Aspect Mining through the Formal Concept Analysis of Execution Traces

Paolo Tonella and Mariano Ceccato
ITC-irst
Centro per la Ricerca Scientifica e Tecnologica
38050 Povo (Trento), Italy

{tonella, ceccato } @itc.it

Abstract

The presence of crosscutting concerns, i.e., functional-
ities that are not assigned to a single modular unit in the
implementation, is one of the major problems in software
understanding and evolution. In fact, they are hard to locate
(scattering) and may give rise to multiple ripple effects (tan-
gling). Aspect Oriented Programming offers mechanisms to
factor them out into a modular unit, called an aspect.

In this paper, aspect identification in existing code is
supported by means of dynamic code analysis. Execution
traces are generated for the use cases that exercise the main
functionalities of the given application. The relationship
between execution traces and executed computational units
(class methods) is subjected to concept analysis. In the re-
sulting lattice, potential aspects are detected by determin-
ing the use-case specific concepts and examining their spe-
cific computational units. When these come from multiple
modules (classes) which contribute to multiple use-cases, a
candidate aspect is recognized.

1 Introduction

Object-Oriented systems are developed by mapping the
real-world entities of the application domain to a hierarchy
of classes, around which the software is developed. We will
call such class organization the principal decomposition of
the system. Not all the requirements of the application un-
der development correspond necessarily to a single mod-
ular unit (class) in the principal decomposition. The im-
plementation of some requirements may be scattered across
the classes and possibly mixed with the functionalities that
implement the other responsibilities of the classes. Such
a mismatch between requirements and implementation is a
potential source of serious problems during software main-
tenance. In fact, it may be difficult to trace the requirements
to the modular units implementing them and correspond-

ingly it may be hard to evolve the code when the require-
ments change.

Aspect Oriented Programming aims at eliminating the
mismatch between transversal requirements (crosscutting
concerns) and the code by providing a modular unit, called
an aspect, where they can be located. The implementation
of a crosscutting concern is part of a unique module, an as-
pect, instead of being scattered across and tangled with sev-
eral classes. The requirements that crosscut the principal
viewpoints are discussed in detail in [?].

Modularization of crosscutting concerns into aspects is
potentially beneficial for existing software systems. How-
ever, the hard job is deciding what functionalities should
be regarded as aspects. Such a problem is called the as-
pect mining problem. In this paper, we propose to use
dynamic analysis in order to exercise the computational
units involved in the main application functionalities. Then,
the relationship between the execution traces associated
with such functionalities and the computational units (class
methods) invoked during each execution is examined, by
exploring the concept lattice produced by formal concept
analysis. In such a structure, it is possible to isolate the
nodes (concepts) that are specific of a single functionality
and to determine which classes are specifically involved
(feature location). When a class contributes to multiple
functionalities together with other classes, the presence of
a potential crosscutting concern is spotted and the oppor-
tunity of migrating some code portions to an aspect is de-
tected.

Application of the proposed aspect mining method to a
small but meaningful Java example gave very positive and
encouraging results. A crosscutting functionality was fac-
tored out into an aspect, which could be untangled from
the original code thanks to the possibility of redirecting the
original execution flow to the aspect code. A one-to-one
mapping was achieved in this way between the functionality
migrated to the aspect and the module containing it, with an
expected positive effect on the code understandability and

maintainability.

The paper is organized as follows: after a brief sum-
mary of feature location based on concept analysis, given
in Section 2, our proposal of a novel aspect mining method
is described (Section 3). Its application to a case study is
discussed in Section 4, followed by the related works (Sec-
tion 5) and by our concluding remarks (Section 6).

2 Concept analysis for feature location

In this section, the method for feature location based on
concept analysis is summarized, in order to make the paper
self-contained. The interested reader can find more details
in [3].

2.1 Concept analysis

Concept analysis [5] is a branch of lattice theory that
provides a way to identify maximal groupings of objects!
that have common attributes. Given a context (O, A, R),
comprising a binary relationship R between objects (from
the set O) and attributes (from A), a concept c is defined as
a pair of sets (X, Y") such that:

X ={0o€ONa€Y :(o,a) € R} (1)
Y ={a€ AVoe X : (0,a) € R} (2)

where X is said to be the extent (Ext[c]) of the concept ¢ and
Y is said to be its intent (Int[c]).

Figure 1 shows an example of context (top), together
with the concepts that can be computed for it (bottom).

