Remote software protection
by orthogonal client replacement ~

Mariano Ceccato, Mila Dalla Preda

Paolo Tonella

Fondazione Bruno Verona, Italy
Kessler—IRST . ..
Trento, Italy mila.dallapreda@univr.it

{ceccato,tonella}@fbk.eu

ABSTRACT

In a typical client-server scenario, a trusted server mlesivalu-
able services to a client, which runs remotely on an untcuptat-
form. Of the many security vulnerabilities that may arisec{s as
authentication and authorization), guaranteeing thayiitieof the
client code is one of the most difficult to address. This sgcuul-
nerability is an instance of thealicious host problem, where an
adversary in control of the client’s host environment ttetamper
with the client code.

We propose a novel client replacement strategy to counter th
malicious host problem. The client code is periodicallylaepd by
new orthogonal clients, such that their combination witl gkerver
is functionally-equivalent to the original client-servegpplication.
The reverse engineering efforts of the adversary are aetday the
complexity of analysis of frequently changing, orthogopigram
code. We use the underlying concepts of program obfuscaton
a basis for formally defining and providing orthogonalitye\&lso
give preliminary empirical validation of the proposed amueh.

Categories and Subject Descriptors

C.2.0 [Computer-communication networkg: General—Security
and Protection; D.2.0 [Software Engineering: General—Protec-
tion mechanisms

General Terms
Security

Keywords

Obfuscation, Clone Detection, Program Transformatiorfiv&oe
Security, Remote Trusting

*This work was supported by funds from the European Commis-
sion (contract N 021186-2 for the RE-TRUST project)

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage @xat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/0355.00.

University of Verona

Anirban Majumdar
University of Trento
Trento, Italy

anirban.majumdar@unitn.it

1. INTRODUCTION

A network application is an application that needs to exgean
information over the network in order to work correctly. tivblves
a service provider, usually callestrver, and a service consumer,
usually calledclient and a communication channel between them.
We consider a scenario where the server is running on a ttuste
machine, while the client is running on an untrusted macktia¢
might corrupt the client code for malicious purposes. Theanms
that, before providing the requested service to the clidetserver
has to verify whether the client is executing according soex-
pectations, i.e., whether the client is in a valid state sHifuation
defines theremote trusting problem, where the trusted machine,
i.e., the server, has to ensure that the application runamghe
untrusted machine, i.e., the client, has not been tampeited w

In this work, we face the problem of ensuring the integritypaft
of the client code, later called the clientsdtical part and denoted
with C'P. In this setting, the attacker’s goal is to tamper with the
client application without being detected by the servee &tiacker
has full access to the client application and he/she cannysstatic
and dynamic techniques to reverse engineer it. Given thatipeh
limitations of available obfuscation technology and theattetical
ones investigated by Barak et al. [2], we make the assumten
an attacker with enough time and resources can perform &ssicc
ful attack. However, it should be noticed that a succesdfack
involves substantial program comprehension effort, wigafeces-
sarily carried out by human beings. Based on this obsematie
propose a protection scheme which periodically replace<lient
code with a new version. In order to obstruct the compreloensi
of the new client code, we aim at generating code that is angrt
onal as possible to the previous versions. In this way, ttaeker
cannot take advantage of previous attempts. Given suffitiee
and resources, an attacker can crack any obfuscated dleengn
attacker can mount a successful attack on any client codbo®r
onal replacement tries to address this issue by limitingithe that
an attacker has to tamper with a particular version of thentli

Orthogonality is achieved through the application of difat se-
mantic preserving transformations (i.e., obfuscationsbhe criti-
cal partC P and through splitting of the transformed application
between the server and the client. We denote With;, ...C'P;
the code of the critical part obtained through semanticgkesg
transformations. It turns out that obfuscation alone migbit be
enough to gain orthogonality. In fact, it might be hard orreua-
possible to mak€'P; orthogonal taC' Py , ..., C P;_1, becaus&’' P;
must behave the same &%, ..., C P;_; to preserve the overall
application’s semantics. Our proposal is to split the cotl€'®;
between the client and the server in order to leave on thatclie
code that is substantially different from the previous i@rs. The

splitting of the critical code”' P; is denoted with(C;, S;), where

C; denotes the code left on the client afgthe code moved to
the server. Orthogonal client replacement requires the vew
sion C; of the client code to be orthogonal to the previous ones
Ci,...,C;—1. Since the semantics @f; does not need to be the
same a¥’1, ..., C;—1 (the overall semantics d@f' P is preserved in

C P;, not that of each client’;, ..., C;—1), the proposed protection
scheme offers substantially more possibilities of codadferma-
tion than those achievable via pure client code obfuscation

The notion of orthogonality used in this work is a cognitive n
tion. In fact, from an attacker’s perspective a progrBs orthog-
onal to another prograr® if tampering with P does not reduce
the effort involved in tampering with), in that no information ac-
quired during the first attack can be reused to mount the skcon
one. This notion of orthogonality refers to program compregion
activities carried out by humans beings. Hence, it is hardeo
fine more precisely and to quantify. Consequently, in thiskwee
resort to a practical and computable approximation, giveondile
(dis-)similarity. The idea is that two progranisand(are orthog-
onal if they are dissimilar enough, so that analyziRgloes not
provide any clue for the analysis of (portions @J) since no por-
tion of Q is similar to any portion of?. Code similarity has been
deeply investigated in the area of clone detection [14, 13Vi8st
available clone detection algorithms can be adapted touose,
i.e., to produce an approximate quantification of our notbwor-
thogonality.

