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Abstract

Legacy systems are often large and difficult to maintain,
but rewriting them from scratch is usually not a viable op-
tion. Reenginering remains the only way to modernize them.
We have been recently involved in a migration project aim-
ing at porting an old, large (8 MLOC) legacy banking sys-
tem to a modern architecture. The goal of the project is:
(1) moving from an old, proprietary language to Java; (2)
replacing ISAM indexed files with a relational database;
(3) upgrading the character oriented interface to a modern
GUI.

One of the steps in the migration process deals with the
elimination of unstructured code (unconditional jumps such
as GOTO statements). In this paper we present four alter-
native strategies for GOTO elimination that we evaluated
in the project. Each has pros and cons, but when used in
a real case, it turned out that one produced completely un-
readable code, hence it was discarded. The final choice was
a combination of the three remaining strategies.

1 Introduction

When a legacy system has to be ported to more recent
technology, it may require to be re-designed from scratch in
order to fit the major differences between past and present
facilities. However, a complete re-implementation is often
too expensive to carry out, because of the size of the sys-
tem and the difficulty of recovering the business rules it im-
plements. In fact, such systems are usually not well docu-
mented and the source code is often the only reliable reposi-
tory of the business rules that drive the system. Considering
these constraints, semi-automated migration represents of-
ten a more appropriate solution.

We have been recently involved in the migration of a
legacy banking system. It consists of a large code base (8
millions lines of code) written in a proprietary language and
running on character oriented displays. The system sup-
ports all the bank activities, including front office, business
intelligence, account and check management. It also inter-

acts with all the office devices, such as printers and check
readers, and it produces periodic reports for various institu-
tions, such as the central bank.

The migration involves several challenging problems,
that can be grouped into three main categories:

• Changing the code from the proprietary language to
Java;

• Transforming data and storage model, from ISAM in-
dexed files to a relational database;

• Moving the character-oriented user interface to a
graphical user interface.

The present paper describes our experience in address-
ing part of the first problem, i.e., removing the unstructured
code (goto statements). In fact, the target language (Java)
does not support them.

In this task, the objective is not limited to goto elimina-
tion, since the resulting transformed code (without gotos) is
expected to be maintained (once migrated to Java) by the
same developers that currently maintain the legacy system.
For this reason, the final code should be as similar as possi-
ble to the original one, so the developers can take advantage
of their familiarity with the old system to work on the new
one. Hence, the task has indeed two conflicting objectives:
(1) eliminating goto statements; (2) producing maintainable
code. As a third dimension we considered also (3) the trans-
formation speed.

Several approaches to goto elimination exist in the liter-
ature [2, 3, 7, 8, 11, 12, 16, 18]. However, existing solutions
for the elimination of unstructured statements are known to
have a major impact on the code quality, especially in the
presence of irreducible control flow [7, 12]. Since our ob-
jective is also to avoid a deterioration of the code quality,
we cannot just take any of the existing approaches and use
it. We need to carefully assess the impact of each alterna-
tive approach on the code quality and then select the best
compromise.

We considered four alternative approaches to goto elim-
ination in terms of their effect on the code quality. We will
discuss advantages and disadvantages of each of them and



we will motivate our final solution, which is actually a com-
bination of three out of the four evaluated goto elimination
methods. Finally, we describe what we learned from this
part of the migration project, trying to distill some reusable
lessons.

In Section 2 we give a description of the four goto-
elimination strategies. The performance of each different
strategy is presented in Section 3 and the chosen solution
is described in Section 4. Related works (Section 5) and
conclusions (Section 6) close the paper.

2 Strategies

Legacy systems are written in legacy programming lan-
guages, that often lack support for basic iterative con-
structs such as while, do-while, for, break and
continue. On the other hand, they often support arbitrary
control flow, by means of the goto construct. Software de-
velopers are used to write unstructured code to obtain the
semantics of the missing constructs.

The banking system we are migrating to Java was devel-
oped in a BASIC-like language that originally did not sup-
port any loop construct except the for-loop. All other itera-
tions were obtained by means of goto statements. Later on,
iterative statements such as while, do-while, break
and continue have been introduced in the language, but
many portions of the system were already developed. More-
over, programmers were used to take advantage of gotos
in several ways and they did not change radically their
habits when gotos were no longer needed. Extensive usage
of copy-and-paste to implement new functionalities aug-
mented instead of reducing the number of gotos in the code.
Today, among the 8 MLOC in the code base, 0.5 MLOC are
goto statements.

