
Padua2D: Lagrange Interpolation at Padua Points
on Bivariate Domains

MARCO CALIARI and STEFANO DE MARCHI

University of Verona

and

MARCO VIANELLO

University of Padua

We present a stable and efficient Fortran implementation of polynomial interpolation at the “Padua

points” on the square [−1, 1]2. These points are unisolvent and their Lebesgue constant has

minimal order of growth (log square of the degree). The algorithm is based on the representation

of the Lagrange interpolation formula in a suitable orthogonal basis, and takes advantage of a

new matrix formulation together with the machine-specific optimized BLAS subroutine DGEMM for
the matrix-matrix product. Extension to interpolation on rectangles, triangles and ellipses is also

described.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Languages Classifica-
tions—Fortran 77; G.1.1 [Numerical Analysis]: Interpolation; G.1.2 [Numerical Analysis]:

Approximation; G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: Bivariate Lagrange interpolation, Padua points, bivariate

Chebyshev orthogonal basis

1. INTRODUCTION

The problem of choosing “good” nodes on a given compact set is a central one in
multivariate polynomial interpolation. Besides unisolvence, which is by no means
an easy problem, for practical purposes one needs slow growth of the Lebesgue
constant and computational efficiency; see, e.g., [Bojanov and Xu 2003; Carnicer
et al. 2006; de Boor et al. 2000; Gasca and Sauer 2000; Sauer 1995; Xu 1996] and
references therein.

In [Caliari et al. 2005] a new set of points for polynomial interpolation on the
square [−1, 1]2, called “Padua points”, was introduced and experimentally studied.
In [Bos et al. 2006b; Bos et al. 2007] it has been proved that they are unisolvent in
the full polynomial space Π2

n, n the polynomial degree, and that they give the first

Authors’ addresses: M. Caliari and S. De Marchi, Department of Computer Science, University

of Verona, Strada Le Grazie 15, 37134 Verona (Italy); email: marco.caliari@univr.it and ste-

fano.demarchi@univr.it; M. Vianello, Department of Pure and Applied Mathematics, University
of Padua, Via Trieste 63, 35121 Padova (Italy); email: marcov@math.unipd.it.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–10.

2 · M. Caliari, S. De Marchi and M. Vianello

known example of non tensor-product optimal interpolation in two variables, since
their Lebesgue constant has minimal order of growth of O((log n)2). Moreover,
an explicit representation of their fundamental Lagrange polynomials was given,
which is based on the reproducing kernel of the space Π2

n([−1, 1]2) equipped with
the bivariate Chebyshev inner product (cf. [Dunkl and Xu 2001; Reimer 2003]).

In this paper we present a stable and efficient Fortran implementation of the
Lagrange interpolation formula at the Padua points, with cost O(n3) flops for the
evaluation (once and for all) of the coefficients of the interpolation polynomial rep-
resented in the Chebyshev orthonormal basis, plus an additional cost of O(n2) flops
for the evaluation at each target point. Remarkable speedups with respect to the
existing algorithm used in [Caliari et al. 2007] are obtained by a new matrix for-
mulation. The effect of machine-specific optimized versus standard BLAS libraries
is also investigated.

2. PADUA POINTS

There are four families of Padua points (cf. [Caliari et al. 2007]), which correspond
to successive 90 degrees rotations (clockwise for degree n even and counterclockwise
for n odd) of the square [−1, 1]2. Here we describe one of them (also termed the
“first family” of Padua points) as well as the associated Lagrange interpolation
formula. Interpolation for the other families can be easily obtained by composition
with the corresponding rotation, as described in Sec. 3.4.

The N = (n + 1)(n + 2)/2 = dim
(
Π2
n

)
Padua points corresponding to degree n

are the set of points

Padn := {ξ = (ξ1, ξ2)} :=

{
γ

(
kπ

n(n+ 1)

)
, k = 0, . . . , n(n+ 1)

}
, (1)

where γ(t) is their “generating curve” (cf. [Bos et al. 2006b])

γ(t) := (− cos((n+ 1)t),− cos(nt)), t ∈ [0, π] . (2)

Notice that two of the points are consecutive vertices of the square, 2n − 1 other
points lie on the edges of the square, and the remaining (interior) points are dou-
ble points corresponding to self-intersections of the generating curve (see Fig. 1).
Clearly, such structure remains invariant for the other three families up to the
corresponding rotation.

