
Migrating Object Oriented code to Aspect Oriented Programming

Mariano Ceccato
Fondazione Bruno Kessler—IRST, Trento, Italy

ceccato@itc.it

Abstract

Aspect Oriented Programming (AOP) is a new program-
ming paradigm that offers a novel modularization unit for
the crosscutting concerns. Functionalities originally spread
across several modules and tangled with each other can be
factored out into a single, separate unit, called an aspect.

We investigated automated techniques that can be used
to support the migration of existing Object Oriented Pro-
gramming (OOP) code to AOP. To migrate an application to
the new paradigm, a preliminary identification of the cross-
cutting concerns is required (aspect mining). Then refac-
toring is applied to transform the scattered concerns into
aspects. The proposed methods have been assessed on case
studies for a total of more than half a million lines of code.

1 Motivation

Software systems are so complex that they can not be
developed without dividing them into sub-modules. The
main drawback in this approach is that there are some sys-
tem functionalities that can not be assigned to a single mod-
ule in the system decomposition. Examples of functionali-
ties that suffer this problem are persistence, error manage-
ment and logging. Since the code fragments that implement
these concerns are spread across many units, they are called
Crosscutting Concerns. Crosscutting concerns violate the
modularization goal that a system is decomposed into small
independent parts: their main characteristic is that they are
transversal with respect to the units in the principal decom-
position, i.e., their implementation consists of a set of code
fragments distributed over a number of units.

Reasoning about crosscutting concerns can be quite dif-
ficult, because it requires to deal with a lot of modules at
the same time, in that there is no modularization support
for them. For example, to deal with the persistence func-
tionality, we have to understand all the pieces of code that
perform persistent storage and retrieval. Crosscutting con-
cerns are sources of problems, because their modification

requires that all code portions where such a functionality
is implemented be located (problem: scattering) and that
all ripple effects associated with the changes be determined
(problem: tangling).

Aspect Oriented Programming [5] (AOP) aims at solv-
ing the two main problems of crosscutting concerns, namely
scattering and tangling, by providing a unique place where
the related functionalities are implemented. A new mod-
ularization unit, called aspect, can be defined to factor out
all code fragments related to a common functionality, other-
wise spread all over the system. For example, an application
can be developed according to its main logical decomposi-
tion, while the possibility to serialize and de-serialize some
of its objects can be defined in a separate aspect.

2 Problem definition

In order to extend the benefits of AOP to already exist-
ing systems, a significant reverse and re–engineering effort
is required. The effort consists, first of all, of analysing the
existing application source code looking for those portions
that implement the crosscutting functionality. The second
part of the work is the transformation of the existing pro-
gram into an aspect-oriented reformulation.

In this work, the problem of migrating an existing system
from OOP to AOP has been addressed by dividing it into its
two composing phases. Identification of the code portions
that are most suitable for migration to aspects is conducted
during the aspect mining phase, in which the source code
is analyzed and candidate aspects are located. Then, in the
refactoring phase, the code is transformed, so that crosscut-
ting concerns are realized by separate aspects instead of the
original classes. The theoretical properties of the proposed
methods are validated by a number of experiments.

During migration, human guidance is both necessary
and desirable; the process requires value-judgments regard-
ing trade-offs best made by a maintenance engineer. The
process of migrating existing software to AOP is highly
knowledge-intensive and any migration toolkit therefore
should include the user in the change-refine loop. However,
notwithstanding this inherent human involvement, there is



considerable room for automation.

3 Contribution

The contribution consists in the definition and in the as-
sessment of a migration process for existing software sys-
tems from traditional programming paradigms (OOP) to as-
pect oriented programming. This contribution is articulated
into many results [3].

We defined a novel method to identify automatically the
crosscutting concerns present in an existing OOP applica-
tion, dynamic aspect mining [7]. It is based on the analysis
of the traces of use-case executions. The only assumption is
that some of them exercise the crosscutting functionalities
to be separated into aspects. This corresponds to traceability
from requirements (that correspond to use-cases) to imple-
mentation. In fact, whenever a requirement has a scattered
and tangled implementation, it is possible to define a use-
case for such a requirement, which exercise precisely the
non-modularized functionality.

