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Abstract—Often, legacy data management systems provide no
native support to transactions. Programmers protect data from
concurrent access by adopting commonly agreed patterns, relying
on low level concurrency primitives, such as semaphores. Insuch
cases, consistent data access is granted only if all code components
are compliant with the adopted mutual exclusion patterns.

When migrating legacy systems to modern data management
systems, the ad hoc mechanisms for data protection must be
replaced with modern constructs for transaction management. In
such cases, a literal translation may expose problems and bugs,
which were originally masked by the specific implementationand
patterns in use.

In this paper, we propose a static flow analysis that determines
the existence of potentially incompatible locks within thesame
thread, which require specific code re-engineering before migrat-
ing to a modern data management system. We report the results
obtained on a concrete instance of this problem.
Keywords: Legacy systems, flow analysis, code migration.

I. I NTRODUCTION

Legacy systems are built on top of programming frame-
works and libraries that often lack native support to transac-
tional access to persistent data. Often, they rely on permissive
and low level lock mechanisms (e.g., semaphores). As a
consequence, programmers are forced to develop their own
access control mechanisms. A consequence of an ad-hoc
lock mechanism is that the responsibility of locking/unlocking
resources can be scattered among many functions that partic-
ipate in a program and could be incompatible with modern
concurrency control primitives.

For example, in Figure 1, after acquiring the lock on a
shared resource (e.g., by means of a semaphore), the caller
passes the control to the called library function, that tries to
acquire a lock on the same resource. Even if the second lock
should clearly fail, in legacy systems concurrency managers
often handle locks on a per-thread basis, hence allowing the
second lock. In a modern (stricter) transaction management
environment, the same code would not work, because the
callee’s lock would always fail.

The problem in the example in Figure 1 is that the library
function needs exclusive access to some data, but there is no
way in the legacy language to stipulate a contract with the
callers which explicitly declares who is in charge of acquiring
the lock and of creating the protected data access context.
Hence, the library creates its own protected context. On the
other side, the caller is also creating a protected context,
since it may also need to protect some data from concurrent
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Fig. 1. Interleaving of locks within a thread.

modifications. If the two locks are taken on the same record,
which acts as a semaphore for the computation to be protected,
we have a problem during migration, in that a double lock on
the same record is not permitted. In addition, there may be
also a problem in the original system, which might have gone
unobserved just by chance. In fact, one of the two components
holding a lock (e.g., the caller) may decide to close the
protected context, by releasing the lock, before the other
component (the callee) is done with the protected computation.
In such a case, nothing is protecting the persistent data from
concurrent modification in the interval between the first and
the second lock release, which, in our example, may bring
the callee to an inconsistent state. At the core of the problem
is the lack of a clear, explicit attribution of responsibility on
the creation and management of a protected data manipulation
context.

The problems highlighted with reference to the example in
Figure 1 become dramatic when legacy systems are migrated
to a modern platform, supporting persistent data management
with native access control. The manually implemented, of-
tentimes very permissive lock/unlock mechanisms may give
raise to undesired behaviors, like errors, exceptions, dead-
locks or inconsistent/incompatible data access. In this work,
we investigate the use of static flow analysis to explicitly
determine incompatible lock acquisitions. These cases must
be refactored before migrating to a modern platform in order
to avoid the occurrence of deadlocks or errors. We report
the results obtained on a large (8 millions LOC) legacy
system – a complete bank management system – that we
are currently migrating from a proprietary language (BAL,
Business Application Language) to Java.



In this work, the focus is not the problem of concurrent
lock acquisition performed by multiple, parallel threads.Such
a problem has been broadly investigated in the past and
authoritative solutions have been proposed [1], [2]. Instead, we
are interested in detecting and resolving lock inconsistencies
that originate from serial execution within a single thread,
when nested or overlapping protected contexts might interfere
(see Figure 1).

The paper is organized as follows: Section II explains lock
analysis and provides the details of the algorithm we used to
determine inconsistent locks statically. Section III describes
the results obtained when applying our lock analysis to the
legacy system we are migrating to Java. Section IV provides
our preliminary catalog of refactorings that can be used to
solve the detected inconsistent lock problems. Related works
are commented in Section V, while the last section is devoted
to conclusions and future work.