Denote by Cn+1 the set of the n+ 1 Chebyshev–Gauss–Lobatto points

Cn+1 := {znj = cos(jπ/n), j = 0, . . . , n} . (3)

The Padua points (for n even) were first introduced in [Caliari et al. 2005, formula
(9)] (in that formula there is a misprint, n − 1 has to be replaced by n + 1). For
the sake of clarity, we give again that definition:

Padn := {ξ = (µj , ηk), 0 ≤ j ≤ n; 0 ≤ k ≤ n/2}
where

µj = znj , ηk =

{
zn+1

2k j odd

zn+1
2k+1 j even

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains · 3

It is clear that µj ∈ Cn+1, ηk ∈ Cn+2, and denoting by Ceven
n+1 , Codd

n+1 the restrictions
of Cn+1 to even and odd indexes, then

Padn = (Codd
n+1 × Ceven

n+2) ∪ (Ceven
n+1 × Codd

n+2) ⊂ Cn+1 × Cn+2 ,

which is valid also for n odd.

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1
-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1
-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1
-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

Fig. 1. The Padua points with their generating curve for n = 12 (left, 91 points) and n = 13
(right, 105 points), also as union of two Chebyshev-like grids (open bullets and filled bullets).

The fundamental Lagrange polynomials of the Padua points are

Lξ(x) = wξ(Kn(ξ,x)− Tn(ξ1)Tn(x1)) , Lξ(η) = δξη , ξ,η ∈ Padn , (4)

where Kn(x,y), x = (x1, x2) and y = (y1, y2), is the reproducing kernel of the
space Π2

n([−1, 1]2) equipped with the inner product

〈f, g〉 :=
1

π2

∫

[−1,1]2
f(x1, x2)g(x1, x2)

dx1√
1− x2

1

dx2√
1− x2

2

, (5)

that is

Kn(x,y) =

n∑

k=0

k∑

j=0

T̂j(x1)T̂k−j(x2)T̂j(y1)T̂k−j(y2) . (6)

Here T̂j denotes the normalized Chebyshev polynomial of degree j, i.e. T̂0 = T0 ≡ 1,

T̂p =
√

2Tp, Tp(·) = cos(p arccos(·)). Moreover, the weights wξ are

wξ :=
1

n(n+ 1)
·





1/2 if ξ is a vertex point

1 if ξ is an edge point

2 if ξ is an interior point

(7)

We notice that the {wξ} are indeed weights of a cubature formula for the product
Chebyshev measure, which is exact on “almost all” polynomials in Π2

2n([−1, 1]2),
namely on all polynomials orthogonal to T2n(x1). Such a cubature formula stems

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · M. Caliari, S. De Marchi and M. Vianello

from quadrature along the generating curve and is the key to obtaining the funda-
mental Lagrange polynomials (4); cf. [Bos et al. 2006b]. A more abstract approach
to the construction of the Lagrange polynomials, based on the theory of polynomial
ideals and multivariate orthogonal polynomials, can be found in [Bos et al. 2007].

The polynomial interpolation formula can be written, in view of (4) and (6), in
the bivariate Chebyshev orthonormal basis as

Lnf(x) =
∑

ξ∈Padn

f(ξ)wξ (Kn(ξ,x)− Tn(ξ1)Tn(x1))

=
n∑

k=0

k∑

j=0

cj,k−j T̂j(x1)T̂k−j(x2)−
∑

ξ∈Padn

f(ξ)wξT̂n(ξ1)
T̂0(ξ2)√

2
T̂n(x1)

T̂0(x2)√
2

=
n∑

k=0

k∑

j=0

cj,k−j T̂j(x1)T̂k−j(x2)− cn,0
2
T̂n(x1)T̂0(x2) ,

(8)
where the coefficients

cj,k−j :=
∑

ξ∈Padn

f(ξ)wξT̂j(ξ1)T̂k−j(ξ2), 0 ≤ j ≤ k ≤ n (9)

can be computed once and for all.

