
Automated Pointcut Extraction

D. Binkley(1), M. Ceccato(2), M. Harman(3), P. Tonella(2)

(1) Loyola College, Baltimore, MD, USA

(2) ITC-irst, Trento, Italy

(3) King’s College London, UK

Abstract

Software refactoring consists of the modification of the
internal program structure without altering the external be-
havior (semantic preservation). It aims at improving in-
ternal quality factors, such as the modularity, in order to
make the code easier to understand and evolve in the fu-
ture. Among the various refactorings, a category quite un-
explored is that of the refactoring from Object Oriented Pro-
gramming (OOP) to Aspect Oriented Programming (AOP).
AOP is expected to improve the structure of existing code by
offering modular units for functionalities whose implemen-
tation is otherwise scattered through the modules.

In this paper, we investigate the automated support that
can be provided to programmers in the migration from OOP
to AOP code. We consider the applicability of semantic-
preserving code transformations to achieve the migration
task. The contribution of this work consists of a list of refac-
torings, that are described together with the applicability
conditions and with all the variants that can be found. By
supporting the refactoring activity by means of automated
tools the migration difficulties are mitigated and the benefits
of AOP become easier to achieve for legacy OOP applica-
tions.

Keywords: refactoring, program transformations, aspect
extraction.

1 Introduction

Aspect Oriented Programming provides explicit con-
structs for the modularization of thecrosscutting concerns,
i.e., of functionalities that are transversal with respect to the
principal decomposition of the application and thus cannot
be assigned to a single modular unit, in the traditional pro-
gramming paradigms. Existing software often contains sev-
eral instances of such crosscutting functionalities, as, for

example, persistence, logging, caching, etc. Consequently,
refactoring of these applications towards AOP is expected
to be beneficial to them, by clearly separating the principal
decomposition from the other functionalities and by modu-
larizing the crosscutting concerns.

The process of migrating an existing software to AOP
is highly knowledge-intensive and any refactoring toolkit
should include the user in a change-refine-loop. However,
there is big room for automation in two respects:

• aspect mining: identification of candidate aspects in
the given code;

• refactoring: semantic-preserving transformations that
gradually migrate the code to AOP.

In this paper, we focus on the second problem. More-
over, we consider the difficult part of refactoring, that con-
sists of the definition of proper pointcuts to intercept the ex-
ecution and redirect it to the aspect code, so as to preserve
the original behavior while modularizing the code that per-
tains to the crosscutting functionality. Our approach to this
problem derives from the field of program transformations
and amorphous slicing. Its outcome entails one or more as-
pects containing the crosscutting code, with pointcuts able
to redirect the execution whenever necessary. Manual re-
finement of such an outcome, for example to generalize the
pointcut definitions, remains an advisable step. Overall, the
refactoring activity is expected to be highly simplified by
integrating an automated support such as the one we are
proposing.

The paper is organized as follows: in Section 2 we
present the refactorings that are required for the automated
generation of pointcuts, in the migration of an existing OOP
application to AOP. In the next section, we describe the re-
lated works, followed by our future work and conclusions.

1

2 Refactorings for pointcut extraction

In the following, a set of program transformations is de-
scribed that allow the automated extraction of pointcuts.
Input to such transformations is the source code, with the
fragments to be migrated to aspects properly marked. This
means that aspect mining (i.e., identification and manual
validation of candidate aspects in the original code) has al-
ready been performed and that the code fragments to be as-
pectized are known. Usually, such code fragments consist
of:

1. whole methods to be aspectized;

2. calls to methods to be aspectized;

3. arbitrary sequences of statements.

In this paper, the focus is on call extraction (case 2),
i.e., definition of pointcuts and advices that replace method
calls. Method extraction (case 1) is straightforward and re-
quires just to move the whole method from a class to an
aspect, where it is turned into an introduction. When a se-
quence of statements (case 3) has to be aspectized, it is more
convenient to first apply the standard Object-Oriented refac-
toring [2] Extract methodto turn the statement sequence
into a separate method and then to apply method extraction
(1) and call extraction (2).

