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Abstract—Often, legacy data management systems provide no o Lock Callee’s protected contt
native support to transactions. Programmers protect data fom ¢ Unlock |-
concurrent access by adopting commonly agreed patterns, Isgng : :
on low level concurrency primitives, such as semaphores. Isuch @‘ 1
cases, consistent data a){:cpess is granted only if all cpode quonents Callee code
are compliant with the adopted mutual exclusion patterns. L

When migrating legacy systems to modern data management Caller code ®, w
systems, the ad hoc mechanisms for data protection must be j }
replaced with modern constructs for transaction managemen In -
such cases, a literal translation may expose problems and bs, Caller’s protectect context
which were originally masked by the specific implementatiorand
patterns in use. Fig. 1. Interleaving of locks within a thread.

In this paper, we propose a static flow analysis that determias
the existence of potentially incompatible locks within thesame
thread, which require specific code re-engineering before igrat-
ing to a modern data management system. We report the results
obtained on a concrete instance of this problem.

Keywords: Legacy systems, flow analysis, code migration.

modifications. If the two locks are taken on the same record,
which acts as a semaphore for the computation to be protected
we have a problem during migration, in that a double lock on

. INTRODUCTION the same record is not permitted. In addition, there may be

Legacy systems are built on top of programming fram@JSO a problem in the original system, which mlght have gone
works and libraries that often lack native support to traasaunobserved just by chance. In fact, one of the two components
tional access to persistent data. Often, they rely on psiveis holding a lock (e.g., the caller) may decide to close the
and low level lock mechanisms (e.g., semaphores). Aspgotected context, by releasing the lock, before the other
consequence, programmers are forced to develop their of@mponent (the callee) is done with the protected commutati
access control mechanisms. A consequence of an ad-hd&uch a case, nothing is protecting the persistent data fro
lock mechanism is that the responsibility of locking/uimgy ~ concurrent modification in the interval between the first and
resources can be scattered among many functions that-patfi€ second lock release, which, in our example, may bring
ipa‘[e in a program and could be incompatib|e with modeme callee to an inconsistent state. At the core of the pmble
concurrency control primitives. is the lack of a clear, explicit attribution of responsityilion

For example, in Figure 1, after acquiring the lock on #he creation and management of a protected data manipulatio
shared resource (e.g., by means of a semaphore), the calRiHext.
passes the control to the called library function, thatsttie The problems highlighted with reference to the example in
acquire a lock on the same resource. Even if the second Idéigure 1 become dramatic when legacy systems are migrated
should clearly fall, in legacy systems concurrency marggdo a modern platform, supporting persistent data managemen
often handle locks on a per-thread basis, hence allowing tivéh native access control. The manually implemented, of-
second lock. In a modern (stricter) transaction manageméantimes very permissive lock/unlock mechanisms may give
environment, the same code would not work, because tfa@se to undesired behaviors, like errors, exceptionsddea
callee’s lock would always fail. locks or inconsistent/incompatible data access. In thiskwo

The problem in the example in Figure 1 is that the librarwe investigate the use of static flow analysis to explicitly
function needs exclusive access to some data, but there isdetermine incompatible lock acquisitions. These casest mus
way in the legacy language to stipulate a contract with thee refactored before migrating to a modern platform in order
callers which explicitly declares who is in charge of aciqugr to avoid the occurrence of deadlocks or errors. We report
the lock and of creating the protected data access contéke results obtained on a large (8 millions LOC) legacy
Hence, the library creates its own protected context. On tegstem — a complete bank management system — that we
other side, the caller is also creating a protected conteate currently migrating from a proprietary language (BAL,
since it may also need to protect some data from concurréhisiness Application Language) to Java.



In this work, the focus is not the problem of concurrent

function si(void){
lock(T1)

function s2(void){
lock (T1)

lock acquisition performed by multiple, parallel threa8sich lock (T2) Ioclk(IZ)T2
a problem has been broadly investigated in the past and 20 e ‘g;)< )
authoritative solutions have been proposed [1], [2]. ladteve MUPSOREER: ounlock(T)

are interested in detecting and resolving lock inconsisén } }
that originate from serial execution within a single thread
when nested or overlapping protected contexts might ieterf
(see Figure 1).

Fig. 2. Example of inconsistent lock.