The paper is organized as follows: first, we characterizepooy
tection scheme in terms of the attacks it is intended to dé&=xc-
tion 2). Then, we describe the solutions available fromitieedture
for the problem we are addressing and we explain how our gapo
differs from the existing ones (Section 3). The core of thpgras
Section 4, where we describe our proposal for a novel priotect
scheme based on orthogonal client replacement. In Sectioe 5
provide a preliminary validation of the approach based andase
studies. Conclusions and future work are presented at tieoEn
the paper.

2. ATTACK MODEL

Theremotetrusting scenario consists of a trusted machine (called
server) providing services to an untrusted machine (catiBent).
The server has to ensure that the application running onlitiet c
has not been tampered with. This security problem is aldecal
the remote attestation or software integrity problem. lis tce-
nario, an attacker is a malicious user that aims at altehiaglient’s
behavior, either by means of static or dynamic analysis,rieo
to gain some personal advantage while going undetectedtfiem
server. In order to mount a successful attack, the attackedsto
understand the inner working of the application that heishets
to modify.

During the execution of the application, the attacker hasse
to all the successive versions of cligfit, ..., C,, delivered by the
server. There are no limits on the static and dynamic codlysisa
techniques that he/she can use in order to reverse engimeer t
Moreover, the attacker can access the information excliabge
tween the current client and the sergét;, S;) in the communica-
tion acts occurring during the execution of the applicati@iven
some understanding of the client code and of its interastitimthe
server, the attacker can either modify the code running erclient
or the content of the client memory (client state) in ordeg#&n
some personal advantage. However, the attacker can aregize
deduce information only from those portions of the criticalle
that reside on the client during the execution of the appbtoa In
fact, the attacker has not access to any of the successsiengof

the server codé...S;. An attacker succeeds when he/she is able
to gain enough information form the analysis(@f, ..., C; in order

to maliciously modify the client codé€’; without being caught by
the servelrs;.

DEFINITION 1. An attacker A is said to have mounted a suc-
cessful attack on (Cj, S;) if A can alter the execution state of C',
either by static or dynamic analysis and manipulation, so asto ob-
tain an unpermitted behavior from C; which goes undetected by S;
(i.e., if S; isproviding any serviceto C;, it continues to do so, since
S; considers C; trusted).

3. RELATED WORK

Software based schemes for remote attestation have been pro
posed as a possible alternative to purely hardware baseticsd.
They usually make the assumption that precise informatimuga
the hardware hosting the client’s execution is availablear be
obtained. These protection schemes include Swatt [16] amd P
neer [15], applicable to embedded devices and desktop demnspu
These solutions verify that no malicious modification hasuoeed
in the software by computing a checksum of the in-memory pro-
gram image. These protection schemes can accurately éstinga
time needed to compute the checksum since they have a precise
knowledge of the client hardware and memory layout. Thisrinf
mation can be used to detect attacks, since, in generatkatia:
troduce indirections that increase the execution time (eedirect-
ing memory checksum to a correct copy of the application evhil
a tampered one is running). The main drawback of this saiutio
is the assumption to have a collaborative user that provides
cise information about the client hardware and its memoygpua
Without this assumption, namely without an accurate ptexic
of the checksum computation time, the attacker could byfiass
protection scheme through the so called memory copy attek [
When computing the checksum, the code is accessed in dat mod
while when it is executed it is accessed in execution modez Th
basic idea of the memory copy attack is to redirect every scoe
data mode to the original code in order to return the corrbetk-
sum even when executing a tampered application. Genuih#ty [
is a protection scheme that, in order to deal with the retivac
problem, incorporates the side-effects of the instructierecuted
during the checksum procedure itself into the computedichen.
The authors suggest that the attackers only remaining mpitie.,
simulation, cannot be carried out sufficiently quickly ton@n un-
detected. The possibility of adding code with no side-effdo
unused portions of a code page is a possible way to bypass the
Genuinity protection scheme [17].

When users are non-collaborative we cannot rely on the predi
tion of the computational time. In this case, a possibleveari
only solution consists of exploiting the information exogad dur-
ing the communication between the client and the serverdardo
verify the integrity of the client application through aggens. If
on the one hand the client could send false information te¢neer
in order to satisfy the assertion, on the other hand it ha® todm-
est as regarding those information that the server needotide
the desired service (otherwise the network applicatiors am ex-
ecute). This means that only certain portions of the cliexdteccan
be verified through assertion. Thus, a possible solutiosistsof
using assertion to verify the integrity of part of the clieplica-
tion and to move to the server those portions of applicatiat t
cannot be verified by the server through assertions [4]. Tag-f
ments of code that need to be moved to the server can be cainpute
through barrier slicing. This solution introduces both ancou-
nication overhead and a computation overhead on the serher.

trade-off between the security and cost of this protecticdmeme
has been studied in [5]. It is worth mentioning that the idéa o
splitting an application between client and server has ladeady
used by Zhang and Gupta in order to prevent software pira@ly [1
The solution provided in this work is based on orthogonal re-
placement and uses the combination of different obfuscstiwhose
utility has been studied by Heffner and Collberg in [9]. Ihdae
used whenever barrier slicing [4] is not a viable approactpfer-
formance reasons. When the barrier slice containing therggc
sensitive portion of the client requires unacceptable agatmpnal
or network resources to be run on the server, we can leavedse m
performance-intensive portions of code on the client arel ars
thogonal client replacement to achieve software protactio

4. ORTHOGONALCLIENT REPLACEMENT

In the following, the fragment of application code that ispen-
sible for maintaining the portion of state that we want totpob is
called thecritical part C'P. We assume this portion of the applica-
tion code to be given as an input to the protection scheme.

