Towards Experimental Evaluation of Code Obfuscation
Techniques

Mariano Ceccato', Massimiliano Di Penta!, Jasvir Nagra®, Paolo Falcarin?,
Filippo Ricca?, Marco Torchiano?, Paolo Tonella*
!'Fondazione Bruno Kessler—IRST, Trento, Italy
2Unita CINI at DISI, Genova, Italy
3Politecnico di Torino, Italy
“RCOST - Dept. of Engineering - University of Sannio, Benevento, Italy
SUniversity of Trento, Italy
ceccatojtonella@fbk.eu, dipenta@unisannio.it, jas@nagras.com
paolo.falcarinimarco.torchiano@polito.it, filippo.ricca@disi.unige.it

ABSTRACT

While many obfuscation schemes proposed, none of thenfysatis
any strong definition of obfuscation. Furthermore secumegsa-
purpose obfuscation algorithms have been proven to be isitdes
Nevertheless, obfuscation schemes which in practice slownd
malicious reverse-engineering by obstructing code cohgmsion
for even short periods of time are considered a useful ptiotec
against malicious reverse engineering. In previous wdHesdiffi-
culty of reverse engineering has been mainly estimated anmef
code metrics, by the computational complexity of statidysia or
by comparing the output of de-obfuscating tools. In thisgrape
take a different approach and assess the difficulty attadiere in
understanding and modifying obfuscated code through olbvetr
experiments involving human subjects.

Categories and Subject Descriptors
D.2.8 Metrics]

General Terms
Security, Experimentation, Measurement

Keywords

Empirical studies, Software Obfuscation

1. INTRODUCTION

Source code obfuscation is widely used to prevent/limitimal
cious attacks to software systems conducted by decomgpaliry
understanding or modifying source code. In particularmtlappli-
cations in distributed application represent a privilegadjet for
this kind of attacks. For instance many networked Java e@pli
tions are often built as two components, a server run in arcbed
environment and a client, often distributed as bytecoderandn

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

QoP’08,October 27, 2008, Alexandria, Virginia, USA.

Copyright 2008 ACM 978-1-60558-321-1/08/10 ...$5.00.

a virtual machine which can easily be decompiled, undedstand
patched to behave according to attacker intentions. Despé
proved theoretical impossibility of building general pase ob-
fuscators [2], implementations of obfuscators exist arel used
in practice. Available obfuscators provide limited thougfective
protection against malicious reverse engineering by ntpkiode
hard to understand and/or difficult to analyze through auattien
code analysis tools [9]. However, few works cope with thebpro
lem of measuring the extent of protection offered by statiefart
code obfuscation techniques.

The notion of reverse engineering complexity of obfuscatste
is captured by the intuitive notions pbtencyandresilience Po-
tency is the amount of obscurity added to the code, i.e. hoahmu
more complex to understand and to analyze is the obfuscatial ¢
with respect to the original one. Resilience measuressausthow
difficult it is to automatically break the obfuscation.

This paper details the definition, design and planning ofriezse
of controlled experiments aimed at empirically assesdiegcapa-
bility of source code obfuscation techniqgues — namely iifient
renaming and opaque predicates — to reduce the capability of
subject to successfully complete an attack, and to incréesef-
fort needed for the attack. The study was performed askibgesti
to perform understanding tasks or change tasks on the deéleainp
(either obfuscated or clear) client code of client-senamJappli-
cations. We report preliminary results obtained in a firgeiment
performed with 8 graduate students and related to the eféeetss
of the identifier renaming obfuscation on Java code.

In the past, evaluation of obfuscation has been mainly addce
through code metrics or by applying automatic de-obfugsatio [15],
the amount of time required to perform automatic de-obftisna
is used to evaluate theontrol-flow flatteningobfuscation, relying
on a combination of static and dynamic analysis. An atteropt t
quantify and compare the level of protection of several sbétion
techniques is presented by Anckaert et al. [1]. Their cbation
is a series of metrics based @nde control flow data and data
flow. They computed such metrics on some case study applications
(both on clear and obfuscated code) but no attempt has bede ma
in the direction of validating such metrics. Our contriloutiis, in-
stead, devoted to assess obfuscation empirically. We canipa
performance of human subjects while performing attacksdskth
on obfuscated and clear code.

The work more similar to ours is a study on the complexity of re
verse engineering binary code, that involved human subjad].

