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Abstract

Aspect Oriented Programming (AOP) is a new program-
ming paradigm that offers a novel modularization unit for
the crosscutting concerns. Functionalities originally spread
across several modules and tangled with each other can be
factored out into a single, separate unit, called an aspect.

The source code fragments introduced to port an exist-
ing application to a distributed environment (such as Java
RMI) are typically scattered and tangled, thus representing
an ideal candidate for the usage of aspects. In this paper,
we propose a distribution framework based on AOP and we
describe the steps necessary to migrate an existing program
to it. In our solution, the original application remains obliv-
ious of the distribution concern and all required aspects are
generated automatically. The approach was validated on a
case study.

1 Introduction

Making an application run in a distributed environ-
ment involves several small modifications that are typically
spread all over the code. For example, adoption of the RMI
(Remote Method Invocation) distribution framework for the
Java programming language affects the way objects are cre-
ated and accessed, and the way methods are called. In fact,
in RMI objects accessible from other hosts must be regis-
tered in the RMI registry upon creation. Correspondingly,
when they are accessed from another host, a remote refer-
ence to them must be obtained from the RMI registry. Then,
remote method invocation can occur, provided that the ex-
ceptions possibly due to the remote nature of the invocation
are properly handled.

A consequence of the code changes sketched above is
that the original software is adversely affected by the new
distribution functionality. In fact, the size and complex-

ity of the original software increase. Moreover, code frag-
ments related to a same functionality (i.e., distribution) are
inserted at different places. In these cases, maintaining the
functionality-to-code traceability is a non trivial task. From
the point of view of code understandability and maintain-
ability, a negative impact can be also hypothesized. In fact,
the core functions must be understood and maintained to-
gether with the distribution code fragments.

Aspect Oriented Programming (AOP) aims at providing
a modularization unit for the functionalities that cannot be
easily localized with the chosen programming style (e.g., in
a single class, with Object-Oriented Programming, OOP).
Code fragments devoted to a same function, but scattered
across several different modules, become an aspect in AOP
and can be implemented as a single, separate module.

Distribution is a typical candidate for an AOP implemen-
tation [?, 2, ?, 5]. Distribution code can be assigned to an
aspect, thus taking it apart from the original application.

In this paper, we consider the problem of migrating an
existing application to a distribution environment by means
of AOP. The solution described in this paper has several in-
teresting properties, such as the obliviousness of the orig-
inal code with respect to the distribution functionality and
the configurability of the network topology. Migration is
achieved by means of a static code analyzer and generator,
which automatically produces all the aspects necessary to
implement the distribution concern.

The proposed approach has been applied to a medium
size application. The clear separation of the distribution
from the other functionalities simplified the successive evo-
lution of this software, aimed at parallelizing the core pro-
cessing algorithm.

After reviewing RMI and its adoption in traditional OOP
(Section 2), our AOP distribution framework is presented
(Section 3). The source code analyzer and generator devel-
oped to support the migration process is described in Sec-
tion 4. Our experience with the case study is reported in



Section 5, followed by a discussion of the related works
(Section 6) and by our conclusions (Section 7).

2 Distributed programming with RMI

A distributed program is a program that uses resources
(e.g., memory, storage, processors, etc.) located at different
hosts. There are many reasons why an application needs be
distributed, such as balancing the computing load across the
hosts, increasing performance, or bringing the computation
near the required resources, in order to minimize the net-
work throughput and delay. It should be noted that distribu-
tion and parallelization are different concerns, independent
of each other.

2.1 RMI support

The standard Java library supports the development
of distributed programs by providing a standard Remote
Method Invocation (RMI) mechanism. RMI is a distributed
programming framework that enables the invocation of
methods on objects resident on different virtual machines,
possibly running on different hosts.

RMI provides a middleware layer that takes care of han-
dling communication and synchronization details, such as
the network protocol, object serialization and deserializa-
tion, concurrency. These facilities make the use of remote
objects very simple, because these can be accessed and in-
voked in a way very similar to the local invocations.

RMI uses object serialization to marshal the dynamic
structure of the objects into byte streams that can be sent
over a serial network link. In this way, all the parameters
involved in a method invocation can be transported. On the
other side, the received data stream is used to restore the
serialized objects and to execute the code of the remotely
called methods. Such a serialization mechanism is com-
pletely transparent to the programmer, who must only en-
sure the “serializability” of each parameter (i.e., implemen-
tation of Serializable interface).