3. THE INTERPOLATION ALGORITHM

The following definition will be useful below. Given a vector S = (s1, . . . , sm) ∈
[−1, 1]m, define the rectangular Chebyshev matrix

T(S) :=



T̂0(s1) · · · T̂0(sm)

... · · ·
...

T̂n(s1) · · · T̂n(sm)


 ∈ R(n+1)×m . (10)

3.1 Old algorithm

In the recent paper [Caliari et al. 2007] the interpolation formula (8)–(9) has been
implemented by the following factorization of the coefficient matrix, which was
already used for hyperinterpolation at the Morrow–Patterson–Xu points in [Caliari
et al. 2006b]. Considering the vectors of the one-dimensional projections of the
Padua points and the corresponding Chebyshev matrices

Ti := T(Padin) ∈ R(n+1)×N , Padin := (ξi)ξ∈Padn
, i = 1, 2 , (11)

and the diagonal matrix

D(f) := diag ((wξf(ξ), ξ ∈ Padn)) ∈ RN×N , (12)

following [Caliari et al. 2006b], it is easy to prove that the coefficients cj,k−j in (9)
are the upper-left triangular part of the matrix

(cp,q) = C(f) := T1D(f)Tt
2 ∈ R(n+1)×(n+1) . (13)

Indeed, we have that cp,q in (13) is exactly cj,k−j in (9) with j = p, k = p + q,
0 ≤ j ≤ k ≤ n. Notice that the multiplication by the diagonal matrix D(f) is

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains · 5

simply a scaling of the columns of T1 or of the rows of T2. Then, defining the
Fourier–Chebyshev coefficient matrix

C0(f) :=




c0,0 c0,1 · · · · · · c0,n
c1,0 c1,1 · · · c1,n−1 0

...
... . .

.
. .

. ...
cn−1,0 cn−1,1 0 · · · 0
cn,0/2 0 · · · 0 0



∈ R(n+1)×(n+1) , (14)

it is easy to see that the polynomial interpolation formula (8) can be evaluated at
any x = (x1, x2) ∈ [−1, 1]2 by

Lnf(x) = (T(x1))
t C0(f)T(x2) , (15)

cf. (10), taking suitably into account the triangular structure of C0(f) (notice that
T(xi), i = 1, 2, is a column vector).

3.2 New algorithm

A substantial improvement can be obtained by a different matrix factorization.
With a little abuse of notation, we denote by Cn+1 = (zn0 , . . . , z

n
n) the ordered vector

of the Chebyshev–Gauss–Lobatto points, too. Consider the matrices (cf. (10))

P1 := T(Cn+1) ∈ R(n+1)×(n+1), P2 := T(Cn+2) ∈ R(n+1)×(n+2) , (16)

and define the (n+1)×(n+2) matrix computed correspondingly to the Chebyshev-
like grid Cn+1 × Cn+2

G(f) = (gr,s) :=

{
wηf(znr , z

n+1
s) if η = (znr , z

n+1
s) ∈ Padn

0 if η = (znr , z
n+1
s) ∈ (Cn+1 × Cn+2) \ Padn

(17)
Then, it is easy to check that the matrix C(f) in (13) can also be factorized as

C(f) = P1G(f)Pt
2 . (18)

The evaluation of the polynomial interpolant is now performed as in (15), via the
coefficient matrix C0(f) in (14).

The computational cost of the coefficient matrix by (18) is O(n3), whereas that
of (13) is O(n4). Such an improvement is due to the fact that the relevant matrices
have O(n2) instead of O(n3) elements. The matrix formulation (15)–(18) of the
interpolation problem will be the computational key for the Fortran implementation
described in Sec. 4.

3.3 Error estimates

In view of the growth estimate for the Lebesgue constant proved in [Bos et al.
2006b] and of the multivariate extension of Jackson’s theorem (cf., e.g., [Bagby
et al. 2002] and references therein), we have that for f ∈ Cp([−1, 1]2), p > 0,

‖f − Lnf‖∞ ≤ (1 + Λn)En(f) ≤ C(f ; p) (1 + Λn) n−p = O
(
n−p(log n)2

)
,

where C is a suitable constant (with respect to n), dependent on f and p. However,
this a priori estimate is essentially qualitative.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · M. Caliari, S. De Marchi and M. Vianello