One typical usage of gotos, that is still largely present,
supports management of the user interaction state. Each
code portion associated with a particular interaction state
starts with a label and ends with a sequence of conditional
gotos. According to the user’s input and to the error con-
ditions that may arise, the program counter is moved to an-
other code block, representing another state of the interac-
tion. In such code organization, it is also quite common to
see jumps inside a block (i.e., in the middle of it) and not
at the beginning, the reason being that according to some
other part of the interaction state (usually recorded in one or
more variables) part of the computation in a block must be
skipped. Jumps from the middle of a block are also present.
All this gives rise to an abundance of irreducible gotos, that
are intrinsically hard to deal with, and to spaghetti code that
is very hard to read for anybody outside the development
team. Surprisingly, developers are perfectly at ease with
such code organization and seem to understand it with little
effort.

In this section we present the four goto-elimination
strategies that were evaluated in the migration project.

2.1 Pattern based

In this approach, gotos are eliminated by identifying re-
curring code patterns that involve gotos and for which a
straightforward and natural translation without gotos exists.

When the do-while statement was not available, its se-
mantics was obtained by using gotos, as shown in Fig-
ure 1. If a given condition holds, either a segment of code
(stmt seq 0) is re-executed (goto L0) or it is not, and
the computation goes on (goto L1). This corresponds to
the semantics of the do-while statement.

L0 :
<s t m t s e q 0 >

i f ( cond )
goto L1 ;

goto L0 ;
L1 :

L0 :
do {

<s t m t s e q 0 >

}
whi le ( n o t ( cond ) ) ;

L1 :

(Original) (Transformed)

Figure 1. Pattern of goto used as do-while

Unstructured code developed in this way represents an
instance of goto usage, that can be easily identified and
transformed into equivalent, goto-less code. Moreover, the
resulting code keeps a comparable degree of understand-
ability and maintainability. Once shown to the developers,
they were comfortable with it and with the automated trans-
formation of the original code. We conclude that this trans-
formation preserves code familiarity in a satisfactory way.

Another similar pattern is shown in Figure 2. In the while
loop, the last part of the loop body (stmt seq 1) is condi-
tionally executed. If a given condition holds (i.e., cond 2),
the last part is skipped and the next iteration starts. This
conditional jump can be very naturally transformed into a
continue statement.

L0 :
whi le ( cond 1 ){

<s t m t s e q 0 >

i f ( cond 2 )
goto L0 ;

<s t m t s e q 1 >

}

L0 :
whi le ( cond 1 ){

<s t m t s e q 0 >

i f ( cond 2 )
cont inue ;

<s t m t s e q 1 >

}

(Original) (Transformed)

Figure 2. Pattern of goto used as continue



In other cases, available structured statements could be
used instead of gotos. For instance, in Figure 3 a branch
appears at the end of a portion of code (stmt seq 0) that
is executed under a given condition (cond). In this way, the
successive portion of code (stmt seq 1) is executed only
if the condition does not hold. This second sequence can be
moved in the else branch on the if statement.

i f ( cond ) {
<s t m t s e q 0 >

goto L0 ;
}
<s t m t s e q 1 >

L0 :

i f ( cond ){
<s t m t s e q 0 >

e l s e
<s t m t s e q 1 >

}
L0 :

(Original) (Transformed)

Figure 3. Pattern of goto used as then

By manually inspecting a significant portion of the sys-
tem, a list of patterns has been identified with the corre-
sponding transformations. The recovered patterns are:

useless goto : a (potentially conditional) branch to the next
statement can be trivially removed (Figure 4).

goto L0 ;
L0:< s t m t s e q 1 >

L0:< s t m t s e q 1 >

(Original) (Transformed)

Figure 4. Pattern of useless goto

if goto : a conditional branch is used to skip a portion of
code (Figure 7). The goto is removed and the code to
skip is moved in the else branch of the condition and
the then branch remains empty. Optionally the con-
dition can be negated and the then and else branches
inverted, so as to avoid and empty then.

if goto then : a variant of the previous transformation,
when the original then branch contains not only the
goto statement but also some other instructions. This
pattern is shown in the example in Figure 3.