II. L OCK ANALYSIS

Let us consider a legacy programming language and en-
vironment which does not support the explicit attribution of
lock responsibilities. As a consequence, different components
(e.g., library code vs. code for the main program) may realize
a local lock policy, which appears to be completely consistent
within the component, but may originate inconsistent locks
due to the interaction with other components, when these are
not aware of the lock pattern implemented elsewhere.

In such cases, inconsistencies arise when locks escape
the component that generated them and propagate to other
components on the same thread. If another source of lock
in the other components operates on the same record that
was locked externally, problems (e.g., errors, exceptionsor
deadlocks) are potentially originated when a stricter lock
policy is adopted. Moreover, even the original program might
experience problems at run time, since such inconsistencies
may originate computation intervals in which data access
protection is not ensured.

In the following, we will no longer distinguish between
the source of the lock and the component containing it, since
for our purposes (detecting inconsistencies) knowledge about
the source container is sufficient. So, by a lock sources1

we mean a component, library or well defined code portion
which implements a consistent, local lock policy. Another
simplification that we make is about the locked record. Since
we are interested in static lock analysis and static analysis
cannot distinguish different records accessed from the same
table, we will not distinguish between table and record. When
talking about lock on a tableT we do not mean that the entire
table is locked. Rather we mean that one record from the table
is locked, but statically we do not know exactly which one,
so we over-approximate the lock with the entire table.

A. Inconsistent locks

A lock requestL1 on tableT performed by lock source
s1 is inconsistent with the lock requestL2 performed by lock
sources2 on the same tableT if the two sources of lock are

f u n c t i o n s1 (vo id ){
l o c k ( T1 )
l oc k ( T2 )
s2 ( )
un lock ( T2 )
un lock ( T1 )

}

f u n c t i o n s2 (vo id ){
l o c k ( T1 )
l oc k ( T2 )
un lock ( T2 )
i f ( a )

un lock ( T1 )
l oc k ( T3 )

}

Fig. 2. Example of inconsistent lock.
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Fig. 3. Lock/unlock performed by s1 and s2.

different (s1 6= s2) and there exists an interprocedural path in
the interprocedural control flow graph of the program from the
statement acquiring the first lock to the statement acquiring the
second lock, such that no intermediate statement in the path
releases the lock on the same table.

The situation we are interested in is one where a lockL1

escapes the components1 where it is managed consistently
and reaches another components2 where it is not ensured not
to conflict with other locks. In particular, if the latter compo-
nent acquires a lock on the same table, we have potentially a
problem if the first lock can reach the second without being
released. Of course, if the two statements are always locking
different records, we have no real problem, even though a static
analysis would report an inconsistent lock. However, this is an
intrinsic limitation of static analysis, which cannot determine
the exact record being accessed (this is decided at run time),
but can quite precisely determine which table is locked.

Figure 4 shows the interprocedural control flow graph for
the program in Figure 2, while Figure 3 shows the scattered
lock responsibility forT1 andT2. This program includes two
lock sources,s1 ands2. The inconsistent locks that exist in this
program can be split into two categories: (1) inconsistencies
due to bottom-up lock propagation; and, (2) inconsistencies
due to top-down lock propagation. The two kinds of inconsis-
tent locks depend on whether the lock originates inside nested
calls in the call graph and propagates upward, to the calling
functions, or whether it is generated at calling functions and
it later reaches conflicting locks inside called functions.One
example of lock of the first category islock(T1) insides2. This
lock reaches the end ofs2, when thefalse branch is taken
at the conditional statementif(a). Within the calling function
(s1), this lock collides with anotherlock(T1) that reaches the
call statements2() of s1. One example of lock of the second
category islock(T2) inside s1 (but the same argument holds
for lock(T1) inside s1), which propagates tos2 through the



call nodes2() of s1. Insides2 this lock reaches the statement
lock(T2), where it gives raise to an inconsistency.

The lock analysis problem can be formulated as a flow anal-
ysis problem, where the flow information being propagated
in the interprocedural control flow graph consists of a pair
whose first element indicates the tableT that was locked by
a given statementn and whose second element indicates the
lock sources. For brevity, we indicate such pair asT 〈s〉.