A desirable feature is the availability of a reliable and, if possible, a posteriori
quantitative estimate of the error. To this purpose, we have used the fact that in-
terpolation at Padua points is “close” to a discretized truncated Fourier–Chebyshev
expansion. We then obtain the following a posteriori estimate of the interpolation
error (cf. (8)–(9))

‖f − Lnf‖∞ ≈ ‖f − Snf‖∞ ≈ 2

n∑

k=n−2

k∑

j=0

|cj,k−j | , (19)

where Snf is the orthogonal projection of f on Π2
n([−1, 1]2) with respect to the

inner product (5).
The first approximation can be rigorously justified (cf. [Caliari et al. 2007]),

whereas the second is somewhat “empirical”, but reminiscent of popular error es-
timates for one-dimensional Chebyshev expansions. In practice, indeed, as in the
one-dimensional case it happens that (19) tends to be an overestimate for smooth
functions, and an underestimate for functions of low regularity (due to the fast/slow
decay of the Fourier–Chebyshev coefficients). Application to classical test sets for
interpolation has shown that the behavior of this error estimate is satisfactory (see
[Caliari et al. 2007]), and thus it is provided as an output of our interpolation
subroutine.

In order to give a flavour of the numerical performance of the interpolation algo-
rithm and reliability of the error estimate (19), we report in Table I some results on
the classical Franke test suite (cf. [Franke 1982]) taken from [Caliari et al. 2007].
We recall that all errors are normalized to the maximum deviation of the function
from its mean, and that the “true” errors have been computed on a 100 × 100
uniform control grid.

degree n F1 F2 F3 F4 F5 F6

20 2E-2 6E-2 1E-5 7E-10 6E-5 4E-8

(2E-2) (8E-2) (8E-5) (1E-7) (8E-4) (5E-7)

40 2E-6 2E-3 2E-11 8E-15 4E-13 1E-14

(1E-5) (2E-3) (2E-10) (1E-15) (2E-11) (1E-13)

60 2E-11 6E-5 3E-14 2E-14 8E-15 3E-14
(3E-10) (7E-5) (5E-15) (5E-15) (1E-15) (6E-15)

Table I. “True” and estimated (in parentheses) normalized errors of interpolation of Padua points

for the classical Franke test suite.

3.4 Mapping the square

The interpolation formula (15) can be extended to: a) the other three families of
Padua points and b) other domains, by means of a suitable mapping of the square.
Indeed, when a smooth and surjective transformation

σ : [−1, 1]2 → Ω , t 7→ x = σ(t) , Ω ⊂ R2 (20)

is given, we can construct the (in general nonpolynomial) interpolation formula on
Ω,

Lnf(x) = Lnf(x;σ,Ω) := T
(
σ−1

1 (x)
)t C0(f ◦ σ)T

(
σ−1

2 (x)
)
. (21)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains · 7

Here we denote by σ−1
i (x), i = 1, 2 the components of the “inverse” transformation,

which in general has to be defined by choosing a point in the inverse image of
x (recall that σ is assumed to be surjective but not necessarily injective). Any
particular choice will give a valid interpolation formula.

For example, polynomial interpolation over any nondegenerate parallelogram can
be obtained by a suitable invertible affine map such as

σ(t) := At+ v , σ−1(x) = A−1(x− v) , A ∈ R2×2 . (22)

As a special case, interpolation over the reference square rotated by an angle θ can
be immediately obtained from

A :=




cos θ − sin θ

sin θ cos θ


 , A−1 = At , v = 0 . (23)

In particular, Lagrange interpolation at the other three families of Padua points
(say, the “second”, “third” and “fourth” family), corresponds to θ = −π/2, −π,
−3π/2 for even degree n, and θ = π/2, π, 3π/2 for odd degree, respectively (here
Ω = [−1, 1]2). On the other hand, interpolation of a function f defined on a
rectangle such as Ω = R(a, b) := [a1, b1]× [a2, b2], corresponds to

A :=
1

2



b1 − a1 0

0 b2 − a2


 , v =

1

2
(b+ a) . (24)

The examples above concern transformations that are globally invertible and still
generate a polynomial interpolant. But it is also possible to use tranformations into
bivariate domains with different geometric structures, provided that they are sur-
jective and smooth in order to preserve as much as possible the polynomial approxi-
mation quality. These are the cases, for example, of triangles, generalized rectangles
and generalized sectors, where we finally get a nonpolynomial interpolant.