The paper is organized as follows: Section Il explains lock Legend: s2's protected context
' i i i © Lock onTandT, onT
analysis and provides the details of the algorithm we used to ¢ Unlock 1 2 3
determine inconsistent locks statically. Section Il ddmxs
the results obtained when applying our lock analysis to the S o6 o
Tt o T, T T3

legacy system we are migrating to Java. Section IV provides
our preliminary catalog of refactorings that can be used to
solve the detected inconsistent lock problems. Relatedsvor
are commented in Section V, while the last section is devoted
to conclusions and future work.
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s1's protected context oy andT,

11. LOCK ANALYSIS Fig. 3. Lock/unlock performed by;sand $.

Let us consider a legacy programming language and en-
vironment which does not support the explicit attributioh o
lock responsibilities. As a consequence, different congpts different (s; # s2) and there exists an interprocedural path in
(e.g., library code vs. code for the main program) may realizhe interprocedural control flow graph of the program frora th
a local lock policy, which appears to be completely consistestatement acquiring the first lock to the statement acoyitie
within the component, but may originate inconsistent lockgecond lock, such that no intermediate statement in the path
due to the interaction with other components, when these dedeases the lock on the same table.
not aware of the lock pattern implemented elsewhere. The situation we are interested in is one where a lagk

In such cases, inconsistencies arise when locks esca&seapes the componesit where it is managed consistently
the component that generated them and propagate to othed reaches another componeptvhere it is not ensured not
components on the same thread. If another source of ldickconflict with other locks. In particular, if the latter cqm-
in the other components operates on the same record thant acquires a lock on the same table, we have potentially a
was locked externally, problems (e.g., errors, exceptions problem if the first lock can reach the second without being
deadlocks) are potentially originated when a stricter lodleleased. Of course, if the two statements are always Igckin
policy is adopted. Moreover, even the original program rhigldifferent records, we have no real problem, even thoughti sta
experience problems at run time, since such inconsistencémalysis would report an inconsistent lock. However, thian
may originate computation intervals in which data accegsfrinsic limitation of static analysis, which cannot deténe
protection is not ensured. the exact record being accessed (this is decided at run,time)

In the following, we will no longer distinguish betweenbut can quite precisely determine which table is locked.
the source of the lock and the component containing it, sinceFigure 4 shows the interprocedural control flow graph for
for our purposes (detecting inconsistencies) knowledgriab the program in Figure 2, while Figure 3 shows the scattered
the source container is sufficient. So, by a lock sousce lock responsibility for7; andT5. This program includes two
we mean a component, library or well defined code portidnck sourcess; andss. The inconsistent locks that exist in this
which implements a consistent, local lock policy. Anotheprogram can be split into two categories: (1) inconsistesici
simplification that we make is about the locked record. Sinclie to bottom-up lock propagation; and, (2) inconsistesicie
we are interested in static lock analysis and static armlysiue to top-down lock propagation. The two kinds of inconsis-
cannot distinguish different records accessed from theesatant locks depend on whether the lock originates insideedest
table, we will not distinguish between table and record. Wheealls in the call graph and propagates upward, to the calling
talking about lock on a tabl& we do not mean that the entirefunctions, or whether it is generated at calling functionsl a
table is locked. Rather we mean that one record from the talifldater reaches conflicting locks inside called functio®se
is locked, but statically we do not know exactly which oneexample of lock of the first category lisck(7}) insidess. This
so we over-approximate the lock with the entire table. lock reaches the end of;, when thefalse branch is taken

_ at the conditional statemeif{a). Within the calling function

A. Inconsistent locks (s1), this lock collides with anothelock(Z}) that reaches the

A lock requestL; on tableT performed by lock source call statement,() of s;. One example of lock of the second
s1 Is inconsistent with the lock request performed by lock category islock(Ts) inside s; (but the same argument holds
sourcess on the same tabl@' if the two sources of lock are for lock(T}) inside s;), which propagates te, through the



call nodess() of s;. Insides, this lock reaches the statement - %(T;;a%gl; Summe;EZ-unlock

lock(T:), where it gives raise to an inconsistency. 1 Ts(s2) Ty, Ts
The lock analysis problem can be formulated as a flow anal-

ysis problem, where the flow information being propagated TABLE |

in the interprocedural control flow graph consists of a pair BOTTOM-UP SUMMARIES FOR § AND S3.

whose first element indicates the taliflethat was locked by
a given statement and whose second element indicates the
lock sources. For brevity, we indicate such pair &%(s).

The information generated and killed at each control row

graph noden can then be defined as follows: The bottom-up flow analysis applies intraprocedural flow
analysis and computessimmary-ouinformation for functions.

