
Towards Experimental Evaluation of Code Obfuscation
Techniques

Mariano Ceccato1, Massimiliano Di Penta4, Jasvir Nagra5, Paolo Falcarin3,
Filippo Ricca2, Marco Torchiano3, Paolo Tonella1

1Fondazione Bruno Kessler–IRST, Trento, Italy
2Unità CINI at DISI, Genova, Italy

3Politecnico di Torino, Italy
4RCOST - Dept. of Engineering - University of Sannio, Benevento, Italy

5University of Trento, Italy
ceccato|tonella@fbk.eu, dipenta@unisannio.it, jas@nagras.com

paolo.falcarin|marco.torchiano@polito.it, filippo.ricca@disi.unige.it

ABSTRACT
While many obfuscation schemes proposed, none of them satisfy
any strong definition of obfuscation. Furthermore secure general-
purpose obfuscation algorithms have been proven to be impossible.
Nevertheless, obfuscation schemes which in practice slow down
malicious reverse-engineering by obstructing code comprehension
for even short periods of time are considered a useful protection
against malicious reverse engineering. In previous works,the diffi-
culty of reverse engineering has been mainly estimated by means of
code metrics, by the computational complexity of static analysis or
by comparing the output of de-obfuscating tools. In this paper we
take a different approach and assess the difficulty attackers have in
understanding and modifying obfuscated code through controlled
experiments involving human subjects.

Categories and Subject Descriptors
D.2.8 [Metrics]

General Terms
Security, Experimentation, Measurement

Keywords
Empirical studies, Software Obfuscation

1. INTRODUCTION
Source code obfuscation is widely used to prevent/limit mali-

cious attacks to software systems conducted by decompilingand
understanding or modifying source code. In particular client appli-
cations in distributed application represent a privilegedtarget for
this kind of attacks. For instance many networked Java applica-
tions are often built as two components, a server run in a controlled
environment and a client, often distributed as bytecode andrun in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoP’08,October 27, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-60558-321-1/08/10 ...$5.00.

a virtual machine which can easily be decompiled, understood, and
patched to behave according to attacker intentions. Despite the
proved theoretical impossibility of building general purpose ob-
fuscators [2], implementations of obfuscators exist and are used
in practice. Available obfuscators provide limited thougheffective
protection against malicious reverse engineering by making code
hard to understand and/or difficult to analyze through automatic
code analysis tools [9]. However, few works cope with the prob-
lem of measuring the extent of protection offered by state ofthe art
code obfuscation techniques.

The notion of reverse engineering complexity of obfuscatedcode
is captured by the intuitive notions ofpotencyandresilience. Po-
tency is the amount of obscurity added to the code, i.e. how much
more complex to understand and to analyze is the obfuscated code
with respect to the original one. Resilience measures, instead, how
difficult it is to automatically break the obfuscation.

This paper details the definition, design and planning of a series
of controlled experiments aimed at empirically assessing the capa-
bility of source code obfuscation techniques — namely identifier
renaming and opaque predicates — to reduce the capability ofa
subject to successfully complete an attack, and to increasethe ef-
fort needed for the attack. The study was performed asking subject
to perform understanding tasks or change tasks on the decompiled
(either obfuscated or clear) client code of client-server Java appli-
cations. We report preliminary results obtained in a first experiment
performed with 8 graduate students and related to the effectiveness
of the identifier renaming obfuscation on Java code.

In the past, evaluation of obfuscation has been mainly addressed
through code metrics or by applying automatic de-obfuscators. In [15],
the amount of time required to perform automatic de-obfuscation
is used to evaluate thecontrol-flow flatteningobfuscation, relying
on a combination of static and dynamic analysis. An attempt to
quantify and compare the level of protection of several obfuscation
techniques is presented by Anckaert et al. [1]. Their contribution
is a series of metrics based oncode, control flow, data and data
flow. They computed such metrics on some case study applications
(both on clear and obfuscated code) but no attempt has been made
in the direction of validating such metrics. Our contribution is, in-
stead, devoted to assess obfuscation empirically. We compare the
performance of human subjects while performing attack tasks both
on obfuscated and clear code.

