Is AOP code easier or harder to test than OOP code?

Mariano Ceccato, Paolo Tonella and Filippo Ricca
ITC-irst
Centro per la Ricerca Scientifica e Tecnologica
38050 Povo (Trento), Italy
{ceccato, tonella, ricca} @itc.it

Abstract

The adoption of traditional testing techniques with AOP
systems is expected to be quite hard, because of the novel
constructs offered by AOP. For example, testing should val-
idate the pointcut designators, which define the execution
points at which aspects apply. These may be difficult to test
when they involve complex dynamic conditions, depending
on the execution stack. Other sources of difficulties are as-
sociated with the aspect composition order, with the inter-
type declarations, and with the changes in normal and ex-
ceptional control flow, possibly introduced by aspects.

On the other hand, a novel, aspect oriented approach
to testing could be devised, which takes advantage of the
separation of concerns implemented in AOP code, in or-
der to extend the benefits of such separation to the testing
phase. In this paper, an incremental testing process is con-
sidered, which allows testing the base code and the cross-
cutting functionalities, implemented as aspects, in separate,
successive steps.

1 Introduction

Aspect Oriented Programming (AOP) supports the sep-
aration of the crosscutting concerns by means of pointcuts,
which intercept the execution at given join points, and intro-
ductions, which add or alter features of the base code. Such
constructs have a large impact on the dynamic behavior of
the affected program, so that testing is expected to become
harder.

Actually, AOP requires that the execution points to be
intercepted by an aspect are specified declaratively in the
aspect itself. This might be an error prone task that causes
faults. Moreover, redirecting the execution to another code
fragment (contained in an aspect) might break the contract
between caller and callee in a method execution or might
alter the state of the current object in an incorrect way.

Changes in the execution order of the statements might also
violate some assumptions required for a given statement to
work correctly. The exceptional execution flow can be al-
tered by an aspect as well, possibly in an undesired way.
Finally, static crosscutting (introductions) might make in-
valid assumptions on object types and might change the
polymorphic calls. All these characteristics of AOP make
testing challenging and demand for novel approaches, es-
pecially when the existing ones cannot be adapted to reveal
the faults associated with some of the new constructs.

On the other hand, AOP simplifies design and coding by
separating the principal decomposition from the crosscut-
ting concerns. If during the testing phase such a separation
is maintained, we can expect that the benefits of AOP can
be extended to testing as well. This requires the definition
of a novel testing process, in which the base code is tested
separately from the crosscutting concerns, which are added
incrementally. Moreover, during the successive integration
of new aspects, re-test of the base application can be limited
to those code portions possibly affected by the aspects, thus
achieving a separation of the test of the aspects.

In this paper, we discuss why AOP testing is expected to
be harder (Section 2) and why easier (Section 4) than test-
ing more traditional Object Oriented Programming (OOP)
code. In Section 3 we consider AOP-specific testing tech-
niques that could mitigate the novel difficulties of AOP test-
ing. Opverall, the authors’ position is that the benefits of
aspect orientation can be extended to the testing phase, by
adopting a proper testing process and using proper testing
techniques. A description of the related works (Section 5)
and of our future works (Section 6) conclude the paper.

2 Why is it harder?

Some of the faults that are generated while developing
AOP code are quite new, with respect to the traditional case.
An attempt to understand what are the special features of
the faults introduced by the new paradigm was made by

Alexander et al. [?], who defined a fault model, providing
a categorization of the AOP specific faults. In the follow-
ing, the fault model by Alexander et al. is briefly summa-
rized and slightly extended with a couple of additional fault
types. It will constitute the basis for the further discussion
presented in this paper.

2.1 Fault model

1. Incorrect strength in pointcut patterns: The pat-
terns used in pointcut designators give the set of the
join points to be intercepted. A fault might occur when
the pointcut designator strength is not accurate and a
wrong join point set is intercepted. This involves two
cases:

e When the designator is too weak, the accepted
join point set is not restrictive enough. The point-
cut intercepts more join points than the ones re-
quired by the crosscutting concern.

o Conversely, when the designator is too strong, the
set is restricted excessively and the pointcut in-
tercepts less points than required. Therefore, the
concerns partially fails to apply in cases where it
should.