goto within switch : as in Figure 8, inside a switch-case
statement a conditional branch is used to skip the exe-
cution of the rest of the current case and to jump out-
side the switch. The skipped code is moved into the
else branch of the if and the goto statement is removed.
No other changes are required, since the switch state-
ment in our legacy language does not support case fall-
through.

ifelse goto : this pattern is shown in Figure 9. Depending
on the condition of an if statement, either a goto (then
branch) or a sequence of instructions (<stmt seq 0>
in the else branch) is executed. The goto is used only
to skip statements in <stmt seq 0>. Both the se-
quences in the else branch and the sequence that fol-
lows the if statement are executed only if the condition
does not hold.
So, this pattern can be changed by inverting the con-
dition in the if statement and by moving both of the
sequences in its then branch.

continue goto : in the body of a while or a do-while state-
ment a goto is used to skip the rest of the current cycle
and to go on with the next iteration. The goto statement
can be changed into a continue statement (Figure 2).

break goto : this is a variant of the previous pattern, shown
in Figure 5. A conditional jump is used to exit from
the body of a loop, the target label is the first statement
after the loop. The jump can be changed into a break
statement.

whi le ( exp r ){
<s t m t s e q 0 >

i f ( cond )
goto L0 ;

<s t m t s e q 1 >

}
L0 :

whi le ( exp r ){
<s t m t s e q 0 >

i f ( cond )
break ;

<s t m t s e q 1 >

}
L0 :

(Original) (Transformed)

Figure 5. Break goto pattern

while goto : in Figure 6 a sequence of instructions
<stmt seq 0> is preceded by a conditional jump
(goto L1;), if the condition holds the sequence is
skipped. The last instruction of the sequence is a jump
(goto L0;) to the previous conditional jump. This
way, two jumps are used to simulate the behavior of
a while statement. The code pattern can be changed
accordingly.

L0 :
i f ( cond )

goto L1 ;
<s t m t s e q 0 >

goto L0 ;
L1 :

L0 :
whi le ( n o t ( cond ) ) {

<s t m t s e q 0 >

}
L1 :

(Original) (Transformed)

Figure 6. While goto pattern



i f ( cond )
goto L0 ;

<s t m t s e q 0 >

L0 :

i f ( cond ) { }
e l s e {
<s t m t s e q 0 >

}
L0 :

i f ( n o t ( cond ) ) {
<s t m t s e q 0 >

}
L0 :

(Original) (Intermediate) (Transformed)

Figure 7. If goto pattern

i f ( cond )
goto L0 ;

e l s e {
<s t m t s e q 0 >

}
<s t m t s e q 1 >

L0 :

i f ( cond ) { }
e l s e {

<s t m t s e q 0 >

<s t m t s e q 1 >

}
L0 :

i f ( n o t ( cond ) ) {
<s t m t s e q 0 >

<s t m t s e q 1 >

}
L0 :

(Original) (Intermediate) (Transformed)

Figure 9. Ifelse goto pattern

swi tch ( v1 ) {
. . .
case ( e x p r 1 ) :

<s t m t s e q 0 >

i f ( cond )
goto L0 ;

<s t m t s e q 1 >

case ( e x p r 2 ) :
. . .

}
L0 :

swi tch ( v1 ) {
. . .
case ( e x p r 1 ) :

<s t m t s e q 0 >

i f ( n o t ( cond ) )
{
<s t m t s e q 1 >

}
case ( e x p r 2 ) :

. . .
}
L0 :

(Original) (Transformed)

Figure 8. Goto within switch pattern

do-while goto : a variant of the previous pattern, the only
difference being that the involved statement sequence
is executed at least once, even when the exit condition
(cond) is true. This pattern can be transformed into
a do-while cycle. This pattern is described in detail
above and is shown in Figure 1.

2.2 Bohm-Jacopini top level

One of the first approaches to goto elimination was pro-
posed by Bohm and Jacopini [3]. Their contribution is quite
theoretical and consists of a set of transformation rules that
should be applied to normalize the program flow graph.

From these rules a transformation algorithm can be derived
as shown in Figure 10. The transformation aims at mak-
ing the program counter explicit in a variable. Jumps are
turned into assignments to the program counter variable.
What code to execute depends on a switch-case statement
on the value of the program counter.

The steps required to achieve this transformation are the
following:

• Some new variables are introduced:

– the program counter is made explicit in the local
variable pc;

– the original label a is changed into the local con-
stant a;

– a constant done is introduced to handle the exit
condition.