The work more similar to ours is a study on the complexity of re-
verse engineering binary code, that involved human subjects [13].
A group of 10 students (of heterogeneous level of experience) has

been asked to perform static analysis, dynamic analysis andmodi-
fication tasks on several C compiled programs. While the students
ability to successfully achieve the reverse engineering tasks showed
a correlation with the student experience, no correlation was ob-
served between ability and source code complexity metrics (Hal-
stead and McCabe metrics). Our empirical evaluation has a differ-
ent aim. We intend to measure the effect size of obfuscation,i.e.,
quantify the increased effort necessary to reverse engineer an ob-
fuscated program, compared to the effort necessary for a program
in clear. Such effect size is the fundamental metrics that may jus-
tify the adoption of available obfuscators. Moreover, it allows to
compare alternative obfuscators in terms of increased tamper resis-
tance.

The paper is organized as follows: Section 2 provides a primer
on the obfuscation techniques we considered. Section 3 gives the
details of the experimental design we used and Section 4 reports
preliminary experimental results and threats to validity.Section 5
concludes the paper.

2. A PRIMER ON OBFUSCATION
TECHNIQUES

This section briefly describes the code obfuscation techniques
used in our experiments.

Obfuscation transformations are classified into three classes [4]:
layout obfuscations, removing relevant information (such as iden-
tifier names) from the code without changing its behavior;data ob-
fuscations, transforming application data and data structures (e.g.,
data encoding, data splitting); and,control-flow obfuscations, alter-
ing the original flow of the application. The most relevant tech-
niques for the present work areidentifier renamingand opaque
predicates.

Identifier renamingis an instance of layout obfuscation that re-
moves relevant information from the code by changing the names
of classes, fields and operations into meaningless identifiers, so as
to make it harder for an attacker to guess the functionalities imple-
mented by different parts of the application. There are several fea-
tures of identifier renaming which are worth noting. It is a widely
implemented obfuscation technique, implemented by many com-
mercial and academic obfuscators. The original identifiersare lost
during renaming and in this sense the obfuscation is irreversible.
With intelligent and human assisted analysis, one may be able to
provide some meaningful identifiers, however, the originalidenti-
fiers are lost. Identifier renaming also has no performance over-
heard.

Nevertheless much of the structure of the program is preserved
which may assist an attacker during reverse-engineering. An ex-
tension of this technique was proposed by Tyma [14] where instead
of renaming an identifier to a new meaningless one, identifiers are
reused whenever possible but in such a way that overloading re-
solves the introduced ambiguity correctly.

Obfuscation based onOpaque predicates[5] is a control-flow
obfuscation that tries to hide the original behavior of an applica-
tion by complicating the control flow with artificial branches. An
opaque predicate is a conditional expression whose value isknown
by the obfuscator, but is hard to deduce statically by an attacker. An
opaquely True (False) predicate always evaluates to True (False) at
a given position in a program. An opaque predicated can be used
in the condition of a newly generatedif statement. One branch of
the if statement is filled with the original application code, while
the other is filled by a bogus version of it. Only the former branch
will be executed, causing the semantics of the application to remain
the same. In order to generate resilient opaque predicates,pointer

Table 1: Overview of the experiment.
Goal To analyze the effect of source code ob-

fuscation techniques
Quality focus Capability of understanding the obfus-

cated code
Capability to perform attacks on the ob-
fuscated code

Context Objects: two Java client-server applica-
tions: Car Race and Chat
Subjects: Graduate students

Null hypotheses H01: no effect of obfuscation on under-
standing level
H02: no effect of obfuscation on the ca-
pability of performing a change task
H03: no effect on the time needed for
comprehension
H04: no effect on the time needed for
completing a change task

Main factor Obfuscation
Treatments Decompiled, obfuscated code vs. de-

compiled, clear code
Other factors Subjects’ Ability, System, Lab
Dependent variables (i) Ability to perform comprehension

tasks
(ii) Time required for comprehension
(iii) Ability to correctly perform a
change task
(iv) Time required to perform a change
task

aliasing can be used, since inter-procedural static alias analysis is
known to be intractable.

3. EXPERIMENT PLANNING
This section describes the definition, design and settings of the

proposed experimentation following the Goal Question Metric tem-
plate [3] and guidelines by Wohlinet al. [16] and [11]. The study
definition is summarized in Table 1.