Summary-out information can be divided insnmmary-lock

Bottom-up lock propagation

GEN[n] = {T(s)|statement n € s; @) andsummary-unlockThese two summaries are used on func-
n locks T} tion calls to propagate any lock/unlock due to the call in the
KILL[n] = {T(s')|statement n releases T; (2) caller scope. They also determine which locks are propdgate

after the call. The first step to compute summary-locks &tasi

of propagating locks according to equations (3) and (4)3dmsi
The flow propagation is in the forward direction, withieaf functions (strongly connected components, if muguall

union as the meet operator at junction nodes. Flow analyg&ursive functions exist in the program) in the call graph.

terminates when the following equations produce the leastimmary-lock is then computed as the union of the locks that

s’ is any lock source}

fixpoint: reach the exit nodes. These locks are the ones that escape the
called component and possibly interfere with locks in oali
IN[n] = U OUTI[p] (3) components.
pe pred(n)
OUT[n] = GEN[n]U(IN[n]\ KILL[n])) (4) summary lock(f) = U OUT[n]  (8)

n=exit node of f

where pred(n) indicates the set of nodes that precede imme-
diately n in the control flow graph. Since we are interested Summary-unlock requires different flow equations, because
in interprocedural flow propagation (lock inconsistencige we want to collect all the unlocks th&br sure reachall the
intrinsically interprocedural), we split our flow analysisto exit nodes. They represent all the locks that are consealti
two steps. First we perform a bottom up propagation, in whialeleased when the given function is called, and that mush@ot
we propagate the flow information inside leaf functions ia thpropagated after the call, inside the caller. The meet dpera
call graph first and then we proceed backward to the calling intersection and the new equations are:

functions. In the presence of mutual recursion, we treat an

entire strongly connected component as a single unit (pseud

function) of the call graph. The bottom up propagation ressul INnJ= (] OUT[p  (9)
in a summary flow equation for each function in the program. pe pred(n)
It also reveals inconsistent locks that are generated deepl OUT[n] = (INn]UKILL[n])\ GEN[n]  (10)

the call graph and propagate backward to the upper leveds (se
next subsection for more details).

Then, we perform a top-down flow propagation in the call
graph. During this step, we use the summary information Considering the example in Figure 2, because of the call in
computed in the previous step to account for the effects of to ss, the summary edge fos, must be available before
function calls on the flow information being propagated.eAft considerings;. In this example we assume that and s,
this step, we can detect inconsistent locks that originptenu come from different components. Figure 4 shows their cdntro
the call graph and propagate downward through a sequencélofv graphs and Table | reports the resulting summaries.

summary unlock(f) = ﬂ OoUT[n] (11)

n=exit node of f

function calls (see subsection after the next one). Starting from s, (right-hand side) we see that the lock
At the end of each step we can detect different inconsisteni(s,) does not reach the exit because it is killed by the
locks, by verifying if the following conditions hold: subsequent unlocky. Whereas, the lock? (s;) reaches the
exit on the flow that passes through tfadse branch of the
Inconsistent lock detection if statement, it is not killed by the unlock in theue branch.
We have an inconsistent lock when: The lockT3(s2) also reaches the exit node.
T(s1) € IN|n] (5) The summary-unlock fos, contains justl, because such

T GEN 6 unlock is not killed by any other lock on the same table and
(s2) € ] (6) it reaches the exit node on all the paths. The summary-unlock
$1 # S2 (7)  does not contaifi’;, because the unlock holds only on the path



Summary-in lock

s2 start S1
52 Ty (s1), Ta(s1)

TABLE Il
sl start @ TOP-DOWN SUMMARIES FOR § AND Sa.
@ @ Name Locks Bottom-up  Top-down
I X X

Ti(s1), T1(s2)
1P T (s1), To(s2) X

@ @ TABLE IIl
INCONSISTENT LOCKS FOR $ AND Sa.
Looking at the flow graph in Figure 4 left-hand side, we
@ @ see thats; acquires locks (s;) andT5(s,), then it callss.
This is the only call tass, so the summary-in of, contains
just these two locks (reported also in Table Il). Summary-ou
@ @ of s, (already computed in the bottom-up phase) is used here
to proceed with the flow analysis ef. This allows to find an
inconsistency already reported above for the call neglg,
Sl exit 2 exit i.e. I; containingT} (s1) and T (ssz).
The start edge ofs; is assigned the flow value correspond-
ing to its summary-in, i.e. the union of the locks possibly
Fig. 4. Control flow graph for sand s. existing when the function is called, in this ca#g(s;) and
T5(s1). On the next edge in the control flow, a lock is acquired
. T {s2)) that collides with a lock in the summary-ifi({sy)).
that goes through thieue branch of the if statement (an unlockgl-hi<S irzz:onsistency i, and was already reporgd e](a<1rlie>z)r, by

must hold on all paths to the exit to be in the summary). both the bottom-up and the top-down analysis. In the next

