
:RUNVKRS�RQ�0DLQWHQDQFH�RI�$VSHFW�2ULHQWHG�6\VWHPV�

Mario Luca Bernardi, Giuseppe A. Di Lucca
'HSDUWPHQW�RI�(QJLQHHULQJ��

5HVHDUFK�&HQWUH�RQ�6RIWZDUH�7HFKQRORJ\�
8QLYHUVLW\�RI�6DQQLR��%HQHYHQWR��,WDO\�

POEHUQDU�GLOXFFD#XQLVDQQLR�LW�

Mariano Ceccato
)RQGD]LRQH�%UXQR�.HVVOHU��

,567�7UHQWR��,WDO\�
FHFFDWR#IEN�HX���

$EVWUDFW�
$VSHFW� 2ULHQWHG� 3URJUDPPLQJ� �$23�� FRQVWUXFWV�

LQWURGXFH�QHZ�NLQGV�RI�UHODWLRQVKLSV�DPRQJ�WUDGLWLRQDO�
XQLWV�� H�J�� FODVVHV� LQ�2EMHFW�2ULHQWHG� �22�� FRGH�� DQG�
DVSHFWV� GXH� WR� WKH� ZHDYLQJ� DPRQJ� DVSHFWV¶� FRGH�
IUDJPHQWV�� VXFK� DV� DGYLFH� RU� LQWHU�W\SH� GHFODUDWLRQV��
DQG� WKH� WUDGLWLRQDO� V\VWHP� XQLWV�� 7KHVH� UHODWLRQVKLSV�
FDQ� EH� GLIILFXOW� WR� LGHQWLI\�PDNLQJ� KDUG� DQG� ULVN\� WKH�
PDLQWHQDQFH� RSHUDWLRQV� EHFDXVH� WKH� LPSDFW� RI� D�
FKDQJH� FRXOG� EH� YHU\� GLIILFXOW� WR� HYDOXDWH�� 1HZ�
PHWKRGV��WHFKQLTXHV�DQG�WRROV��RU�WKH�DGDSWDWLRQ�RI�WKH�
H[LVWLQJ� RQHV�� DUH� QHHGHG� WR� VXFFHVVIXOO\� IDFH� DQG�
RYHUFRPH� WKH�QHZ�SUREOHPV�DQG� GLIILFXOWLHV� WKDW�$23�
FRQVWUXFWV�FRXOG�SRVH�WR�FRGH�PDLQWHQDQFH���

7KLV� ZRUNVKRS� LQWHQGV� WR� DFW� DV� D� IRUXP� IRU� WKH�
SUHVHQWDWLRQ� DQG� GLVFXVVLRQ� RI� QHZ� DSSURDFKHV� WR�
HIIHFWLYHO\�VXSSRUW�WKH�PDLQWHQDQFH�RI�$2�V\VWHPV��DQG�
WR� SURPRWH� MRLQW� UHVHDUFKHV� DQG� H[SHULPHQWDO� VWXGLHV�
DERXW�WKLV�WRSLF��
���,QWURGXFWLRQ�

The Aspect Oriented (AO) paradigm has been
proposed as a way to produce better modularized
software systems that should be easier to understand.
Aspect Oriented Programming (AOP) allows to better
modularize and manage the crosscutting concerns by
means of program units called “aspects”. The code
related to crosscutting concerns, encapsulated in
aspects, is “woven” into the code of the traditional
program units (e.g. classes in OO code) to build the
overall system.

While there are several approaches to reengineer
and evolve ‘traditional’ systems towards AO [5], there
are still very few works on the maintenance of AO
systems [1]. The maintenance of AO systems may pose
new and different problems with respect to systems
developed by traditional programming languages.

In the system resulting from weaving together

aspects and classes, complex relationships among
modules could lead to a significant modification of the
structure and behaviour of the base system. Thus, due
to the heavy and intrusive effects that AOP constructs
have on the base code, it could be very difficult to
evaluate the impact of a change on the whole system, as
well as very hard to understand the side/ripple effects
that a change could introduce.

Due to the growing adoption of the AO paradigm in
software development, the maintenance of AO systems
will become one of next challenges in software
engineering. Software maintainers should be supported
by adequate methods, techniques and tools to
successfully face with and overcome the novel
challenges that AOP constructs pose on maintenance.
Some of these challenges are represented by these
questions:

• are the current methods/techniques/tools proposed
to maintain ‘traditional’ software systems (e.g. OO
systems) adequate to maintain also AO systems?

• which, and in which way, AOP constructs could
make maintenance tasks harder?

• how traditional maintenance approaches can be
adapted to consider the new peculiarities of AOP?

• what are AOP “best practices” that actually help to
develop more maintainable software systems?
New approaches (or the adaptation of the existing

ones) taking into account the AOP specific features
should be defined and adopted to effectively maintain
AO systems.