The basic idea of orthogonal client replacement is to keep on
substituting the critical part of the client with new vensgothat
are orthogonal to the previous ones. Ideally, orthogonalitsures
that an attacker cannot use the knowledge gained from thgg(st
and dynamic) analysis of any previous client version to t@amp
with the current code of the client’s critical part. Orthogdity
is achieved through the application of semantic presertiags-
formations (code obfuscations) and code splitting.

e Obfuscation: By applying semantic preserving transforma-
tions that aim at obstructing code comprehensio@'fo, we
obtainC P, ..., C'P;. However, obfuscation alone might not
be enough to create different versions of the critical faat t
are orthogonal to each other. In factpP; has the same se-
mantics ofC' Py, ..., CP;_1, so it might be hard or impos-
sible to make it orthogonal to the previous versions, i®., t
CPy,...,CP;_1. However, it is possible to select a portion
of the critical partC'P; (by splitting C' P; between client and
server) that is orthogonal to the previously selected posti
of C’Pl7 ey CP;_q.

e Code splitting: We split the code of the curre6tP; between
the server and the client obtaining’;, S;). The splitting
process ensures that the portion of céfehat resides on the
client is orthogonal with respect to the previous code iiagid
on the clientC1, ...,C;—1 (observe that for somé€'; with
1 < j <i—1we might haveS; = 0, in this caseC; =
CPFj).

Thus, thei-th iteration of the orthogonal replacement process aims
at generating a paifC;, S;) such that: (1)C; is orthogonal to the
previous versions of the client codd, .., C;—1; and, (2)(C5, S;)

is functionally equivalent, denoted, to C P: (C;, S;) = (CP,0)

4.1 Orthogonality

Intuitively, a statemens of client codeC; is orthogonal to a
statemenp of client codeC;, denoteds L p, when the analysis of
statement in C; does not reveal any information about statement
pin C;. Orthogonal client replacement aims at generating new ver-
sions of the client code where all the statements of the nimtcl
are orthogonal to all the statements of the previous clieRtawv-
ever, there are portions of the critical code, such as systis,
library calls, and I/O operations, that cannot be modifie&mhp-
plying the semantic preserving transformationst® and whose

computation cannot be moved to the server. We call these frag
ments of the critical parinvariable. This means that there is a
limit on the degree of orthogonality that we can achieve. threo
words, we can be orthogonal only with respect to those pustaf

the critical part that are not invariable. According to Rigud, let

invariable

cP, cP;

Figure 1: C'P; and C'P; share the invariable part

Black denote the instructions of the critical part that are irafleé,
namely that are necessarily common to all the transformesiores
of the critical part and must be necessarily left on the tlidret
White be the instructions of the critical part that can be modified
or moved to the server. In particular, every possible var@w;
of the critical part will share the invariable fragment.j.for all
CP; we have thaCP; = Black U White(C'P;). Moreover, for
every C'P; we have thatBlack and White(C P;) form a partition,
i.e., Black U White(C P;) = C'P; and Black N White(C'P;) = (0.
The splitting(C', S;) is such that; = BlackU White(C;), where
White(C;) denotes the variable statements(gf Thus, we de-
fine the orthogonality betweeti; andC; only with respect to their
variable part, namelyWhite(C;) and White(C;). In particular,
we say that’; is orthogonal with respect t0; if all the statements
in White(C;) are orthogonal to all the statementslifite(C;).

DEFINITION 2. C; is orthogonal to C;, denoted C; L Cj, if
Vp € White(C}),Vq € White(Cs): p L q.

This means that two versions of the client code are orthdgehen
they differ in everything but the invariable paBiack, that cannot
be changed or moved by definition. It is clear that the inkdea
part Black is application dependent and defines a limit on the de-
gree of protection that can be achieved by our technique.ir-or
stance, if the code of the critical part presents many e state-
ments, namely ifBlack is almost equal t@’' P, very little can be
either modified or moved to the server. In this case, orthafyoe
placement offers limited support. On the other hand, wBéick
contains few statements of the critical part, many orthadjatient
copies can be generated by our technique.

The notion of orthogonality is a cognitive notion, based loa t
amount of knowledge aboute C; a programmer can reuse when
trying to understang € C;. As such, it is hard to define precisely
and operationally. However, the proposed approach resjairgay
to estimate it. While in this section we keep the notion ohogo-
nality quite abstract, in Section 5 we provide an approxiamaof
this notion, based on clone detection, that can be used atipea
It should be however noticed that our approach is more génera
than its instantiation based on clone detection. In theréytoetter
approximations of our cognitive notion of orthogonality yriaad
to implementations of our technique that better match oigiraal
idea.

Of course, there could be other forms of orthogonality (e.g.
message orthogonality) which may increase the level ofegtimn
achieved. In this work, we address explicitly only statetnan
thogonality, which might also indirectly result in otherries of

orthogonality. Further investigation of such forms is pafitour
ongoing research.