Now we can move ta;, Figure 4 left-hand Sid_e' After ac- edge a second lock is acquirefh(s3)) that also collides with
quiring lockT: (s1) andT(s1), summary data available fep 5 summary-in lock {>(s1)). This second inconsistendy is

can be used in the call point (lock summary contaihséss), a new one, which was never reported before.
T5(s2) and unlock containg%). Here the first inconsistency,

I, is found whereT;(s;) and T (s2) collide after the call. m
There is a flow where two locks on the same table (i[&),
collide and they are originated on different components,(i. A. Case study

s1 andss). ) The proposed flow-analysis for inconsistent lock detection
Locks Ty (s1), T1(s1) andTi(sz) are later killed by unlocks 5 pyeen applied to a large legacy banking application con-
Ty andT>. The only lock that reaches the exit of (and thus  gjgting of 8 millions lines of BAL code. BAL is an acronym

is represented in the summary-lockJlig(s»). Itis acquired by ¢, g\ siness Application Language, a BASIC like language
52 and_ never released by both ands;. The summary-unlock 54 contains unstructured data elements as well as unstruc
for s, is represented by andTs. tured control statements (e.d50TO). The migration of the

C. Top-down lock propagation legacy application to a modern programming language (Java)
'ngolves a change in the data access libraries. The newyibra
||leements a more restrictive locking policy, so a detailed
analysis is required to avoid locking errors. More inforioat

out the migration project and the problems associateldl wit
structuring the data and the control flow can be found in our
revious publications [3], [4].

Persistent data structures are stored on 1SARbles and

. _ they are accessed by I/O primitives. BAL provides 1/O primi-

summary in(f) = U IN[n] (12) tives to open, search, scroll and modify records on ISAMdabl

) ) ) ) These primitives can optionally lock the accessed recoraisso
Using the running example in Figure 2, the top-down

ordering associated with the call relation imposes to psce 1gay (Indexed Sequential Access Method) is a data file formpaite
s1 beforess,. common in old legacy systems.

. EXPERIMENTAL RESULTS

The purpose of the top-down propagation is to compu
summary-in, locks that hold when the control is passed to
called function. Summary-in contains only summary-lodieg t
are propagated according to equations (3) and (4). Summal
in for a given function is computed as the union of the lockK:
that reaches the calling nodes. P

n=call to f



to open a transactional context. Lock is released by peifagm B. Tools

a non-locking access on the same record. Of the analyses described in Section II, to date only the

On the current release, BAL delegates 1/0 operation to a @ettom-up part was implemented, using TxI [5] and Java. The
ISAM library that adopts a permissive lock policy by allogin tool works in the following steps:
a thread to acquire multiple locks on the same record. This1) Preprocessing;
typically happens when different file handles are used tesec  2) Total ordering;
the same table. Indeed, different file handles are neclssari 3) Control flow graph extraction; and
used in different components (e.g., main program code and4) Summary edges and bottom-up flow analysis.
library code), since each component implements its own file a) Prerpocessing:A preprocessor, implemented in Tx,

handle table. Even if a record i§ Iockgd, it can be accgssigdapp"ed to the code (as done in a previous work [3]) in
by_ any caII(_ed function, bOth via locking and non—Iockmg)rder to remove some syntax ambiguity due to BAL and to
primitives, without any lock-violation error. Actuallyhé lock aﬁfly unique naming to variables. Moreover, all the macros

state of a record is used just as a semaphore for concurrgpl eyhanded. Indeed, often data are accessed using macros,
threads, but it does not carry any intrinsic transactiooatext ;. o qer to avoid the complicated BAL 1/O syntax.

semantics within athread.. It is only t_he programmers’ cgt_jin b) Total ordering: Call to external functions are fully
style that adds a transactional meaning on top of the a\ki'l"’lpesolved. Total order given by call relations among funcsio

semaphores. is used to sort functions so as to be able to apply bottom-
Before migrating the system to Java, the C-ISAM libraryp and top-down analysis. Strongly connected components

will be replaced by D-ISAM, since only the latter was portedre considered when mutual recursion is present. To identif

to Java. The problem is that the D-ISAM library implementthem, we use a well-known algorithm, working on directed

a more restrictive lock policy, which does not permit the sangraphs [6].