• The code is broken into segments according to labels.
In the example, two segments can be identified: before
the label a and the rest of the code from the label to the
end.

• A while loop is added. The loop is executed until the
value of pc becomes the exit value (i.e., done).

• The body of the loop is a switch on the value of the
program counter pc, a case is added for each value
from 0 to done-1. Each case body is concluded by
two common instructions, the increment of pc value
and a continue to the next while loop iteration.



• Eventually, goto statements are replaced by two in-
structions: an assignment to the pc and a continue.

i f ( c )
goto a ;

<s t m t s e q 1 >

a : < s t m t s e q 2 >

<s t m t s e q 3 >

i n t pc = 0 ;
c o n s t a = 1 ;
c o n s t done = a +1 ;

w : whi le ( pc ! = done ) {
swi tch ( pc ) {
case 0 :

i f ( c ) {
pc = a ;
cont inue w;

}
<s t m t s e q 1 >

pc ++;
cont inue w;

case 1 :
<s t m t s e q 2 >

<s t m t s e q 3 >

pc ++;
cont inue w;

}
}

(Original) (Transformed)

Figure 10. Bohm-Jacopini strategy

This transformation algorithm is able to eliminate all oc-
currences of unstructured jumps. However, in the presence
of jumps to labels on a different level of nesting, the result
is expected to be quite tangled and difficult to understand,
because the nesting structure is completely destroyed by the
algorithm in such cases. However, when jumps refer to top-
level labels (as in Figure 10), the quality of the resulting
code is acceptable. Programmers judged it sufficiently rec-
ognizable as a transformation of their original code. So, we
applied this transformation only when the goto statement
points to a label that has nesting level equal to zero (top
level).

2.3 Erosa

The goto-elimination strategy proposed by Erosa [8, 7]
allows eliminating all gotos in a program, including irre-
ducible gotos. Their approach has been developed to im-
plement the preliminary step of an optimizing/parallelizing
compiler that requires a structured control flow in order to
perform particular optimizations.

They propose two key transformations, called goto-
elimination transformations, devoted to remove a goto state-
ment that appears at the same level of nesting as the target
label. Other transformations, called goto-movement trans-
formations, must be applied to prepare the code. A goto

<s t m t s e q 1 >

i f ( cond )
goto L0 ;

<s t m t s e q 2 >

L0:< s t m t s e q 3 >

<s t m t s e q 1 >

i f ( ! cond )
<s t m t s e q 2 >

L0:< s t m t s e q 3 >

(Original) (Transformed)

Figure 11. Erosa goto-elimination with condi-
tional

<s t m t s e q 1 >

L0:< s t m t s e q 2 >

<s t m t s e q 3 >

i f ( cond )
goto L0 ;

<s t m t s e q 1 >

do {
L0 : <s t m t s e q 2 >

<s t m t s e q 3 >

}
whi le ( cond ) ;

(Original) (Transformed)

Figure 12. Erosa goto-elimination within loop

is moved either inward or outward, according to its nesting
level, until it appears at the same level of the corresponding
label.

In order to apply this technique, any jump instruction
must be conditional to an if statement. All gotos can be
easily reduced to this case, by adding a fictitious if statement
with a condition that always holds.

Goto-elimination transformations Which goto-
elimination transformation to apply depends on the position
of the goto statement with respect to the corresponding
label. If the goto precedes the label the case in Figure 11
applies. In this case, if the condition holds, execution jumps
ahead, skipping some instructions (i.e., stmt seq 2).
This gotos can be easily removed by moving the skipped
statements in the true-branch of the if statement, after
negating its condition.

In case the goto follows the corresponding label (see
Figure 12), a jump back happens when the condition
cond holds. The same semantics is guaranteed by a do-
while loop that contains all the statements originally placed
between the label and the goto (i.e., stmt seq 2 and
stmt seq 3). The loop condition of the cycle corresponds
to the original if condition.

Goto-movement transformations The goto-movement
transformations apply when the jump instruction and the
corresponding label are not at the same nesting level. Sev-



eral transformations are defined to move the goto statements
across nesting levels, depending both on the movement di-
rection (inward and outward) and on the statements to tra-
verse (switch-case, if-then-else, while, for).