Each remote object can be distinguished from the others
by name. In fact, a remote object is remotely invokable only
if it has been exported in the RMI naming registry and if it
has been bound to a name. The responsibility of the nam-
ing registry is to respond to lookup requests, by returning a
reference to the object bound to a given name.

RMI distinguishes two roles: server and client. The
server provides remotely invokable methods, whereas the
client invokes them (of course, hosts may play both roles at
the same time, for different objects). On the server side, not
all the methods in a remote object are exposed for remote
invocation, because some of them are private or have local
purpose. The remote visibility of each object involved in

RMI is declared by a particular interface, the remote inter-
face, that contains the specification of all the methods for
which the object can receive invocations from distant peers.

The client role consists of performing a remote invoca-
tion on a remote object. For that, the client needs to know
how to reach the remote object and which methods can be
invoked on it. The client code inquires the naming service
to obtain a reference to the required remote object. In order
to know which methods can be remotely invoked, the client
uses their specification in the remote interface.

2.2 Adding RMI support

Although RMI invocations are made in the same way
as normal invocations, programmers who use RMI must be
aware of the involved roles, because of collateral issues,
such as type casting and exception handling. In fact, be-
fore a remote object can be used, the name to which it is
bound must be known. Once a remote reference to the re-
quired object has been obtained, a particular exception han-
dling protocol has to be respected in order to perform the
remote invocation, because of the problems that can occur
in the invocation, such as network failure, server down, vir-
tual machine or library release mismatch, etc. The RMI
framework manages all these problems, hiding the details
under a generic RemoteException.

When the remote method invocation capability is added
to an existing application, two different steps must be taken.
The first concerns the production of new interfaces, while
the second is related to some code transformations.

The first step consists of deciding which services to in-
clude in the remote interface. This special interface extends
Remote and must be implemented by the class of the ob-
ject being remotized. Each of the remote methods declared
in this interface must add RemoteException to the throws
clause (see Figure 1, interface AR and class ). Moreover,
the class being remotized should extend UnicastRemoteOb-
Jject (when this is impossible, its objects can be remotized
through the method exportObject).

Once created, a remote object instance must be exported
in order to be visible from the other hosts. This entails the
registration of the object in the RMI registry, obtained by
calling the method rebind of the static class Naming (see
Figure 1, body of method server inside class Server).
When the object becomes unavailable on a given host, it
must be un-registered from the RMI registry.

On the other side, a client can obtain a reference to a
remote object by means of the lookup facility offered by
the class Naming of the RMI framework. Object identifica-
tion is by name, with names corresponding to the identifiers
used at the server side. An explicit type cast is necessary
to convert the remote reference to the remote interface im-
plemented by the referenced object (see Figure 1, body of



class A {
private int x, y;
public void £() {...}
public void g() {...} +

}

class Server {

public static A al, a2;
public void server() {
al = new A();
a2 = new A(); }

}
}

class Client {
public void client() {
A al Server.al;
A a2 Server.a2;
al.f();
a2.g0);
}

} }

+

}
}

interface AR extends Remote {
void f() throws RemoteException;
void g() throws RemoteException;

class A extends UnicastRemote(bject

implements AR {

private int x, y;

public void f() throws RemoteException {...}
public void g() throws RemoteException {...}

class Server {

public static A al, a2;

public void server() {

try {

al = new A(Q);
Naming.rebind("//hostl.itc.it/al",
a2 = new A(Q);
Naming.rebind("//hostl.itc.it/a2",
} catch (Exception e) {...}

class Client {
public void client() {
try {

AR ail
AR a2
al.f(
a2.g(

} catch (Exception e) {...}

al);

a2);

(AR)Naming.lookup("//host1.
(AR)Naming.lookup("//host1.

= itc.it/al");
= itc.it/a2");
);
);

Figure 1. Objects al and a2 are made remotely accessible.

method client inside class Client). While the original
client code contains local variables, fields and parameters
whose type is the class of the remote objects, the new code
must replace such type with the corresponding remote inter-
face (AR replaces A inside client code, on the bottom-right
in Figure 1).

Once a remote reference has been correctly obtained, re-
mote methods can be invoked on it inside a try-catch block
for the possibly raised exceptions (such as RemoteExcep-
tion). The last lines of the code of method client in Fig-
ure 1 are such an example.