thread to acquire multiple locks on the same record. In@ensi  ¢) Control flow graph:Programs are split into the com-

tent locks have to be identified and solved to avoid run-tingosing sub-modules (i.e., functions and segments) and thei

lock-errors that could possibly raise an exception andicrasontrol flow graph is elaborated using TXL and stored in XML

the application. However, it should be noticed that incstesit format. This representation contains

lock identification is beneficial also for the original BALde , |jst of formal parameters;

with the C-ISAM library, since such inconsistencies mayseau , A node for each statement in the code:

unprotected computation intervals, in which persistemtdae  , Entry node and exit nodes;

exposed to concurrent, uncontrolled modifications. Thase a , predecessors and successors for every node;

the typical concurrency bugs which are very difficult to @0, | ock and unlock with the corresponding physical table

during testing, since they require very specific interlaggi of name; and

parallel threads. Revealing them by means of static amalysi, Fylly resolved calls with the list of actual parameters;

is thus particularly useful to improve the quality of the eod d) Summary edges and bottom-up flow analysisie

Differently from C-ISAM, D-ISAM does not allow a thread actual bottom-up analysis proceeds as specified by the total
to acquire a lock on the same record by means of different fitlgdering on call-relations, so that summary-out data would
handles, which previously used to happen regularly, when twlways be available when required.
different components having their own file handle tablesewer The actual analysis has been implemented in Java using the
accessing the same record. More precisely, in BAL there ax®M? library to parse the XML representation of the source
two independent file handle tables, one for the main progragode. For all the calls in the graph, summary-out lock/ukloc
and one shared by all libraries. Hence, in the rest of the papfata about the called function are read and stored with the
we assume that a component is either (1) the current maigrresponding call nodes. Flow analysis is applied twice on
program; or, (2) any called library. This means that, in fic& the control flow graph. On the first iteration, equations (3)
we have an inconsistent lock when: and (4) are used to propagate locks. The second iteration is

devoted to unlocks, so equations (9) and (10) are used.

1) After locking a record, the program invokes a library when the fix-point is reached, the control flow graph of

that tries to acquire a lock on the same record; or  the function is visited an@UT values are inspected to check

2) The program tries to lock a record already locked by fr inconsistent locks. Summary-lock and summary-unlaek a

previously called library, that did not release the lock.eventually computed on exit nodes, using (8) and (11) to merg
values at the exit nodes. Summaries are then saved for later

Since static analysis is not able to determine which re®rd|ise, whenever the current function is called.
accessed, we conservatively extend the lock to the enbite.ta 1) Formal parametersSometimes the name of the table on
Manual investigation is required to understand whether tWonjch a lock is taken or released is not known, since it is a

inconsistent locks are actually colliding (on the same r@Eo formal parameter of the function. In such cases, we apply the
or are just false positives (i.e., always different recoofishe

same table). 2http://www.xom.nu



algorithm described in the previous section with a symbolic
table name rather than a concrete one. In this way, we cén stil
conservatively determine summary-outs for functions, thet
values in the summary-outs may include symbolic table names
The binding between symbolic and concrete names is deferred =
to when the summary-out is actually used, i.e., when calling
functions are considered. Within a calling function we can
either have a concrete table name bound to the symbolic name, .,
or the function may also use one of its formal parameters as “”III

the table name. In the latter case, the summary for the gallin - MLttt s
function will also include a symbolic table name. Fig. 5. Distribution of inconsistent locks among BAL progrs.

2) Sources of imprecisionAlthough the proposed algo-
rithm is based on &onservativestatic analysis, which gives
raise only to false positives, associated with infeasibkeca-
tion paths, there are a few sources of imprecision which may
give raise to false negatives as well.

The first source of imprecision is given by table names.
Table names are strings. Usually, constant strings are aised
constant strings are assigned to string variables whiclthame
used to acquire or release a lock. However, in principle any
string manipulation operation could be used to produce the |||“““
table name used in a lock acquiring/releasing statement. Ou '_t—
tool currently misses such sources of lock/unlock.

The second source of imprecision is given by logic numbers.