The same technique has been compared with two other
approaches (fan-in analysis [6] and identifier analysis [9]),
by applying all of them to a common benchmark case [4].
They have been mutually compared and their respective
strengths and weaknesses have been assessed. Moreover,
by identifying where techniques overlap and where they are
complementary, interesting combinations have been pro-
posed.These combinations have been applied to the same
benchmark application to verify whether they perform bet-
ter than the original techniques.

We defined the notion of aspectizable interfaces [8] as
those interfaces that collect transversal properties that cross-
cut the principal decomposition, in contrast to the more
standard notion of interface which collects abstract proper-
ties of the principal decomposition, shared by all the classes
implementing such an interface.

A technique was then proposed for the aspectization of
interface implementations. Identification of the interfaces
that are most suitable for migration to aspects is conducted
during an aspect mining phase, in which the source code
is analyzed and candidate aspects are located. Then, in the
refactoring phase, the code is transformed, so that interface
implementations are realized by separate aspects instead of
the original classes. We have implemented a toolkit to sup-
port the aspectization of interface implementations and we
have applied it to the source code of some existing applica-
tions. The aim of the experimental work was to assess the
feasibility of the transformation and to evaluate the poten-
tial benefits.

Six refactorings have been introduced to support migra-
tionfrom OOP to AOP. They have been combined with ex-
isting OO transformations in a tool that automates them [1].
The effectiveness of the approach was investigated and

some case studies provide evidence suggesting that migra-
tion can be achieved with a simple set of refactoring trans-
formations [2]. The case studies also point to the impor-
tance of enabling transformations which transform an OO
program into a semantically equivalent OO program, in
which the refactorings become applicable.

All the proposed techniques have been implemented into
tool prototypes which are publicly available. Such tools
have been used to apply the presented methods on a large
set of case study applications for a total of more than half
a million lines of code. In particular, one of these appli-
cations, JHotDraw1, has been subjected to all the methods.
In order to measure the effects of migration,an empirical
study has been conducted. It allowed us to assess the bene-
fits achieved after migration, in terms of source code under-
standability and maintainability [8].

References

[1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella.
Automated refactoring of object oriented code into aspects.
In Proc. of the International Conference on Software Main-
tenance (ICSM 2005), pages 27–36. IEEE Computer Society,
September 2005.

[2] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella.
Tool-supported refactoring of existing object-oriented code
into aspects. IEEE Transactions on Software Engineering,
32(9):698–717, 2006.

[3] M. Ceccato. Migrating Object Oriented code to Aspect Ori-
ented Programming. PhD thesis, University of Trento, Italy,
December 2006.

[4] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwé. Applying and combining three different aspect
mining techniques. Software Quality Journal, 14(3):209–231,
September 2006.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect oriented programming.
In Proc. of the 11th European Conference on Object Oriented
Programming (ECOOP), vol. 1241 of LNCS, pages 220–242.
Springer-Verlag, 1997.

[6] M. Marin, A. van Deursen, and L. Moonen. Identifying as-
pects using fan-in analysis. In Proc. of the 11th IEEE Work-
ing Conference on Reverse Engineering (WCRE 2004), pages
132–141, Delft, The Netherlands, November 2004. IEEE
Computer Society.

[7] P. Tonella and M. Ceccato. Aspect mining through the for-
mal concept analysis of execution traces. In Proceedings of
the 11th Working conference on Reverse Engineering (WCRE
2004), pages 112–121. IEEE Computer Society, November
2004.

[8] P. Tonella and M. Ceccato. Refactoring the aspectizable inter-
faces: an empirical assessment. IEEE Transactions on Soft-
ware Engineering, 31(10):819–832, October 2005.

[9] T. Tourwe and K. Mens. Mining aspectual views using for-
mal concept analysis. In Proc. of SCAM 2004, pages 97–106,
Chicago, Illinois, USA. IEEE Computer Society.

1http://www.jhotdraw.org/


	Motivation
	Problem definition
	Contribution