The case of an outward movement outside of a switch-
case statement is shown in Figure 13.

• A brand new goto L0 variable is introduced and as-
signed the boolean value of the condition that controls
the goto to remove.

• The goto is replaced by a break statement.

• The goto is moved just after the end of the switch-case
body, but it is controlled by the value of goto L0.

• Before executing the instruction at the given label, the
value of goto L0 is reset to false.

The addition of a new variable avoids the evaluation of the
same condition twice, keeping the behavior of the original
code. Such an evaluation, in fact, could have an undesired
side effect in case of duplicated evaluation.

The movement and the elimination of a goto statement
could affect the position of the other gotos. For this reason,
the algorithm by Erosa proceeds up to the elimination of
the target goto, before considering the next one. Moreover,
Erosa [7] claims that different final code could be obtained,
depending on the order in which gotos are eliminated. In
our migration project, we considered two different orders,
based on how goto statements appear in the parse tree:

• backward: bottom-up; and

• forward: top-down.

2.4 JGoto

The last strategy is not actually a goto-elimination strat-
egy. It relies on a post-compilation Java byte-code trans-
formation, in order to support goto statements in Java. The
strategy is changing the target language instead of changing
the program to be migrated. This is a backup strategy that
makes sense whenever each alternative goto-elimination
strategy fails to deliver maintainable code.

When the legacy code is transformed to Java, goto state-
ments and labels are replaced by placeholder invocations
of stub methods: respectively, jgoto("label") and
jlabel("label").

After compilation, the resulting Java byte-code is sub-
jected to transformation. Every invocation to jlabel be-
comes an automatically generated Java bytecode label, as-
sociated with the string appearing as the actual parameter.
Every invocation to the placeholder method jgoto is re-
placed by an actual goto (supported in the Java byte-code)
to the label associated with its string parameter.

2.5 Tool support

The first three strategies have been implemented us-
ing the TXL [5] language. TXL supports the definition
of grammar–based rules to perform code transformation.
Rules are divided into two parts, the pattern to be matched
and the replacement. Transformations can be naturally
coded in TXL staring from the code samples shown in this
section.

The JGoto transformation tool was implemented by
means of ASM,1 a byte-code manipulation library. An ex-
ample of the bytecode transformation operated by ASM to
support gotos in Java is provided in Figure 14.

3 Results

In this section we present some empirical data collected
during the execution of the goto-elimination task in our mi-
gration project. We interpret such data, trying to derive
reusable lessons from them.

3.1 Metrics

All the strategies have been applied to the legacy system
under migration and the resulting code has been analyzed
in order to determine the most appropriate solution for the
goto problem.

The first metric we used is the percentage of goto state-
ments that each strategy is able to remove.

The migrated code should be easy to understand and it
should be as similar as possible to the original system. An
undesired side effect of some of the goto elimination al-
gorithms considered is the increase of the nesting depth
of the code. The presence of deeply nested control state-
ments might represent an obstacle to program understand-
ing which, in the extreme case of tens or hundreds of nesting
levels, makes the code completely unmaintainable. On the
other hand, to restructure complicated and tangled jump in-
stances, a deeply nested code structure might be the only
possible solution. We measured the quality of the resulting
code as the maximum level of nesting of control statements
that occur in a file (in the following, max-depth metric).

After max-depth has been calculated for each source file,
a derived metric can be obtained, the mean-max-depth, i.e.,
the average of the max-depth values over the files in the
system under migration.

The last metric we used to evaluate the outcome of goto
elimination is the time taken by our implementation of
each strategy to carry out the elimination. We measured
how many hours the transformation of the whole system (8
MLOC) takes on a high-performance computer composed

1http://asm.objectweb.org/



swi tch ( i ) : {
case 1 :

<s t m t s e q 1 >

i f ( cond )
goto L0 ;

<s t m t s e q 2 >

case 2 :
. . .

}
L0 : s t m t 3 ;

swi tch ( i ) : {
case 1 :

<s t m t s e q 1 >

go to L0 = cond ;
i f ( cond )

break ;
<s t m t s e q 2 >

case 2 :
. . .

}
i f ( go to L0 )

goto L0 ;
L0 : go to L0 = f a l s e ;

s t m t 3 ;

(Original) (Transformed)

Figure 13. Erosa goto-movement transformation: moving a goto out of a switch-case

j l a b e l ( ” a ” ) ;
. . .
j g o t o ( ” a ” ) ;

LDC ” a ”
INVOKESTATIC j l a b e l
. . .