Even though BAL programmers tend to prefer the use @finctions. However, at a deeper analysis the distributibn o
macros to acquire/release locks, and macros accept taBi€onsistencies appears to be not regular. In fact, only d4%
names as parameters, sometimes they resort to low leyedgrams (90) contains inconsistencies and, within thess |
BAL 1/0O primitives, which use IOgiC numbers (Similar to ﬁlethan 1% of the functions (334) Moreover, among them, the
handles), instead of table names. In principle, logic nusibejistribution is also not homogeneous. In fact just a few efith
can be computed in any arbitrary way, since they are justtshepntain most inconsistencies and a lot of modules contain fe
integers. However, the typical pattern consists ofABSIGN ¢ases.
BAL statement, which directly associates a logic numbehwit Figure 5 shows the distribution of inconsistencies among
a physical table. programs. In the worst case we report more than 500 incon-
Finally, formal parameters are handled properly only undefstencies, followed by one case with 431 and one with 133.
the assumption that they are directly used, without anngtri There are 21 programs with between 100 and 10 inconsisten-
manipulation operation intervening on them. In fact, it /Y0 cies. For the remaining 66 programs, we report less than 10
under this assumption that we can use symbolic table nam&sonsistencies.
instead of concrete ones in our analysis. When this preséqui  For functions, the distribution is similar. In the worst eas
does not hold, we may be unable to determine the correct tafle report 290 inconsistencies, followed by a case with 136
name when the binding between formal and actual parametgfigonsistencies. Among the other 41 functions, there are
is performed. between 100 and 10 inconsistencies. The remaining set of
We cannot be completely sure that the three sources of ifainctions (290) present less than 10 inconsistencies.
precision mentioned above never occur in the code. Howevera similar distribution, shown in Figure 6, holds if the
we performed some preliminary analyses, both by manuallyconsistency rate is evaluated on the affected tablestHeor
inspecting the code and by running some simple scripts teat wiost affected table, more than 2,000 cases are reported. For
developed for this purpose, and we found that our assunmptiqRe second one, this amount is less that one fifth (420). #i tot
are generally met. We plan to make these checks more rigor@jily 4 tables have more than 100 inconsistencies, and just 22

in the future, but with the currently available informatiore  tables are between 100 and 10 cases. The other tables (26)
are quite confident that these sources of imprecision haygve less than 10 inconsistencies.

minimum or no impact on the accuracy of the results.
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Fig. 6. Distribution of inconsistent locks among ISAM tahle

IV. RE-ENGINEERING THE DATA ACCESS TO SOLVE
C. Inconsistent locks found INCONSISTENT LOCKS

Over the entire banking application (640 programs, 116,9530nce inconsistent locks are detected, refactoring can be
functions/segments), a total of 1,920 instances of ineb@si used to remove the problems and to allow library upgrade
locks have been found. This would mean an average of(fBom C-ISAM to D-ISAM, required for the migration to Java).
inconsistencies per program and an inconsistency every Bi&factoring strategies are selected manually, case by. case



function int f1() function int update protocol(string data)

keyl = "1020304” int err = -1
/llock (TABLE1)
searchlock (TABLE_1, "A” + keyl) buffer = data
/llock (TABLE1)
f2 (keyl) err = searchlock (TABLE_1, buffer)
if (err != 0) goto &ND
//unlock (TABLE1)
modify (TABLE_1, "A” + keyl) /lunlock (TABLEL)
endf err = modify (TABLE_1, buffer)
&END
function int f2(string keyl) enrdefturn err

/1'lock (TABLE1)
searchlock (TABLE_1, "B” + keyl)

Fig. 8. Case 1.2: Unlock missing on error.
/lunlock (TABLEL)
modify (TABLE_1, "B” + keyl)

select mode

endf case 1l
/Ilock (TABLE1)
Fig. 7. Case 1.1: Locks on different keys. searchlock (TABLE_1, buffer)
case 2
//lock (FILE_1)
searchlock (FILE_1, buffer)
Based on what we observed in the code, a preliminary catalog endsel
of possible inconsistency instances and resolution sfiege select mode
ieti i case 1l
has been distilled. We report it below. Il unlock (TABLEL)
. . . modify (TABLE_L, buffer)
A. Case 1: No re-engineering required case 2
. . /lunlock (FILE_1)
a) Case 1.1: Locks on different keysAs anticipated modify (FILE_1, buffer)
endsel

earlier, since static analysis cannot tell which recorakéd,
locks are reported as inconsistent if they apply to the same
table. In Figure 7, an example is shown of two locks on table
TABLE 1 by functions from different components, namely