On remote objects, clients can only issue method calls,
since field access is not allowed by the RMI framework.
Thus, access to public fields must be converted into the in-
vocation of setter/getter methods, before migrating to a dis-
tributed version of the code. Moreover, in a remote method
invocation, parameters are always passed by value (objects
are automatically serialized). When an object needs to be
passed by reference, a remote reference, obtained by means
of the lookup function, must be passed instead of the orig-
inal object. Its actual, dynamic type will be a subclass of
RemoteStub, automatically generated by RMI:

public void client() {

b.h(a2); // dyn-type(a2) is RemoteStub

3 Distribution as an aspect

Aspect Oriented Programming (AOP) [3] is a new pro-
gramming paradigm, with constructs explicitly devoted to
handling crosscutting concerns. In an object-oriented sys-
tem, it often happens that functionalities, such as persis-
tence, exception handling, error management, logging, are
scattered across the classes and are highly tangled with the
surrounding code portions. Moreover, the available modu-
larization/encapsulation mechanisms fail to factor them out.
Aspects have been conceived to address such situations.
AOP introduces the notion of aspect, as the modularization
unit for the crosscutting concerns. Common code that af-
fects distant portions of a system can be located in a single
module, an aspect. The aspect compiler takes care of weav-
ing it with the affected code to produce the executable.

Aspects interact with the given code by means of two
main mechanisms: pointcuts and introductions. Pointcuts
intercept the normal execution flow at specified join points.
Aspect code (called advice) can be executed either before,
after or instead of (around) the intercepted join point. In-
troductions modify properties of the classes they affect by
adding methods or fields and by making them implement
interfaces or specialize super-classes previously unrelated
with them.



As described in the previous section, introduction of dis-
tribution (and in particular of RMI) into an existing appli-
cation involves a code modification which is spread system-
wide and is intertwined with the original code. Thus, it is
an ideal candidate to be best expressed by means of aspects.
In this section, our approach to distribution as an aspect is
presented, with reference to the AOP language Aspect] [4].
In summary, it involves the following elements:

Remote interfaces: automated creation of the interfaces
required by RMI for remote objects.

Object factory: transparent creation of remote objects.

Method invocation: transparent invocation of methods on
remote objects.

Parameter passing: transparent management of
local/remote objects passed as parameters of method
calls.

Exception handling: transparent management of excep-
tions raised by RMI.

3.1 Remote interfaces

class A {
private int x, y;
public void £() {...}
public void g() {...}
}

interface A_Remote extends Remote {
public void f_remote() throws RemoteException;
public void g_remote() throws RemoteException;

}

privileged aspect A_RMIAspect {
declare parents: A implements RemoteClass;
declare parents: A implements A_Remote;
public void A.f_remote() throws RemoteException {}
public void A.g_remote() throws RemoteException {}

}

Figure 2. Automatically generated interface for a
given class A and related RMI aspect.

In order to make a class accessible from remote hosts,
an interface declaring all its public methods as remotely ac-
cessible is automatically generated. The implementation of
the methods required by the remote interface is obtained by
means of aspect introductions.

In order to introduce distribution without modifying the
original code, a solution slightly different from that shown
in Figure 1 is adopted. Instead of adding a throws clause to
each public method of the original class (as in Figure 1),
fresh method names are generated, by concatenating the
original names with "_remote" (see Figure 2, middle).

These new methods include the necessary throws clause and
are declared in the interface being generated (A _Remote, ex-
tending Remote).

The aspect A_RMIAspect (see Figure 2, bottom) declares
that class A implements the interface RemoteClass. This
requires no new method introduction and will be used to
distinguish normal from remote classes upon object cre-
ation and method invocation (see pointcuts described be-
low). Moreover, the aspect A_RMIAspect declares that
class A implements the automatically generated interface
A_Remote. This requires the introduction of methods
[f-remote, g_remote into class A. Their body is empty, since
their execution is always intercepted by an aspect (described
below) that redirects the control flow to the original meth-
ods. It should be noted that the aspect A_RMIAspect, as well
as the interface A_Remote, are generated automatically after
a simple static analysis of the code of class A. Differently
from the transformed code in Figure 1, the AOP solution
leaves the original code unchanged.

3.2 Object factory

When objects of remote classes are created, it is nec-
essary to insert them into the RMI registry, to make them
accessible from other hosts. Once again, an AOP solu-
tion avoids changing the original code (differently from Fig-
ure 1). It can be obtained by means of the powerful features
of the pointcuts.

Object creation is intercepted by a pointcut in a general
purpose aspect (Constructorlnvocation). The associated ad-
vice manages the transparent creation of remote objects. Its
(simplified) code is provided in Figure 3. This aspect has a
static field (objectFactory) referencing a singleton instance
of the class ObjectFactory, which has the responsibility of
creating and registering remote objects.