Thegoalof this empirical study is to analyze the effect of source
code obfuscation techniques with thepurposeof evaluating their
effectiveness in making the code resilient to malicious attacks. The
quality focusregards how the obfuscation reduces the attacker ca-
pability to understand and modify the source code, and aboveall
how the obfuscation increases the effort needed to successfully
complete an attack. This is a crucial point in our experimentation:
although we are aware that an attacker could be able to complete
an attack on obfuscated code anyway, she/he could be discouraged
if such an attack requires a substantial effort/time. Results of this
study can be interpreted from multipleperspectives:

1. a researcher would be interested to assess an obfuscation
technique. Most existing assessments (e.g., [1, 8]) are based
on metrics, estimating the increased code complexity, or on
arguments about the increased difficulty of static code anal-
ysis (e.g., computational complexity of static alias resolution
involved in a successful attack). Only a few works are based
on attacks performed by human subjects [13] and none, to
the authors’ knowledge, applied rigorous approaches, such
as those available from the area of empirical software engi-
neering [11].

2. a practitioner, who wants to ensure high resilience to attacks
to the part of a distributed application delivered to the clients,
running in an untrusted environment.

(a) Car Race (b) Chat

Figure 1: Screen-shots of the two systems used in the experiment.

Thecontextof this study consists ofsubjectsinvolved in the ex-
perimentation and playing the role of attackers, andobjects, i.e.,
systems to be attacked. Subjects are mainly graduate students,
i.e., either Master or PhD students. In the first experiment we per-
formed subjects are 8 Master students from the computer science
degree of University of Trento. Subjects have a good knowledge
on Java programming (they previously developed non-trivial sys-
tems as projects for at least 3 exams), and an average knowledge
about software engineering topics (e.g., design, testing,software
evolution). The subjects attended at least one software engineering
course where they learned analysis, design and testing principles.

The objects used to conduct the experiment are two client-server
applications developed in Java, aCar Racegame and aChat sys-
tem.

CarRaceis a network game that allows two players to run a car
race (Figure 1-a). The player that first completes the total number
of laps wins the race. During the race players have to refuel at the
box. The number of completed laps and the fuel level is displayed
on the upper part of the window. The client consists of 14 classes,
for a total of 1215 LOC.

ChatClient(Figure 1-b) is a network application that allows peo-
ple to have text based conversation through the network. Conversa-
tions can be public or private, depending on how they are initiated.
The application shows on the right a list of available rooms.When
the application starts, the “default” room is accessed. It is a public
room where all the users are participating. In order to access an-
other room, the name of the room must be clicked from the “Avail-
able Rooms” list, a new tab will be visualized. All the messages
sent to a conversation within a room are received by all the users
registered on that room. A private conversation (involvingonly two
users) can be initiated by clicking the name of a user from the“On-
line Users” list. The client consists of 13 classes, for a total of 1030
LOC.

3.1 Hypotheses formulation and variable
selection

Following the study definition above reported, we can formulate
four research questions that will be addressed in the study:

RQ1: To what extent the obfuscation reduces the capability of sub-
jects to comprehend decompiled source code?

RQ2: To what extent the obfuscation increases the time needed to
perform a comprehension task?

RQ3: To what extent the obfuscation reduces the capability of sub-
jects to perform a change task?

RQ4: To what extent the obfuscation increases the time needed to
perform a change task?

Once research questions are formulated, it is possible to turn
them into null hypotheses that can be tested in an experiment:

• H01 The obfuscation does not significantly reduce source
code comprehensibility.

• H02 The obfuscation does not significantly increase the time
needed to perform code comprehension tasks.

• H03 The obfuscation does not significantly reduce the capa-
bility of subjects to correctly perform a change task.

• H04 The obfuscation does not significantly increase the time
needed to perform a change task.

The four hypotheses areone-tailed, since we are interested in
analyzing the effect of obfuscation in one direction, i.e.,to investi-
gate whether the obfuscationreducesthe capability to understand
the code and to perform a change task, and whether itincreasesthe
time needed for such tasks.