A group of 10 students (of heterogeneous level of experijehas

been asked to perform static analysis, dynamic analysisramti-

fication tasks on several C compiled programs. While theesttsd
ability to successfully achieve the reverse engineerisggahowed
a correlation with the student experience, no correlatias wb-
served between ability and source code complexity metkizs-(
stead and McCabe metrics). Our empirical evaluation hafferdi
ent aim. We intend to measure the effect size of obfuscatien,
quantify the increased effort necessary to reverse engareeb-
fuscated program, compared to the effort necessary for grano
in clear. Such effect size is the fundamental metrics that jus:

tify the adoption of available obfuscators. Moreover, lbafs to

compare alternative obfuscators in terms of increased eanegis-
tance.

The paper is organized as follows: Section 2 provides a prime
on the obfuscation techniques we considered. Section 3 ¢hee
details of the experimental design we used and Section 4tsepo
preliminary experimental results and threats to validBgction 5
concludes the paper.

2. APRIMER ON OBFUSCATION
TECHNIQUES

This section briefly describes the code obfuscation tectasq
used in our experiments.

Obfuscation transformations are classified into threesela$4]:
layout obfuscationsremoving relevant information (such as iden-
tifier names) from the code without changing its behawilata ob-
fuscations transforming application data and data structures (e.qg.,
data encoding, data splitting); armhntrol-flow obfuscationsalter-
ing the original flow of the application. The most relevanthe
niques for the present work aidentifier renamingand opaque
predicates

Identifier renamings an instance of layout obfuscation that re-
moves relevant information from the code by changing theesam
of classes, fields and operations into meaningless idastifie as
to make it harder for an attacker to guess the functionalitigple-
mented by different parts of the application. There are sd\ea-
tures of identifier renaming which are worth noting. It is alely
implemented obfuscation technique, implemented by mamy-co
mercial and academic obfuscators. The original identifieeslost
during renaming and in this sense the obfuscation is irek.
With intelligent and human assisted analysis, one may be tabl
provide some meaningful identifiers, however, the origidehti-
fiers are lost. Identifier renaming also has no performanas-ov
heard.

Nevertheless much of the structure of the program is preserv
which may assist an attacker during reverse-engineering.exx
tension of this technique was proposed by Tyma [14] wheteats
of renaming an identifier to a new meaningless one, idergifiee
reused whenever possible but in such a way that overloading r
solves the introduced ambiguity correctly.

Obfuscation based oB®paque predicate§5] is a control-flow
obfuscation that tries to hide the original behavior of aplaa-
tion by complicating the control flow with artificial brancheAn
opaque predicate is a conditional expression whose vakreisn
by the obfuscator, but is hard to deduce statically by arcletéta An
opaquely True (False) predicate always evaluates to Traisd€}at
a given position in a program. An opaque predicated can be use
in the condition of a newly generatéfdstatement. One branch of
theif statement is filled with the original application code, wehil
the other is filled by a bogus version of it. Only the formerramia
will be executed, causing the semantics of the applicatioarnain
the same. In order to generate resilient opaque predigad@zer

Table 1: Overview of the experiment.
To analyze the effect of source code op-
fuscation techniques

Capability of understanding the obfu
cated code

Capability to perform attacks on the ol
fuscated code

Objects: two Java client-server applica:
tions: Car Race and Chat

Subjects: Graduate students

Ho1: no effect of obfuscation on undel
standing level

Hy2: no effect of obfuscation on the ca-
pability of performing a change task
Hys: no effect on the time needed fqr
comprehension
Hoy4: no effect on the time needed far
completing a change task
Obfuscation

Decompiled, obfuscated code vs. de-
compiled, clear code

Subjects’ Ability, System, Lab

(i) Ability to perform comprehension
tasks

(i) Time required for comprehension
(iiiy Ability to correctly perform a
change task

(iv) Time required to perform a change
task

Goal

Quality focus

Context

Null hypotheses

Main factor
Treatments

Other factors
Dependent variables

aliasing can be used, since inter-procedural static afiatysis is
known to be intractable.

3. EXPERIMENT PLANNING

This section describes the definition, design and settifiglseo
proposed experimentation following the Goal Question Maem-
plate [3] and guidelines by Wohliet al.[16] and [11]. The study
definition is summarized in Table 1.