4.2 Orthogonal client generation

Orthogonal client generation

INPUT

C'P: Client critical part

Ci,...,C;_1: previous client code
OUTPUT

C;: Next client,S;: next server

BEGIN

1 Repeat

2 CP; = RandomTransform(C'P)

3 CP:=CP

4 (C;,S;) :=MoveCompToServe(CP;, C1, ...
5Until (Cz 1 Cl) VANRTRAN (C»L 1 Cifl)
6 Output(C;, S;)

END

7Ci—1)

Figure 2: Orthogonal client generation algorithm

The algorithm in Figure 2 describes in more details the msce
that we use to generate orthogonal client copies. The dondiff
theUnti | atline 5 ensures that the new client catlgis orthog-
onal to the previous ones.

By choosingC; = Black andS; = White(C;) we can trivially
satisfy the condition at line 5. This solution coincideshnttie bar-
rier slicing solution [4] and actually requires no furthettmgonal
replacement of the client, since the attacker is left wittpossibil-
ity of tampering with the client code (no sensitive clientieas left
on the client). In this work, we assume that the barrierstjgolu-
tion is not applicable for performance reasons. This mehas t
there are some client's computations belongingW@ite(CP;)
that cannot be moved to the server because of the major perfor
mance penalty associated with their server-side executidrey
must be left on the client even though they are security te@si
These performance-intensive statementS éfcan be properly an-
notated in order to ensure that the computation they imphemee
mains on the client in all successive client versions. Thissdnot
mean that they remain unchanged on the client (that would pre
vent orthogonal client generation): they can be transfarohging
the execution of Step 2 of the algorithm in Figure 2, but tlaesr
former has to keep track of the annotations, so that the ngergr-
ated code has still information about what client portioasrot be
moved to the server for performance reasons. The split Stgp(
4 in the algorithm shown in Figure 2) will not be allowed to reov
them to the server.

The procedureRandomTransform picks up a set of seman-
tic preserving transforms from a catalog and applies the@i &
Such transformations perform proper propagation of theotain
tions that mark the performance-intensive statementshatottiey
are available also in the new code. FunctdaveCompToServer
decides which portions of the transformed critical part toven
to the server so as to guarantee orthogonality of the newtclie
with respect to the previous clients;...C;—:. However, state-
ments marked as performance-intensive must be left on téetcl
by MoveCompToServer(hence excluding the barrier slicing solu-
tion).

One way to gain orthogonality is to keep on the client theiport
of code of the transformed critical partP; obtained during thé-th
iteration that already differs from the previous versiofthe client
COdec’l7 ey Ci_1. Let O'/'thSt(Wthe(CPz), White(C]-)) = {p €

White(CP;) | Vg € White(C;) : p L q} be the set of state-
ments of White(C P;) that are orthogonal to all the statements in
White(Cj). In other words,OrthSt(White(CP;), White(Cyj))
denotes the portion of the critical cod€hite(C P;) that is orthog-
onal to the client codéVhite(C;). The portion ofC'P; that should
be left on the client, i.e(';, can be computed as:

C; = BlackU

= (| OrthSt(White(C'P;), White(C}))

1<j<i-1

UPerfIntens(White(C'P;))

The idea is to leave on the client the statement€'df that are
orthogonal to all the statements of all the previous cliesrsions,
plus the invariable parBlack and the performance-intensive state-
ments, that cannot be moved or modified. T i | condition

of the algorithm in Figure 2 (line 5) evaluates to false wheme
PerfIntens(White(C P;)) is not orthogonal to the previous clients.
In such a case, alternative transformations must be triedder to
achieve orthogonal client generation (i.e., the algoritterates un-

til the orthogonality condition is met).

4.3 Transformation catalog

Orthogonality of the clients is achieved through the use of a
transformation catalog of obfuscations. An obfuscatiransfor-
mation modifies a program in order to make it more difficult to
understand and to reverse engineer, while preserving litstifon-
ality. Here we briefly elucidate the salient aspects of otrtiag
transformations from Collbergt al. [6].

The quality of an obfuscating transformation is measuredrims
of its potency, resilience andcost. The potency of an obfuscating
transformation measures the obscurity that has been ad@egro-
gram, namely how much more complex is the obfuscated program
to analyze with respect to the original one. The resilientaro
obfuscation measures how difficult it is to break for an awdtm
deobfuscator. The cost of an obfuscating transformatioasues
the computational overhead added to the obfuscated progrem
respect to the original one.

Obfuscating transformations are usually classified adogrtb
the information they target. In the taxonomy by Collbetgl. [6],
three types of obfuscations are discussed.

e Layout obfuscation: This category of transforms changes or
removes useful information from the intermediate language
code or the source code without affecting the instructibas t
contribute to the actual computation. Usually removing de-
bugging information, comments, and scrambling/renaming
identifiers fall within the domain of layout obfuscation.

e Data obfuscation: This category of transforms targets data
and data structures contained in the program. Using these
transformations, data encoding can be changed, variabes ¢
be split or merged, and arrays can be split, folded, and rderge

e Control-flow obfuscation: The objective of this category
of transforms is to alter the flow of control within the code.
Reordering statements, methods, loops and hiding thelactua
control flow behind irrelevant conditional statements sitys
as control-flow obfuscation transforms.