The containment relationship between concept extents
(or, equivalently, intents) defines a partial order over the set
of all concepts, which can be shown to be a lattice [5] (see
Figure 1, middle). Intuitively, the sub-concept relationship
represented in the concept lattice can be interpreted as a spe-
cialization of more general notions. In fact, super-concepts
have larger extents (and smaller intents) than sub-concepts.
Thus, while super-concepts group together objects based
upon a small set of shared attributes, sub-concepts aggre-
gate less objects constrained by a larger set of attributes in
common. They are thus more specific instances of general
notions (the super-concepts).

Complete information about each node n in the concept
lattice L is given by the pair (Ext[n], Int[n]). However, it is
possible to represent the same information in a more com-
pact and readable form by marking a node n with an object
o € Ext[n] or an attribute @ € Int[n] only if it is associated
with the most special (respectively, general) concept ¢ hav-
ing o (resp., a) in the extent (resp., intent). The (unique)
node of L marked with a given object o is thus:

I Not to be confused with objects in Object-Oriented programming.

bot

bot = ({},{a1,a2,a3,a4})

co = ({02},{a1,a3,a4})
c1 = ({o1},{a1,a2,a3})
Cy = ({01,02},{a1,a3})
Cc3 = ({01,03},{@,&3})

top = ({01,02,03},{as})

Figure 1. Example of concept lattice.

v(0) = inf{n € L|o € Ext[n]} (3)

where inf gives the infimum (largest lower bound) of a set
of concepts. Similarly, the unique lattice node marked with
a given attribute a is:

w(a) =sup{n € L|a € Int[n]} 4)

where sup gives the supremum (least upper bound) of a set
of concepts. The objects in the extent of a lattice node n
are then obtained as the set of objects at or below n, while
the attributes in its intent are those marking n or any node
above n (see Figure 1, middle).

The labeling introduced by the functions p and v give
the concept most specific of a given attribute/object. Thus,
given a concept c, the objects and attributes that label it in-
dicate the most specific properties (objects and attributes)
that characterize it.

2.2 Feature location

The goal of feature location [3] is to identify the compu-
tational units (e.g., procedures, class methods) that specif-
ically implement a feature (e.g., requirement) of interest.
Execution traces obtained by running the program under
given scenarios provide the input data (dynamic analysis).

Concept analysis is applied to a context where attributes
are computational units, objects are scenarios and the rela-
tionship R contains the pair (0, a) if the computational unit
a is executed when scenario o is performed. Information
about which computational unit is executed for each sce-
nario is obtained by gathering execution traces of the pro-
gram.

A concept in the resulting concept lattice groups all com-
putational units executed by all scenarios in the extent.
Moreover, a computational unit labels a given concept if
it is the most specific computational unit for the scenar-
ios in the concept extent. Assuming that each scenario is
associated with exactly one feature (the general case of a
many-to-many relationship between scenarios and features
is dealt with in [3]), the concept specific of a given feature
is the one (if any exists at all) which has only the associated
scenario in its extent (e.g., concept ¢ for the scenario o2
in Figure 1). Correspondingly, the computational units spe-
cific for a given feature are those which label such a concept
(a4 for CQ).

When a feature-specific concept does exist, the attributes
that label it are the most specific computational units in-
volved in the execution of the scenario in its extent. In other
words, they represent the code portions that are most specif-
ically devoted to implementing the functionality exercised
by the scenario in the concept extent.

3 Aspect mining

Aspect Oriented Programming (AOP) [9] is a new pro-
gramming paradigm, with constructs explicitly devoted to
handling crosscutting concerns. In an Object-Oriented sys-
tem, it often happens that functionalities, such as persis-
tence, exception handling, error management, logging, are
scattered across the classes and are highly tangled with the
surrounding code portions. Moreover, the available modu-
larization/encapsulation mechanisms fail to factor them out.
Aspects have been conceived to address such situations.
AOP introduces the notion of aspect, as the modularization
unit for the crosscutting concerns. Common code that af-
fects distant portions of a system can be located in a single
module, an aspect. The aspect compiler takes care of weav-
ing it with the affected code to produce the executable.

Aspects interact with the given code by means of two
main mechanisms: pointcuts and introductions. Pointcuts
intercept the normal execution flow at specified join points.
Aspect code (called advice) can be executed either before,
after or instead of (around) the intercepted join point. In-
troductions modify properties of the classes they affect by
adding methods or fields and by making them implement
interfaces or specialize super-classes previously unrelated
with them.