Thegoal of this empirical study is to analyze the effect of source
code obfuscation techniques with tharposeof evaluating their
effectiveness in making the code resilient to maliciouackis. The
quality focusregards how the obfuscation reduces the attacker ca-
pability to understand and modify the source code, and ahtive
how the obfuscation increases the effort needed to suctiyssf
complete an attack. This is a crucial point in our experiratanh:
although we are aware that an attacker could be able to coenple
an attack on obfuscated code anyway, she/he could be déyemir
if such an attack requires a substantial effort/time. Resafl this
study can be interpreted from multigberspectives

1. a researcher would be interested to assess an obfuscation
technigue. Most existing assessments (e.g., [1, 8]) aredbas
on metrics, estimating the increased code complexity, or on
arguments about the increased difficulty of static code-anal
ysis (e.g., computational complexity of static alias ratioh
involved in a successful attack). Only a few works are based
on attacks performed by human subjects [13] and none, to
the authors’ knowledge, applied rigorous approaches, such
as those available from the area of empirical software engi-
neering [11].

2. apractitioner, who wants to ensure high resilience tacat
to the part of a distributed application delivered to theiats,
running in an untrusted environment.

Fuel Laps 0/

% Applet Viewer: ChatAppletclass

Applet

(General Messages rdefault | Availlable Rooms

default
5 |Room 4
i |Room 3
;| |Room 2
i |Room 1

Y

Online Users
Orson

Welcome to default

| sena |

Applet started.

(a) Car Race

(b) Chat

Figure 1. Screen-shots of the two systems used in the experiment.

The contextof this study consists afubjectdnvolved in the ex-
perimentation and playing the role of attackers, ahgects i.e.,
systems to be attacked. Subjects are mainly graduate $tuden
i.e., either Master or PhD students. In the first experimenper-
formed subjects are 8 Master students from the computencseie
degree of University of Trento. Subjects have a good knogéed
on Java programming (they previously developed non-rsya-
tems as projects for at least 3 exams), and an average krgevled
about software engineering topics (e.g., design, tessnfware
evolution). The subjects attended at least one softwaraeedng
course where they learned analysis, design and testingijples.

The objects used to conduct the experiment are two clienese
applications developed in JavaCar Racegame and &hatsys-
tem.

CarRaceis a network game that allows two players to run a car
race (Figure 1-a). The player that first completes the tatahlver
of laps wins the race. During the race players have to refutlea
box. The number of completed laps and the fuel level is digala
on the upper part of the window. The client consists of 14seas
for a total of 1215 LOC.

ChatClient(Figure 1-b) is a network application that allows peo-
ple to have text based conversation through the networkvésa-
tions can be public or private, depending on how they aréabeid.
The application shows on the right a list of available rookwhen
the application starts, the “default” room is accesseds & public
room where all the users are participating. In order to acees
other room, the name of the room must be clicked from the ‘Avai
able Rooms” list, a new tab will be visualized. All the messag
sent to a conversation within a room are received by all tlegsus
registered on that room. A private conversation (involvamdy two
users) can be initiated by clicking the name of a user fronf@he
line Users” list. The client consists of 13 classes, for altof 1030
LOC.

3.1 Hypothesesformulation and variable
selection
Following the study definition above reported, we can forteil
four research questions that will be addressed in the study:

RQ1: To what extent the obfuscation reduces the capability of sub
jects to comprehend decompiled source code?

RQ2: To what extent the obfuscation increases the time needed to
perform a comprehension task?

RQ3: To what extent the obfuscation reduces the capability of sub
jects to perform a change task?

RQ4: To what extent the obfuscation increases the time needed to
perform a change task?

Once research questions are formulated, it is possiblerto tu
them into null hypotheses that can be tested in an experiment
e Hy; The obfuscation does not significantly reduce source
code comprehensibility.

Ho2 The obfuscation does not significantly increase the time
needed to perform code comprehension tasks.

Hys The obfuscation does not significantly reduce the capa-
bility of subjects to correctly perform a change task.

Ho4 The obfuscation does not significantly increase the time
needed to perform a change task.

The four hypotheses amne-tailed since we are interested in
analyzing the effect of obfuscation in one direction, ite.investi-
gate whether the obfuscatisaducesthe capability to understand
the code and to perform a change task, and whetlmeritaseghe
time needed for such tasks.

