two symbolic conditions, one for

cycling and one for exiting from the cycle. Inside

cycles, proper instrumentation is also applied to break

and continue statements as they are also branches.

At the end of the PHP program (and at each exit

statement) all the path constraints collected at run-time are

appended to the current page, using a recognizable markup.

Constraints are labeled with the branches they control.

An execution of the running example on input values

shown in equation (7), would cover three out of the four

target branches and it would collect the path conditions

shown in Table I. As the user name is considered valid,

the first two conditions will be collected at branch 4-6

and 6-8. Then, the password passes only the first check

on length, so the corresponding condition is collected on

branch 8-10. The last condition on password not matching

1 $u s e r = $ GET [” username ”] ;
SYMB($u s e r) = ”GETusername ” ;

2 $pa s s = $ GET [” password ”] ;
SYMB($pas s) = ”GETpassword ” ;

3 $pas s2 = $ GET [” password2 ”] ;
SYMB($pas s2) = ”GETpassword2 ” ;

4 i f (s t rpo s ($use r , ”< s c r i p t ”))
COND(4 , 5) = ” s t r p o s (” . SYMB($u s e r) . ” ,< s c r i p t) ” ;

5 $tmp=h tm l spe c i a l char s ($ u s e r) ;
SYMB($tmp) = h tm l spe c i a l char s ($ u s e r) ;
$ u s e r = $tmp ;
SYMB($u s e r) = SYMB($tmp) ;

e l s e
COND(4 , 6) = ” ! s t r p o s (” . SYMB($u s e r) . ” ,< s c r i p t) ” ;

6 i f ($ u s e r i n $ u s e r s)
COND(6 , 7) = $u s e r i n $ u s e r s ;

7 echo ” username a l r e a d y t a k en ” ;
e l s e
COND(6 , 8) = $u s e r i n $ u s e r s ;

8 i f (s t r l e n ($pa s s) < 5)
COND(8 , 9) = ” s t r l e n (” . SYMB($pas s) . ”)<5” ;

9 echo ” password too s h o r t ” ;
e l s e
COND(8 , 1 0) = ” ! s t r l e n (” . SYMB($pas s) . ”)<5” ;

10 i f ($pa s s == $pas s2)
COND(10 , 1 1) = SYMB($pas s) . ”==” . SYMB($pas s2) ;

11 new user ($use r , $pa s s) ;
12 echo ”new accoun t f o r ” ;
13 echo $u s e r ; / / s i n k

e l s e
COND(10 , 1 4) = ” ! ” . SYMB($pas s) . ”==” . SYMB($pas s2) ;

14 echo ” pas swords do no t match ” ;

Figure 4. Example of instrumentation to collect symbolic constraints.

password2 is collected on branch 10-14.

Branch Condition Target branch
4-6 !strpos(GETusername, ” < script”) 4-6
6-8 true 6-8
8-10 !strlen(GETusername) < 5 8-10
10-14 !GETpassword == GETpassword2 10-11

Table I. Symbolic conditions collected during

execution.

Constraint selection: Before passing path conditions

to the solver, they must be filtered, depending on the

branches where they have been collected. In fact, when

a constraint is collected on a decision point that makes

the execution traverse a target branch, such constraint

represents an important property of input values that we

should preserve when generating new values. Conversely,

if a constraint is collected on a branch that makes the

execution diverge from a target branch, new input values

should be able to avoid such condition, and take the missed

target branch.

Branches that label the collected path conditions are

compared to the target branches, in order to identify what

is the first branch that diverges from a target branch, which

is called divergent branch. The list of constraints to pass

to the solver are composed of:

1) All the conditions that precede the divergent branch,

because they should be valid also for the new input

values;

2) The negation of the condition labeled by the diver-

gent branch, as the new input values should take the

opposite path; and

3) Only conditions that involve input values, the others

are discarded (e.g. for branch 6-8).

The conditions following the divergent branch are ig-

nored, and not passed to the solver.

Comparing the conditions collected on the example and

the target branches (see Table I), we can see that the

divergent branch is the last one, i.e. 10-14, as it deviates

from the target branch 10-11. So we merge the first three

conditions with the negation of the fourth one. After

filtering, they correspond to the subsequent conditions:

!strpos(GETusername, ” < script”) (8)

!strlen(GETusername) < 5 (9)

GETpassword == GETpassword2 (10)

This last condition (i.e., Equation 10) requires the two

passwords to match. It is needed to improve the current

best individual and achieve the final solution.