LDC ” a ”
INVOKESTATIC j g o t o

L0
. . .

GOTO L0

(Original Java) (Original bytecode) (Transformed bytecode)

Figure 14. Bytecode transformation to support gotos in Java

of four nodes running Linux. Each node contains two dual-
core processors (Intel Xeon 3.00GHz) and 4Gb of ram.

3.2 Empirical data

After macro expansion, the legacy system consists of
10,988,103 lines of code distributed over 13,195 source
files. This code base contains 531,351 goto statements, or
a mean density of one goto every 21 lines. The original
code presents a maximum max-depth of 28 and a mean-
max-depth of 3.07.

Table 1 reports detailed results of the pattern-based strat-
egy. The second column reports how many times each pat-
tern has been applied, the percentage is the ratio between the
gotos eliminated with the given pattern and the total amount
of gotos eliminated with the pattern-based strategy.

The most adopted pattern (34.3%) is associated with the
continue statement, the most recently introduced new key-
word in the original programming language. This could
mean that a significant amount of the current code was de-
veloped when such a construct was not yet available, or that
the new construct is not yet widely used.

The high number of useless goto (13.6%) does not mean
that in the original code there were many trivial gotos,

Pattern Occurrences
useless goto 15,397 13.6%
if goto 14,145 12.5%
if goto then 6,028 5.3%
goto within switch 486 0.4%
ifelse goto 175 0.2%
continue goto 38,888 34.3%
break goto 14,378 12.7%
while goto 20,562 18.2%
dowhile goto 3,236 2.9%

TOTAL 113,295

Table 1. Results of pattern based strategy

pointing to the next line. It means, instead, that this pattern
appeared in the code as a side effect of the other transfor-
mations.

It should be noted that the simplest patterns (i.e.,
useless goto, if goto, continue goto, break goto and
while goto) were applied more often that the more
complicated ones (i.e., if goto then, goto within switch,
ifelse goto and dowhile goto).

Table 2 compares the results of the adoption of all the



Strategy Goto removed Max-depth Mean-max-depth Time
Pattern-based 21% 29 (+1) 3.48 (+13%) 1h 2”
Bohm-Jacopini TL 79% 30 (+2) 4.48 (+46%) 22”
Erosa (backward) 100% 162 (+134) 10.18 (+232%) 117h 38”
Erosa (forward) 100% 207 (+179) 14.78 (+381%) 144h 22”
JGoto 0% 28 (+0) 3.07 (+0%) –

Table 2. Results in the adoption of the considered goto-elimination strategies

considered strategies. The pattern-based strategy reached a
relatively low rate of elimination (21%), but produced high
quality code, with nesting levels comparable to the origi-
nal ones. Bohm-Jacopini top-level (TL) performed better
(79%) than patterns, in terms of number of gotos elimi-
nated, still with a good quality of the resulting code.

As expected none of these two strategies was able to
achieve complete elimination. However, the resulting code
quality suffered just a minor impact, which justifies their
usage in practice. The maximum level of nesting remains
more or less the same (+1 and +2 respectively). The mean-
max-depth increases in a slightly more sensible way (+13%
and +46%)

Erosa is known to be able to eliminate all gotos in the
code, including irreducible jumps. We applied Erosa both
in backward and forward mode. In both cases, it caused an
unacceptable increase in the maximum (+134 or +179) and
mean (+232% or +381%) level of nesting. Moreover, the
amount of time needed to apply this strategy is consider-
ably higher than the pattern-based and Bohm-Jacopini TL
strategies.

The strategy based on JGoto allows full preservation of
the code quality, but it does not remove any goto. As a
backup strategy, it is supposed to be used only if the se-
lected strategies do not achieve complete goto removal and
if the remaining gotos represent a substantial amount that
cannot be handled manually. The costs of this operation are
not in code transformation within the original programming
language. In fact, this strategy can be applied only dur-
ing translation to Java, hence its cost is partially embedded
into the translation costs. Some extra cost is paid whenever
the migrated system is compiled, since the generated byte-
code has to be processed by our ASM bytecode transformer
which replaces static invocations to jlabel and jgoto
with the corresponding bytecode constructs. Our prelimi-
nary estimates indicate a negligible compilation overhead
due to the bytecode transformation made by ASM. Another
penalty is paid at runtime, because compiler optimizations
must be disabled when producing the bytecode, so that the
pattern manipulated by the ASM tool remains recognizable
and uncorrupted. However, just in time optimizations that
are carried out dynamically remain possible. In Table 2,
no code transformation time is reported, since the original

code is left untouched and the strategy comes into play only
when migrating the original code to Java.