The above null hypotheses suggest we have four dependént var
ables, i.e.comprehension levetime needed for comprehensjon
success of the change taskdtime needed to perform the change
task To measure the attacker’s capability comprehension |exel
asked subjects to run the application, look at the clientcsoode,
perform two comprehension tasks, reported in Table 2. Fohea
task subjects had to provide an answer. Tasks were concsived
that only one correct answer is possible, thus correct arsswere
evaluated as one, wrong answers as zero. To measure thelcapab
ity to perform an attack, we asked subjects to perform twagka
tasks, reported in Table 3 for the two different systems.cSiat-
tacks can be thought as maintenance tasks, we evaluatedrthe c
rectness of the attack by running test cases on the changid co

Table 2: Comprehension tasks
In order to refuel the car has to enter the box. The box grea
is delimited by a red rectangle. What is the width of the bpx

entrance (in pixel)?
When the car crosses the start line, the number of laps ig in-

creased. Identify the section of code that increases the num

ber of laps the car has traveled (report the class name/s|{and
line number/s with respect to the printed paper sheets).
Messages going from the client to the server use an int¢ger
as header to distinguish the type of the message. What is the
value of the header for an outgoing public message senf by
the client?
When a new user join, the Tist of the displayed "Online use}s”
is updated. Identify the section of code that updates theflig
users when a new user joins (report the class name/s and
number/s with respect to the printed paper sheets).

CarRace| T1

T2

Chat T1

T2

line

Table 3: Changetasks
The car can run only on the track and obstacles have tg be
avoided, if a wall is encountered the car stops. Modify the
application such that the car can take a shortcut through|the
central island.
The fuel constantly decreases. Modify the application slich
that the fuel never decreases.
Messages are sent to a give room, if the user is registergd in
the room and if the message is typed in the corresponding
tab. Modify the application such that all the messages frpm
the user go to “Room 1” without the user entering the room.
Messages are sent and displayed with the timestamp |that
marks when they have been sent. Modify the application sjch
that the user sends messages with timestamp equals to|3,00
PM.

CarRace| T3

T4

Chat T3

T4

subjects sent us back, and evaluated the change as sutddesfu

cases passed. A test case was defined for each change tagk, usi

a black-box strategy. They consists in sending an apprepsie-
quence of graphic events to delivered client, and verifyitgther
the required changes have been performed correctly usipgaias
testing server.

The main factor of the experiment—that acts as an indepé&nden
variable—is the obfuscation (identifier renaming). Suclaetdr
can have two treatment levels, i.e., subjects can perfoarcdim-
prehension and change on obfuscated, decompiled soureeocod
on clear, decompiled source code (control groups used fopao-
ison purposes).

The results can be affected by other factors, such as:

o the Systenused in the comprehension/maintenance task: as
detailed in Section 3.2, to use a balanced design we need

two objects. Although they are comparable in complexity,
subjects can perform differently on different systems;

e the subjects’ Ability we have assessed considering bache-

lor grade and previous exams grades. According to the as-

sessment made, we have classified subjedtigh andLow
ability subjects.

e the Lab: since the experiment requires two laboratories, a
learning effect is possible from labs, and it should be ana-
lyzed.

3.2 Experiment design

We adopted a balanced experiment design intended to fit tlvo La
sessions (2-hours each). Subjects were split into fourggoeach
one working in Lab 1 on a system with a treatment and working in
Lab 2 on the other system with a different treatment (see€l4pl

Table 4: Experiment design(O) = Obfuscated, (C) = Clear.

[[GroupA | GroupB [GroupC [GroupD]
[Lab1] CarRace (O)] CarRace (C)] Chat(C) | Chat(O) |
[Lab2 [Chat(C) | Chat(O) [CarRace (O)] CarRace (C)]

The design ensures that each subject worked on diffeSgat
temsin the two Labs receiving each time a different treatment.
Also, the design permits us to consider different combortiof
Systemand treatment in different order acrasabs More impor-
tant, the chosen design permits the use of statistical (BstsWay
and Three-Way ANOVA[6]) for studying the effect of multipiac-
tors. Subjects were split into four groups making sure ltgih and
low Ability subjects were equally distributed across groups.

3.3 Experiment material and procedure

This section details the procedure we followed to perfore th
study. Before the experiment, subjects were properly échiwith
lectures on obfuscation techniques, and with exercisemadke
purpose of performing comprehension tasks on the (nonscbfed)
source code of a simple vending machine system. Right béiere
experiment, we provided to subject a detailed explanatiothe
tasks to be performed during the lab, without however expfic
the study hypotheses, to avoid a possible bias.