The above null hypotheses suggest we have four dependent vari-
ables, i.e. comprehension level, time needed for comprehension,
success of the change task, andtime needed to perform the change
task. To measure the attacker’s capability comprehension level, we
asked subjects to run the application, look at the client source code,
perform two comprehension tasks, reported in Table 2. For each
task subjects had to provide an answer. Tasks were conceivedso
that only one correct answer is possible, thus correct answers were
evaluated as one, wrong answers as zero. To measure the capabil-
ity to perform an attack, we asked subjects to perform two change
tasks, reported in Table 3 for the two different systems. Since at-
tacks can be thought as maintenance tasks, we evaluated the cor-
rectness of the attack by running test cases on the changed code

Table 2: Comprehension tasks
CarRace T1 In order to refuel the car has to enter the box. The box area

is delimited by a red rectangle. What is the width of the box
entrance (in pixel)?

T2 When the car crosses the start line, the number of laps is in-
creased. Identify the section of code that increases the num-
ber of laps the car has traveled (report the class name/s and
line number/s with respect to the printed paper sheets).

Chat T1 Messages going from the client to the server use an integer
as header to distinguish the type of the message. What is the
value of the header for an outgoing public message sent by
the client?

T2 When a new user join, the list of the displayed “Online users”
is updated. Identify the section of code that updates the list of
users when a new user joins (report the class name/s and line
number/s with respect to the printed paper sheets).

Table 3: Change tasks
CarRace T3 The car can run only on the track and obstacles have to be

avoided, if a wall is encountered the car stops. Modify the
application such that the car can take a shortcut through the
central island.

T4 The fuel constantly decreases. Modify the application such
that the fuel never decreases.

Chat T3 Messages are sent to a give room, if the user is registered in
the room and if the message is typed in the corresponding
tab. Modify the application such that all the messages from
the user go to “Room 1” without the user entering the room.

T4 Messages are sent and displayed with the timestamp that
marks when they have been sent. Modify the application such
that the user sends messages with timestamp equals to 3,00
PM.

subjects sent us back, and evaluated the change as successful if test
cases passed. A test case was defined for each change task, using
a black-box strategy. They consists in sending an appropriate se-
quence of graphic events to delivered client, and verifyingwhether
the required changes have been performed correctly using a special
testing server.

The main factor of the experiment—that acts as an independent
variable—is the obfuscation (identifier renaming). Such a factor
can have two treatment levels, i.e., subjects can perform the com-
prehension and change on obfuscated, decompiled source code or
on clear, decompiled source code (control groups used for compar-
ison purposes).

The results can be affected by other factors, such as:

• the Systemused in the comprehension/maintenance task: as
detailed in Section 3.2, to use a balanced design we need
two objects. Although they are comparable in complexity,
subjects can perform differently on different systems;

• the subjects’ Ability, we have assessed considering bache-
lor grade and previous exams grades. According to the as-
sessment made, we have classified subjects inHigh andLow
ability subjects.

• the Lab: since the experiment requires two laboratories, a
learning effect is possible from labs, and it should be ana-
lyzed.

3.2 Experiment design
We adopted a balanced experiment design intended to fit two Lab

sessions (2-hours each). Subjects were split into four groups, each
one working in Lab 1 on a system with a treatment and working in
Lab 2 on the other system with a different treatment (see Table 4).

Table 4: Experiment design(O) = Obfuscated, (C) = Clear.
Group A Group B Group C Group D

Lab 1 CarRace (O) CarRace (C) Chat (C) Chat (O)
Lab 2 Chat (C) Chat (O) CarRace (O) CarRace (C)

The design ensures that each subject worked on differentSys-
temsin the two Labs, receiving each time a different treatment.
Also, the design permits us to consider different combinations of
Systemand treatment in different order acrossLabs. More impor-
tant, the chosen design permits the use of statistical tests(Two-Way
and Three-Way ANOVA[6]) for studying the effect of multiplefac-
tors. Subjects were split into four groups making sure thathighand
low Ability subjects were equally distributed across groups.

3.3 Experiment material and procedure
This section details the procedure we followed to perform the

study. Before the experiment, subjects were properly trained with
lectures on obfuscation techniques, and with exercises having the
purpose of performing comprehension tasks on the (non-obfuscated)
source code of a simple vending machine system. Right beforethe
experiment, we provided to subject a detailed explanation of the
tasks to be performed during the lab, without however explicitly
the study hypotheses, to avoid a possible bias.