4 Discussion

Considering the data reported in the previous section,
adoption of the Erosa strategy is not feasible. In fact, it
is not possible for the developers to maintain a code base
with nesting level greater than one hundred. Such a nesting
level makes any code change impossible or highly likely to
introduce bugs. Comprehension of such code was judged as
a “mission impossible” task by programmers. Familiarity is
completely lost, as well as resemblance of the transformed
code with the original one. Although we do not have data
to claim it, we expect that any general purpose goto elimi-
nation strategy that is capable of removing all gotos in the
code produces unmaintainable and unfamiliar code, once
applied to the legacy system being migrated in our project,
because of the tangled control flow structure implemented
in the code.

At the other extreme, leaving all gotos in the code and
using the JGoto strategy to render them in Java preserves
nesting level and familiarity, but it misses the opportunity
of improving the code structure in the ongoing migration
process. The resulting code would be perfectly readable
and maintainable for the current programmers of this sys-
tem. It would be regarded as ugly Java code with uncom-
mon and unfamiliar structure by any new Java program-
mers hired by the software company. No Java programmer
would probably ever organize the code in that way. More-
over, the resulting code after migration would not be “true”
Java code, since it contains placeholder method invocations
(jlabel(), jgoto()), which alter the intraprocedural
control flow. The result would be Java code with gotos.

The pattern-based strategy and the Bohm-Jacopini TL
strategy are partial, in that they leave some goto statements
in the code, but they both produce quite good code. The
main strength of the pattern-based strategy is its small im-
pact on the code. The result was regarded as an improved
version of the original code by the programmers. The
Bohm-Jacopini TL strategy offers wider coverage (it elimi-
nates more gotos), but still with an acceptable impact on the
code quality.



Based upon the considerations made above, we dis-
carded Erosa and decided to apply the pattern-based strat-
egy and the Bohm-Jacopini TL strategy. The gotos that still
remain in the code will be kept when migrating to Java, by
adopting the JGoto strategy. However, JGoto represents a
temporary solution, because the elimination of the migrated
gotos remains an important long term goal. They will be
manually removed, as soon as the various modules would
undergo ordinary evolution. More generally, we expect the
migrated code to keep several links with the original pro-
gramming language and execution environment. Another
example is the data model. The Java classes obtained from
the migration of the existing data structures often deviate
from the principles of “good” object-oriented design. For
instance, to support multiple views on the same data, the
functional equivalent of a union is produced by the trans-
lator. However, a long term goal is removing such links
with the past and evolving the migrated Java code so as to
become truly object oriented and Java style.

The goto-elimination task that we executed on the legacy
system under migration gave us the opportunity to consider
some relevant aspects of reengineering that arise when deal-
ing with large, complex legacy systems. The lessons that we
learned can be generalized as follows:

1. Assessment of the output of migration involves mul-
tiple dimensions that often address conflicting needs.
One instance of such a dichotomy was removing all
gotos vs. producing maintainable code.

2. Given a complex system, no single solution is expected
to solve all instances of the problem to be addressed.
The variety of cases that can be present in the system
imposes the evaluation and combination of multiple al-
ternatives.

3. Solutions that are appealing for their theoretical prop-
erties (e.g., elimination of all gotos with a number of
extra variables linear with the number of labels and no
code duplication, as offered by Erosa) might reveal in-
appropriate in practice, because of the specific features
of the system under migration.

4. Backup solutions (such as JGoto) are important to let
the project proceed even when major obstacles are en-
countered. Although they may introduce some “code
smells”, they are a milestone toward the “ideal” solu-
tion.

5. Migration projects should have short term and long
term goals. Not everything can be achieved in the short
term and often compromises are necessary to be able
to deliver the expected results. However, a long term
strategy should also be defined, so that improvement
continues even when migration is over.

