Electronic Communications of the EASST

Volume X (2007)

Proceedings of the
Third International ERCIM Symposium on
Software Evolution
(Software Evolution 2007)

The Use of Executable FIT Tables to support Maintenance and Evolution
Tasks

Filippo Ricca, Marco Torchiano, Massimiliano Di Penta, Mariano Ceccatd?aolo Tonella

10 pages

Guest Editors: Tom Mens, Maja D’Hondt, Kim Mens

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

The Use of Executable FIT Tables to support Maintenance and
Evolution Tasks

Filippo Ricca®, Marco Torchiano?, Massimiliano Di Penta’, Mariano Ceccatd'
and Paolo Tonell2

L filippo.ricca@disi.unige.it
Unit CINI at DISI, Genova, Italy

2 torchiano@polito. it
Politecnico di Torino, Italy

3 dipenta@unisannio.it
University of Sannio, Benevento, Italy

4 ceccato@itc.it
5 tonella@itc.it
Fondazione Bruno Kessler—IRST, Trento, Italy

Abstract: Acceptance testing is a kind of testing performed prior to software de-
livery. In the agile approach, acceptance test cases can be spbyifedlysts and
customers during the requirement elicitation phase and used to suppoet/tiey
ment/maintenance activities.

This paper reports a pilot experiment that investigates on the usefulhese-o
cutable acceptance test cases, developed by using FIT (Framewdritegrated
Test), during software maintenance and evolution activities. The prelimmeary
sults indicates that FIT tables help developers to correctly perform the mainte-
nance/evolution tasks without affecting the productivity.

Keywords: Empirical studies, acceptance testing, FIT tables.

1 Introduction

FIT (Framework for Integrated Test) is an open source framewor#l tsexpress executable
acceptance test cases in a simple way. FIT lets analysts write acceptasc@-t€stables)
using simple HTML tables. Programmers write code (Fixtures) to link the tesscaih the
System to verify. Then, in a test-driven development scenario, thégrpetheir development
or maintenance task being supported by the execution of these test cases.

In this paper we describe a controlled experiment aimed at assessingewhEkhables are
helpful in maintenance tasks. We asked some master students to execut®gecte’e mainte-
nance and evolution interventions, providing them the Systems to be maintathedhad/without
the FIT Tables. The research questions that we are interested in arpease:

RQ1: Does the presence of FIT tables help programmers to execute maintens€e tas

1/10 Volume X (2007)

mailto:filippo.ricca@disi.unige.it
mailto:torchiano@polito.it
mailto:dipenta@unisannio.it
mailto:ceccato@itc.it
mailto:tonella@itc.it

The Use of Executable FIT Tables to support Maintenance and Evolution Tasks Eﬁ

RQ2: Does the presence of FIT tables improve pineductivityin the execution of maintenance
interventions?

The dependent variable “correctness” was measured by exercisaitgenative JUnitaccep-
tance test suite, the variable “productivity” using time sheets where stualentsated start and
stop time expressed in minutes. Preliminary results of our experiment shavidThables help
developers to correctly perform the four maintenance/evolution tas&s giithout affecting the
productivity (the difference between the two groups considering the timenplete the tasks
was not significant).

Although there are several papefsaf06, RMMO05] and books MCO05] describing acceptance
testing with FIT tables, only a few works report empirical studies about Hi€ most related
work is the paper by Melnilet al. [MRMO0A4]. It is a study focused on the use of FIT user ac-
ceptance tests for specifying functional requirements. It has beatuctad at the University
of Calgary and at the Southern Alberta Institute of Technology. In thismxent, the authors
showed that the use of FIT tables and the possibility to execute them improvertipgehension
of requirements. In another preliminary studyRP07 some of the authors of the present paper
found a statistically significant evidence that the availability of FIT tables altbwgrogram-
mers to complete more maintenance tasks. However, they did not measure,déd w the
present study, whether completed maintenance tasks were correct.

The paper is organized as follows: sectdibriefly presents the Framework for Integrated
Test (FIT). Sectior8 describes the design of the empirical study that we conducted. Results are
presented in Sectiofdwhile conclusions and future works are given in Section

2 FIT tables, Fixtures and Test Runner

The FIT tables serve as the input and expected output for the testse Eiglupws an example of
Column FIT tables, a particular kind of table (s&&J05] for the other types such astion, row,
etc.) where each row represents a test case. The first five columimparealues Name Sur-
name AddressDate of birthandCredit/Debi) and the last column represents the corresponding
expected output valudember number})

Developers write the Fixtures to link the test cases with the System to verifgmfonent in
the framework, the Test Runner, compares FIT table data with actuakvaliiained from the
System. The Test Runner highlights the results with colors (green = tardc= wrong). See
the relationships among FIT tables, Fixtures, Test Runner and Systesntestlin Figure.