To perform the experiment, subjects used a personal computer
with the Eclipse development environment—which they are famil-
iar with—, including notably syntax highlighting and debugger,
and the Java API documentation available. We distributed tosub-
jects the following material:

• a short textual documentation of the system (CarRace or Chat)
they had to attack, comprising installation instructions;

• a jar archive containing the server of the application. As
mentioned above, both CarRace and Chat are client-server
applications; to avoid during the experimentation problems
due to reduced bandwidth or limited Internet access (often
due to University laboratory restrictions) we let the subjects
running the server locally, without providing the source code
and checking they do not decompile it;

• the decompiled client source code, either clear or obfuscated
depending on the group the subject belonged to (Table 4);

• printouts of the slides explaining the experiment procedure,
that we presented just before distributing the material.

The experiment was carried out according to the following pro-
cedure. Subjects had to:

1. read the application description;

2. import the client source code in Eclipse;

3. run the application to familiarize with it;

4. for each of the four tasks to be performed:

(a) ask the teacher a paper sheet describing the task to be
performed;

(b) mark the start time;

(c) read the task and perform it;

(d) write the answer (for comprehension tasks);

(e) mark the stop time and return the paper sheet;

5. after completing all tasks, create an archive containingthe
maintained project and send it to the teacher by email;

6. complete a survey questionnaire.

During the experiment, teaching assistants and professorswere
in the laboratory to prevent collaboration among subjects,and to
check that subjects properly followed the experimental procedure,
i.e., they performed the tasks in the given order, and they correctly
annotated the time spent.

After the experiment, subjects had to fill a post-experimentsur-
vey questionnaire. It aimed at both gaining insights about the stu-
dents’ behavior during the experiment and finding justifications for
the quantitative results. The questionnaire contains questions —
most of them expressed in a Likert scale [10] — related to:

• the clarity of tasks and objectives;

• the difficulties experienced when performing the different
tasks (comprehension and change);

• the confidence in using the development environment and the
debugger;

• the percentage of total time spent on looking the source code,
on executing the system (such questions foresee as possible
answer;

• (for subjects having obfuscated code only) to what extent
they considered the analysis of obfuscated code hard;

• (for subjects having obfuscated code only) whether subjects
considered important executing the system to better under-
stand its behavior.

3.4 Analysis method
Different kinds of statistical tests needs to be used to analyze

results of this experiment. To analyze whether the obfuscation re-
duces the correctness of comprehension and change tasks, weneed
to use tests on categorical data (i.e., the tasks can be either correct
or wrong). In particular, we used the Fisher’s exact test [7], more
accurate thanχ2 test for small sample sizes, which is another pos-
sible alternative to test the presence of differences in categorical
data. Then, two non-parametric tests are used to test the hypothe-
ses related to differences in time need to perform the tasks.Non–
parametric statistics are used since they do not require anyassump-
tion on the underlying population distribution. First, an unpaired
analysis — i.e., an analysis of all data grouped by differenttreat-
ments of the main factor — is performed using the Mann-Whitney
one-tailed test[6]. Given the chosen experiment design, itis also
possible to use a paired test, i.e., the Wilcoxon test[6]. Such a test
allows to check whether differences exhibited by subjects with dif-
ferent treatments (clear and obfuscated code) over the two labs are
significant.

While the above tests allows for checking the presence of sig-
nificant differences, they do not provide any information about the
magnitude of such a difference. This is particularly relevant in our
study, since we are interested to investigate to what extentthe use
of obfuscation reduces the likelihood of completing an attack, and
what is the increment of the time needed for the attack. To this aim,
two kinds of effect size measures are used, theodds ratioand the
Cohend effect size.