The pointcut constructorlnvocation intercepts all calls to
constructors of classes implementing the interface Remote-
Class (syntax: RemoteClass+.new(..)). Classes that can be
assigned to different hosts (remote classes) are modified by
the aspect shown in Figure 2, that makes them implement
this interface, so that any invocation of their constructors is
intercepted by this pointcut.

The code executed instead of the original constructor is
specified in an around advice associated with the pointcut
constructorlnvocation (see Figure 3, top). It delegates ob-
ject creation to the factory referenced by objectFactory.

Figure 3 (middle/bottom) shows the (simplified) code of
the class ObjectFactory. The constructor of this class is not
public and the unique instance of this class can be obtained
by means of the static method getlnstance (singleton de-
sign pattern [2]). Its protected constructor inserts such an
instance into the RMI registry, so that it can be accessed
remotely. A singleton instance of ObjectFactory is created



public aspect ConstructorInvocation {
static ObjectFactory objectFactory = ObjectFactory.getInstance();
pointcut constructorInvocation(): call(RemoteClass+.new(..));

Object around(): constructorInvocation() {
... // uses reflection to get className, signature, args
return objectFactory.createObject(className, signature, args);
}
}

class ObjectFactory extends UnicastRemoteQObject
implements ObjectFactory_Interface {
private static ClassFactory factoryInstance;
protected ObjectFactory() throws RemoteException {

factoryInstance = this;
Naming.rebind("//"+ thisHostName + "/ObjectFactory", this);
}
public static ObjectFactory getInstance()
{ ...return factoryInstance; }
public Remote createObject(String className, Class[] signature,
Object[] args) {
String host = hostAssignment (className) ;
if (host.equals(thisHostName)) {
return createlLocalObject(className, signature, args);
} else {
ObjectFactory_Remote factory = (ObjectFactory_Remote)
Naming.lookup("//" + host + "/ObjectFactory");
return factory.createObject(className, signature, args);
}
}
private synchronized Remote createLocalObject(String className,
Class[] signature, Object[] args){
Constructor constructor = getConstructor(className, signature);
Remote newInstance = (Remote) constructor.newInstance(args);
if (!(newInstance instanceof UnicastRemoteObject))
exportObject (newInstance) ;
String reference = "//" + thisHostName + "/Instance" + count++;
Naming.rebind(reference, newInstance);
return newlnstance;

structor object, by which a new instance of the given class
(parameter className) can be generated. Such a new in-
stance is ensured to implement the interface Remote (see
remote interface implementation in Figure 2). However, it
may be not always possible to make the given class extend
UnicastRemoteObject, because the class may belong to a
hierarchy that cannot be modified by an aspect introduc-
tion, to preserve the correctness of the program. In such
cases, the static method exportObject, inherited from Uni-
castRemoteObject by ObjectFactory, can be used to wrap
seamlessly the new instance into an object of proper type.
Then, the newly created instance is registered into the RMI
registry and is bound to an automatically created identifier
(”Instance” suffixed by an incremented integer).

3.3 Method invocation

Figure 3. Aspect Constructorlnvocation and class
ObjectFactory.

and run on every host (virtual machine) in the given network
topology.

Method createObject is responsible for the creation of
an object of a given class (parameter className) and for
its insertion into the RMI registry for remote access. We
assume that ObjectFactory knows the topology of the dis-
tributed application, that is, the name of the host on which
each remote class resides. This information can be provided
externally, in a configuration file. If the class of the ob-
ject being created is assigned to the current host, the object
is created locally by calling createLocalObject. When the
given class is assigned to a host other than the current one,
object creation is delegated to the object factory running on
such a host. A reference to the remote factory is obtained
by means of the lookup RMI facility. The remote reference,
of type Remote, produced by the remote factory is then re-
turned.

Local object creation is managed by method create-
LocalObject. 1t exploits Java reflection to obtain a Con-

public aspect MethodInvocation {
static ObjectFactory objectFactory = ObjectFactory.getInstance();
pointcut methodInvocation(RemoteClass obj):
execution(* RemoteClass+.*(..)) && target(obj);
pointcut remoteMethodExecution(Object obj):
execution(* RemoteClass+.*_remote(..)) && target(obj);

Object around(RemoteClass obj): methodInvocation(obj) {
// uses reflection to get className, signature, args
String newMethodName = signature.getName().concat("_remote");
Method method = objectFactory.getMethod(className,
newMethodName, signature);
return method.invoke(obj, args);

}

Object around(Object obj): remoteMethodExecution(obj){
// uses reflection to get className, methodName, signature, args
String origMethodName = methodName.substring(0,

methodName . index0f ("_remote"));
Method method = objectFactory.getMethod(className,
origMethodName, signature);

return method.invoke(obj, args);

}

}

Figure 4. Aspect MethodInvocation.