The following aspect introduces a field (isLocked) and a

method (setLock) into class A. Moreover, it intercepts any
execution of methods whose name start with action on ob-
jects (named a) of class A, each time isLocked is true. The
execution is replaced with the print of an error message, by
means of an around advice:

aspect Lock {
boolean A.isLocked = false;
public void A.setLock(boolean lock) {
isLocked = lock;

}

pointcut lockedExecutions(A a): execution(void A.actionx(..))
&% this(a) && if (a.isLocked);

void around(A a): lockedExecutions(a) {
a.printError("Selected action is currently locked");

}

The first step in the migration of existing applications to
AOP consists of identifying the crosscutting concerns that
are amenable for an aspect-oriented implementation. Such
a process, called aspect mining, can be driven by the use
cases of the application. In fact, each use case specifies a
functionality of the system. When such a functionality is
implemented by code fragments spread across several mod-
ularization units, it is possible to turn it into an aspect. In
the restructured code, each distinct functionality will be lo-
cated in exactly one modularization unit. However, ben-
efits in program understanding and evolution can be actu-
ally achieved only if the new modularization units that fac-
tor out the crosscutting concerns are relatively independent
(decoupled) from the other units. In other words, restructur-
ing should aim both at separating the crosscutting concerns
(increased intra-module cohesion) and at untangling them
from the original code (reduced inter-module coupling).

We propose to use feature location for aspect mining ac-
cording to the following procedure. Execution traces are
obtained by running an instrumented version of the program
under analysis for a set of scenarios (use cases). The rela-
tionship between execution traces and executed computa-
tional units is subjected to concept analysis. The execution
traces associated with the use cases are the objects of the
concept analysis context, while the executed class methods
are the attributes. In the resulting concept lattice, the con-
cepts specific of each use case are located (those with extent
containing the trace for the given use case only), when ex-
isting. Restructuring hints are obtained when the following
circumstances hold:

e A use-case specific concept is labeled by computa-
tional units (methods) that belong to more than one
module (class).

e Different computational units (methods) from a same
module (class) label more than one use-case specific
concept.

The first case alone is typically not sufficient to identify

crosscutting concerns, since it is possible that a given func-
tionality be allocated to several modularization units with-
out being scattered. In fact, it might be decomposed into
sub-functionalities, each assigned to a distinct module. It is
only when the modules specifically involved in a function-
ality contribute also to other functionalities that crosscutting
is detected, hinting for possible restructuring interventions.

Aspectization of the crosscutting concerns is one of the
possible actions to remedy the scattering problem detected
by means of feature location. Sometimes, more standard
refactoring [4] actions may be sufficient. For example, if a
class has too many responsibilities, being involved in sev-
eral use-cases with specific methods, it might be possible
to extract some of its methods/fields, or to build a sub-class
out of a part of it (see “move method, move field and ex-
tract sub-class” in [4]), thus achieving a better distribution
of the responsibilities. When the crosscutting functional-
ity cannot be modularized by means of standard refactoring
techniques, AOP is an option.

3.1 Example

left right

BinaryTree BinaryTreeNode

- root: BinaryTreeNode - left: BinaryTreeNode

root | - right: BinaryTreeNode

+ BinaryTree() — obj: Comparable

+ insert(z: BinaryTreeNode)
+ search(x: Comparable): boolean

+ BinaryTreeNode(x: Comparable)
+ insert(z: BinaryTreeNode)

+ search(x: Comparable): BinaryTreeNode

<<interface>>
Comparable

Figure 2. Classes in a binary search tree application.

Let us consider a binary search tree application consist-
ing of the two classes depicted in Figure 2. Its main func-
tionalities (to be turned into use cases) are the insertion of
nodes and the search of information inside the tree. Assum-
ing that the second use-case be performed on a pre-loaded
tree, the method executions in Table 1 are traced for each
use-case.