Equations 8-10 are passed to the solver and, since they

are satisfiable, a new set of input values is returned, for

example:

{(username, S, “ddeerer′′), (password, S, “xxsdsed′′),

(password2, S, “xxsdsed′′)}

These new input values result in a substantial im-

provement over the previous best results elaborated by

the genetic algorithm as one more target path is covered.

After using the solver to escape from a local optimum, the

genetic algorithm continues until a new local optimum is

found.

IV. Tool support

The approach has been implemented in a tool prototype.

First of all, static analysis is applied to extract candidate

vulnerabilities, then the code is instrumented to trace

symbolic values and path constraints. At this stage the

genetic algorithm searches for input values that make the

execution traverse the vulnerabilities. Solver based local

search is used to improve the search whenever a local

optimum is found.

A. Static analysis

Taint analysis is applied using Pixy [4], an open source

tool for static analysis of PHP code. Pixy reports the

sequence of assignments that make a tainted value reach

vulnerable sinks (skipping sanitization).

A static analysis module is implemented in Txl [5],

to extract control dependencies from PHP code and to

translate the chain of assignments into target branches.

This is done by steps. First of all, branches are extracted

to form the Control Flow Graph (CFG). Then the CFG is

processed by flow analysis to compute control dependen-

cies. At this stage, we identify all the branches that control

the execution of statements in the chain. These branches

represent the target branches to be used by the genetic

algorithm.

B. Instrumentation

The application under analysis is instrumented using

a Txl transformation. Probes are inserted on branches

so that when a branch is traversed, the corresponding

probe is triggered. Data about the traversed branches are

stored in the resulting web page as an easily recognizable

annotation.

Symbolic values are traced by extending the PHP back-

end with a module implemented in C. This module exposes

to the PHP code some brand new functions, to update and

retrieve symbolic/concrete values (i.e., SYMB). In partic-

ular, concrete values are resorted to, whenever symbolic

values are not available or not up-to-date because, for

example, they are changed by code implemented in C,

not instrumented by us. The same module also exposes

functions to collect path constraints labeled by branch

indexes (i.e., COND) and to print all of them at the end

of the execution.

These functionalities have been implemented as part of

the PHP back-end to be able to work with pointers (not

available in PHP).

C. Genetic algorithm

The genetic algorithm is implemented in Java and

run on the instrumented code. Parameters of the genetic

algorithm are set up according to what is proposed in the

literature [6]. In particular an elitist approach is adopted,

with the 10% of the best individuals kept alive across

generations. The population is composed of 70 individuals

and evolution is ran over 500 generations. The cross over

probability is set to Pc = 0.7 and mutation probability to
Pm = 0.01.
The genetic algorithm works as a client application

that simulates a web-browser. HTTP requests are sent to

the instrumented server. Requests encode individuals as

parameter values passed either by GET or by POST. For

each request, a page is processed and returned by the

server, together with data on traversed branches and path

constraints, to be used for the computation of the fitness

function.

When the genetic algorithm does not achieve any im-

provement after 50 consecutive generations, we assume

that a local optimum is found so the execution switches to

the solver.

D. Solver

We use the Yices2 solver to solve path constraints. Since

Yices accepts a Lisp-like syntax, while constraints are

collected using using PHP syntax, we implemented (in Txl)

a PHP-to-Yices translator. Yices does not support the string

type, so the translator also takes care of encoding strings

into bit-vectors, supported by the solver. Once constraints

are available in the correct syntax, they are solved by

2Ices website: http://yices.csl.sri.com/

Page # Target branches covered
0% 38-46% 50-75% 100%

add comment 1 1
add gallery 6 4 1 1
admin 1 1

delete gallery 4 2 1 1
modify gallery 6 3 1 2
modify phid 6 3 1 2
slideshow 9 9
upload 3 2 1
view 2 1 1

Total 38 10 6 6 16

Table II. Test case coverage by page.

Yices. If they are satisfiable, new values are translated into

a new individual that is added to the current population.

V. Empirical results

In order to demonstrate the feasibility of our approach,

in this section we apply it on case study application, Yapig

version 0.95b, an open-source PHP application that imple-

ments an image gallery management system. It consists

of 9,113 lines of code and 53 source files, with 160 user-

defined functions and 2,638 branches.