Method invocations on remotized objects are intercepted
by the aspect MethodInvocation (shown in Figure 4) and
replaced by a remote invocation, respecting the RMI pro-
tocol. On the remote host, the remote peer of this aspect
intercepts all the executions of remote methods (suffixed by
"_remote") and delegates the computation to the original
methods.

The pointcut methodInvocation intercepts the invocation
of any method, with any signature and any return type, of
all classes implementing the interface RemoteClass (syn-
tax: * RemoteClass+.%*(..)). In this way, the original code
remains unchanged, but its execution is intercepted by the
aspect MethodInvocation, that takes care of redirecting the
call to a remote object, each time a RemoteClass is involved
(all classes that can be moved to a different host implement
this interface, thanks to the aspect shown in Figure 2). The




parameter obj of this pointcut is bound to the target of the
invocation.

The around advice executed when the pointcut method-
Invocation is triggered (see Figure 4) creates a new
method name by concatenating the original name with
"_remote". The resulting name is declared in the remote
interface of the given class (see above), so that its invoca-
tion is handled by RMI as a remote invocation (last line of
code of the advice).

On the remote host, the pointcut remoteMethodExecu-
tion is triggered each time a remote method is executed. In
fact, this pointcut constrains the method name to end with
"_remote" (see Figure 4, top).

The around advice executed when a remote method has
been called redirects the execution to the original method.
This is achieved by restoring the original method name (see
Figure 4, bottom), removing the suffix "_remote", and
invoking it.

3.4 Parameter passing

class ObjectFactory extends UnicastRemoteObject
implements ObjectFactory_Interface {

private Map localMap; // RemoteStub —-> Object

public Object wrap(RemoteStub remoteStub) {
// uses reflection to get className from remoteStub
Class[] signature = {RemoteStub.class};
Object[] args = {remoteStub};
Constructor constructor = getConstructor(className, signature);
return constructor.newInstance(args);

}

public Remote unwrap(RemoteStub remoteStub){
return (Remote)localmap.get(remoteStub);

}

}

privileged aspect A_RMIAspect {

private RemoteStub A.remoteStub = null;

public A.new(RemoteStub remoteStub) {
this.remoteStub = remoteStub;

}

public RemoteStub A.getRemoteStub() {
return remoteStub;

}

}

Figure 5. Local and remote parameters.

The parameter passing mechanism implemented by RMI
is by-value for simple types and by-serialization or by-
remote-reference for objects. For simple types, passing the
parameters by value clearly preserves the behavior of the
given application. For objects, serialization may lead to in-
correct behaviors, for example, when classes do not support
serialization or when serialization is not appropriate, since
the object parameter is expected to be shared. In these cases,
parameter passing must be by remote-reference. Conserva-
tively, we apply this option to all objects passed as invoca-
tion parameters.

When an object parameter is passed as a remote ref-
erence to a remote method or is returned from a remote
method, it cannot be used directly in the original code, be-
cause of a type mismatch. In fact, its dynamic type is an
automatically generated subclass of RemoteStub instead of
the original class. Similarly to the original class, this sub-
class of RemoteStub implements the remote interface de-
clared for the remotized class. However, usage of such an
interace would require changing the original code, which
we want to leave untouched. Our solution to this problem
consists of creating a fake object of the original class, which
contains an additional field, named remoteStub, storing the
remote reference. Each time a remote reference parameter
or return value is received, it is wrapped into a fake object
of the original class. The aspect A_RMIAspect (see Figure 5,
bottom) adds the field remoteStub, of type RemoteStub, to
the original class. A new constructor, also introduced by
this aspect, assigns the remote reference to such a field.

Object parameters are wrapped inside the advice that sur-
rounds the execution of the called method, when these ob-
jects are resident on a host different from that of the target
of the invocation. Similarly, the advice that surrounds the
method call wraps the returned object (if any). The wrap
operation is implemented by the class ObjectFactory (see
Figure 5, top). It inserts the remote reference associated
with the given object parameter into the remoteStub field,
by calling the newly introduced constructor with the Re-
moteStub as parameter. Any successive call on this object
can be redirected to its field remoteStub by the MethodInvo-
cation aspect, by means of the following statement, added
to the advice around the pointcut methodInvocation in Fig-
ure 4 (see also Figure 6):

Remote realObj = obj.getRemoteStub();

return method.invoke(realObj, args);
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Figure 6. Interactions during method invocations.