5 Related works

Criticisms on the usage of unstructured constructs have
been raised for the first time forty years ago by Dijkstra [6].
This had a major impact on the scientific community and,
immediately, Dijkstra’s view about goto statements became
widely accepted. However, later, a debate has been started
by opponents [13] and supporters [9] of Dijkstra’s position.

Since the goto problem has been identified, several tech-
niques have been proposed to remove them and obtain struc-
tured code. The most relevant for this paper are the work
presented by Bohm and Jacopini [3] and by Erosa [8, 7].
Bohm and Jacopini [3] formally showed that any algo-
rithm that can be implemented using gotos can be also im-
plemented by using structured programming. Instead of
providing a transformation algorithm, they proposed a set
of patterns and transformation rules to normalize a flow-
graph. A practical implementation has been provided later
by Peterson [11] based on node splitting to transform any
flowchart into a well-formed flowchart (corresponding to a
program with only ifs and loops properly nested). A similar
approach has been used by Williams [16, 17] based on the
identification of some known unstructured sub-graphs. Un-
structured sub-graphs are then changed into their equivalent
structured graphs, i.e. graphs that can be decomposed into
sequences, selections and loops. Finally, an alternative ap-
proach to node splitting has been proposed by Ashcroft [1].
It relies on introducing fresh program variables and on the
usage while loops.

The method proposed by Erosa [8, 7] takes advantage of
program transformations. Her work was originally devoted
to implement an optimizing compiler, but it has more gen-
eral applicability. The transformation is performed in two
steps, a preliminary normalization and a successive elim-
ination of gotos. In the normalization, the goto is moved
through the code until it reaches the same level of nesting as
its target label. After that, the goto is replaced by an equiv-
alent structured statement. Erosa presented a detailed list of
transformations for both phases, showing how the program
semantics is maintained through the process.

A relevant approach has been also presented by Baker [2]
to eliminate most of the unstructured statements in Fortran
code. Her purpose was quite different from ours. She was
interested mostly in improving the readability of the code,
even when this entails major code changes (restructuring),
which are allowed in her context. We are, instead, interested
in a final code that is as similar as possible to the original
one (familiarity preserved). An approach that implies major
code changes has also been proposed by Cifluentes [4], to
recover understandable source code starting from binaries.

Two large industrial legacy systems (5.2 Mloc in total)
have been subjected to goto-elimination by Veerman [15].
Similarly to us, his approach was based on patterns, in par-



ticular, the ones proposed by Sellink [14] for COBOL/-
CICS. However, while we require high similarity with the
original code, Veerman’s approach leads to major changes,
that improve maintainability. In contrast to us, he does not
allow the introduction of novel variables, but he allows code
duplication (to a limited extent).

Mueller [10] allows code duplication to remove unstruc-
tured statements. This solution is not viable for us because
it involves major code modifications, with a potential ex-
plosion of the already large size, and because the under-
standability of the final result would probably be not accept-
able. Ramshaw [12], instead, is willing to eliminate gotos
while preserving the program structure. He showed that this
task can be achieved without code duplication only in case
the program enjoys the reducibility property (no irreducible
jump present).

A trade off between code replication and conditional
expression complexity has been presented by Zhang and
D’Hollander [18]. Their approach relies on the concept of
hammock graph, a subgraph with a single entry point and a
single exit point.

To our knowledge, no prior work presented a real assess-
ment of alternative goto elimination strategies on a large
industrial case study, where different goto-elimination ap-
proaches are compared in terms of maintainability of the
resulting code.

6 Conclusion and future work

The problem of removing unstructured programming
constructs, no longer supported by most modern program-
ming languages, has been broadly addressed in the past. In
this paper we presented our experience in eliminating goto
statements from a real, large legacy system, in the context
of its migration to Java.

We compared the results of different strategies in terms
of completeness and resulting code quality. Complete so-
lutions turned out to be not feasible because of the poor
quality of the final code. In practice, the most appropriate
solution was to trade completeness for higher code qual-
ity. A general lesson that we learned in the execution of
the goto elimination task is that compromise, partial solu-
tions are often necessary to meet the conflicting goals of a
migration project, and long term objectives should be set to
address the problems for which only backup solutions are
viable in the short term.

In the future, we will face the next steps of the migration
project. Several challenging problems will be addressed,
such as the transformation of the persistent data model from
indexed ISAM files to relational database, translation of ex-
isting data structures to Java classes, and migration of the
user interface from character oriented to GUI.
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