2. Incorrect aspect precedence: When the same code
portion is affected by more than one aspect, depend-
ing on the order in which aspects are woven to the
base code, differences can occur. When no compo-
sition precedence is defined, all the possible composi-
tions are potential instances to be considered.

3. Failure to establish expected postconditions: Post-
conditions that were valid for the base code, before
adding the crosscutting concerns, represent the con-
tract between calling and called methods. These con-
tracts should keep valid also when aspects are weaved.
When advices produce ripple effects that violate some
postconditions, the overall system behavior might be
incorrect.

4. Failure to preserve state invariants: Similarly to the
postconditions, state invariants should keep valid also
for the weaved application. Aspects violating them
might corrupt the behavior of the overall system.

5. Incorrect focus of control flow: Pointcut designators
that contain conditions on the execution stack (e.g., us-
ing the cflow primitive pointcut) define a join point
set that cannot be evaluated statically. Therefore, er-
rors can be hidden in them which are difficult to ex-
pose, in that they require very specific execution con-
ditions to hold.

6. Incorrect changes in control dependencies: Around-
advices replace the original execution with a new one,
defined in the aspect. In the advice body, the original
execution can be resumed at any point, thus changing
the original control flow structure that determines its
execution. Thus, defects may descend from assump-
tions on the control dependency structure that become
invalid in the aspect code.

7. Incorrect changes in exceptional control flow: Ad-
vices containing statements that possibly throw an ex-
ception might cause an implicit modification in the
system control flow, because such an exception trig-
gers the execution of an appropriate catch state-
ment, either in the aspect code or down in the base
code. Moreover, when the declare soft construct
is used to modify the system exception handling mech-
anism, different branches might be taken in the original
and in the aspectized code, since an exception origi-
nally raised during the execution is now softened.

8. Failures due to inter-type declarations: Static cross-
cutting modifies the base code by means of intro-
ductions and intertype declarations. This mecha-
nisms could produce ripple effects in the control flow,
each time the control flow depends on the static class
structure. For example, the boolean operation x
instanceof Y produces a frue value whenever the
dynamic type of the object x is a subtype of Y. If the
inheritance relation of the type of x is changed by an
aspect, the previous boolean operator could return a
different value, causing a different branch to be taken,
thus, altering the control flow.

9. Incorrect changes in polymorphic calls: Modifica-
tions in the system behavior may occur when a method
introduction is used to override a method inherited
from a super class. In fact, before weaving the aspect,
any invocation to such a method was redirected to the
method in the super class, while, after weaving, the
same invocation is dispatched to the introduction.

2.2 Adaptation of existing techniques

In all the join points selected by a pointcut designator,
there is an implicit branch that transfers the control to the
associated advice. Thus, an extension of coverage testing
and more specifically of the branch coverage criterion to
AOP seems a reasonable choice in order to expose faults re-
lated to an incorrect strength in pointcut patterns (type 1). In
case of a too weak pointcut designator (too large join point
set), test cases traversing the incorrectly added branches,
departing from incorrectly intercepted join points, might ex-
pose this type of fault. Conversely, when branches are miss-
ing from execution points to advices, traditional test cases

should expose the fault whenever the observable behavior is
altered by the missed advice execution.

Faults related to concerns that violate postconditions and
invariants (type 3 and 4) of the base code can be exposed by
test cases whose observable output depends on such post-
conditions and invariants. Adaptation of data-flow criteria
might help here, since such violations are usually associated
with changes in the definition-use pairs.

An adapted version of the branch coverage criterion,
that treats the advices as regular method invocations with
parameters, seems to be a reasonable approach to expose
faults coming from static crosscutting (type 8 and 9) and
associated with a changed normal/exceptional control flow
(type 6 and 7). In fact, an incorrect branch is taken in all
these cases. Thus, exercising each branch in at least one
test case ensures that every incorrect branch is executed at
least once during testing.

The only two fault types that seem to be not adequately
tested by means of extensions of traditional techniques are
type 2 and 5. They demand for AOP specific techniques.
Our proposal for two such techniques is given in Section 3.

2.3 Tangling in test cases

The adoption of traditional testing methods for AOP sys-
tems tends to produce complex test cases.