To collect empirical data, we had to set up the appli-

cation in a working environment. First of all we deployed

the application on the local web server and we ran the

installation scripts to configure the application parameters,

such as administrator password and the folder to store

gallery pictures. Then, we populated the gallery folder with

sample data, otherwise some functionalities would not have

been available, e.g. to modify existing galleries.

As different pages support parameters passed in differ-

ent ways, we run the prototype twice, once configured to

encode parameters by GET, then by POST, and we took the

union of the results. Each complete run took respectively

46 and 76 minutes.

A. Vulnerabilities by web page

Empirical data on the generated test cases are shown in

Table II. Vulnerabilities are grouped according to the vul-

nerable pages where they are located (column 1). The table

reports the number of vulnerabilities per page (column 2)

and how many of them are partially or totally covered

(columns 3-6). Columns 3 to 6 represent the quartiles of

the distribution of coverage.

Static analysis reports 55 candidate vulnerabilities.

However, among them, 17 vulnerabilities are trivial to

cover, because all the assignments in their data chain are

at top level. As statements are not guarded by any branch

condition, any test case would trivially execute them, so we

exclude them from the analysis. Out of the remaining 38

non-trivial vulnerabilities, 16 can be completely covered

by the generated test cases, while for 6 vulnerabilities we

still achieve a high coverage (between 50% and 75% of

the target branches). For the remaining vulnerabilities the

coverage is more limited, for 6 of them we cover between

38% and 46% of the target branches, and the other 10 test

cases cover no branch.

We performed further manual inspection of those pages

where vulnerabilities were not fully covered. We found that

the vulnerability of admin.php can not be executed after the

application is successfully installed. One of the uncovered

vulnerabilities of modify gallery.php is also infeasible,

while the other 3 depend on data from the database,

e.g. picture file names or image size. As we exclude

permanent storage from input search space, our approach

is not able to generate test cases to satisfy such conditions.

Similar constraints on the database prevent the generation

of test cases for 3 vulnerabilities of modify phid.php and

for the 2 vulnerabilities of view.php. Vulnerabilities of

add comment.php and delete gallery.php are in the error

management code that handles unexpected data coming

from the database.

The remaining vulnerabilities (5 on add gallery.php,

1 on modify phid and 2 in upload.php) are not covered

by the generated test cases because of limitations of our

approach, even if they are feasible.

B. Vulnerabilities by cardinality

To study how our approach works when the amount

of target branches increases, we classify vulnerabilities

also according to their cardinality, i.e. by the amount of

target branches. Table III shows vulnerabilities grouped

in conformity with the quartiles of the cardinality. The

first class contains vulnerabilities with only one or two

target branches. The second and third classes contain

vulnerabilities respectively with three and four branches.

The last class contains the largest vulnerabilities, with 5

to 13 target branches.

Intuitively we could consider more easy to test those

vulnerabilities with smaller cardinality, however empirical

results suggest a different trend. In fact, a large amount

of the smallest vulnerabilities (7 out of 15) are totally

uncovered (0% branches). As the cardinality increases,

we achieve bigger coverage, as most of the vulnerabilities

with 3 and 4 branches are fully covered (100% branches),

respectively 5 out of 7 and 4 out of 7 vulnerabilities. This

trend is only partially confirmed on the last class, that

contains vulnerabilities with the largest cardinality. Even

if none of them is totally uncovered, most of them are just

partially covered.

The worst performances are shown on extreme cases,

Cardinality # Target branches covered
0% 38-46% 50-75% 100%

1-2 15 7 3 5
3 7 2 5
4 7 1 2 4
5-13 9 6 1 2

Total 38 10 6 6 16

Table III. Test case coverage by cardinality.

when the cardinality is very large or very small. Manual

inspection on vulnerabilities that involve a large set of

target branches revealed that they are actually feasible, but

our tool could not generate test cases for them. When many

constraints are imposed on the control flow, covering it be-

comes very difficult by random input mutation. Moreover,

the solver could not help on too complex conditions, when

we have to resort to concrete values.