The information generated and killed at each control flow
graph noden can then be defined as follows:

GEN [n] = {T 〈s〉|statement n ∈ s; (1)

n locks T }

KILL[n] = {T 〈s′〉|statement n releases T ; (2)

s′ is any lock source}

The flow propagation is in the forward direction, with
union as the meet operator at junction nodes. Flow analysis
terminates when the following equations produce the least
fixpoint:

IN [n] =
⋃

p∈ pred(n)

OUT [p] (3)

OUT [n] = GEN [n] ∪ (IN [n] \ KILL[n]) (4)

wherepred(n) indicates the set of nodes that precede imme-
diately n in the control flow graph. Since we are interested
in interprocedural flow propagation (lock inconsistenciesare
intrinsically interprocedural), we split our flow analysisinto
two steps. First we perform a bottom up propagation, in which
we propagate the flow information inside leaf functions in the
call graph first and then we proceed backward to the calling
functions. In the presence of mutual recursion, we treat an
entire strongly connected component as a single unit (pseudo-
function) of the call graph. The bottom up propagation results
in a summary flow equation for each function in the program.
It also reveals inconsistent locks that are generated deeply in
the call graph and propagate backward to the upper levels (see
next subsection for more details).

Then, we perform a top-down flow propagation in the call
graph. During this step, we use the summary information
computed in the previous step to account for the effects of
function calls on the flow information being propagated. After
this step, we can detect inconsistent locks that originate up in
the call graph and propagate downward through a sequence of
function calls (see subsection after the next one).

At the end of each step we can detect different inconsistent
locks, by verifying if the following conditions hold:

Inconsistent lock detection
We have an inconsistent lock when:

T 〈s1〉 ∈ IN [n] (5)

T 〈s2〉 ∈ GEN [n] (6)

s1 6= s2 (7)

Summary-lock Summary-unlock
s2 T1〈s2〉, T3〈s2〉 T2

s1 T3〈s2〉 T1, T2

TABLE I
BOTTOM-UP SUMMARIES FOR S1 AND S2.

B. Bottom-up lock propagation

The bottom-up flow analysis applies intraprocedural flow
analysis and computessummary-outinformation for functions.
Summary-out information can be divided intosummary-lock
andsummary-unlock. These two summaries are used on func-
tion calls to propagate any lock/unlock due to the call in the
caller scope. They also determine which locks are propagated
after the call. The first step to compute summary-locks consists
of propagating locks according to equations (3) and (4) inside
leaf functions (strongly connected components, if mutually
recursive functions exist in the program) in the call graph.
Summary-lock is then computed as the union of the locks that
reach the exit nodes. These locks are the ones that escape the
called component and possibly interfere with locks in calling
components.

summary lock(f) =
⋃

n=exit node of f

OUT [n] (8)

Summary-unlock requires different flow equations, because
we want to collect all the unlocks thatfor sure reachall the
exit nodes. They represent all the locks that are conservatively
released when the given function is called, and that must notbe
propagated after the call, inside the caller. The meet operator
is intersection and the new equations are:

IN [n] =
⋂

p∈ pred(n)

OUT [p] (9)

OUT [n] = (IN [n] ∪ KILL[n]) \ GEN [n] (10)

summary unlock(f) =
⋂

n=exit node of f

OUT [n] (11)

Considering the example in Figure 2, because of the call in
s1 to s2, the summary edge fors2 must be available before
considerings1. In this example we assume thats1 and s2

come from different components. Figure 4 shows their control
flow graphs and Table I reports the resulting summaries.

Starting from s2 (right-hand side) we see that the lock
T2〈s2〉 does not reach the exit because it is killed by the
subsequent unlockT2. Whereas, the lockT1〈s2〉 reaches the
exit on the flow that passes through thefalse branch of the
if statement, it is not killed by the unlock in thetrue branch.
The lockT3〈s2〉 also reaches the exit node.

The summary-unlock fors2 contains justT2, because such
unlock is not killed by any other lock on the same table and
it reaches the exit node on all the paths. The summary-unlock
does not containT1, because the unlock holds only on the path
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Fig. 4. Control flow graph for s1 and s2.

that goes through thetruebranch of the if statement (an unlock
must hold on all paths to the exit to be in the summary).

Now we can move tos1, Figure 4 left-hand side. After ac-
quiring lockT1〈s1〉 andT2〈s1〉, summary data available fors2

can be used in the call point (lock summary containsT1〈s2〉,
T3〈s2〉 and unlock containsT2). Here the first inconsistency,
I1, is found whereT1〈s1〉 and T1〈s2〉 collide after the call.
There is a flow where two locks on the same table (i.e.,T1)
collide and they are originated on different components (i.e.,
s1 ands2).