Based on these issues, the workshop has the main
aim of:

• making the software maintenance community more
aware of the (novel) difficulties related to AO
system maintenance;

• presenting and discussing proposals about the
problems raising in the maintenance of AO systems,
and how to effectively address them;

• acting as a forum for the promotion of joint

researches and experimental studies about the
maintenance of AO systems.

���:RUNVKRS¶V�0DLQ�7RSLFV�
The following (not exhaustive list of) issues are

addressed by maintenance approaches for traditional
software system, but they should be reconsidered when
coping with AO systems:

• $2� FRGH� DQDO\VLV: ‘traditional’ code analysis
techniques need to be adapted to the peculiar
features of AOP. Indeed, AOP features (such as
implicit invocations and introductions) will affect
the traditional ways the code is statically or
dynamically analyzed. Existing techniques have to
be modified to cover such new specific features;

• $2�V\VWHP�PRGHOV: new types of system models (or
the adaptation of the existing ones) are required to
represent aspects and their relationships and
interactions with traditional software components.
Proposals addressing how to model and represent
these units and their interactions are needed to
easily identify and analyze the novel kind of
dependencies.

• $2�FRGH�UHSUHVHQWDWLRQ�IRUPV: the traditional forms
used to represent the source code, either based on
graph (e.g. Control flow graph, dependence graph,
call graph, data flow graph) or using expressions
(e.g. regular expression) should be adapted to take
into account the way AO constructs can alter
control flow, data flow and static code structure.

• $23� VSHFLILF� TXDOLW\� PRGHOV� DQG� PHWULFV: AOP
constructs introduce new forms of coupling and
cohesion that affect the quality of an AO system,
such as comprehensibility, testability and
maintainability. Specific metrics and quality models
are needed to specifically evaluate the quality of an
AO system and to allow an effective estimation of
maintenance efforts.

• $VSHFW�PLQLQJ: in the last years several approaches
have been proposed to identify code components
participating in Crosscutting Concerns (CC) to be
encapsulated into aspects [4], with the purpose of
evolving traditional systems toward AO [5]. The
quality of CC identification and their reengineering
into AOP can affect the maintainability of the
resulting AO system. Proposals about the quality
and effectiveness of aspect mining techniques that
support the evolution towards well design and
maintainable AO systems are needed and welcome.

Some of these issues have been partially addressed by
existing research. In particular, some representation
forms of AOP code depicting them by graphs have
been proposed mainly to support some testing tasks [7,

8], as well as some models of AO systems based on
UML [3,6]. More effort has been spent on aspect
mining approaches to migrate OO systems towards AO
[4, 5].

The aim of the selected papers is to propose
challenging ideas to provide some (initial) solutions to
the identified issues and to stimulate the discussion, as
well as to favor networking within participants.

���&RQFOXVLRQV�
The workshop aims to involve people both from

academia and industry, and from both the AOP and
software maintenance communities. Participants should
be interested in presenting and debating on the
identified topics, to collect insights useful to plan
studies, researches and experiments by creating
collaborations and networks of researchers.

This workshop is also intended to be the prosecution
of the debate started in the maintenance community
after the working session ‘Comprehending Aspect-
Oriented Programs: Challenges and Open Issues’ held
at the International Conference on Program
Comprehension 2007 [2].

5HIHUHQFHV�
[1] M. L. Bernardi, and G. A. Di Lucca, “Modelling aspect
and class interactions by an interprocedural aspect control
flow graph”, in Proc. of 23rd International Conference on
Software Maintenance � IEEE C. S., Oct. 2007.
[2] G.A. Di Lucca, M. Smit, B. Fraser, E. Stroulia, J.
Hoover, “Comprehending Aspect Oriented Programs:
Challenges and Open Issues”, in Proc. of 15th International
Conference on Program Comprehension, IEEE C. S., June
2007.
[3]�J. Evermann, “A Meta-Level Specification and Profile for
AspectJ in UML”� in Proc. of 10th International Workshop
on Aspect-oriented modeling, ACM Press, March 2007.
[4] A. Kellens, K. Mens and P. Tonella, ”A Survey of
Automated Code-Level Aspect Mining Techniques”, in
Transactions on Aspect Oriented Software Development,
Vol. 4, Springer-Verlag (2007).
[5] M. P. Monteiro and J. M. Fernandes, “Towards a catalog
of aspect-oriented refactorings”, in Proc. of 4th International
Conference on Aspect-Oriented Software Development,
pages 111-122, ACM Press, March 2005.
[6] D. Stein, S. Hanenberg, and R. Unland, “A UML-based
aspect-oriented design notation for AspectJ”, in�Proc. of the
International Conference on Aspect-Oriented Software
Development, ACM Press, March 2002.
[7] W. Xu, and D. Xu, “State-based incremental testing of
aspect-oriented programs”, in Proc. of the 5th International
Conference on Aspect-Oriented Software Development,
ACM Press, March 2006
[8] J. Zhao, “Control-Flow Analysis and Representation for
Aspect-Oriented Programs”, in Proc. of 6th International
Conference on Quality Software, IEEE C. S., Oct. 2006