Traditional coverage criteria can be based on the actual
control flow that the system has, once woven. This requires
to resolve pointcuts and to weave advices and introductions
into the base code. The resulting control flow corresponds
to the base system behavior tangled with all the crosscut-
ting concerns. Thus, the same test case exercises both the
principal decomposition and all the crosscutting concerns at
the same time. Consequently, the definition of the test in-
puts and of the expected outputs (oracle) for the test cases
requires to reason about the base application and all the tan-
gled concerns as a whole. In other words, the advantages
of the separation of concerns that were achieved in the pre-
vious development phases are lost when coming to testing,
if the only way to test the application consists of testing the
weaved code. A novel approach to untangle the test cases
for the crosscutting concerns from those for the base code
seems to be necessary. This is discussed in detail in Sec-
tion 4.

3 AOP specific testing techniques

Specific testing techniques are necessary to expose the
faults of type 2 and 5 in the fault model described in Sec-
tion 2. These are the two fault types for which existing
techniques are clearly not adequate. However, even if in
principle the other fault types can be exposed using exist-
ing techniques, properly adapted, it might be the case that

more effective techniques to expose them do exist. Thus,
we are not claiming that the other fault types do not deserve
investigation of specific techniques. We are just considering
that existing techniques are — to some extent — adequate to
expose them.

3.1 Designator Coverage

The testing criterion we propose in this sub-section,
called designator coverage, aims at exposing faults if type
5. A pointcut designator can not be fully resolved at weave
time if it contains primitive dynamic pointcuts, such as
cflow and within. In fact, these primitive pointcuts re-
quire to evaluate conditions on the run-time execution stack.

Given a pointcut designator with dynamic pointcuts, the
number of the execution stacks that satisfy it is, in general,
unbounded. So, the exhaustive test of all those satisfying a
pointcut designator is not feasible. As suggested by Alexan-
der et al. [?], the case is similar to the test of the conditions
in conditional or loop statements, with the remarkable dif-
ference that the number of combinations to consider is not
defined upon all the possible boolean values (a finite set),
but is defined upon all the possible execution stacks.

Our proposal was inspired by the path coverage criteria
and the way they deal with the possibly unbounded number
of loop traversals. One of the most widely adopted solu-
tion is to use k-limiting for the loops, i.e., all paths must be
covered such that loops are traversed O to k times, with k a
small constant, often set to 2.

Given the static set J of the join points corresponding
to a pointcut designator and obtained by replacing the dy-
namic conditions with true, let us consider all the combina-
tions of execution stacks that are obtained by pushing each
join point j € J onto the stack O to k times. Several of these
execution stacks are clearly infeasible, being not compatible
with (a static approximation of) the call graph of the given
application. All the remaining execution stacks must be ex-
ercised in at least one test case in order for our designator
coverage criterion to be satisfied. Similarly to the infeasible
path problem, it might happen that some of the execution
stacks required by this criterion are infeasible (it is easy to
show that their detection remains in general undecidable).
Thus, we cannot expect to reach 100% desigator coverage
for any given AOP program.

3.2 Composition Coverage

When the weaving order of the aspects makes a differ-
ence, dominance constraints should be used to specify the
correct precedences. In absence of such constraints, compo-
sition errors might occur. A conservative solution to detect
them, proposed in [?], consists of requiring that all the pos-
sible weaving configurations are tested.

An improvement of this method consists of testing only
those configurations that differ in at least one data depen-
dency. We can thus define a composition coverage crite-
rion, requiring that a composition order is tested only if it
changes at least one data dependency with respect to any of
the previously tested composition orders.

4 Why is it easier?

If separate concerns can be tested separately, testing an
AOP application becomes easier than testing a traditional
application, where the crosscutting concerns are tangled
with the base code. In order to test the aspects separately
from the base code, we must address the following two
problems:

1. How do we test the base code in isolation?

2. How do we determine the code to be re-tested when
aspects are added?

The incremental testing method described below tries to
address both issues.

4.1 Incremental AOP testing

Let us consider, for simplicity, the branch coverage cri-
terion. Incremental AOP testing starts by applying branch
coverage to the base code, without considering the aspects.
The resulting test suite provides a way to expose those er-
rors that affect the principal decomposition. After that, the
method goes on considering the first crosscutting concern.
It is woven into the base code and the coverage for the previ-
ous suite is evaluated on this composition. The existing test
suite is expected to be lacking in covering the composition,
because new code has been introduced and because aspects
have possibly modified the base control structure and be-
havior. Therefore, a second collection of test cases must
be defined, in order to reach an adequate coverage of this
second version of the application. Incremental AOP testing
continues in this way, until all aspects are weaved and the
final, complete application is tested.