LocksT2〈s1〉, T1〈s1〉 andT1〈s2〉 are later killed by unlocks
T1 andT2. The only lock that reaches the exit ofs1 (and thus
is represented in the summary-lock) isT3〈s2〉. It is acquired by
s2 and never released by boths2 ands1. The summary-unlock
for s1 is represented byT1 andT2.

C. Top-down lock propagation

The purpose of the top-down propagation is to compute
summary-in, locks that hold when the control is passed to a
called function. Summary-in contains only summary-locks that
are propagated according to equations (3) and (4). Summary-
in for a given function is computed as the union of the locks
that reaches the calling nodes.

summary in(f) =
⋃

n=call to f

IN [n] (12)

Using the running example in Figure 2, the top-down
ordering associated with the call relation imposes to process
s1 befores2.

Summary-in lock
s1

s2 T1〈s1〉, T2〈s1〉

TABLE II
TOP-DOWN SUMMARIES FOR S1 AND S2.

Name Locks Bottom-up Top-down
I1 T1〈s1〉, T1〈s2〉 X X
I2 T2〈s1〉, T2〈s2〉 X

TABLE III
INCONSISTENT LOCKS FOR S1 AND S2.

Looking at the flow graph in Figure 4 left-hand side, we
see thats1 acquires locksT1〈s1〉 andT2〈s1〉, then it callss2.
This is the only call tos2, so the summary-in ofs2 contains
just these two locks (reported also in Table II). Summary-out
of s2 (already computed in the bottom-up phase) is used here
to proceed with the flow analysis ofs1. This allows to find an
inconsistency already reported above for the call nodes2(),
i.e. I1 containingT1〈s1〉 andT1〈s2〉.

Thestart edge ofs2 is assigned the flow value correspond-
ing to its summary-in, i.e. the union of the locks possibly
existing when the function is called, in this caseT1〈s1〉 and
T2〈s1〉. On the next edge in the control flow, a lock is acquired
(T1〈s2〉) that collides with a lock in the summary-in (T1〈s1〉).
This inconsistency isI1 and was already reported earlier, by
both the bottom-up and the top-down analysis. In the next
edge a second lock is acquired (T2〈s2〉) that also collides with
a summary-in lock (T2〈s1〉). This second inconsistencyI2 is
a new one, which was never reported before.

III. EXPERIMENTAL RESULTS

A. Case study

The proposed flow-analysis for inconsistent lock detection
has been applied to a large legacy banking application con-
sisting of 8 millions lines of BAL code. BAL is an acronym
for Business Application Language, a BASIC like language
that contains unstructured data elements as well as unstruc-
tured control statements (e.g.,GOTO). The migration of the
legacy application to a modern programming language (Java)
involves a change in the data access libraries. The new library
implements a more restrictive locking policy, so a detailed
analysis is required to avoid locking errors. More information
about the migration project and the problems associated with
restructuring the data and the control flow can be found in our
previous publications [3], [4].

Persistent data structures are stored on ISAM1 tables and
they are accessed by I/O primitives. BAL provides I/O primi-
tives to open, search, scroll and modify records on ISAM table.
These primitives can optionally lock the accessed record soas

1ISAM (Indexed Sequential Access Method) is a data file formatquite
common in old legacy systems.



to open a transactional context. Lock is released by performing
a non-locking access on the same record.

On the current release, BAL delegates I/O operation to a C-
ISAM library that adopts a permissive lock policy by allowing
a thread to acquire multiple locks on the same record. This
typically happens when different file handles are used to access
the same table. Indeed, different file handles are necessarily
used in different components (e.g., main program code and
library code), since each component implements its own file
handle table. Even if a record is locked, it can be accessed
by any called function, both via locking and non-locking
primitives, without any lock-violation error. Actually, the lock
state of a record is used just as a semaphore for concurrent
threads, but it does not carry any intrinsic transactional context
semantics within a thread. It is only the programmers’ coding
style that adds a transactional meaning on top of the available
semaphores.

Before migrating the system to Java, the C-ISAM library
will be replaced by D-ISAM, since only the latter was ported
to Java. The problem is that the D-ISAM library implements
a more restrictive lock policy, which does not permit the same
thread to acquire multiple locks on the same record. Inconsis-
tent locks have to be identified and solved to avoid run-time
lock-errors that could possibly raise an exception and crash
the application. However, it should be noticed that inconsistent
lock identification is beneficial also for the original BAL code
with the C-ISAM library, since such inconsistencies may cause
unprotected computation intervals, in which persistent data are
exposed to concurrent, uncontrolled modifications. Those are
the typical concurrency bugs which are very difficult to expose
during testing, since they require very specific interleavings of
parallel threads. Revealing them by means of static analysis
is thus particularly useful to improve the quality of the code.