By applying concept analysis to the relationship in Ta-
ble 1, the concept lattice in Figure 3 is obtained. It indi-
cates that both the insertion and the search functionalities
are crosscutting concerns. In fact, the two use-case spe-
cific concepts are labeled by methods that belong to more
than one class and each class contributes to more than one
functionality. This result can be interpreted as the fact that
these two classes are not very cohesive and perform mul-
tiple, relatively independent, functions. It would be pos-
sible to separate each of these crosscutting functions and

Insertion

m1 | BinaryTree.BinaryTree()

mo | BinaryTree.insert(BinaryTreeNode)

ms | BinaryTreeNode.insert(BinaryTreeNode)

m4 | BinaryTreeNode.BinaryTreeNode(Comparable)

Search

m1 | BinaryTree.BinaryTree()

ms | BinaryTree.search(Comparable)

me | BinaryTreeNode.search(Comparable)

Table 1. Relationship between use-cases and exe-
cuted methods.

locate them inside a new modularization unit (either a new
sub-class or an aspect). For example, a base BinaryTree
class could be extended by a BinarySearchTree sub-class
that adds the Search functionality to the base tree construc-
tion (Insertion) functions or a Search aspect could be added
to the same base BinaryTree class.

3.2 Tool support

We implemented our own tool, DynamoQ, to trace
method executions of Java programs and we used ToscanaJ3
for concept lattice construction and visualization. The trac-
ing tool is a modification of the Java compiler javac, de-
veloped by Sun Microsystems, version 1.4.0. It includes a
facility to enable and disable tracing during execution. In
this way, it is possible to trace only the portion of execution
in which the functionality of interest is actually exercised,
skipping any set-up and tear-down phase. With such a facil-
ity in place, the assumption that a use-case corresponds to
exactly one feature to be located becomes a reasonable one.

4 Case study

Our case study is a Java implementation of the Dijk-
stra algorithm [2] written by Carla Laffra from Pace Uni-
versity, which supports graph animation during execution.
The graphical user interface can be deployed either as a
stand alone program or as an applet loaded onto an Internet
browser. It is one of the most popular implementations of
the Dijkstra algorithm, reported among the topmost entries
by Google (searching for “Dijkstra algorithm”). Its migra-
tion to AspectJ [10], an AOP extension of the Java language,
is described in this section.

A screenshot of this program is shown in Figure 4, while
the Lines Of Code (LOC) in the composing classes are

2http://star.itc.it/dynamo/
3http://toscanaj.sourceforge.net/

| [[me | ma | ma [ms | me |

Insertion X X X X
Search X X X

BinaryTree.BinaryTree()

BinaryTree.search(Comparable)
BinaryTreeNode.search(Comparable),

BinaryTree.insert(BinaryTreeNode)
BinaryTreeNode.insert(BinaryTreeNode)
BinaryTreeNode.BinaryTreeNode(Comparable)

Insertion

Figure 3. Concept lattice for the binary search tree
application.

given in Table 2. Although this is a small size application,
some features of its implementation makes it an interesting
case study.

| Class | LOC |
DocOptions 35
DocText 106
Documentation 14
GraphAlgorithm 55
GraphCanvas 786
Options 72

| Total | 1068 |

Table 2. Size of the classes implementing the Dijk-
stra algorithm.

Three use cases have been defined to describe the main
functionalities of this program (see Table 3). In the first
use case (Documentation), the user selects a topic in the
topmost-leftmost menu (see Figure 4) and information
about the selected topic is displayed in the topmost text area.
In the second use case (Draw), the user adds, moves and
deletes graph nodes and edges. Moreover, some weights are
changed, as well as the start node. In the last use case (Al-
gorithm) the algorithm is run on a predefined example, both

[Algorithm has finished, follaw crange arrows from startnods o any node to get
DOCUMENTATION: [the shortest path to the node. The length of the path is written in the nods.
press CRESET> to reset the graph, and unlock the screen

draw nordes ‘

step

reset

y - —
a example

12 N
2h, 18 B/

10 72

exit

Figure 4. User interface of the Dijkstra program.

in the step-by-step execution mode and in the animated exe-
cution mode. The last column of Table 3 reports the number
of method executions stored in the traces produced for each
test case. Method instrumentation was achieved by means
of our tool.

| Use case | Description | Execs |
Documentation | display documentation 43
Draw draw graph 2616
Algorithm run algorithm after loading example 2249

Table 3. Use cases for the Dijkstra program.

The context resulting from the execution traces for the
three use cases of Table 3 relates 3 objects (the 3 use cases)
to 42 attributes (the unique methods executed in some use
case). The related concept lattice is reported in Figure 5.

Three use-case specific concepts exist in the lattice,
marked by exactly one use case each. Among them, the
concept marked by the use case Algorithm is regarded as
a potential crosscutting concern, since its specific meth-
ods belong to three classes (namely, GraphCanvas, Options,
GraphAlgorithm) with one of them (GraphCanvas) appear-
ing in two use-case specific concepts (labeled Draw and Al-
gorithm).