f1 andf 2. However, manual inspection of the code revealgleased, causing the lock to propagate to the calling gbnte
that locks are on records identified by different keys (intfacand possibly causing inconsistencies with forthcomindsoc
"A" + keyl#"B" + keyl).So no lock-errorwould ever However, because of the business logic of the code, it happen
happen at run-time, thus this case does not require any fixthat locks are always released, but our static analysistib@o
The case depicted in Figure 7 is quite typical in the BAlaple to reveal that. In fact the same condition guards a lock
code we are migrating. In fact, the key prefix is often useghd the corresponding unlock, so that they perfectly match.
as a discriminator for the record type. The same table hostsf manual inspection is not able to determine that locks are
different kinds of records (i.e., it is a union table), whichyways on the different records, a fix is required to avoid a
are distinguished by key prefix. When different code posiontun-time error when adopting a strict lock manager. One of

operate on different record types, we are sure that differefye subsequent refactoring must be applied, based on manual
key prefixes will be used to access the common union tabjgspection of the source code.

hence no lock conflict can ever occur.
b) Case 1.2: Unlock missing on errorSince the permis- B. Case 2: Reduce protected context to the minimum
sive lock policy does not raise errors in case of incons@ten The protected context on the caller could be unnecessarily
an unlock could be missing simply because of a programmingge, for example because unlocks have been relegated to
error. However, static analysis is not able to judge whethgfe end of a function body. So statements that occur in the
unlock is missing on purpose or by error. protected context may be not necessarily related to locked r
For example, Figure 8 shows an example of missing unloglkurces. The unlock (lock) can be anticipated before (deder
that generates an inconsistency when this function isatatie after) these statements, without altering the whole seicgmnt
a locking program. Specifically, in case the lockisgar ch In Figure 10, the caller protected context has been shrunk by
produces an error (return valyé 0), the function terminates moving the unlock before the invocation to the callee. Iis thi
without releasing the lock. However, this is done on purgmse way the lock on the callee will not fail because of the caller
programmers, because the lockisgar ch does not acquire |ock.
any lock when it returns an error code. The problem is that o
our analysis is not able to distinguish between error hagdliC: Case 3: Postpone or anticipate nested context
code and normal business logic. This case does not requirdlanual inspection of the code could reveal that the invo-
any fix. cation of the callee can be safely moved without altering the
c) Case 1.3: Constrained pathEalse positives may alsowhole semantics of the program. In this case the call could
be reported, because of the intrinsic limitations of statial- be deferred (or anticipated) after (before) the caller gctdd
ysis. In Figure 9 a case is shown where the lock is selectivadgntext so as to avoid the interference between caller and

Fig. 9. Case 1.3: Constrained path.



contribution is part of a migration project that belongs he t

Callee - - third class. This paper is part of a bigger project devoted to
Caller —o— L o L the migration of a legacy system. In the past, other problems
have been addressed to prepare the legacy code for migration

(@) (b) such as GOTO elimination [4] and the recovery of an Object

Oriented data model [3].
Fig. 10. Case 2: Reduce protected context to the minimumbdtgre and Transaction management [1] and concurrency control [2] in
(b) after the refactoring. ) . -

the presence of multiple processes are considered coassdid
topics. They have been largely studied in the past, both for

Callee S S centralized and distributed database systems. The isawabf
uating properties held by concurrent programs has beealiarg
Caller —&— S addressed using model checking [8], Petri nets [9] and data
flow analysis [10] [11]. However, the present paper addesse
@ (b) a fundamentally different case. In fact, even if we deal with
, » inconsistent locks, locks are not caused by different tisea
Fig. 11. Case 3: Postpone or anticipate nested context,efayeband (b) . .
after the refactoring, that concurrently compete in accessing the same resource.