The odds ratio is a measure of effect size that can use for di-
chotomic categorical data. An odds [12] indicate how much likely
is that an event will occur as opposed to it not occurring. Odds ra-
tio is defined as the ratio of the odds of an event occurring in one

Table 5: Change tasks
Comprehension Change Overall

Treatment Wrong Correct Wrong Correct Wrong Correct
Clear 7 11 3 15 10 26
Obfuscated 12 8 12 8 24 16

group (e.g., experimental group) to the odds of it occurringin an-
other group (e.g., control group), or to a sample-based estimate of
that ratio. If the probabilities of the event in each of the groups are
indicated asp (experimental group) andq (control group), then the
odds ratio is defined as:

OR =
p/(1 − p)

q/(1 − q)

An odds ratio of 1 indicates that the condition or event under
study is equally likely in both groups. An odds ratio greaterthan
1 indicates that the condition or event is more likely in the first
group. Finally, an odds ratio less than 1 indicates that the condition
or event is less likely in the first group.

The Cohend effect size indicates the magnitude of a main factor
treatment effect on the dependent variables (the effect size is con-
sidered small for d≥0.2, medium for d≥0.5 and large for d≥0.8).
For independent samples, it is defined as the difference between the
means (M1 andM2), divided by the pooled standard deviation:

d = (M1 − M2)/σ

The experiment results could be influenced by any of the con-
founding factors described in Section 3.1. To this aim, a two-way
Analysis of Variance (ANOVA) can be used to analyze the effect
of confounding factors –mainly System, Lab, and Ability– onthe
main factor (theMethod) and their interaction. In general ANOVA
is considered quite robust also for non normal and non interval-
scale variables.

4. PRELIMINARY RESULTS

4.1 Data analysis
This section reports preliminary results we obtained from afirst

experiment we performed with 8 subjects from the Universityof
Trento, usingidentifier renamingas the obfuscation method. We
only report preliminary analyses aimed at testing the hypotheses
formulated in Section 3.1. Analysis of confounding factorsand
survey questionnaires as well as other analyses (e.g., paired analy-
sis per subject) will be reported in future work. Table 5 reports —
for the 8 subjects — the number of correct and wrong tasks related
to comprehension, change and to the overall experiment. Differ-
ences between overall number of tasks (clear Vs obfuscated)is due
to missing answers.

We tested the presence of a significant difference between the
two different treatments using the Fisher test, and found nosignif-
icant difference for comprehension (p-value=0.33), whilea signif-
icant difference was found for the change (p-value=0.009).Also
considering the whole set of tasks (including both comprehension
and change) a significant difference (p-value=0.006) is visible.

More important than testing the presence of differences is com-
puting the odds ratio, i.e., the ratios betweenoddsof correct an-
swers for subjects having obfuscated or clear code. For compre-
hension tasks the odds ratio is 2.3, meaning that subjects having
obfuscated code have less than half odds of subject having clear
code to successfully complete the tasks. The odds ratio is higher

Figure 2: Boxplots of time needed to perform the tasks.

for change tasks (7.1) indicating how the presence of obfuscated
code substantially reduce seven times the odds of completing the
attack. Finally, the odds ratio for the overall data set is 3.8.

Figure 2 reports boxplots of time needed to complete the tasks.
Time is computed, for each subject, as the average time over com-
prehension tasks, change tasks and overall tasks the subject was
able to complete. For this preliminary analysis we do not consider
yet whether the task was also correctly performed, while we intend
to do this refined analysis in our future work. The Mann-Whitney,
one-tailed test indicated a significant difference for comprehension
time (p-value=0.002), while no significant difference was found
for change tasks time (p-value=0.19). A significant difference is
visible if considering all the tasks (p-value=0.02). The effect size
is large for comprehension tasks (d=1.8), small for change tasks
(d=0.2), and again large if considering both the task types (d=1.03).

Results suggest a rejection forH02 (time needed for compre-
hension),H03 (correctness of change tasks) while it is not possible
to rejectH01 (correctness of comprehension tasks) andH04 (time
needed for change tasks). Thus, it seems that subjects having ob-
fuscated code spent significantly more time when comprehending
the code, however achieving results not far from those having clear
code. On the other hand, while tampering with the code subjects
having obfuscated code did not exhibit any time overhead, while
they had a significantly lower probability of successfully complet-
ing the task.

4.2 Threats to validity
We identified the main threats to the validity [16] of our results:

construct, internal, conclusion, and external validity threats.
Construct validitythreats concern the relationship between the-

ory and observation. They are mainly due to the method used to
assess the outcomes of tasks. The measurements we conceived—
comprehension questions with one possible answer and test cases

to assess code correctness — are as objective as possible.
Internal validitythreats concerns external factors that may affect

an independent variable. We controlled for different systems, labs,
and subjects’ ability, although for reasons of space we did not show
analysis for these cofactors in this paper. Moreover the design is a
full factorial design with random assignments that balances indi-
vidual factors and learning effects.