Among the methods that label the crosscutting concept
Algorithm, the recurrence of lock and unlock in all the three
classes involved hints for the presence of a candidate aspect.
By looking at the bodies of these methods, their function
becomes pretty clear. They are devoted to locking a part of
the user interface (e.g., node and edge insertion by mouse
click, algorithm execution buttons) when the algorithm is
running. The other methods labeling this concept handle
the execution of the Dijkstra algorithm and belong to the

Graphalgorithm.init()

Options. action{Event, Object)
Graphalgorithm.insets(

GraphCanvas. GraphCanvas(Graphalgorithm)
DocText.DocText(

GraphCanvas.init()

Graphalgorithm. mainiString

Options. OptionsiGraphalgorithm)
GraphCanvas. paint{Graphics)

DocT ext. showline(String

DocOptions. DocOptions{Documentation)
Documentation. Documentationd

GraphCanvas. arrowupcatedint, int,int)
GraphCanvas.intTostringdint)
GraphCanvas. drawarrow(Graphics,int,int)
GraphCanvas, update(Graphics)

GraphCanwvas. mouselpiBEvent,int,int)
GraphCanvas.nodedalete)
GraphCanwvas. changeweight(int,int)
GraphCanwas. nodehit{int,int,int)
GraphCanvas. mouseDowniEvent,int,int)
GraphCanwas. arrowhit(int,int,int)
GraphCanvas. mouseDragiEvent, int,int)

GraphCanvas. runalg)

Options. unloclk(

GraphCanvas. loclk)

Graphalgorithm. unlocly

GraphCanvas. detailsDijlestraiCraphics, int,int)
Qptions. lockl

Graphalgorithm. lock

GraphCanvas. endstepalgiGraphics)
GraphCanvas. detailsalg{Craphics,int,int)
GraphCanvas. unloclk
GraphCanvas.encdstepDijlestra{Graphics)
GraphCanvas. stepalg()
GraphCanvas.reset)

GraphCanvas. nextstep()
GraphCanvas.cleard

GraphCanvas. showexample()
GraphCanvas.initalg)
GraphCanvas.runi

=

[DocOptions. action(Event, Object)]

Documentation

Figure 5. Concept lattice of the Dijkstra program.

class GraphCanvas.

The first restructuring action that was decided, based
upon the inspection of the concept lattice in Figure 5, was
the migration of the Lock functionality to an aspect. As
explained in Section 3, aspects should be both maximally
cohesive inside them and decoupled from the principal de-
composition. A highly cohesive Lock aspect was obtained
by moving all the different versions of methods lock and un-
lock to the aspect. To increase decoupling from the remain-
ing code, all invocations of such methods were replaced by
pointcuts.

Since in Aspect] pointcuts intercept method calls/execu-
tions and field access, while it is not possible to intercept
an arbitrary statement execution, a preliminary refactoring
was required to make the migration possible. Specifically,
method action of class Options handles mouse events on
buttons. The code executed for each distinct button is in-
side an if-statement that discriminates the clicked button
by name. In some of these code fragments, methods lock
and unlock are called. To replace such direct calls with ad-
viced pointcuts, it was necessary to turn the code fragments

for each different button into a separate method (“‘extract
method” refactoring, described in [4]). The resulting code
is shown in Figure 6. It should be noticed that such a re-
structuring is beneficial independently from the migration
to AOP. In fact, good programming practice suggests that
method action should be only responsible for dispatching
the mouse events to the handlers, to be implemented as sep-
arate methods. Development of a long method action with
event handling code inlined is usually discouraged.

Figure 7 shows the complete code of the aspect Lock. It
contains three introductions that add field Locked and meth-
ods lock and unlock into class Options. Then, it defines the
pointcut lockedActions, which intercepts the execution of
methods action_step, action_run, action_example in case the
boolean field Locked is true. Execution of such methods, as-
sociated with the mouse click on some of the user interface
buttons, is replaced by the display of an error message in
the topmost text area, by means of the following around ad-
vice. The aspect Lock makes similar introductions into class
GraphCanvas, where execution of clear, reset and runalg,
stepalg is intercepted respectively by the pointcuts unlock-

class Options extends Panel {

Button b3 = new Button("step");

private void action_step() {
b3.setLabel("next step");
parent.graphcanvas.stepalg() ;

private void action_nextStep() {
parent.graphcanvas.nextstep() ;

}

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button) {
if (((String)arg).equals("step"))
action_step();
if (((String)arg).equals("next step"))
action_nextStep();

}
return true;
}
¥

Figure 6. Restructured mouse event handling code.