VI. Related works

The adoption of static analysis for identifying vulnera-

bilities was initially proposed as a way to support manual

inspection [7]. Initially called type-state analysis [8], taint

analysis has been largely adopted to detect inadequate

or missing input validation, resulting in cross-site script-

ing [1] [4], SQL-injection [9] and buffer overflow [10]

vulnerabilities. In order to mitigate inaccuracy of pure taint

analysis due to conservativity, more sophisticated analyses

have been integrated, such as string analysis [1], program

slicing [11], points-to analysis [12] and model check-

ing [13]. The present paper takes a different direction,

instead of going for a more complex but still inaccurate

static analysis, candidate vulnerabilities reported by static

analysis are subject to search based software engineering

to find test cases that execute them.

Instead of statically searching for security faults, other

approaches resort on monitoring the application (often

calling it dynamic analysis) while it runs in production.

For instance, in [14] the application execution is monitored

by several anomaly reasoners and a firewall blocks those

interactions classified as abnormal. The principal drawback

in monitoring is represented by run-time and memory

overhead. Program slicing has been proposed by Walter

et al. [15] to limit code instrumentation only to the actual

vulnerable part.

Genetic search has been used on procedural code [16],

to generate new test cases and improve coverage, consid-

ering the distance from an uncovered structural properties

(e.g., a branch or a def-use chain) as fitness function. This

approach has been extended [17] to test object oriented

code, by searching not only for input values, but also

for a method invocation sequence. Del Grosso et al. [6]

applied genetic algorithms to identify tests to expose

buffer overflows using a complex fitness function. Tests

are searched with high statement coverage, that execute

lots of vulnerable statements and deeply nested code, and

that write data as near as possible to the buffer boundary.

An evolutionary inspired approach has been used also by

Zulkernine et al. [18] on security, for a totally different

purpose. Network scanner rules are searched that maximize

the ability in revealing and classifying intrusions.

Concolic execution [3], [19], [20], [21] is an alternative

popular approach that mixes symbolic and concrete execu-

tion to generate test cases. The code under test is executed

initially on random inputs and symbolic constrains are

collected at run-time on assignments and decision points

(branches). Symbolic constraints are selectively negated

and passed to a solver that generates new test cases, to

try to cover previously uncovered execution flows.

Inkumsah and Xie [22] connected concolic testing and

genetic algorithms to maximize test suite coverage. They

shown improvements on coverage of Object Oriented code

when (i) a genetic algorithm follows concolic testing and

(ii) concolic testing follows a genetic algorithm, when

compared with the two techniques alone. Instead of a two-

steps approach, we propose a more tight integration, with

multiple swaps between the two search strategies. In fact,

use the genetic algorithm for global search and the solver

for local search. Our objective is also different. While the

purpose of Inkumsah and Xie is to generate a test suite

that achieves a generic large coverage of the system under

test, we target a single and selected condition (i.e., target

branches), identified using static analysis.

VII. Conclusion

In this paper we presented a novel approach to generate

test cases that cover Cross-Site Scripting vulnerabilities on

web application. Despite the fact that we focus on PHP, this

kind of security threats is very general, as it affects a large

number of web applications, written in any programming

language.

Our test cases execute a vulnerable path, but they do

not represent actual attacks, as they do not try to inject

HTML code in the final page. Nonetheless, they represent a

valuable help for the developers, because tests can be used

to understand the vulnerability problems, before fixing

them. This is a major improvement over the limited support

offered by static analysis.

As generation of test cases relies on static analysis, it

suffers its limitations. In particular no test will be ever

provided for false negatives, vulnerability missed by static

analysis, and false positives, vulnerabilities that consists in

unfeasible paths. However, static analysis is conservative

and just few cases should be missed. Moreover, we limit

the number of iterations of the genetic algorithm, so as to

avoid losing too much time on infeasible paths.
As future works we will improve our approach to cope

with more and more complex symbolic constraints, so as

to limit the need to back up to concrete values. Moreover,

we plan to extend our approach and turn our test cases

into actual attacks, tainted values should bring portions of

HTML to be injected into the final page. We will also

investigate on how to adapt the preset approach to cope

with other kind of vulnerabilities, for example including

database values in the search scope.

References

[1] G. Wassermann and Z. Su, “Static detection of cross-
site scripting vulnerabilities,” in ICSE ’08: Proceedings of
the 30th international conference on Software engineering.
New York, NY, USA: ACM, 2008, pp. 171–180.