5. EMPIRICAL VALIDATION

We conducted a preliminary evaluation of the proposed aajro
by instantiating its components and conducting some caskest
Specifically, we chose a particular definition of orthogdyahnd

a particular set of obfuscating transforms. While the emairre-
sults that we have obtained may suffer from some of thesefgpec
choices, the proposed approach is quite general and camacco
modate further improvements that overcome the limitatiohthe
current implementation. So, this empirical validationswwhd be
regarded as a proof of concept, rather than an actual anduglbr
assessment of the method.

We first describe how we approximate in practice the notion of
orthogonality, followed by a description of obfuscatingrisfor-
mation we have used. We give also some details about the tool
implementing the transforms and the orthogonality checlextN
comes the description of the two case studies, followed bylte
and discussion.

5.1 Clone based orthogonality

Orthogonality from the program comprehension point of visw
hard to define and quantify, so we resort to a practical and-com
putable approximation, given by code similarity. In pastar, we
rely on clone detection techniques to gain a list of potét@nes.
Let Clone(White(C5;), White(C})) be the portions of code that
are recognized as clones betwedfhite(C;) and White(C}) ac-
cording to some given clone detection algorithm (intuiivéhe
fragment of code thatVhite(C;) and White(C;) have in com-
mon). In this setting the termwioned statements refers to the pairs
of matching statements ifllone(White(C;), White(C})). Cloned
statementsp, q) € White(C;) x White(C;) can be easily ob-
tained once clones foihite(C;) and White(C';) are known: they
are the corresponding statements in the cloned code psrtioet
ClonedSt(White(C;), White(C;)) be the set of cloned statements
in Clone(White(Cs), White(Cj)). Orthogonality between state-
ments of different clients can then be defined in terms ofedon

DEFINITION 3. A statement s of White(C;) is c-orthogonal
with respect to a statement p of White(C;), i.e, s L. g, if the
following holds:

e (p,q) & ClonedSt(White(C;), White(C};))

This definition of c-orthogonality between statements $etdthe
following notion of c-orthogonality between clients.

DEFINITION 4. C; isc-orthogonal with respect to C';, denoted
Ci L. Cj, if Vp € White(Cj),Vq € White(Ci): P le q.

Of course, the criteria of the splitting function can alsoréstated
in terms of c-orthogonality.

5.2 Alias-based opaque predicates

For this work, we have implemented one particular type oépbt
obfuscation based on the use adaque predicates. An opaque
predicate is a conditional expression whose value is kn@athe
obfuscator, but is difficult for an adversary to deduce stdlly. A
predicate® is defined to bepaque at a certain program point if
its outcome is only known at obfuscation time. Following IBetg
etal. [7], we write <I>§ (<I>§) if predicated always evaluates to False
(True) at program poinp for all runs of the same program. We
call such predicate®paquely True (False) at program poinp. The
notation®;, is used to denote a@paquely Unknown predicate, i.e.,
one whose value depends on a program input supplied eXgernal
(by the user, by the operating system, etc.), such that ietomes
evaluates to True and sometimes to False during differegram
executions.

The opaque predicates used in our transformation tool use th
concept of pointer aliasing. The rationale behind usindghguredi-
cates is that precise inter-procedural static alias aiglymtractable.

Node g, h;
Method P(..,Node f)
{
g = g.Move();
h = h.Move () ;
h = h.Insert (new Node)
if (f==g)’ ..
if (g==h)% ..

f.Token = False;
g.Token = True;

if (f.Token)’ ..

Figure 3: Opaque predicates constructed from objects and
aliases (after [6])

Collberget al. [7] proposed a technique which takes advantage of
such intractability to construct resilient opaque congsu

The basic idea is to construct a dynamic data structure aimgt ma
tain a set of pointers on this structure. Opaque predicateshen
be designed using these pointers and their outcome can tde sta
cally determined only if precise inter-procedural aliaglgsis can
be performed on this complicated data structure. Figure &nis
adaptation of Collbergt al. 's technique. Metho’s control flow
is obfuscated using alias-based opaque predicates. Sothedne
calls (e.g.,Move) are used to manipulate two global pointeys
and h which point to different connected componen@&gnd H)
of a dynamic data structure such as a linked list. The stateme
g=g. Move() will updateg to move to a different location within
G The statemerti=h. | nsert (new Node) inserts a new node
into H and updates to point to some node withikl. Method P
and other methods that call it are also given an extra poiuter
gumentf which refers to objects withi. Opaque predicates like
@ : if (f == g)” may either be True or False sinteandg move
around within the same componerg==h must be False sincg
andh alias to nodes within different components.

5.3 Program transformation tool

We used Txl [8] to realize the alias-based opaque predicdites
fuscation described above. Our tool relies on an externalirse
random number generator (implemented in Java) and reqthiees
alias specification file as input. This file contains pairs @hpers
that are always (or never) aliases of each other and ingingcto
be called to change the pointer-based data structure, Wésdging
the invariant alias conditions known to the obfuscator.

In Figure 4, we can see the effect of the transformation. A ba-
sic block is split into a random number (2) of pieces (of rando
length). Each piece is inserted into the True (or False)drarfi an
i f statement that uses an Opaquely True (or Opaquely Falgk) pre
icate as condition. The other branch of thie statement is filled
with randomly generated code which will be never executed.