GraphCanvas and lockGraphCanvas. An after and a before
advice are defined respectively to handle the invocation of
unlock and lock. Mouse events on the graph canvas in the
user interface are intercepted by the pointcut lockedMouse,
in turn composed out of three smaller pointcuts. Execution
is replaced by the display of an error message by means of
an around advice. Finally, methods lock and unlock are in-
troduced into class GraphAlgorthm.

It is interesting to note that migration to AOP allowed for
the elimination of some code redundancy. For example, the
code in the advice executed around the pointcut lockedAc-
tion was previously replicated inside all the intercepted exe-
cutions. A similar situation occurred for all the other point-
cuts as well. Thus, previously scattered and replicated code
can now be located inside a single, cohesive modularization
unit, the aspect Lock.

Overall, the size of the migrated application has not
changed in a significant way, as apparent from Table 4.
Although some code duplications have been removed,
the overhead of aspect definition compensated such code
shrinking. However, the main expected benefits are not in
size reduction, being rather in a better modular structure of
the application.

To complete the restructuring suggested by the lattice in
Figure 5, the responsibilities of the “fat” class GraphCan-
vas have been reduced by moving those related to algorithm
execution to a sub-class, named GraphCanvasExecutor. We
applied the standard refactoring “extract sub-class” [4]. In-
side class GraphAlgorithm, creation of an object of type
GraphCanvas was replaced by the creation of a GraphCan-
vasExecutor object.

The new version of the program was subjected to fea-
ture location with the same use-cases as for the original pro-
gram, resulting in the concept lattice shown in Figure 8. If
we look at the use-case specific concepts, it is clear that all
crosscutting concerns have been removed. No class con-

| Class | LOC | A% |
DocOptions 35 0
DocText 106 0
Documentation 14 0
GraphAlgorithm 45 | -18%
GraphCanvas 544 | -31%
GraphCanvasExecutor 237 n/a
Options 78 | +8%
Lock 82 n/a

| Total | 141 [+7% |

Table 4. Size of classes and aspects implementing
the Dijkstra algorithm after restructuring.

tributes to more than one functionality with use-case spe-
cific methods.

5 Related works

In the existing literature, aspect mining is based on
source code exploration, supported by the outcome of static
code analysis [6, 7, 8, 11, 12, 14]. The Aspect Mining
Tool AMT, described in [7], supports aspect identification
by matching textual patterns against the names used in the
code and by looking for repeated uses of the same types.
The Aspect Browser tool also uses textual patterns to match
the aspects [6]. Their location is improved by adopting a
map-based display where aspects are shown in colors. The
code browsing tool JQuery is presented in [8]. JQuery pro-
vides hierarchical navigation and query facilities, which are
useful while executing aspect extraction tasks. Concern
graphs [12] can be employed to effectively represent cross-
cutting concerns. These graphs show the classes, methods
and fields involved in a concern and their mutual relation-
ships. They are built incrementally during source code ex-
ploration.

Similarly to our paper, in [?] dynamic information is
used for aspect mining. However, their approach is com-
pletely different. In fact, the tool developed by the authors
of [?] looks for recurring sequences of method invocations
that may be turned into aspect advices.

Our paper is the first attempt to let the requirements
(translated into executable use-cases) guide aspect identi-
fication by means formal concept analysis, applied to the
execution traces. The main advantages over the existing ap-
proaches is that we do not rely on naming/coding conven-
tions, thus requiring a minimal knowledge about the system
under analysis (it is sufficient to define the use-cases for the
main functionalitites). Aspects descend from the require-
ments, thus restoring an alignment with the implementation.

aspect Lock {
boolean Options.Locked = false;

public void Options.lock() {
Locked=true;

}

public void Options.unlock() {
Locked=false;
b3.setLabel("step");

}

pointcut lockedActions(Options options):
(execution(void Options.action_step())
|| execution(void Options.action_run())
|| execution(void Options.action_example()))
&% this(options) && if (options.Locked);

void around(Options options): lockedActions(options) {
options.parent.documentation.doctext.showline("locked");