In the following, a single method call to be extracted is
considered. When there are multiple calls, and correspond-
ingly multiple pointcuts, to be associated with the same ad-
vice, it is sufficient to define a new pointcut as the logi-
cal or of the given pointcuts. For example, if there are
N calls to methodg() insideA.f1(), ..., A.fN() ,
the pointcutsp1(), ..., pN() can be extracted to in-
tercept each call. Then, the pointcutp() can be defined as
p1() || ... || pN() to intercept all of them.

The example code that accompanies the refactorings
listed below is written in AspectJ [7], a popular extension
of Java with aspects.

2.1 Refactoring 1: Call at the beginning/end

This refactoring deals with the following case:

The call to be moved to the aspect is at the begin-
ning of the body of the calling method.

Figure 1 shows the mechanics of this refactoring. The
call to methodg is removed from the body off . A new as-
pect, namedB, is responsible for intercepting the execution
of f and reinserting the call tog at the beginning.

class A {

this.g();
s1;...;sn;

}
}

void f() {

class A {

s1;...;sn;
}

}

void f() {

aspect B {

}

pointcut p(A a):
(void A.f()) && this(a);execution

before(A a): p(a) { a.g(); }

Figure 1. Mechanics of Refactoring 1 (call at
the beginning).

2.1.1 Variants

1. this.g() is the last statement of f(). In this case, it
is sufficient to replace the before-advice with an after-
advice.

2. x.g() is present instead ofthis.g() , with x a
class field. In this case, it is sufficient to replace
a.g() with a.x.g() in the before-advice.

3. x.g() is present instead ofthis.g() , with x a
parameter off . In this case, it is sufficient to add
args(x) to the pointcut to expose the argument and
usex.g() in the advice.

4. Althoughg() is not at the beginning (end) off() , it
is possible to fall into Refactoring 1 by applying the
semantic preserving transformationsPull call or Push
call (see [5]).

5. Both Pull call andPush callfail to move the call to
the beginning/end of the method body. Assuming they
can move the call to the beginning/end of a sequence of
statements, it is possible to first turn the statement se-
quence into a method (Extract method) and then apply
Refactoring 1.

2.2 Refactoring 2: Call before/after another call

This refactoring deals with the following case:

The call to be moved is always before another
call.

Figure 2 shows the mechanics of this refactoring, under
the assumption that in the presence of more than one call to

2

class A {
void f() {

this.g();
s1;...;sk;

c.h();
sk;...;sn;

}
}

before(A a): p(a) { a.g(); }

class A {

s1;...;sk;
void f() {

c.h();
sk;...;sn;

}
}
aspect B {

pointcut p(A a):

this(a)) &&
cflow((void A.f()) &&execution

call(void C.h());

}

Figure 2. Mechanics of Refactoring 2 (call be-
fore another call).

h() , g() precedesh() in all of them. The aspectB inter-
cepts only the calls toh that occur within the execution of
methodf (cflow construct). A before-advice reintroduces
the call tog at the proper execution points.

2.2.1 Variants

1. g() follows the callh() , instead of preceding it. In
this case, it is sufficient to replace the before-advice
with an after-advice.

2. Variants 2 and 3 of Refactoring 1 apply here as well.

3. Although g() does not precede (follow)c.h() , it
is possible to fall into Refactoring 2 by applying the
semantic preserving transformationsPull call or Push
call.

4. The sequence of statements that precede (follow)g()
are turned into a separate method (Extract method), so
as to make Refactoring 2 still applicable.

2.3 Refactoring 3: Conditional call

This refactoring deals with the following case:

A conditional statement controls the execution of
the call to be moved to the aspect.

Figure 3 shows the mechanics of this refactoring. The
conditional statementif (b) is considered to be part of
the aspect, in that it determines the execution of the call
being aspectized (g()). Thus, it becomes a dynamically

class A {

this.g();

(void A.f()) &&execution

around(A a): p(a) { a.g(); }

void f() {
 (b) {

} {

class A {

boolean b;

s1;...;sn;
}

}
}

s1;...;sn;
void f() {
boolean b;

}
}
aspect B {

pointcut p(A a):

this(a)) && if

}

(a.b);
void

if

else

Figure 3. Mechanics of Refactoring 3 (condi-
tional call).

checked condition incorporated into the aspect pointcut
(with the syntaxif(a.b)). When the execution is inter-
cepted by the pointcutp, requiring that the conditiona.b
is true, the new body of methodf is replaced by the call to
g, as specified in the around-advice.