Rather, inconsistencies detected by our approach arenatay
by the same thread when locks are acquired from different
callee. In Figure 11, the invocation has been moved after themponents.
resource is unlocked by the caller. The difference with eesp Among the mentioned works, the most related ones are by
to Case 2 is that in Figure 11 we are not moving just th@wyer et al. [10] and by Naumovich et al. [11]. Dwyer et
unlock statement: we are moving an entire sub-computatiéd, [10] propose an approach to decide whether a particular
which originally was after the callee, before the call poinproperty is always or never satisfied by a concurrent program
This is possible only if the move does not affect the overdirograms and properties, respectively represented as trac
execution semantics. Otherwise, a deeper code refactorayy flow graphs and quantified regular expressions, are subject
be necessary to ensure that the global effect of the executio data flow analysis. The precision of this approach can
of Figure 11 (b) is the same as in Figure 11 (a). be tuned so as to allow a trade off between accuracy of
the analysis and the required execution time. This approach
initially designed for the Ada rendezvous synchronization
When neither statements nor locks/unlocks can be movedodel, has been extended by Naumovich et al. [11] to cope
an alternative strategy is represented by inlining the domle  with Java specific constructs. Java multi-thread prograres a
the protected context of the callee into the protected comtfe analyzed to spot typical concurrency related problems such
the caller. This refactoring requires substantial mandfalrie as premature join, re-start of already running threadstimi
to ensure that the merged protected contexts will not causgever, unnecessary notifications and dead interactions.
any data corruption. It has also the disadvantage of intimdu ~ The present paper is based on flow analysis [12], a versatile
some level of code duplication. In Figure 12, locks and uksoc analysis framework for implementing static analysis thatgp
are removed from the callee, and all its protected conteagates user-defined information on the program control flow.
is inlined. After refactoring, the callee contains just nonit has been widely adopted for a large variety of analyses, fo
interfering code. constant propagation and other optimizations implemeirted
compilers [13], points-to [14] and alias analysis [15], gmam
slicing [16]. More recently flow analysis has been used to
The problem of migrating a legacy software system to @etect vulnerabilities in Web applications, such as criss s
novel technology has been widely addressed in the litezatwcripting [17] and SQL-injection [18].
by different approaches. The different strategies havenbee
classified by Bisbal et al. [7] into (1) redevelopment from VI. CONCLUSIONS
scratch; (2) wrapping; and (3) migration. In their view, Bve
the migration strategy requires substantial redevelogn@mr  When migrating legacy systems, permissive lock policies
often available in the past may be no longer available in more
recent technologies. So, migration can be a good oppoytunit
to identify lock problems that went undetected in the past ju
by chance. In this paper, we address the problem of detecting
inconsistent locks. We faced this problem when a strictek lo
model was enforced by a library adopted as a step of the
(a) (b) migration of a large legacy banking system to Java.
We implemented an interprocedural static analysis based on
Fig. 12. Case 4: Inline nested context, (a) before and (b #ie refactoring. flow analysis, where lock information is propagated togethe

D. Case 4: Inline nested context

V. RELATED WORKS

)

Callee

Caller —&—

)




with the components where locks originate. Identified incomu4] B. Steensgaard, “Points-to analysis in almost lindaref’ in POPL

sistent locks have been analyzed and a catalog of possible '96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium o
Principles of programming languages New York, NY, USA: ACM,

refactorings has been defined to solve problematic cases, SO 1996 pp. 32-41.
as to avoid that inconsistent locks could cause run-timarrr [15] M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interpredural pointer

when more recent libraries are adopted. Solving the datecte g"il%s SagnflylSE;Zv;ACM Trans. Program. Lang. Syswol. 21, no. 4, pp.

inconsistencies is also beneficial for the O”gm‘?‘l legaoyle; [16] M. D. Weiser, “Program slices: Formal, psychologicahd practical
where problems may have not been exposed just because theinvestigations of an automatic program abstraction methedD Dis-

precise interleavings which reveal them is hard (but maylt;ez] sertation, The University of Michigan, Ann Arbor, 1979.

. ibl d We f d th . . 17/] G. Wassermann and Z. Su, “Static detection of cross-sitripting
not IMmpossi e) to produce. We found that most inconsiste vulnerabilities,” in ICSE '08: Proceedings of the 30th international

lock problems affect a relatively small number of programs, conference on Software engineering New York, NY, USA: ACM,
functions and ISAM tables, hence by refactoring them many- 2008, pp. 171-180. _

I tt hi . t with limit &18] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, andYSKuo,
ally we expect 1o achieve a major improvement with limrie “Securing web application code by static analysis and nutprotec-
programming effort. Such work is currently ongoing at the ton,” in WWW '04: Proceedings of the 13th international conference

Our future work will be devoted to: (1) completing the im-
plementation and reporting also the problems associattéd wi
the top-down propagation of locks; (2) (semi) automaticall
verifying if the assumptions which make our analysis conser
vative (no false positives) actually hold (or determine ¢chses
that violate such assumptions); (3) finish the refactorihthe
BAL code (this is an ongoing task that our industrial partiser
carrying out on its own, based on the output of our analysis).
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