It should be noted that a particular case where wrapping
is required is the creation of a new object by a remote ob-
ject factory. With reference to the createObject method in
Figure 3, when the factory is remote (RMI lookup is used



for the factory), the object being returned must be wrapped,
to be consistent with the type declared in the original code:

return factory.wrap (

factory.createlObject (className, signature, args));

When a remote reference is passed as a parameter to a
host that is the same where the remote object is resident,
an unwrap operation is to be performed. Such an operation
(see Figure 5) exploits a private field of class ObjectFactory,
called localMap, which stores the correspondence between
remote references generated by RMI and local objects allo-
cated by the ObjectFactory. Unwrapping a given RemoteS-
tub accounts just for retrieving the associated local object
from localMap. In this way, the actual, local object is used
in the original code.

Management of the local map requires that before return-
ing from createLocalObject (see Figure 3), the following
statements be executed:

RemoteStub remoteStub = Naming.lookup(reference);
localMap.put (remoteStub, newInstance);

3.5 Exception handling

Try-catch blocks associated with RMI exceptions have
been omitted for clarity in Figures 3, 4. However, they
can be easily added to the aspect code, without any need to
change the original code. In fact, all invocations of remote
methods are inside aspects (Figure 4) and all invocations
of constructors are inside class ObjectFactory (Figure 3).
Once they are surrounded by proper try-catch blocks, they
can handle locally the RMI exceptions possibly raised, leav-
ing the original code unaffected.

3.6 Discussion

The approach described above to migrate an existing
single-processor application to a distributed environment
enjoys several interesting properties.

The refactored code is completely oblivious of the distri-
bution concern, since the existing code remains unchanged
and only new code (for the aspects and infrastructure
classes) is added. This means that it continues to be possible
to run exactly the original application in a single processor.
When the application is distributed across multiple hosts, it
is sufficient to compile it with the distribution aspects.

The actual topology of the network of hosts on which the
application is deployed is completely configurable without
any change in the distribution code. In fact, the assignment
of classes to hosts is specified in a configuration file that is
accessed by each object factory. This gives a great flexi-
bility in trying and changing the distribution of the objects
over the network.

The complete obliviousness of the given application
with respect to the distribution concern is expected to have
remarkably positive effects on the understandability and
evolvability of the software.

The code pertaining to the distribution concern is not
spread in each involved class, being located in a single
place. The program comprehension effort required to un-
derstand such a concern is correspondingly simplified, since
this concern can be dealt with separately from the others.
Benefits are apparent also for the core functionalitites of the
given application, since understanding all the other features
is not complicated by the presence of the code related to dis-
tribution. Moreover, most of the code of the proposed dis-
tribution framework (class ObjectFactory, aspect Method-
Invocation, etc.) is fixed and can be included in a library.
Only small code fragments are generated specifically for
the application being migrated (interface A _Remote, aspect
A_RMIAspect).

Evolution is also expected to be affected positively, since
the application does not depend on its aspects. When man-
agement of the distribution concern changes, the original
application (oblivious of distribution) is unaffected and the
change remains local to the distribution aspects and classes.

4 Tool support

The classes and some of the aspects (MethodInvocation,
etc.) in the proposed distribution framework do not depend
on the particular application being migrated, thus they are
provided as a library. Production of application-specific as-
pects and remote interfaces is obtained by means of a code
generation tool we developed.

4.1 Code Generation Tool

Before generating application-specific code, the topolo-
gy of the distributed system has to be specified. This clari-
fies which classes need a remote interface, in order for their
methods to be invokable from code running on distant hosts.

For each class to be remotized, all its super-classes must
be made remote as well, because inherited methods have to
be also changed into remote methods.

The tool for the automatic generation of the remotization
code consists of a program written in TXL [1] for the As-
pect] programming language. We extended the Java gram-
mar distributed with TXL to cover the additional constructs
introduced by Aspect].

The tool is run on each class to be remotized, taking
as input the source code of the given class and the list of
the remote classes. Such a list can be produced automati-
cally, once the topology of the classes (i.e., their distribution
among the hosts) has been decided. In fact, a class is classi-
fied as a remote class if it is referenced inside code assigned
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Figure 7. Code generation tool.

to a different host. This can be determined by a static code
analysis (yet to be implemented).

The list of the remote classes is required because the
code generation program modifies return and parameter
types in remote methods (i.e., methods declared in the re-
mote interfaces), in all the cases where such types corre-
spond to remote classes, to be handled using remote refer-
ences.