Conclusion validityconcerns the relationship between the treat-
ment and the outcome. The statistical analysis is performedmainly
using non-parametric tests that do not assume data normality.

External validityconcerns the generalization of the findings. The
main threat in this area stems from the type of subjects: in the re-
ported experiment they are all master students. Only further studies
can confirm whether the results obtained can be generalized to pro-
fessional developers.

5. CONCLUSIONS
This paper provided the definition and planning of a series of

controlled experiments we are carrying out. We aim at empirically
assessing the capability of source code obfuscation techniques to
make decompiled code resilient to comprehension and attackac-
tivities. Preliminary results we obtained with 8 graduate students
indicates indeed that obfuscation reduces the capability of subjects
to understand and modify the source code. In the reported exper-
iment the effect appears particularly relevant for tasks requiring
code modification: the odds of successfully completing the task are
7 times lower for subjects working with obfuscated code. Thetime
needed to perform the tasks also significantly increases in pres-
ence of obfuscation, and this is particularly true for comprehension
tasks, where a significant difference and a high effect size is visible.

At the time of writing we are analyzing data from further experi-
ments we performed, involving larger sets of subjects and different
source code obfuscation techniques. Also, we are performing more

accurate statistical analyses, considering also confounding factors
and taking into account feedbacks provided by subjects through
survey questionnaires. Future work will report detailed analyses
and discussions of these experiments.

6. ACKNOWLEDGMENTS
This work was supported by funds from the European Commis-

sion (contract No 021186-2, RE-TRUST project) and Italian Gov-
ernment (grant PRIN2006-2006098097, METAMORPHOS project).

7. REFERENCES
[1] B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D.

Bosschere, and B. Preneel. Program obfuscation: a
quantitative approach. InQoP ’07: Proceedings of the 2007
ACM workshop on Quality of protection, pages 15–20, New
York, NY, USA, 2007. ACM.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im) possibility of
obfuscating programs.Lecture Notes in Computer Science,
2139:19–23, 2001.

[3] V. Basili, G. Caldiera, and D. H. Rombach.The Goal
Question Metric Paradigm, Encyclopedia of Software
Engineering. John Wiley and Sons, 1994.

[4] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obduscating transformations. Technical Report 148, Dept.of
Computer Science, The Univ. of Auckland, 1997.

[5] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. InPOPL
’98: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
184–196, New York, NY, USA, 1998. ACM.

[6] P. Dalgaard.Introductory Statistics with R. Springer, 2002.
[7] J. L. Devore.Probability and Statistics for Engineering and

the Sciences. Duxbury Press; 7 edition, 2007.
[8] H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An

approach to the objective and quantitative evaluation of
tamper-resistant software. InThird International Workshop
on Information Security (ISW2000), pages 82–96. Springer,
2000.

[9] K. Heffner and C. Collberg. The obfuscation executive. In
Proceedings of the 7th International Conference on
Information Security, ISC’04, volume 3255 ofLNCS, pages
428–440, 2004.

[10] A. N. Oppenheim.Questionnaire Design, Interviewing and
Attitude Measurement. Pinter, London, 1992.

[11] S. L. Pfleeger. Experimental design and analysis in software
engineering.SIGSOFT NOTES, Parts 1 to 5, 1994 and 1995.

[12] D. Sheskin.Handbook of Parametric and Nonparametric
Statistical Procedures (fourth edition). Chapman & All,
2007.

[13] I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley. An
empirical examination of the reverse engineering process for
binary files.Computers & Security, 25(3):221–228, 2006.

[14] P. Tyma. Method for renaming identifiers of a computer
program. US patent 6,102,966, 2000.

[15] S. Udupa, S. Debray, and M. Madou. Deobfuscation: reverse
engineering obfuscated code.Reverse Engineering, 12th
Working Conference on, Nov. 2005.

[16] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén.Experimentation in Software Engineering -
An Introduction. Kluwer Academic Publishers, 2000.