To perform the experiment, subjects used a personal compute
with the Eclipse development environment—which they areiffa
iar with—, including notably syntax highlighting and delyeg,
and the Java APl documentation available. We distributesis
jects the following material:

e ashort textual documentation of the system (CarRace oChat
they had to attack, comprising installation instructions;

e a jar archive containing the server of the application. As
mentioned above, both CarRace and Chat are client-server
applications; to avoid during the experimentation proldem
due to reduced bandwidth or limited Internet access (often
due to University laboratory restrictions) we let the sukbge
running the server locally, without providing the sourceleo
and checking they do not decompile it;

o the decompiled client source code, either clear or obfestcat
depending on the group the subject belonged to (Table 4);

e printouts of the slides explaining the experiment procedur
that we presented just before distributing the material.

The experiment was carried out according to the following-pr
cedure. Subjects had to:

read the application description;
import the client source code in Eclipse;

1.
2.
3. run the application to familiarize with it;
4. for each of the four tasks to be performed:
(a) ask the teacher a paper sheet describing the task to be
performed,;
(b) mark the start time;
(c) read the task and perform it;
(d) write the answer (for comprehension tasks);

(e) mark the stop time and return the paper sheet;

5. after completing all tasks, create an archive contaitiggy
maintained project and send it to the teacher by email;

6. complete a survey questionnaire.

During the experiment, teaching assistants and professens
in the laboratory to prevent collaboration among subjeats] to
check that subjects properly followed the experimentatedure,
i.e., they performed the tasks in the given order, and thesectly
annotated the time spent.

After the experiment, subjects had to fill a post-experinsmt
vey questionnaire. It aimed at both gaining insights abbetstu-
dents’ behavior during the experiment and finding justifaa for
the quantitative results. The questionnaire contains topres—

most of them expressed in a Likert scale [10] — related to:
o the clarity of tasks and objectives;

e the difficulties experienced when performing the different

tasks (comprehension and change);

debugger;

the percentage of total time spent on looking the source,code

the confidence in using the development environment and the

Table5: Changetasks

Comprehension Change Overall
Treatment || Wrong | Correct || Wrong | Correct [[Wrong | Correct
Clear 7 11 3 15 10 26
Obfuscated 12 8 12 8 24 16

group (e.g., experimental group) to the odds of it occurimgn-
other group (e.g., control group), or to a sample-basednesti of
that ratio. If the probabilities of the event in each of theugrs are
indicated ap (experimental group) ang (control group), then the
odds ratio is defined as:

p/(1—p)

q/(1—q)

An odds ratio of 1 indicates that the condition or event under
study is equally likely in both groups. An odds ratio gredtsn
1 indicates that the condition or event is more likely in thstfi
group. Finally, an odds ratio less than 1 indicates that ¢melition
or event is less likely in the first group.

The Coheni effect size indicates the magnitude of a main factor
treatment effect on the dependent variables (the effeetisizon-

OR =

on executing the system (such questions foresee as possiblesidered small for &0.2, medium for ¢0.5 and large for &0.8).

answer;

(for subjects having obfuscated code only) to what extent
they considered the analysis of obfuscated code hard;

(for subjects having obfuscated code only) whether subject
considered important executing the system to better under-
stand its behavior.

3.4 Analysis method

Different kinds of statistical tests needs to be used toyaeal
results of this experiment. To analyze whether the obfimcat-
duces the correctness of comprehension and change taskegde
to use tests on categorical data (i.e., the tasks can be edtrect
or wrong). In particular, we used the Fisher's exact test fifgre
accurate thary? test for small sample sizes, which is another pos-
sible alternative to test the presence of differences ipgmatcal
data. Then, two non-parametric tests are used to test thathmeyp
ses related to differences in time need to perform the tasks—
parametric statistics are used since they do not requirasslymp-
tion on the underlying population distribution. First, anpaired
analysis — i.e., an analysis of all data grouped by diffetest-
ments of the main factor — is performed using the Mann-Wlhitne
one-tailed test[6]. Given the chosen experiment desigis, also
possible to use a paired test, i.e., the Wilcoxon test[6EhSatest
allows to check whether differences exhibited by subjedths dif-
ferent treatments (clear and obfuscated code) over theahmdre
significant.