Differently from C-ISAM, D-ISAM does not allow a thread
to acquire a lock on the same record by means of different file
handles, which previously used to happen regularly, when two
different components having their own file handle tables were
accessing the same record. More precisely, in BAL there are
two independent file handle tables, one for the main program
and one shared by all libraries. Hence, in the rest of the paper
we assume that a component is either (1) the current main
program; or, (2) any called library. This means that, in practice,
we have an inconsistent lock when:

1) After locking a record, the program invokes a library
that tries to acquire a lock on the same record; or

2) The program tries to lock a record already locked by a
previously called library, that did not release the lock.

Since static analysis is not able to determine which record is
accessed, we conservatively extend the lock to the entire table.
Manual investigation is required to understand whether two
inconsistent locks are actually colliding (on the same record),
or are just false positives (i.e., always different recordsof the
same table).

B. Tools

Of the analyses described in Section II, to date only the
bottom-up part was implemented, using Txl [5] and Java. The
tool works in the following steps:

1) Preprocessing;
2) Total ordering;
3) Control flow graph extraction; and
4) Summary edges and bottom-up flow analysis.

a) Prerpocessing:A preprocessor, implemented in Txl,
is applied to the code (as done in a previous work [3]) in
order to remove some syntax ambiguity due to BAL and to
apply unique naming to variables. Moreover, all the macros
are expanded. Indeed, often data are accessed using macros,
in order to avoid the complicated BAL I/O syntax.

b) Total ordering: Call to external functions are fully
resolved. Total order given by call relations among functions
is used to sort functions so as to be able to apply bottom-
up and top-down analysis. Strongly connected components
are considered when mutual recursion is present. To identify
them, we use a well-known algorithm, working on directed
graphs [6].

c) Control flow graph:Programs are split into the com-
posing sub-modules (i.e., functions and segments) and their
control flow graph is elaborated using TXL and stored in XML
format. This representation contains

• List of formal parameters;
• A node for each statement in the code;
• Entry node and exit nodes;
• Predecessors and successors for every node;
• Lock and unlock with the corresponding physical table

name; and
• Fully resolved calls with the list of actual parameters;

d) Summary edges and bottom-up flow analysis:The
actual bottom-up analysis proceeds as specified by the total
ordering on call-relations, so that summary-out data would
always be available when required.

The actual analysis has been implemented in Java using the
XOM2 library to parse the XML representation of the source
code. For all the calls in the graph, summary-out lock/unlock
data about the called function are read and stored with the
corresponding call nodes. Flow analysis is applied twice on
the control flow graph. On the first iteration, equations (3)
and (4) are used to propagate locks. The second iteration is
devoted to unlocks, so equations (9) and (10) are used.

When the fix-point is reached, the control flow graph of
the function is visited andOUT values are inspected to check
for inconsistent locks. Summary-lock and summary-unlock are
eventually computed on exit nodes, using (8) and (11) to merge
values at the exit nodes. Summaries are then saved for later
use, whenever the current function is called.

1) Formal parameters:Sometimes the name of the table on
which a lock is taken or released is not known, since it is a
formal parameter of the function. In such cases, we apply the

2http://www.xom.nu



algorithm described in the previous section with a symbolic
table name rather than a concrete one. In this way, we can still
conservatively determine summary-outs for functions, butthe
values in the summary-outs may include symbolic table names.
The binding between symbolic and concrete names is deferred
to when the summary-out is actually used, i.e., when calling
functions are considered. Within a calling function we can
either have a concrete table name bound to the symbolic name,
or the function may also use one of its formal parameters as
the table name. In the latter case, the summary for the calling
function will also include a symbolic table name.

2) Sources of imprecision:Although the proposed algo-
rithm is based on aconservativestatic analysis, which gives
raise only to false positives, associated with infeasible execu-
tion paths, there are a few sources of imprecision which may
give raise to false negatives as well.