3 Experiment definition, design and settings

We conceived and designed the experiment following the guidelines biitvdtal.[WRH0Q].
Thegoal of the study is twofold: to analyze the use of FIT tables withgheposeof evaluating
their usefulness during maintenance tasks and to measure the effogt)(ifTdre perspectivas

both of Researchersevaluating how effective are the FIT tables during the maintenance activ-
ities, and ofProject managersevaluating the possibility of adopting the FIT tables in her/his

1 http:/;www.junit.org/

Proc. Software Evolution 2007 2/10

@ ECEASST

& Java - FilNesse-Local - Eclipse SDK

File Edit Mavigate Search Project Run Window Help
= (0% AR G- B ! amue [$5: et
LH - B i@ i@ &
=8
v B
FrontPape.
Fixtures.Popuiate
| Hame Surnams | Adcress | Date of birth | Credit/Debit Member rumber ()
Filippa Ricca [Roada |26-05-196% |0 1592
|Gine Ressi |Roadb [17-1972 |0 1974
| Mario Dortn |Roade |S5.1574 |0 1974
£ >

Figure 1: Example of Column FIT table. FIT table column’s names without plaesis represent
input; parenthesis indicate output.

organization. Theontextof the experiment consists of tvabjects— two Java systems — and of
subjects 13 students from a master course. All the material of the experimentésutocu-
ments, questionnaire, etc.) will be available for replications on a Website soo

3.1 Hypotheses

The null hypotheses for the study are the following:

e Hos The availability of FIT test cases does not significantly improve the corestaf the
maintained source code.

e Ho, The availability of FIT test cases does not significantly affect the eifficitie mainte-
nance task.

The context in which we investigate the above question has the followingateaistics: (1)
system requirements have been written in detail, (2) automated acceptdadeatesbeen pro-
duced in the form of FIT Tables and (3) some change requirements @nessed only in textual
form while other include also an automated FIT test case.

3.2 Treatments
The treatments for the main factor (availability of test cases) are:

e (+) textual change requirements enhanced with FIT tables and fixtutssettabling test
case execution;

¢ (-) only textual change requirements.

3/10 Volume X (2007)

The Use of Executable FIT Tables to support Maintenance and Evolution Tasks Eﬁ

Output Table

= -

(4
Tester/Developer \ e LY,

1
—
Customer/ @ . I\ / . o’
Analyst @;‘l ;Ls G o)

User Story ===

System

Fit Table

Figure 2: The complete picture

Other independent variables (not accounted in this paper) to be coethicieuld be: the ob-
jects, the labs and the subjects’ ability, if available.

3.3 Objects

The objects of the study are two simple Java programs realized by studemtzza andAve-
Calc.

LaTazza is a coffee maker management support application. LaTazza helpsedasgdn
manage the sale and the supply of small-bags of beverages (Coffekeaan-tea, etc.) for the
Coffee-maker. The application supports two kinds of clients: visitors ol@raps (university
employees and professors). Employees can purchase beverager acascredit, visitors only
cash. The secretary can: sell small-bags to clients, buy boxes ofgegefa box contains 50
beverage of the same kind), manage credit and debt of the employeek,thlk inventory and
check the cash account. The system consists of 18 Java classes ti@raf &d21 LOCs. Its
requirement document comprises 9 requirements (see iafue the first four requirements)
complemented with a total of 16 FIT tables.

AveCalcis a simple “desktop application” that manages an electronic register (rboofd
for master students. A student can add a new exam to the register, remexistang exam and
remove all exams. An exam has a hame, a CFU (a positive number thataeptiee university
credits) and a (optional) vote. An exam without vote is an exam not takbe.vdte must be
included between 0 and 30 (or equal). If the vote-is 18 then the vote is positive, otherwise
it is negative. It is possible to save the register and to load it (all data orpmsifive exams).
AveCalc computes some statistics: average of the exams passed, total w@i@Gb&r, number
of exams passed, (hypothetical) degree vote and whether the studepadsed a number of
exams sufficient to defend his/her thesis. The system consists of 8laaga<for a total of

Proc. Software Evolution 2007 4710

Ea ECEASST

Table 1. Some Requirements for LaTazza.