The code we generate randomly consists of a sequence (of ran-
dom length) of assignments to local variablésng) and to class
fields § 1 andf 2). The expressions used on the right hand side of
the assignments are formed by randomly selecting arittunoptr-
ators and identifiers (of proper types) from a pool contajriotal
variables, visible class fields and constant values.

The alias-based data structure is frequently changed byepro
update instructions (invocations to methgptlateAlias()). When
to update it is also decided on a random basis.

When applying opaque predicate based obfuscation, the code

size increases (as apparent from the example in Figure 4)v- Ho
ever, most of the newly inserted code is never executed,useca
it is guarded by opaque predicates, so it is not expecteduseca
major performance overhead (Imast). On the other hand, the ob-
fuscation is expected to be quitesilient, because of the additional
control and data dependencies between original and ijexctde.
Potency descends from the difficulty of precise static alias analysi

class A {
int f1;
int f2;
void m () {
int tmp;
if (f==q) {
f1 1;

Aliases:
f == g
g !'=h updateAlias ();

f2 = fl++;

Update: }

updateAlias ()
(Alias specifications)

else {
updateAlias ();
tmp = f1+f2/5;

TaSSAT : f1 = f2—tmp;
nt " ey
void m () { updateAlias ();

f1 = 1; tmp = 11
f2 = fl++; tmp = tmp-f1:
int tmp = f1: updateAlias ();
tmp = tmpf1: fl = f1+f2;
fl = f1 + f2; }
} else {
fl = tmp/f2;

_ tmp = f29%59+f2 ;

(Original) up%ateAnas();

}
}

(Obfuscated)

Figure 4: Effect of the obfuscation

5.4 Clone detection tool

For testing orthogonality, we rely on a source code clone de-
tection tool called CCFinder [11]. This tool has been exitaig
evaluated in large scale empirical surveys and has bee froume
effective in detecting clones at the source code level [I, 10

A clone relation in CCFinder is defined as an equivalence rela
tion (reflexive, transitive, and symmetric) dragments, where a
fragment is defined to be part of the source file and repreddnte
an ID, and the coordinates from where it starts and ends. Aeclo
relation exists between two fragments if and only if the toke-
guence included in them is identical. The first step of cloeted
tion in CCFinder idexical Analysis, where the lines of the source
files are transformed into a series of tokens based on thealexi
rules of that language. The token sequence is thamsformed
with the aim of regularizing the identifiers based on certeams-
formation rules. Apattern match is then performed on all the sub-
strings of the transformed token sequence. Here, equivpkirs
are detected as clones. In the last steppatting is performed to
reflect the clone pairs in the corresponding source files. iGdF
produces also summary metrics about the discovered claggs [

5.5 Case studies

We took two Java applications as our case studies. The fiesson
a car race game and the second one a chat client. Both arerketwo

life scenarios of client-server computing and have searbish a
software developer would be interested in protecting.

The car race game, for example, has methods that change the
speed, direction, amount of fuel left, and distance coveWwten
an instantiated car object executes on a client platforneutite
control of an adversary, these parameters are left ungeatérom
the adversary, who might in turn tweak the client code to gafair
advantage over other non-malicious competitors. Sinyilaricase
of the chat application, an adversary might be interestadalat-
ing the chatroom policies by illegally creating his/her ovaom,
joining a forbidden room, or accessing administrative ifgges.

The critical part of the car race application (referred t€d3.,..)
consists of about 220 LOC. For the chat client (referred 10 &sy,4+)
itis 110 LOC. Since CCFinder strips out comments, whitespac
and system calls from the source code, the number of tokens re
ported by CCFinder for each &' P,qcc and CP.pq: is less than
the number we would have obtained by applying a standard tok-
enizer to them. On average, the number of tokens per statemen
(TPS)is 14 forCPrace, 12 for C Pepat.-

5.6 Results

We ran our experiment on a Pentium Centrino clocked at 2.0GHz
with 1GB of RAM. Both the TxI-based program transformation
tool and CCFinder were run on Windows XP.

In the first part of our experiment, we tested the degree of or-
thogonality of the clients generated by our program tramsé
tion tool, by applying the obfuscation step of the algorithtone
(Step 2,RandomTransform). We measured the number of clones
detected by varying theinimum clone length (expressed as hum-
ber of tokens) parameter of CCFinder. For this parameterame ¢
sidered five consecutive multiples of the average numbeskafrts
per statemen?' P S for each of the two applications. For each of
the corresponding observations, the pool of clients geedraas
kept constant to 10.

The minimum clone length of CCFinder is a critical parameter
for the algorithm in Figure 2. In fact, a too small value ofsthi
parameter could make the algorithm iterate for a long tinws¢p
bly, infinitely) because the c-orthogonality condition Ever met,
due to the large number of reported clones and the impoisgibil
of moving to the server the performance-intensive statésndrne
size of the code generated by the opaque predicate-basestabf
tor grows exponentially with the number of iterations (gveew
opaque predicate doubles the size of the block to be nestitsl in
opaquely-true branch), hence convergence after a high euofb
iterations means also generation of an exponentially bitp cize.

At the same time, most of the reported clones might be false po
itives when the minimum clone length is too small. What could
happen is that CCFinder reports them as clones becauserthey i
volve the same (short) token sequence, but any programmadwo
gain no information about one from the other, since they db no
represent any meaningfully related computation. So, a toalls
minimum clone length is detrimental to the algorithm pemniance
(up to making it unusable), while delivering no additionabtec-
tion to the user (protecting false positives of clones idesss.