The first source of imprecision is given by table names.
Table names are strings. Usually, constant strings are usedor
constant strings are assigned to string variables which arethen
used to acquire or release a lock. However, in principle any
string manipulation operation could be used to produce the
table name used in a lock acquiring/releasing statement. Our
tool currently misses such sources of lock/unlock.

The second source of imprecision is given by logic numbers.
Even though BAL programmers tend to prefer the use of
macros to acquire/release locks, and macros accept table
names as parameters, sometimes they resort to low level
BAL I/O primitives, which use logic numbers (similar to file
handles), instead of table names. In principle, logic numbers
can be computed in any arbitrary way, since they are just short
integers. However, the typical pattern consists of anASSIGN
BAL statement, which directly associates a logic number with
a physical table.

Finally, formal parameters are handled properly only under
the assumption that they are directly used, without any string
manipulation operation intervening on them. In fact, it is only
under this assumption that we can use symbolic table names
instead of concrete ones in our analysis. When this prerequisite
does not hold, we may be unable to determine the correct table
name when the binding between formal and actual parameters
is performed.

We cannot be completely sure that the three sources of im-
precision mentioned above never occur in the code. However,
we performed some preliminary analyses, both by manually
inspecting the code and by running some simple scripts that we
developed for this purpose, and we found that our assumptions
are generally met. We plan to make these checks more rigorous
in the future, but with the currently available informationwe
are quite confident that these sources of imprecision have
minimum or no impact on the accuracy of the results.

C. Inconsistent locks found

Over the entire banking application (640 programs, 116,953
functions/segments), a total of 1,920 instances of inconsistent
locks have been found. This would mean an average of 3
inconsistencies per program and an inconsistency every 61
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functions. However, at a deeper analysis the distribution of
inconsistencies appears to be not regular. In fact, only 14%of
programs (90) contains inconsistencies and, within them, less
than 1% of the functions (334). Moreover, among them, the
distribution is also not homogeneous. In fact just a few of them
contain most inconsistencies and a lot of modules contain few
cases.

Figure 5 shows the distribution of inconsistencies among
programs. In the worst case we report more than 500 incon-
sistencies, followed by one case with 431 and one with 133.
There are 21 programs with between 100 and 10 inconsisten-
cies. For the remaining 66 programs, we report less than 10
inconsistencies.

For functions, the distribution is similar. In the worst case,
we report 290 inconsistencies, followed by a case with 136
inconsistencies. Among the other 41 functions, there are
between 100 and 10 inconsistencies. The remaining set of
functions (290) present less than 10 inconsistencies.

A similar distribution, shown in Figure 6, holds if the
inconsistency rate is evaluated on the affected tables. Forthe
most affected table, more than 2,000 cases are reported. For
the second one, this amount is less that one fifth (420). In total
only 4 tables have more than 100 inconsistencies, and just 22
tables are between 100 and 10 cases. The other tables (26)
have less than 10 inconsistencies.

IV. RE-ENGINEERING THE DATA ACCESS TO SOLVE

INCONSISTENT LOCKS

Once inconsistent locks are detected, refactoring can be
used to remove the problems and to allow library upgrade
(from C-ISAM to D-ISAM, required for the migration to Java).
Refactoring strategies are selected manually, case by case.



f u n c t i o n i n t f1 ( )
key1 = ” 1020304 ”
/ / l o c k ( TABLE 1 )
s e a rc h l o c k (TABLE 1 , ”A” + key1 )
. . .
f2 ( key1 )
. . .
/ / un loc k ( TABLE1 )
modify (TABLE 1 , ”A” + key1 )

endf

f u n c t i o n i n t f2 ( s t r i n g key1 )
/ / l o c k ( TABLE 1 )
s e a rc h l o c k (TABLE 1 , ”B” + key1 )
. . .
/ / un loc k ( TABLE1 )
modify (TABLE 1 , ”B” + key1 )

endf

Fig. 7. Case 1.1: Locks on different keys.

Based on what we observed in the code, a preliminary catalog
of possible inconsistency instances and resolution strategies
has been distilled. We report it below.

A. Case 1: No re-engineering required

a) Case 1.1: Locks on different keys.:As anticipated
earlier, since static analysis cannot tell which record is locked,
locks are reported as inconsistent if they apply to the same
table. In Figure 7, an example is shown of two locks on table
TABLE_1 by functions from different components, namely
f1 andf2. However, manual inspection of the code reveals
that locks are on records identified by different keys (in fact,
"A" + key1 6= "B" + key1). So no lock-error would ever
happen at run-time, thus this case does not require any fix.