R1 | The secretary can sell small-bags of Coffee, Arabic Coffea, Lemon-tea and Camomile-tea.
The cost of each small-bag is 0.62 euro. The secretary cact Hedekind of beverage and

the number of small-bags and select the bugeit If there are enough small-bags then

the sale is done, otherwise the sale can not be done.

R2 | The secretary can register a payment. She/He has to selenhiileyee that perform the payment.
This payment can extinguish a debt of the employee or it canindetlre as advance fee.
The payment must be 0.

R3 | The secretary can buy boxes of beverages. A box contain 50-bags of beverages all of the
same kind (i.e, 50 coffee or 50 Arabic coffee, etc.). Each lost 81 euro.

R4 | The secretary can request the list of debtors with theirsdebt

1827 LOCs. Its requirement document comprises 10 requirements compéeimath a total of
19 FIT tables.

3.4 Population

The subjects were 13 students from the course of Laboratory of Seftvaalysis, in their
last year of the master degree in computer science at the University wioTrdhe students
had a good knowledge about programming, in particular Java, and eagayenowledge about
software engineering topics (e.g. design, testing, software evolutiab)e@&s have been trained
in meaning and usage of FIT tables and Fitnésie., the tool that implement the FIT table
approach used in the experiment.

3.5 \Variables and experiment design

The dependent variables to be measured in the experiment aredbeorrectnesand theeffort
required to perform the maintenance task. The code correctnessdsesddy executing a JUnit
acceptance test suite — developed by someone different from whiogdedehe FIT tables —
and measuring the percentage of test cases passed and failed.orheatfmeasured by means
of time sheets (students marked start and stop time for each change reaqusrenmemented).
Time is expressed in minutes.

We adopt a balanced experiment design (S&&RIH00]) intended to fit two lab session (2-
hours each). Subjects were split into four groups, each one workihghnl on all task of a
system with a treatment and working on Lab 2 on the other system with a diffeeatment
(see Table).

3.6 Material and Procedure

As already mentioned, the test cases are written in the form of FIT tabletharslipporting
environment is a FitNesse wiki. The development environment is based &clipse IDE with
the FitNesse plugih For each group we prepared an Eclipse project containing the seftwar

2 http://www.fitnesse.org
8 http://lwww.bandxi.com/fitnesse/

5/10 Volume X (2007)

The Use of Executable FIT Tables to support Maintenance and Evolution Tasks Eﬁ

Table 2: Experimental design (S1 = LaTazza, S2 = AveCalc; + = with Fllesab = without
FIT tables).

[[Group A | GroupB [GroupC [GroupD]
Lab 1 S1+ S1- S2- S2+
Lab 2 S2- S2+ S1+ S1-

Table 3: Change requirements for LaTazza.

CR1 | Thereis an error in show debtors. Only employees with negativ

balance must be visualized. Fix the error.

CR2 | Thereis an error in update employees. Not all the

fields are updated. Fix the error.

CR3 | The vendor of boxes of beverages changed his selling policy.

Each five bought boxes one is added as a gift.

CR4 | Change price of small-bags. Now the total price of the be\eséigat

an employee would like to buy depends on (i) the number of smagk bought
(ii) if the beverage is seasonal or not. If a employee buys a eamismall
bags minor than 5 no discount is applied. If a employee buys a euoftsmall
bags included between 5 and 10 of a seasonal beverage, oomnliss applied;
but if the beverages are not seasonal a 1 euro discount iedppl

and a FitNesse wiki with both requirements and change requirements. djeetpiwere zipped
and made available on a Web server. The experiment was introducedkeassignment about
FitNesse.

Every subject received:

e summary description of the application

e instructions to set-up the assignment (download the zipped Eclipse projeottiitnand
start the embedded Fitnesse server)

e A post experiment questionnaire

For each Lab the subjects had two hours available to complete the four maiceetaaks:
CRL1 - CR4 (see tablg) . The first two change requirements (corrective maintenance) aye ver
easy to implement, while the third and fourth require more work to locate the caecttanged
and implementing the change (evolution). The maintenance/evolution tasis taro different
systems, are very similar and of comparable difficulty.