The first problem we must consider is how to test a par-
tially woven application, i.e., an application that misses the
implementation of some of its crosscutting functionalities.
The solution commonly adopted in integration testing con-
sists of defining stubs and drivers that simulate the missing
parts. For example, a persistence concern that mediates the
communication between the main application and the data
base can be required by the principal decomposition, in that
the application relies on the concern to obtain all the refer-
ences to the object instances. The persistence concern can
be replaced by a stub, which returns objects from a fixed
pool, instead of accessing the data base. In such a way the

application can be run and tested separately from the persis-
tence aspect.

The second problem we face is how to determine which
test cases must be re-run when an aspect is added to the
(partially woven) application. This problem is well known
in the testing field and is referred to as the fest selection
problem. It is usually considered in the context of regres-
sion testing [?, 1]. Available methods are based on a syn-
tactic or semantic computation of the differences between
the two versions of the given application. Only those test
cases that are modification-traversing are selected for re-
execution. Such selection techniques are safe whenever
they ensure that (under controlled testing) no fault can ever
be missed. In other words, it can be shown that the execu-
tion of the discarded test cases would give the same output
in both versions of the application.

The incremental approach may lead to a more effective
debugging, because it separates the bugs in the base code
from those in the aspect code or deriving from the interac-
tion between base code and aspects. The test suites are, in
fact, divided according to the concerns defined during the
design and development phases. Thus, tests should be eas-
ier to understand, being better modularized.

We considered incremental AOP testing in the context of
coverage (white-box) testing. However, it can be used also
with a black-box approach, in that it is focused on splitting
the test cases according to the system functionalities, which
might belong to the principal decomposition or might be
crosscutting concerns.

5 Related Works

In [?], a fault model is introduced to categorize the typ-
ical faults encountered while developing AOP software.
Faults may be associated with an incorrect strength of the
pointcut designators. Composition faults can arise when
more than one weaving order exists among aspects, but no
order constraint is defined. Other faults may arise when
negating those invariants or postconditions that are valid for
the base code, or when modifying the control dependencies
in an unexpected way. Testing criteria are proposed in order
to detect these new faults, mainly using adaptation of exist-
ing testing techniques. This fault model represents the basis
for the discussion in our paper.

In [?], the state model of each class in a system is aug-
mented by taking into account the aspects, adding new
states and transitions where necessary. A criterion is defined
to evaluate test coverage on the augmented state model and
to guide the developers in producing the test cases for the
new states and transitions. The idea of incremental testing
is mentioned as a way to limit the number of test cases to re-
run on the weaved code, assuming the base code has passed
all the tests.

In [?], AOP is used as a support for testing traditional
code by expressing test adequacy criteria relative to cross-
cutting concerns. Aspects are used to obtain a fine grained
instrumentation of the code and to enable dynamic monitor-
ing of the testing coverage. Since existing pointcut models
do not provide a granularity fine enough to support white-
box testing, authors defined their own pointcut model and
language. A testing tool is provided and explained based on
the proposed pointcut model.

In [?], data flow based unit testing for OOP code is ex-
tended to cope with AOP specific constructs. Control flow
and data flow constraints are derived for the weaved code
and a three level unit testing is presented to guide the devel-
oper while writing the test cases.

The authors of [?] analyze the impact of static crosscut-
ting on the method binding. An algorithm for the calcula-
tion of the changed lookups is presented.

6 Future Works

In our future work, we will implement the AOP specific
testing techniques described in this paper. Designator and
composition coverage criteria will be evaluated on the field,
once such an implementation is available. Moreover, we
will consider also AOP specific testing techniques aimed at
making existing and applicable approaches more effective
for specific fault types.

Another direction of our future work will be the detailed
definition and implementation of the AOP incremental test-
ing method.

An important role in our future research will be given to
the empirical assessment of the proposed approach to AOP
testing, in comparison with the more traditional OOP test-
ing methods applied to AOP code. Experiments will be per-
formed trying to evaluate differences between them in terms
of number and types of detected defects, test case complex-
ity and test case definition effort.

References

[1] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software En-
gineering and Methodology, 6(2):173-210, April 1997.