The case depicted in Figure 7 is quite typical in the BAL
code we are migrating. In fact, the key prefix is often used
as a discriminator for the record type. The same table hosts
different kinds of records (i.e., it is a union table), which
are distinguished by key prefix. When different code portions
operate on different record types, we are sure that different
key prefixes will be used to access the common union table,
hence no lock conflict can ever occur.

b) Case 1.2: Unlock missing on error.:Since the permis-
sive lock policy does not raise errors in case of inconsistency,
an unlock could be missing simply because of a programming
error. However, static analysis is not able to judge whether
unlock is missing on purpose or by error.

For example, Figure 8 shows an example of missing unlock
that generates an inconsistency when this function is called in
a locking program. Specifically, in case the lockingsearch
produces an error (return value6= 0), the function terminates
without releasing the lock. However, this is done on purposeby
programmers, because the lockingsearch does not acquire
any lock when it returns an error code. The problem is that
our analysis is not able to distinguish between error handling
code and normal business logic. This case does not require
any fix.

c) Case 1.3: Constrained path.:False positives may also
be reported, because of the intrinsic limitations of staticanal-
ysis. In Figure 9 a case is shown where the lock is selectively

f u n c t i o n i n t u p d a t e p ro t o c o l ( s t r i n g d a t a )
i n t e r r = −1

b u f f e r = d a t a
/ / l o c k ( TABLE 1 )
e r r = s e a rc h l o c k (TABLE 1 , b u f f e r )
i f ( e r r != 0) goto &END
. . .
/ / un loc k ( TABLE1 )
e r r = modify (TABLE 1 , b u f f e r )

&END
re turn e r r

endf

Fig. 8. Case 1.2: Unlock missing on error.

s e l e c t mode
case 1

/ / l o c k ( TABLE 1 )
s e a rc h l o c k (TABLE 1 , b u f f e r )

case 2
/ / l o c k ( FILE 1 )
s e a rc h l o c k ( FILE 1 , b u f f e r )

e n d s e l
. . .

s e l e c t mode
case 1

/ / un loc k ( TABLE1 )
modify (TABLE 1 , b u f f e r )

case 2
/ / un loc k ( FILE 1 )
modify ( FILE 1 , b u f f e r )

e n d s e l

Fig. 9. Case 1.3: Constrained path.

released, causing the lock to propagate to the calling context
and possibly causing inconsistencies with forthcoming locks.
However, because of the business logic of the code, it happens
that locks are always released, but our static analysis is not be
able to reveal that. In fact the same condition guards a lock
and the corresponding unlock, so that they perfectly match.

If manual inspection is not able to determine that locks are
always on the different records, a fix is required to avoid a
run-time error when adopting a strict lock manager. One of
the subsequent refactoring must be applied, based on manual
inspection of the source code.

B. Case 2: Reduce protected context to the minimum

The protected context on the caller could be unnecessarily
large, for example because unlocks have been relegated to
the end of a function body. So statements that occur in the
protected context may be not necessarily related to locked re-
sources. The unlock (lock) can be anticipated before (deferred
after) these statements, without altering the whole semantics.
In Figure 10, the caller protected context has been shrunk by
moving the unlock before the invocation to the callee. In this
way the lock on the callee will not fail because of the caller
lock.

C. Case 3: Postpone or anticipate nested context

Manual inspection of the code could reveal that the invo-
cation of the callee can be safely moved without altering the
whole semantics of the program. In this case the call could
be deferred (or anticipated) after (before) the caller protected
context so as to avoid the interference between caller and



Caller

Callee

(a) (b)

Fig. 10. Case 2: Reduce protected context to the minimum, (a)before and
(b) after the refactoring.

Caller

Callee

(a) (b)

Fig. 11. Case 3: Postpone or anticipate nested context, (a) before and (b)
after the refactoring.

callee. In Figure 11, the invocation has been moved after the
resource is unlocked by the caller. The difference with respect
to Case 2 is that in Figure 11 we are not moving just the
unlock statement: we are moving an entire sub-computation,
which originally was after the callee, before the call point.
This is possible only if the move does not affect the overall
execution semantics. Otherwise, a deeper code refactoringmay
be necessary to ensure that the global effect of the execution
of Figure 11 (b) is the same as in Figure 11 (a).