While the above tests allows for checking the presence of sig
nificant differences, they do not provide any informatiomatithe
magnitude of such a difference. This is particularly refenia our
study, since we are interested to investigate to what extentise
of obfuscation reduces the likelihood of completing anctand
what is the increment of the time needed for the attack. Toaim,
two kinds of effect size measures are used,dtids ratioand the
Cohend effect size.

The odds ratio is a measure of effect size that can use for di-
chotomic categorical data. An odds [12] indicate how mukalyi
is that an event will occur as opposed to it not occurring. ©@d
tio is defined as the ratio of the odds of an event occurringni@ o

For independent samples, itis defined as the differencedastihe
means {11 andM-), divided by the pooled standard deviation:

d= (Ml —Mz)/o’

The experiment results could be influenced by any of the con-
founding factors described in Section 3.1. To this aim, a-tvey
Analysis of Variance (ANOVA) can be used to analyze the ¢ffec
of confounding factors —mainly System, Lab, and Ability—tbe
main factor (theMethod and their interaction. In general ANOVA
is considered quite robust also for non normal and non iaterv
scale variables.

4. PRELIMINARY RESULTS

4.1 Dataanalysis

This section reports preliminary results we obtained frofirst
experiment we performed with 8 subjects from the University
Trento, usingidentifier renamingas the obfuscation method. We
only report preliminary analyses aimed at testing the hypsés
formulated in Section 3.1. Analysis of confounding factarsd
survey questionnaires as well as other analyses (e.gedairaly-
sis per subject) will be reported in future work. Table 5 nepo—
for the 8 subjects — the number of correct and wrong tasksagla
to comprehension, change and to the overall experimentieDif
ences between overall number of tasks (clear Vs obfuscitedk
to missing answers.

We tested the presence of a significant difference betwesn th
two different treatments using the Fisher test, and foundiguoif-
icant difference for comprehension (p-value=0.33), whilsgnif-
icant difference was found for the change (p-value=0.00%9%0
considering the whole set of tasks (including both compnetosn
and change) a significant difference (p-value=0.006) ibhas

More important than testing the presence of differencesiis-c
puting the odds ratio, i.e., the ratios betwemddsof correct an-
swers for subjects having obfuscated or clear code. For oemp
hension tasks the odds ratio is 2.3, meaning that subjestacha
obfuscated code have less than half odds of subject havaay cl
code to successfully complete the tasks. The odds ratiagteehi

60
€
= 504
L
[7]
5
)
hed
c
g 30
()]
g *®
=] 20+ El
]
o
o
g 101
<
O- T T
Treatment Clear Obf
Comprehension

Cléar Olbf
Overall

Clelar Olbf
Attack

Figure 2: Boxplots of time needed to perform thetasks.

for change tasks (7.1) indicating how the presence of obfesc
code substantially reduce seven times the odds of comglétia
attack. Finally, the odds ratio for the overall data set & 3.

Figure 2 reports boxplots of time needed to complete thestask
Time is computed, for each subject, as the average time over c
prehension tasks, change tasks and overall tasks the sw@sc
able to complete. For this preliminary analysis we do notsider
yet whether the task was also correctly performed, whilenterid
to do this refined analysis in our future work. The Mann-Wajtn
one-tailed test indicated a significant difference for coghpnsion
time (p-value=0.002), while no significant difference wasirid
for change tasks time (p-value=0.19). A significant differe is
visible if considering all the tasks (p-value=0.02). Theef size
is large for comprehension tasks (d=1.8), small for chamgis
(d=0.2), and again large if considering both the task tyde4 (03).

Results suggest a rejection féfy. (time needed for compre-
hension),Hys (correctness of change tasks) while it is not possible
to rejectHo: (correctness of comprehension tasks) &hd (time
needed for change tasks). Thus, it seems that subjectsghalsin
fuscated code spent significantly more time when comprehgnd
the code, however achieving results not far from those lipeiear
code. On the other hand, while tampering with the code stjec
having obfuscated code did not exhibit any time overheadlewh
they had a significantly lower probability of successfulynplet-
ing the task.

4.2 Threatsto validity

We identified the main threats to the validity [16] of our risu
construct, internal, conclusion, and external validitsetits.
Construct validitythreats concern the relationship between the-

to assess code correctness — are as objective as possible.