The post experiment questionnaire aimed at both gaining insights abotudeats’ behavior
during the experiment and finding justifications for the quantitative restitscluded questions
about the task and systems complexity, the adequacy of the time allowed to cothpléask
and the perceived usefulness of the provided FIT tables.

Before the experiment, subject were trained by means of introductoryrésc{ lessons 2
hours each) and laboratories (4 hours) on FIT. After subject vegr@amly assigned to the four
groups, the experiment execution followed the steps reported below:

1. We delivered a sheet containing the description of the system.

Proc. Software Evolution 2007 6/10

Ea ECEASST

. Subjects had 10 minutes to read the description of the system and unddt.sta

N

3. Subjects had to write their name and start time on the delivered sheet.

4. Subjects had to download at the given URL the eclipse project and import
5. Subjects had to launch the Fitnesse wiki of the application.

6. Subjects had to write the stop time for installing the application.

7. For each change requirement (CR1-CR4):

(a) Subjects had to fix the application code (LaTazza or AveCalc) in eodeiake the
test cases pass (treatment +) or to satisfy the change requirement (tregtme

(b) Subjects had to record the time they use to apply change task (start/stap time)

0o

. Subjects were asked to compile the Post Experiment Questionnaire.

4 Experimental results

There were 13 subjects divided into three groups of three and ong gfdaur. They took an
median of 5 minutes to set up the environment and they worked for a medighnointites on
the tasks. The subjects deemed as complete an average of 2.75 taslksuovasKs assigned.
The subjects worked on each task for a time ranging from 11 to 39 minutesmatieaage of 21.
The distributions of passed tests and time required to complete tasks arermai (Bhapiro-
Wilk test p=0.026 and p=6- 10 ° respectively) therefore we will use the Mann-Whitney test
for both hypotheses.

4.1 Data analysis

To test the first hypothesislfs) we compared the number of acceptance tests passed by the pro-
gram whose change requirements included FIT tables or not. The bexpioharizing the per-
centage (expressed as fraction) of passed test cases is presdfitrd@3. By applying a one-
tailed Mann-Whitney test, we found the difference to be statistically signifiganalue=0.03,
therefore we can reject the null hypothesis.

The second hypothesis can be tested by looking at the time required to cothpldéesks.
Since not all students completed all the tasks and since the tasks’s diffiauky both among
tasks and systems, we analyzed the time for each task. Flglrews the boxplot of times used
by subjects to complete each task; filled boxes correspond to the presieREE tables. To
test the second hypothesis we used a Mann-Whitney test. Zabfeorts the p-values of Mann-
Whitney tests for each task. Overall in 5 cases out of 8 (see Fijune observe a reduction
of time (considering the median) when FIT tables are present but the onijicigt difference
(highlighted in boldface i) is found for the first task on system AveCalc. With only this data
we cannot reject the null hypothesig,. Further experiments are necessary to answer our second
research question.

7110 Volume X (2007)

The Use of Executable FIT Tables to support Maintenance and Evolution Tasks Eﬁ

1.0

0.8

0.4

Fraction of tests passed

o

0.0
|

——— [}
T T
no yes

Fit tables present

Figure 3: Boxplot of fraction of passed tests.

System
AveCalc LaTazza
Task | p-value [medianyes | medianno |[p-value [medianyes | medianno
1 0.01 8 18 0.83 12 15.5
2 0.33 6 12 0.57 15 9
3 1.00 40 43 0.53 39 29
4 0.63 28 17 0.45 10 26

Table 4: Analysis results on times to complete tasks.

4.2 Analysis of Survey Questionnaires

The analysis of the survey questionnaires that the subjects filled-in aftbrexperiment can
be useful to better understand the experimental results. In this paperalyses are supported
only by descriptive statistics. Answers are on a Likert sc@led9 from 1 (strongly agree) to
5 (strongly disagree).

Overall, all subjects agreed they had enough time to perform the tlsi&d €nough time to
perform the lab taskoverall mean = 2.35) and the objectives were clear enoligh ¢bjectives
of the lab were perfectly clear to meverall mean = 1.73). The description of the systems were
clear (overall mean = 2.08) as the change requirements (overall meaB)= 2.3

Similarly to Melnik et al. [MRMO04], we can observe that the students deemed the FIT tables
and the capability of running tests automatically useful enough. The possilbiégeouting FIT
tables as tests was perceived useful for performing the ch&hge(ng FIT tables are useful in
maintenance/evolution task®iean = 1.69). Moreover, FIT tables were also considered useful
“per-se” to clarify change requirementsIT tables are useful to clarify change requirements
mean = 1.92). Se&[TCT07 for another experiment with students treating the research question:
“FIT tables are able to clarify (change) requirements?”.