[2] M. Sharir and A. Pnueli, Program Flow Analysis: Theory
and Applications. Prentice Hall, 1981, ch. Two approaches
to interprocedural data flow analysis, pp. 189–233.

[3] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit
testing engine for c,” in Proceedings of the 10th European
software engineering conference. New York, NY, USA:
ACM, 2005, pp. 263–272.

[4] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static
analysis tool for detecting web application vulnerabilities
(short paper),” in SP ’06: Proceedings of the 2006 IEEE
Symposium on Security and Privacy. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 258–263.

[5] J. Cordy, “The TXL source transformation language,” Sci-
ence of Computer Programming, vol. 61, no. 3, pp. 190–
210, August 2006.

[6] C. D. Grosso, G. Antoniol, E. Merlo, and P. Galinier,
“Detecting buffer overflow via automatic test input data
generation,” Computers and Operations Research, vol. 35,
no. 10, pp. 3125 – 3143, 2008, special Issue: Search-based
Software Engineering.

[7] B. Chess and J. West, Secure programming with static
analysis. Addison-Wesley Professional, 2007.

[8] R. Strom and D. Yellin, “Extending typestate checking
using conditional liveness analysis,” Software Engineering,
IEEE Transactions on, vol. 19, no. 5, pp. 478–485, May
1993.

[9] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-
Y. Kuo, “Securing web application code by static analysis
and runtime protection,” in WWW ’04: Proceedings of the
13th international conference on World Wide Web. New
York, NY, USA: ACM, 2004, pp. 40–52.

[10] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “De-
tecting format string vulnerabilities with type qualifiers,” in
SSYM’01: Proceedings of the 10th conference on USENIX
Security Symposium. Berkeley, CA, USA: USENIX Asso-
ciation, 2001, pp. 16–16.

[11] J. Krinke, “Information flow control and taint analysis with
dependence graphs,” in 3rd International Workshop on Code
Based Security Assessments (CoBaSSA 2007), 2007, pp. 6–
9.

[12] V. B. Livshits and M. S. Lam, “Finding security vulnerabil-
ities in java applications with static analysis,” in SSYM’05:
Proceedings of the 14th conference on USENIX Security
Symposium. Berkeley, CA, USA: USENIX Association,
2005, pp. 271–286.

[13] L. Wang, Q. Zhang, and P. Zhao, “Automated detection of
code vulnerabilities based on program analysis and model
checking,” in Source Code Analysis and Manipulation, 2008
Eighth IEEE International Working Conference on, Sept.
2008, pp. 165–173.

[14] C. Criscione and S. Zanero, “Masibty: an anomaly based
intrusion prevention system for web applications,” in Black
Hat Europe 2009, 2009.

[15] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible
security enforcement using dynamic data flow analysis,”
in CCS ’08: Proceedings of the 15th ACM conference on
Computer and communications security. New York, NY,
USA: ACM, 2008, pp. 39–50.

[16] R. Pargas, M. J. Harrold, and R. Peck, “Test-data generation
using genetic algorithms,” Journal of Software Testing, Ver-
ifications, and Reliability, vol. 9, pp. 263–282, September
1999.

[17] P. Tonella, “Evolutionary testing of classes,” in ISSTA
’04: Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. New York,
NY, USA: ACM, 2004, pp. 119–128.

[18] R. H. Gong, M. Zulkernine, and P. Abolmaesumi, “A soft-
ware implementation of a genetic algorithm based approach
to network intrusion detection,” in Sixth International Con-
ference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, May 2005,
pp. 246–253.

[19] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. In-
amura, and Z. Su, “Dynamic test input generation for
web applications,” in ISSTA ’08: Proceedings of the 2008
international symposium on Software testing and analysis.
New York, NY, USA: ACM, 2008, pp. 249–260.

[20] R. Majumdar and K. Sen, “Hybrid concolic testing,” in
ICSE ’07: Proceedings of the 29th international conference
on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 416–426.

[21] D. E. Cristian Cadar, Daniel Dunbar, “Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs,” in USENIX Symposium on Operating
Systems Design and Implementation. USENIX Associa-
tion, 2008, pp. 209–224.

[22] K. Inkumsah and T. Xie, “Improving structural testing
of object-oriented programs via integrating evolutionary
testing and symbolic execution,” Automated Software Engi-
neering, International Conference on, vol. 0, pp. 297–306,
2008.