2.3.1 Variants

1. Variants 2 and 3 of Refactoring 1 apply here as well.

2. If g() is in the else-part of the conditional statement,
it is sufficient to useif(!a.b) instead ofif(a.b)
in pointcut.

3. s1;...;sn are not under the control of the condition
b, in that they are at the top-level inf , instead of being
inside the else-part of the if-statement. In this case,
it is sufficient to addproceed() at the end of the
around-advice to ensure thats1;...;sn are always
executed.

4. If b is a parameter off , it is sufficient to addargs(b)
to the pointcut to expose it.

5. The conditional statement is not at the top level in
methodf() . If it is possible to move it to a separate
method (Extract method), Refactoring 3 can be still ap-
plied.

6. The conditional statement follows another call (say,
h()) and has no else-part. Refactoring 2 applies,
with if(a.b) in the pointcut definition and an after-
advice.

3

2.4 Known problems

The following problems derive from specific features
currently unsupported by AspectJ. One of the reasons why
we are reporting them is to stimulate a revision of the lan-
guage aimed at incorporating new features that address such
limitations.

1. If x.g() is present instead ofthis.g() , with x
a local variable off() , it is not possible to ex-
pose x in the pointcut. A similar problem occurs
in Refactoring 3, in the caseb is a local variable of
f() . This suggests the need for a construct such as
localvars(x) in AspectJ, in order to expose some
local variables of the intercepted method.

2. Inner classes cannot be inserted into given classes by
means of aspect introductions (while methods and at-
tributes can).

With the current version of AspectJ, workarounds must
be adopted to circumvent the problems listed above. A
possible workaround for problem 1 consists of extracting a
code portion surrounding the callx.g() , making it a sep-
arate method havingx among its parameters. Once the lo-
cal variablex has become a method parameter, it can be
exposed by means of the standard AspectJ constructs. A
possible workaround for problem 2 consists of bringing the
inner class to the top-level, adopting proper naming conven-
tions (e.g.,externalClass innerClass) and adjust-
ing the visibility of attributes and methods, if necessary.

3 Related works

In the migration of existing OOP code to AOP, the prob-
lem that received most attention is the detection of candi-
date aspects in given programs (aspect mining), while the
problem of refactoring [1, 9] towards AOP was somewhat
neglected. Some of the various aspect mining approaches
rely upon the user definition of likely aspects, usually at
the lexical level, through regular expressions, and support
the user in the code browsing and navigation activities con-
ducted to locate them [3, 4, 6, 8]. Other approaches try
to improve the identification step by adding more automa-
tion. They exploit either execution traces [?, ?] or iden-
tifiers [?], often in conjunction with formal concept anal-
ysis [?, ?]. Clone detection [?, ?] and fan-in analysis [?]
represent other alternatives in this category. For the present
work, aspect mining is a prerequisite that is assumed to have
been completed, possibly exploiting any of these methods.

The most related works are [?, ?, ?]. The work described
in [?] deals with the re-definition of popular OOP refactor-
ings taken from [2] in order to make them aspect-aware,
so that each potentially affected aspect is properly updated

when the base code is refactored. Moreover, this work con-
siders refactorings to migrate from OOP to AOP and refac-
torings that apply to AOP code. Among them, theExtract
advicerefactoring is the one we aim to automate in this pa-
per.

Inductive logic programming is used in [?, ?] to trans-
form an extensional definition of pointcuts, which just enu-
merates all the join points, into an intensional one, which
generalizes the former by introducing variables where facts
differ (anti-unification). The underlying assumption is that
the pointcut definition language is rule-based (this is not the
case, for example, of AspectJ). This work is complementary
to ours in that the problem of generalizing and abstracting
the automatically produced pointcuts is not our focus, but is
definitely a more than desirable further step.