Each remote interface automatically generated by our
tool contains the definitions of the remote version of all the
public class methods, with altered return type and signa-
ture (if necessary) and with a new RemoteException in the
throws clause. The new method names are built by append-
ing the suffix “_remote” to them.

Each automatically generated RMI aspect makes the as-
sociated class implement its remote interface, by introduc-
ing all required remote methods and by declaring the imple-
mentation of the interface. It also adds some methods and
a field to realize the wrapping mechanism. Eventually, the
aspect makes the class implement the RemoteClass tagging
interface, to let the MethodInvocation aspect identify it as a
remote class and properly detect invocation pointcuts on it.

S5 Case study

The proposed approach has been applied to the Java pro-
gram FreeTTS (http://freetts.sourceforge.net), a speech syn-
thesis system written in the Java programming language.
FreeTTS was developed by Sun Microsystems, based upon
Flite, a small, fast, run-time speech synthesis engine, which
in turn is based upon University of Edinburgh’s Festival
Speech Synthesis Sytem and Carnegie Mellon University’s
FestVox project.

FreeTTS is a medium size application, consisting of
around 31k LOC (Lines Of Code) and 173 classes. Its high
level architecture is depicted in Figure 8. The text to be
spoken is divided into utterances by the function tokenize.
Utterances contain information about the phones in the text
and the wave forms under construction. Such data are incre-
mentally modified by a set of utterance processors applied
sequentially (see pseudocode in Figure 9). In the end, the
resulting utterances are sent to an output queue. A separate
thread dequeues utterances ready for audio output and sends
them to the audio player.

Utterance processing and audio output are realized by
classes which implement the UtteranceProcessor interface.
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Figure 8. Architecture of FreeTTS.

main

1 for each u: Utterance

2 for each p: UtteranceProcessor
3 runProcessor(p, u)

4 end for

5 end for

Figure 9. Pseudocode for utterance processing.

Each of them operate on the features and relations held in-
side objects of class Utterance. Examples of features as-
sociated to each utterance are the Linear Predictive Coding
(LPC) result and the units, eventually concatenated into the
LPC result. Examples of relations are the segment (ordered
list of the smallest units of speech, typically phonemes), the
syllable and the phrase.

Utterance processors can be sharply divided into two
groups: those operating directly on the wave form (i.e., on
utterance features such as units and LPC result) and those
operating on the phones extracted from the text (e.g., on
segments, syllables, phrases). For example, the utterance
processor Segmenter creates the relations syllable, syllable
structure and segment. The processor Durator annotates the
relation segment with a cumulative “end time”. The Intona-
tor annotates syllable with “accent”, while PauseGenerator
adds pause information. Examples of processors working
on the wave form are the ClusterUnitSelector and the Di-
phoneUnitSelector, that create the unit relation. UnitCon-
catenator concatenates the units in the given Utterance to
the LPC result. AudioOutput sends the LPC result to the
audio player.

Since phone processors and wave processors require dif-
ferent resources and work on different parts of the utter-
ances, a distributed version of this application may consist
of two hosts, devoted respectively to phone processing and
wave processing. The latter includes the final audio output,
so the host for wave processing must be the one with the
actual audio device. Phone processing might require heavy
computations, so a properly dimensioned host should be al-
located for that.
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Figure 10. New architecture of FreeTTS.

We split the classes composing the FreeTTS application
into two groups, corresponding to the two hosts (see Fig-
ure 10). All classes related to utterance creation and phone
processing have been assigned to the first host. These in-
clude the classes Utterance and OutputQueue. Utterance
processors working on the wave form and strictly related
classes are assigned to a second host. They can be easily
identified as all the classes belonging to the four subpack-
ages audio, relp, clunits, diphone, plus a class from the sub-
package util (WaveUtils).

Once the topology of the distributed application is de-
fined, migration to the new distributed environment ac-
counts just for the automated generation of the remote in-
terfaces and of the aspects required by the remote classes.
The original classes remain untouched. Moreover, the gen-
eral purpose classes (e.g., the ObjectFactory) and aspects of
the distribution framework are made available in a library,
in order for the system to work.

Actual generation of the audio output for a same text in
the original and in the distributed environment confirmed
the preservation of the speech synthesis functionality after
migration. Further advantages (in terms of performances)
were obtained in the new, distributed environment by run-
ning the different utterance processors in parallel. This re-
quired a manual intervention on the code, to make different
processors run on separate threads. Figure 11 shows the
parallelized pseudocode. Each processor is assigned to a
different thread, and communicates with the other proces-
sors by means of two synchronized queues, an input and an
output queue.