Proc. Software Evolution 2007 8/10

(&

ECEASST

60 70
|
[¢]

50
|

30
|

20
F
1

Time to complete task [min]
40
l
o
[[}
-

o
0 o
|
-1

Fitpresent: no yes no yes no yes no yes| no yes no yes no yes no yes
Task: 1 2 3 4 [1 2 3 4
System: AveCalc | LaTazza

Figure 4: Boxplot of time required to complete task.

4.3 Threats to Validity

Threats taconclusion validitycan be due to the sample size (only 13 subjects) that may limit the
capability of statistical tests to reveal any effect. Threaesxternal validitycan be related to (i)

the simple Java system chosen and (ii) to the use of students as experirabjgetiss Another
threat to external validity is that (iii) the results are limited to FIT-based acoeeteest suites,
which may be rather different from other approaches to acceptartoegteSurther studies with
larger systems and more experienced developers are needed to aanémnirast the obtained
results.

5 Conclusion and Future Works

This paper reported a controlled experiment aimed at assessing therISessEcutable accep-
tance test suites in the context of maintenance and evolution tasks. Theedb&snlts indicates
that FIT tables significantly help developers to correctly perform the maintantasks. Other
than looking at requirements, developers continuously execute FITasss ¢o (i) ensure that
FIT tables related to the change requirements passed and (ii) use appliegtidrements FIT
table to regression test the existing pieces of functionality.

Regarding productivity, FIT table may or may not help: on the one hang, phevide a
guideline to perform the maintenance task; on the other hand, they requiretimaeinderstood

9/10 Volume X (2007)

The Use of Executable FIT Tables to support Maintenance and Evolution Tasks Eﬁ

and executed. Further investigation is anyway necessary to answsramnd research question.

Future work will aim at replicating this study with a larger population of studemith pro-
fessionals and by using larger and more realistic experimental objects.oMsw metrics (e.q.,
number of change requirements completed) and other factors suchjestsubility and expe-
rience will be taken into account.

Bibliography

[Aar06] J. Aarniala. Acceptance testing. In whitepaper.
www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pddctober 30 2006.

[MCO05] R. Mugridge, W. Cunninghantit for Developing Software: Framework for Inte-
grated TestsPrentice Hall, 2005.

[MRMO04] G. Melnik, K. Read, F. Maurer. Suitability of FIT user acceptanests for specify-
ing functional requirements: Developer perspectiveExtreme programming and
agile methods - XP/Agile Universe 200p. 60—72. August 2004.

[Opp92] A. N. OppenheimQuestionnaire Design, Interviewing and Attitude Measurement
Pinter, London, 1992.

[RMMO5] K. Read, G. Melnik, F. Maurer. Examining Usage Patters of the Acceptance
Testing Framework. IfProc. 6th International Conference on eXtreme Program-
ming and Agile Processes in Software Engineering (XP2d®5)Lecture Notes in
Computer Science, Vol. 3556, Springer Verlag: 127-136 2005. J3w23 2005.

[RTCTO7] F.Ricca, M. Torchiano, M. Ceccato, P. Tonella. Talkingt¥ean Empirical Assess-
ment of the Role of Fit Acceptance Tests in Clarifying RequirementSthrinter-
national Workshop On Principles of Software Evolution (IWPSE 2087) 51-58.
IEEE, September 2007.

[TRDO7] M. Torchiano, F. Ricca, M. Di Penta. "Talking tests”: a Prelinmin&xperimental
Study on Fit User Acceptance TestsIBEEE International Symposium on Empirical
Software Engineering and Measuremdi appear) 2007.

[WRH*00] C.Wohlin, P. Runeson, M.#&st, M. Ohlsson, B. Regnell, A. Wegésl.Experimenta-
tion in Software Engineering - An Introductiokluwer Academic Publishers, 2000.

Proc. Software Evolution 2007 10/10

	Introduction
	FIT tables, Fixtures and Test Runner
	Experiment definition, design and settings
	Hypotheses
	Treatments
	Objects
	Population
	Variables and experiment design
	Material and Procedure

	Experimental results
	Data analysis
	Analysis of Survey Questionnaires
	Threats to Validity

	Conclusion and Future Works