On the other hand, choosing a too large value for the minimum
clone length simplifies the job of the algorithm, but mighsuk
in unacceptable false negatives, i.e., clients that arsidered c-
orthogonal only because they contain small clones, bueidden-
tain serious leaks of information an attacker might takeaatkge
of. Hence, we must choose a value for the minimum clone length

based and have embedded message send/receive primitegts us parameter which is: (1) big enough to allow convergence ef th

by the clients and the server to communicate. The ratiorale f
choosing these two applications is that both reflect intergseal-

algorithm in a reasonable number of iterations; (2) smadiugh
to prevent leak of information from clones with a length hekhe

chosen threshold.

Critical Part Min. clone length Clone Count
Statements Tokens
CPrace 1 14 123
CP’I‘LZCE 2 28 33
CPrace 3 42 6
CPrace 4 56 1
CPrace 5 70 0
CPchat 1 12 69
CP.hat 2 24 27
CP.hat 3 36 5
CP.hat 4 48 1
CPehat 5 60 0

Table 1: Number of clones detected by CCFinder at increasing
minimum clone length

5.7 Discussion

As shown in the case studies, the proposed protection tgaéni
is able to generate a large number of orthogonal clientsinvih
reasonable computation time. In our instance of the orthabo
client replacement strategy there is a trade-off betweerimmim
clone length and cost of client generation (hence, numbeenf
erated clients). Reducing the minimum clone length is etqubto
improve security, but below some level no additional protecis
delivered, at the price of a blowup of the algorithm’s exgmutost,
which may possibly fail to generate any more client. We ttitmet
this trade-off deserves further investigation. As a prdofancept,
our case studies showed that it is feasible to generateanargber
of clients having a minimum clone length of around 4 stateisien
This seems to correspond to a practically relevant conftguraf
the proposed approach.

The usage of other available obfuscations in combinatidh wi
opaque predicates could make our approach much more rasilie
In particular, variable splitting and encoding could makeikarity
detection (differential attack) much harder even when suttisl

As shown in Table 1, CCFinder detects a large number of clones Portions of the same computation are left on the client ducode

involving approximately one or two duplicated statememtsn(
clone length 14/12, 28/24 respectively). This number desee
drastically as clones involving more statements are lodkedAl-
most no clone and no clone at all are detected when the clagee si
reaches 4 and 5 statements respectively. This suggestsefoal

splitting. Once more, we ran a proof of concept experimemniys
ing that opaque predicates alone are powerful enough to thake
approach viable in a reasonable setting. The more sopdistic
and diversified are the transformations in our catalog, tighdr
the level of protection we are expected to deliver. Henceinga

the minimum clone length parameter between 3 and 4 statement reasonably good results with a transformation catalogisting of

i.e., where the number of residual clones, that will be haddly
means of code splitting, becomes low. At the same time, nussi
clones of size 2-3 statements does not seem to hinder thieofeve
protection offered to the user. In fact, we expect that hgeis few
as 2-3 statements back to the code of previous clients daeemo
resent a substantial help for the attacker. Based on sudhage
considerations about the data shown in Table 1, we fixed the mi

a single transform is very promising.

The obfuscatory strength of alias based opaque predicglies r
on the intractability of precise static analysis of ali@siklowever,
predicates can be evaluated to hold True or False throughgeeb
ging when the application executes (dynamic analysislgtt&to,
an attacker could try to remove the code in a branch that waer ne
executed in past runs. Of course, in doing this, relevané codild

mum clone length parameter to 50. We are aware that more empir b€ removed accidentally, because there is no way to disshdne-

cal work is required to actually show that this choice is niegful
from the point of view of program understanding and (malisip
reverse engineering.

tween branches that are required by the original applinatbwt
are executed infrequently, and branches introduced bysobfion,
and never executed. One might try to increase the resilieficy

Table 2 shows the performance of our tool. We generated up to the opaque predicates used in our protection scheme byedelib

1000 clients for each of' P, andC P, and detected clones
using CCFinder using a constant minimum clone length, etpual
50. As expected, when the number of previously generatedtsli

ately adding predicates that evaluate to True (False)qogatly,
but may cause dramatic application’s failures if removed.with
any transform taken from the catalog employed by the prapose

Hence, more iterations of the algorithm in Figure 2 are nemgs
to converge to a new c-orthogonal client. For both applacetithe
target of generating at least 1000 c-orthogonal clientsachgeved

in a total computation time (including generation and dibed
which is less than one hour for the car race game and less #itn h
an hour for the chat client. Of course, we set this targetwmitio
not know if in practice it is a reasonable target. In fact, ioenber

of orthogonal clients that can be generated determinesrtieeléft

to the attackers to mount a successful attack. Given theceegbe
life time T' of an application, the life time of a single orthogonal

target replacement frequency, but does not hinder the cgiplity
of the proposed method itself.