}
boolean GraphCanvas.Locked = false;

public void GraphCanvas.lock() {
Locked = true;

}

public void GraphCanvas.unlock() {
Locked = false;

}

pointcut unlockGraphCanvas(GraphCanvas gc) :
(execution(void GraphCanvas.clear())
|| execution(void GraphCanvas.reset())) && this(gc);

after (GraphCanvas gc): unlockGraphCanvas(ge) {
gc.parent.unlock();
ge.repaint();

pointcut lockGraphCanvas(GraphCanvas gc) :

before(GraphCanvas gc): lockGraphCanvas(gc) {

pointcut lockedMouseDown(GraphCanvas gc) :

pointcut lockedMouseDrag(GraphCanvas gc) :

pointcut lockedMouseUp(GraphCanvas gc) :

pointcut lockedMouse(GraphCanvas gc) :

boolean around(GraphCanvas gc):

public void GraphAlgorithm.lock() {

public void GraphAlgorithm.unlock() {

(execution(void GraphCanvas.runalg())
|| execution(void GraphCanvas.stepalg())) && this(gc);

gc.parent.lock();

execution(boolean mouseDown(..)) && this(gc);

execution(boolean mouseDrag(..)) && this(gc) && if (gc.clicked);

execution(boolean mouseUp(..)) && this(gc) && if (gc.clicked);

(lockedMouseDown(gc) || lockedMouseDrag(ge) || lockedMouseUp(gc))
&& if (gc.Locked);

lockedMouse(gc) {
gc.parent.documentation.doctext.showline("locked") ;
return true;

graphcanvas.lock();
options.lock();

graphcanvas.unlock() ;
options.unlock();

Figure 7. Aspect to lock part of the user interface during algorithm execution.

In [?] the possibility that aspects address the mismatch
between requirements expressed as use cases and imple-
mentation is discussed in detail.

Concept analysis was used to restructure existing Object-
Oriented code in [?, 13]. Executable subprograms (concept
slices) for domain specific concepts are extracted in [?].
Their representation inside a concept lattice is the start-
ing point for remodularization in [?]. However, none of
these works consider the option of introducing aspects as
additional modularization units. Refactoring of existing
code toward the Aspect Oriented paradigm was considered
in [1, ?, 14]. Recent works in aspect mining based on static
source code analysis are presented in [?, ?].

6 Conclusions and future work

The feature location method based on formal concept
analysis has been adapted to address the problem of as-
pect mining. Migration of existing applications to AOP
can be supported by our semi-automated aspect identifica-
tion method, which requires just the definition of use-cases
for the main application functionalities, when these are not
already available. All the remaining steps, up to concept

lattice construction are automated. Interpretation of the
concept lattice for migration to AOP is instead a human-
intensive activity.

We applied our method to a small case study. The results
we obtained are very encouraging, although their general-
ization to larger programs is hard to make. Thus, our fu-
ture work we will be devoted to further empirical studies on
more realistic examples. However, it is interesting to note
that we had no previous knowledge of our case study (cho-
sen randomly among the small size Java programs available
on the Web) and that the restructuring hints were obtained
only and exclusively by inspecting the concept lattice. The
presence of a crosscutting concern (user interface locking)
and of a “fat” class with too many responsibilities were ap-
parent from the concept lattice, suggesting the restructur-
ing we performed in a straightforward way. Application of
our method to larger case studies might require a few minor
changes of the support tool, such as performing an auto-
mated analysis of the concept lattice, instead of resorting to
its visual inspection, and reporting just the list of candidate
aspects detected.

The results presented in this paper are quite promis-
ing and represent a provisional validation of the proposed

GCraphCanvaskExecutor.endstepDijkstraiGraphics)
GCraphCanvasExecutor.showexample()
Lock.Options.unlock()
GraphCanvasExecutor.initalg()
Options.action_reset()
CraphCanvasExecutor.nextstep()
Options.action_run()
Lock.lockGraphCanvas(GraphCanvas)
Lock.Options.lockl)
Options.action_nextStep()
Lock.GraphCanvas.unlock()

Lock unlockGraphCanvas(GraphCanvas)
CraphCanvasExecutor.endstepalg(Graphics)

Cptions.action(Event,Object)
GraphAlgarithm.insets()
DocText.DocText()

CraphCanvasExecutor.clear()
Lock.CraphCanvas.lock()
CraphCanvasExecutor.run{)