Internal validitythreats concerns external factors that may affect
an independent variable. We controlled for different systelabs,
and subjects’ ability, although for reasons of space we didhow
analysis for these cofactors in this paper. Moreover thegdes a
full factorial design with random assignments that balaniogli-
vidual factors and learning effects.

Conclusion validityconcerns the relationship between the treat-
ment and the outcome. The statistical analysis is perfommedly
using non-parametric tests that do not assume data noymalit

External validityconcerns the generalization of the findings. The
main threat in this area stems from the type of subjects: érré¢h
ported experiment they are all master students. Only fughglies
can confirm whether the results obtained can be generalizet
fessional developers.

5. CONCLUSIONS

This paper provided the definition and planning of a series of
controlled experiments we are carrying out. We aim at eroaliy
assessing the capability of source code obfuscation tgabgito
make decompiled code resilient to comprehension and atteck
tivities. Preliminary results we obtained with 8 graduatigdents
indicates indeed that obfuscation reduces the capabfigylgects
to understand and modify the source code. In the reportedrexp
iment the effect appears particularly relevant for taskgunéng
code modification: the odds of successfully completing ds& aire
7 times lower for subjects working with obfuscated code. fiime
needed to perform the tasks also significantly increasegsds-p
ence of obfuscation, and this is particularly true for coeffgmsion
tasks, where a significant difference and a high effect sizésible.

ory and observation. They are mainly due to the method used to At the time of writing we are analyzing data from further espe

assess the outcomes of tasks. The measurements we coneeived
comprehension questions with one possible answer andasasc

ments we performed, involving larger sets of subjects affdreit
source code obfuscation techniques. Also, we are perfgrmiore

accurate statistical analyses, considering also confagrfdctors

and taking into account feedbacks provided by subjectsutiiro
survey questionnaires. Future work will report detaileclgses

and discussions of these experiments.

6.

ACKNOWLEDGMENTS

[9] K. Heffner and C. Collberg. The obfuscation executive. |

Proceedings of the 7th International Conference on
Information Security, ISC’04volume 3255 oL NCS pages
428-440, 2004.

[10] A.N. OppenheimQuestionnaire Design, Interviewing and

Attitude MeasuremenPinter, London, 1992.

This work was supported by funds from the European Commis- [11] S. L. Pfleeger. Experimental design and analysis irveuft

sion (contract K 021186-2, RE-TRUST project) and Italian Gov-

engineeringSIGSOFT NOTES, Parts 1 to 5994 and 1995.

ernment (grant PRIN2006-2006098097, METAMORPHOS prdject [12] D. SheskinHandbook of Parametric and Nonparametric

7.
[1]

(2]

(3]

[4]

(5]

[6]
[7]

(8]

REFERENCES

B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D.
Bosschere, and B. Preneel. Program obfuscation: a
quantitative approach. IQoP '07: Proceedings of the 2007
ACM workshop on Quality of protectippages 15-20, New
York, NY, USA, 2007. ACM.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Siah
S. Vadhan, and K. Yang. On the (im) possibility of
obfuscating programd.ecture Notes in Computer Science
2139:19-23, 2001.

V. Basili, G. Caldiera, and D. H. Rombachhe Goal
Question Metric Paradigm, Encyclopedia of Software
Engineering John Wiley and Sons, 1994.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obduscating transformations. Technical Report 148, Dxpt.
Computer Science, The Univ. of Auckland, 1997.

C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructBORL

'98: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languageges
184-196, New York, NY, USA, 1998. ACM.

P. DalgaardIntroductory Statistics with RSpringer, 2002.

J. L. Devore Probability and Statistics for Engineering and
the ScienceDuxbury Press; 7 edition, 2007.

H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An
approach to the objective and quantitative evaluation of
tamper-resistant software. Trhird International Workshop
on Information Security (ISW200Q)ages 82—-96. Springer,
2000.

Statistical Procedures (fourth editianThapman & All,
2007.

[13] I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley. An

empirical examination of the reverse engineering process f
binary files.Computers & Security25(3):221-228, 2006.

[14] P. Tyma. Method for renaming identifiers of a computer

program. US patent 6,102,966, 2000.

[15] S. Udupa, S. Debray, and M. Madou. Deobfuscation: sever

engineering obfuscated codReverse Engineering, 12th
Working Conference gNov. 2005.

[16] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell,

and A. WesslénExperimentation in Software Engineering -
An Introduction Kluwer Academic Publishers, 2000.