6. CONCLUSION

In this paper, we have addressed the issue of remote software
protection by proposing a novel approach which replacesoipgy
of an application running on a remote untrusted host withwa ne
orthogonal version of it, under the assumption that stétidwe art
obfuscation can be defeated if the attacker has enough tide a

clientisT divided by the number of orthogonal clients we expectto resources, but it can be used effectively if the attackeinme+

be able to generate within tini. Knowing whether the resulting
orthogonal client’s lifetime is short enough to deliver tthesired
level of protection is hard in general and not in the scopehef t
present work. In our two examples, assuming a total apjpicat
lifetime of 5 years, availability of 1000 orthogonal clisnivould
allow client replacement approximately every 2 days. Ha@reas
apparent from Table 2, it is reasonable to assume that, detken
a 5 year time substantially more than 1000 clients could eige
ated for these two applications. Correspondingly, theldfesgy of
client replacement could be made even higher.

constrained due to replacement. We came up with a formattrea
ment of orthogonality and carried out a proof of concept expe
ment which deterred the reverse engineering efforts of &aradry
looking for code similarity in order to learn from past venss of
the client. We were successful in generating up to 1000 sogfie
orthogonal clients. Assuming that an application has aitife of

5 years, this allows for a replacement of the client with a ew
thogonal once every 2 days, thereby reducing the time letthéo
attackers considerably. Orthogonality ensures that ohtd are
useless when mounting an attack against a new one.

Critical Part No. of clients No. of clones Generation time t&xion time
CPrace 10 1 9” 9”
CPrace 50 9 44" 40"
CPrace 100 21 1' 28" 121"
CPrace 500 160 16’ 30” 6’ 38"
CPrace 1000 347 35’ 20" 13’ 26”
CPch(Lt 10 1 6“ 2"
CPehat 50 7 26" 8”
CP.hat 100 11 51" 15"
CP.hat 500 97 511" 32"
CPepat 1000 218 17' 51" 5' 59"

In the future, we intend to incorporate a full-fledged obatfm

Table 2: Average tool performance

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A

catalog in our source code program transformation toolhabthe
obfuscation added by opaque predicates could be complethbpt
potent data obfuscations. We also plan to investigate duetoff
issues between minimum clone length, level of protectidnesed

and computational cost of the algorithm, so as to achieveptimal

balance.

7.
(1]

(2]

[5]

(6]

[7]

REFERENCES

B. S. Baker. Finding clones with dup: Analysis of an
experiment] EEE Transactions on Software Engineering,
33(9):608-621, 2007.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. 8iah
S. Vadhan, and K. Yang. On the (im) possibility of
obfuscating programd.ecture Notes in Computer Science,
2139:19-23, 2001.

|. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier
Clone detection using abstract syntax treedJ8M ' 98:
Proceedings of the International Conference on Software

Maintenance, pages 368-377, Washington, DC, USA, 1998.

IEEE Computer Society.

M. Ceccato, M. Dalla Preda, J. Nagra, C. Collberg, and
P. Tonella. Barrier slicing for remote software trusting. |
Seventh |EEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 1-10,
Paris, France, 2007. IEEE Computer Society.

M. Ceccato, M. Dalla Preda, J. Nagra, C. Collberg, and
P. Tonella. Trading-off security and performance in barrie
slicing for remote software trusting. Technical report,
Fondazione Bruno Kessler-IRST, http://se.fbk.eu, 2008.
C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obduscating transformations. Technical Report 148, Dapt.
Computer Science, The Univ. of Auckland, 1997.

C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In
Proceedings of the 25th ACM S GPLAN-SIGACT Symposium
on Principles of programming languages (POPL '98, pages
184-196. ACM Press, 1998.

[8] J. Cordy. The TXL source transformation langua§eence

9]

[10]

of Computer Programming, 61(3):190-210, August 2006.
K. Heffner and C. Collberg. The obfuscation executive. |
Proceedings of the 7th International Conference on
Information Security, ISC' 04, volume 3255 oL NCS pages
428-440, 2004.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and

implementation for investigating code clones in a software
systemInf. Softw. Technol., 49(9-10):985-998, 2007.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

multilinguistic token-based code clone detection system f
large scale source coddzEE Transactions on Software
Engineering, 28(7):654-670, 2002.

R. Kennell and L. H. Jamieson. Establishing the geryiof
remote computer systems. Rnoceedings of 12th USENIX
Security Symposium, 2003.

R. Komondoor and susan Horwitz. Using slicing to idBnti
duplication in source code. roceedings of the Static
Analysis Symposiu, SAS 01, volume 2126 of. NCS pages
40-56, 2001.

G. Myles and C. Collberg. K-gram based software
birthmarks. InProceedings of the 2005 ACM symposium on
Applied computing, SAC' 05, pages 314-318, New York, NY,
USA, 2005. ACM.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. K. Khosla. Pioneer: verifying code integrity and enfoggi
untampered code execution on legacy systems. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP), Brighton, UK, October 23-2-6,
pages 1-16, 2005.

A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla.
Swatt: Software-based attestation for embedded devices. |
IEEE Symposium on Security and Privacy, pages 272—-283,
2004.

M. C. Umesh Shankar and J. D. Tygar. Side effects are not
sufficient to authenticate software. Technical Report
UCB/CSD-04-1363, EECS Department, University of
California, Berkeley, 2004.

P. van Oorschot, A. Somayaji, and G. Wurster.
Hardware-assisted circumvention of self-hashing sokwar
tamper resistancéEEE Transactions on Dependable and
Secure Computing, 2(2):82—-92, April-June 2005.

X. Zhang and R. Gupta. Hiding program slices for softsvar
security. INCGO ' 03: Proceedings of the international
symposium on Code generation and optimization, pages
325-336, Washington, DC, USA, 2003. IEEE Computer
Society.