CraphCanvasExecutor.detailsalg(Graphics,int,int) .11 more...
CraphCanvasExecutor.stepal ¥
P palgl GraphCanvas.arrowupdate(int,int,int) .
CraphCanvasExecutor.reset() -

GraphCanvas.intToString(int) =g

GraphCanvas.drawarrow(Graphics,int,int)| »
GraphCanvas.update(Graphics)

GraphCanvas.mousellp(Event,int,int)

Lock. GraphAlgorithm.lock() 3
GraphCanvasExecutor.runalg() !
CraphCanvasExecutor.detailsDijkstra(Craphics,int,int)
Options.action_example()
Lock.GraphAlgorithm.unlock()
Options.action_step()

GraphCanvas.changeweight(int,int)
GraphCanvas.mouseDowni{Event,int,int)
GraphCanvas.nodedelete)
GraphCanvas.nodehit(int,int,int)
GraphCanvas.arrowhit(int,int,int)
GraphCanvas.mouseDrag(Event,int,int)

[DocOptions action(Event,Object)]

e o
Documentation

Figure 8. New concept lattice of the Dijkstra program.

method. However, several open issues must be consid-
ered in the future work. For example, the granularity of
the use-cases might affect the quality of the resulting con-
cept lattice, possibly resulting in false positives (too fine
grained use-cases) or false negatives (too high-level func-
tionalities). This issue must be investigated in more detail.
Moreover, the quality of the aspectized code depends on
its internal cohesion, but also on its coupling with the re-
maining code. Currently, we address the latter issue only
by manually defining pointcuts and advices that reduce the
dependencies of the remaining code on the aspect. The pos-
sibility of automation and of a less subjective assessment of
the available options should be also studied in more depth.

References

[1] P. Borba and S. Soares. Refactoring and code genera-
tion tools for Aspect]. In Proc. of the Workshop on Tools
for Aspect-Oriented Software Development (with OOPSLA),
Seattle, Washington, USA, November 2002.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[3] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Transactions on Software Engineering,
29(3):195-209, March 2003.

[4] M. Fowler. Refactoring: Improving the design of existing
code. Addison-Wesley Publishing Company, Reading, MA,
1999.

[5] B. Ganter and R. Wille. Formal Concept Analysis. Springer-
Verlag, Berlin, Heidelberg, New York, 1996.

[6] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the
map metaphor in a tool for software evolution. In Proc. of
the 2001 International Conference on Software Engineer-
ing (ICSE), pages 265-274, Toronto, Canada, March 2001.
IEEE Computer Society.

[7] J. Hannemann and G. Kiczales. Overcoming the prevalent
decomposition of legacy code. In Proc. of Workshop on
Advanced Separation of Concerns at the International Con-
ference on Software Engineering (ICSE), Toronto, Canada,
2001.

[8] D.Janzen and K. D. Volder. Navigating and querying code
without getting lost. In Proc. of the 2nd International Con-
ference on Aspect-Oriented Software Development (AOSD),
pages 178—187, Boston, Massachusetts, USA, March 2003.
ACM press.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect oriented
programming. In Proc. of the 11th European Conference

[10]

[11]

[12]

[13]

[14]

on Object Oriented Programming (ECOOP), vol. 1241 of
LNCS, pages 220-242. Springer-Verlag, 1997.

I. Kiselev. Aspect-Oriented Programming with AspectJ.
Sams Publishing, Indianapolis, Indiana, USA, 2002.

N. Loughran and A. Rashid. Mining aspects. In Proc. of
the Workshop on Early Aspects: Aspect-Oriented Require-
ments Engineering and Architecture Design (with AOSD),
Enschede, The Netherlands, April 2002.

M. P. Robillard and G. C. Murphy. Concern graphs: Find-
ing and describing concerns using structural program depen-
dencies. In Proc. of the 24th International Conference on
Software Engineering (ICSE), pages 406416, Orlando, FL,
USA, May 2002. ACM press.

G. Snelting and F. Tip. Reengineering class hierarchies us-
ing concept analysis. ACM Transactions on Programming
Languages and Systems, 22(3):540-582, May 2000.

A. van Deursen, M. Marin, and L. Moonen. Aspect min-
ing and refactoring. In Proceedings of the 1st International
Workshop on Refactoring: Achievements, Challenges, Ef-
fects (REFACE), with WCRE, Waterloo, Canada, November
2003.