Utterances are enqueued in the entry queue (lines 8-10).
The first processor dequeues each utterance from such a
queue and enqueues the modified utterance into its output

main

1 entry := newSyncQueue()
2 out := entry

3 for each p: UtteranceProcessor
4 in := out

5 out := newSyncQueue()
6 runThread(p, in, out)
7 end for

8 for each u: Utterance
9 enqueue(entry, u)
10 end for

runThread(p: UtteranceProcessor, in: Queue, out: Queue)
11 start new thread

12 loop

13 u := dequeue(in)
14 runProcessor(p, u)
15 enqueue(out, u)
16 while (u # null)

17 end start

Figure 11. Parallel utterance processing.

queue, which is the input queue for the second processor.
Then, the first processor can dequeue the second utterance
and, at the same time, the second processor can work on
the first utterance. After an initial transition, all processors
will have a non empty input queue, so that all of them can
proceed in parallel.

Since phone processing and wave processing are al-
located to separate hosts, the parallelism among proces-
sors results in the possibility of actually concurrent execu-
tions. An initially sequential, mono processor application
has been transformed into a distributed, concurrent applica-
tion. Thanks to the proposed AOP solution, the only neces-
sary code changes are related to parallelization, while dis-
tribution was introduced obliviously.

6 Related work

Distribution and concurrency have been considered can-
didate features for AOP in several works [?, ?, 2, 2, 5, 6].

The authors of [5] report their experience using Aspect]
to implement distribution and persistence in a real Web in-
formation system. They argue that the Aspect] implementa-
tion is superior to the pure Java implementation. Similarly
to us, one of their goal was implementing distribution with-
out changing the original code.

Although tailored to a specific application, the solution
proposed in [5] has several similarities with ours. Imple-
mentation of remote interfaces is declared by an aspect.
Remote calls are intercepted and redirected to remote ref-
erences. In our approach, instead of enumerating explicitly
the remote calls to redirect, we identify them by means of
reflection. The need of a new static crosscutting mechanism
in Aspect] was devised in [5], to support the introduction of



throws clauses. Our framework would benefit from it as
well.

An AOP solution to the synchronization problem in con-
current applications was investigated in [?, ?, ?]. In all these
works the synchronization concern is factored out in a sep-
arate unit, treated as an orthogonal view on the system’s
functionalities. Synchronization is one of the aspects mined
and refactored in the middleware applications studied in [6].

The application server JAC (http://jac.objectweb.org/)
supports distribution following an AOP approach. The orig-
inal application remains oblivious of the distribution aspect,
which is specified in a separate configuration file.

The main difference of our approach with respect to the
available solutions is that we focus on the migration prob-
lem (instead of the development from scratch) and we insist
on a fully automated transition, which leaves the original
code oblivious of the distribution concern.

In [?] distribution is added to the Aspect] language it-
self. The notion of remote pointcut is proposed, aimed at
intercepting join points located on multiple hosts.

7 Conclusions

In this work, we have proposed a method for introducing
the distribution concern into an existing application using
the modularization mechanisms provided by Aspect Ori-
ented Programming.

In traditional code, using the RMI framework to im-
plement a distributed environment requires the insertion
of code fragments that are spread in all the participating
classes. In each of these classes, the distribution code is
tangled and confused with the statements that handle the
other application responsibilities. In such a situation, future
maintenance activities can be very hard, because the code is
difficult to understand and change impact may be difficult
to predict.

The main advantage of our proposal is that the evolved
application code remains unchanged, being oblivious of the
new concern. In fact, the already existing Object Oriented
code has no references to the Aspect Oriented code just in-
troduced. All the code dealing with this concern is modu-
larized in an isolated and distinguishable part, so any future
evolution and maintenance activity can be performed on the
concern without affecting the rest of the code. The verifica-
tion stage has some benefits as well, because we can limit
testing to the modified aspects only.

Apart from the current limitations of our tool (remote
class list construction), the proposed solution is fully auto-
mated. Once the distributed topology of the given applica-
tion has been decided, the migration step accounts just for
running our code generator utility. All necessary aspects
and interfaces are added to the existing code, which can be
compiled and run in the new environment.

The proposed technique has been validated on a case
study. We have applied the distribution concern to a
medium size application and we have been able to split and
distribute its functionalities among different hosts with a
very limited effort, although our initial knowledge of the
code was null.
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