D. Case 4: Inline nested context

When neither statements nor locks/unlocks can be moved,
an alternative strategy is represented by inlining the codefrom
the protected context of the callee into the protected context of
the caller. This refactoring requires substantial manual effort
to ensure that the merged protected contexts will not cause
any data corruption. It has also the disadvantage of introducing
some level of code duplication. In Figure 12, locks and unlocks
are removed from the callee, and all its protected context
is inlined. After refactoring, the callee contains just non-
interfering code.

V. RELATED WORKS

The problem of migrating a legacy software system to a
novel technology has been widely addressed in the literature
by different approaches. The different strategies have been
classified by Bisbal et al. [7] into (1) redevelopment from
scratch; (2) wrapping; and (3) migration. In their view, even
the migration strategy requires substantial redevelopment. Our

Caller

Callee

(a) (b)

Fig. 12. Case 4: Inline nested context, (a) before and (b) after the refactoring.

contribution is part of a migration project that belongs to the
third class. This paper is part of a bigger project devoted to
the migration of a legacy system. In the past, other problems
have been addressed to prepare the legacy code for migration,
such as GOTO elimination [4] and the recovery of an Object
Oriented data model [3].

Transaction management [1] and concurrency control [2] in
the presence of multiple processes are considered consolidated
topics. They have been largely studied in the past, both for
centralized and distributed database systems. The issue ofeval-
uating properties held by concurrent programs has been largely
addressed using model checking [8], Petri nets [9] and data
flow analysis [10] [11]. However, the present paper addresses
a fundamentally different case. In fact, even if we deal with
inconsistent locks, locks are not caused by different threads
that concurrently compete in accessing the same resource.
Rather, inconsistencies detected by our approach are originated
by the same thread when locks are acquired from different
components.

Among the mentioned works, the most related ones are by
Dwyer et al. [10] and by Naumovich et al. [11]. Dwyer et
al. [10] propose an approach to decide whether a particular
property is always or never satisfied by a concurrent program.
Programs and properties, respectively represented as trace
flow graphs and quantified regular expressions, are subject
to data flow analysis. The precision of this approach can
be tuned so as to allow a trade off between accuracy of
the analysis and the required execution time. This approach,
initially designed for the Ada rendezvous synchronization
model, has been extended by Naumovich et al. [11] to cope
with Java specific constructs. Java multi-thread programs are
analyzed to spot typical concurrency related problems such
as premature join, re-start of already running threads, waiting
forever, unnecessary notifications and dead interactions.

The present paper is based on flow analysis [12], a versatile
analysis framework for implementing static analysis that prop-
agates user-defined information on the program control flow.
It has been widely adopted for a large variety of analyses, for
constant propagation and other optimizations implementedin
compilers [13], points-to [14] and alias analysis [15], program
slicing [16]. More recently flow analysis has been used to
detect vulnerabilities in Web applications, such as cross site
scripting [17] and SQL-injection [18].

VI. CONCLUSIONS

When migrating legacy systems, permissive lock policies
often available in the past may be no longer available in more
recent technologies. So, migration can be a good opportunity
to identify lock problems that went undetected in the past just
by chance. In this paper, we address the problem of detecting
inconsistent locks. We faced this problem when a stricter lock
model was enforced by a library adopted as a step of the
migration of a large legacy banking system to Java.

We implemented an interprocedural static analysis based on
flow analysis, where lock information is propagated together



with the components where locks originate. Identified incon-
sistent locks have been analyzed and a catalog of possible
refactorings has been defined to solve problematic cases, so
as to avoid that inconsistent locks could cause run-time errors
when more recent libraries are adopted. Solving the detected
inconsistencies is also beneficial for the original legacy code,
where problems may have not been exposed just because the
precise interleavings which reveal them is hard (but maybe
not impossible) to produce. We found that most inconsistent
lock problems affect a relatively small number of programs,
functions and ISAM tables, hence by refactoring them manu-
ally we expect to achieve a major improvement with limited
programming effort. Such work is currently ongoing at the
company which is performing the migration.

Our future work will be devoted to: (1) completing the im-
plementation and reporting also the problems associated with
the top-down propagation of locks; (2) (semi) automatically
verifying if the assumptions which make our analysis conser-
vative (no false positives) actually hold (or determine thecases
that violate such assumptions); (3) finish the refactoring of the
BAL code (this is an ongoing task that our industrial partneris
carrying out on its own, based on the output of our analysis).
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