4 Conclusions and future work

We have proposed a technique to automate the extrac-
tion of aspects from existing code, considering in particular
the (hard) problem of pointcut definition. Given a source
program with the aspectual fragments properly marked, our
technique produces a semantically equivalent version of the
program with the marked statements migrated to aspects
and the original execution properly intercepted in order to
redirect it to the aspect code when necessary.

Several open issues are not currently addressed and rep-
resent the agenda of our future work. The most important
of them are:

1. Given a code fragment to be aspectized, it is possible
to produce the aspect code following different paths.
The three refactorings listed in Section 2 are not al-
ways mutually-exclusive, especially if combined with
the standard refactoringExtract method. Moreover,
several variants of the three refactorings may be appli-
cable at the same time. To further complicate the mat-
ter, application of one refactoring might enable (or dis-
able) other refactorings for other code fragments. The
refactoring path that is chosen influences the quality
of the resulting aspect code. Consequently, a method
(maybe a search-based one) must be devised to select
the best path.

2. Implementation of the proposed program transforma-
tions is currently on the way. The semantic preser-
vation requirements make them non trivial to realize.
On the other hand, since there is no strict syntax-
preservation constraint, amorphous techniques could
be experimented as well.

3. Experimental evaluation of the proposed approach will
consist of the automated extraction of aspects from
real-world OOP applications. The applicability of the

4

proposed refactorings, with the respective variants, to
real code will give us feedback on their usefulness and
possibly on the need for further refinement. The qual-
ity of the resulting aspects will be also assessed, to de-
termine the actual usability in the field.

4. Generalization of the automatically extracted point-
cuts, aimed at decoupling the aspects from the base
code as much as possible, will be also an interest-
ing topic for our future research. In AspectJ this is
achieved through the usage of wildcards. Other, more
powerful, pointcut definition languages will be possi-
bly considered as well.

5. The implementation and usage of our refactoring tech-
nique on real-world programs is expected to give us
feedback also on the AspectJ language itself. The lack
of constructs to intercept the execution at the desired
join points and the inadequacy of the pointcut defi-
nition language are examples of what could emerge,
once we conduct experiments on existing OOP pro-
grams. This is invaluable feedback for the aspect lan-
guages community.

References

[1] P. Borba and S. Soares. Refactoring and code genera-
tion tools for AspectJ. InProc. of the Workshop on Tools
for Aspect-Oriented Software Development (with OOPSLA),
Seattle, Washington, USA, November 2002.

[2] M. Fowler. Refactoring: Improving the design of existing
code. Addison-Wesley Publishing Company, Reading, MA,
1999.

[3] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the
map metaphor in a tool for software evolution. InProc. of
the 2001 International Conference on Software Engineering
(ICSE), pages 265–274, Toronto, Canada, March 2001. IEEE
Computer Society.

[4] J. Hannemann and G. Kiczales. Overcoming the prevalent
decomposition of legacy code. InProc. of Workshop on
Advanced Separation of Concerns at the International Con-
ference on Software Engineering (ICSE), Toronto, Canada,
2001.

[5] M. Harman and S. Danicic. Amorphous program slicing. In
Proc. of IWPC’97, International Workshop on Program Com-
prehension, pages 70–79, Dearborn, Michigan, May 1997.

[6] D. Janzen and K. D. Volder. Navigating and querying code
without getting lost. InProc. of the 2nd International Con-
ference on Aspect-Oriented Software Development (AOSD),
pages 178–187, Boston, Massachusetts, USA, March 2003.
ACM press.

[7] I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams
Publishing, Indianapolis, Indiana, USA, 2002.

[8] M. P. Robillard and G. C. Murphy. Concern graphs: Find-
ing and describing concerns using structural program depen-
dencies. InProc. of the 24th International Conference on

Software Engineering (ICSE), pages 406–416, Orlando, FL,
USA, May 2002. ACM press.

[9] A. van Deursen, M. Marin, and L. Moonen. Aspect min-
ing and refactoring. InProceedings of the 1st International
Workshop on Refactoring: Achievements, Challenges, Effects
(REFACE), with WCRE, Waterloo, Canada, November 2003.

5