As for the case of a nondegenerate triangle Ω = T (u,v,w) with vertices u =
(u1, u2), v = (v1, v2) and w = (w1, w2), it is convenient to use the Proriol (also
known as the Duffy) quadratic map

σ(t) :=
1

4
(v − u)(1 + t1)(1− t2) +

1

2
(w − u)(1 + t2) + u . (25)

Notice that this is non injective, since it maps the whole upper side of the square
(t2 = 1) to the vertex w. An “inverse” can be defined via the auxiliary map ρ(x)
from T (u,v,w) to the unit triangle with vertices (0, 0), (1, 0) and (0, 1)

ρ1(x) :=
x1(w2 − u2)− x2(w1 − u1) + (w1 − u1)u2 − (w2 − u2)u1

(v1 − u1)(w2 − u2)− (v2 − u2)(w1 − u1)

ρ2(x) :=
x1(v2 − u2)− x2(v1 − u1) + (v1 − u1)u2 − (v2 − u2)u1

(w1 − u1)(v2 − u2)− (w2 − u2)(v1 − u1)
,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · M. Caliari, S. De Marchi and M. Vianello

and by choosing a point in the inverse image of w, e.g. as

σ−1 : T (u,v,w)→ [−1, 1]2

σ−1(x) :=





(0, 1) x = w (ρ2 = 1)
(

2ρ1

1− ρ2
− 1, 2ρ2 − 1

)
x 6= w

(26)

The resulting interpolant (21) at the Padua points mapped into the triangle be-
comes rational.

As an example of the use of polar-like coordinates, consider an ellipse Ω =
E(c, α, β) centered in c = (c1, c2) and with x1-semiaxis α and x2-semiaxis β. It is
convenient (cf. [Bos et al. 2006a]) to define the starlike-polar map

σ1(t) := c1 − αt2 sin
(π

2
t1

)
, σ2(t) := c2 + βt2 cos

(π
2
t1

)
, (27)

which distributes the interpolation points in a more symmetric way with respect to
standard polar coordinates (that cluster points near the right horizontal semiaxis).
The map is not globally invertible, since the whole segment t2 = 0 is mapped to the
ellipse center c, and σ(1, t2) = σ(−1,−t2) = (c1 − αt2, c2) for every t2 ∈ [−1, 1].
An inverse can be defined via the angle

θ(x) := arctan

(
β

α

c1 − x1

x2 − c2

)
, x 6= c , (28)

and by choosing a point in the relevant inverse images, e.g. as

σ−1 : E(c, α, β)→ [−1, 1]2

σ−1(x) :=





(
1,
c1 − x1

α

)
x2 = c2

(
2

π
θ,
x2 − c2
β cos θ

)
x2 6= c2

(29)

From the identity 1/ cos2 θ = 1 + tan2 θ, we can rewrite the last row of (29) in the
numerically more stable form

σ−1
1 (x) =

2

π
arctan

(
β

α

c1 − x1

x2 − c2

)
,

σ−1
2 (x) = sign(x2 − c2)

√
β2(x1 − c1)2 + α2(x2 − c2)2

αβ
.

(30)

4. CODE

The software, which implements interpolation at the Padua points by the algorithm
described in Sec. 3.2, is written in ANSI Fortran 77 and uses double precision. It
depends on the BLAS routines DDOT, DGEMM (for the matrix-matrix product (18)),
DSCAL, LSAME and XERBLA. Interpolation at degree n, i.e. by N = (n+ 1)(n+ 2)/2
Padua points, has the following storage requirements: four N -dimensional arrays,
PD1, PD2, FPD and WPD containing the Padua points, the values of the function at
the Padua points and the weights respectively; two auxiliary (n+2)×(n+2) arrays
RAUX1 and RAUX2 to compute the matrix products in (18); an (n+1)× (n+1) array

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains · 9

C0 for the coefficient matrix (14), for an overall allocation of about 5n2 floating
point numbers. The user-callable subprograms are the following:

PDPTS Subroutine which generates the Padua points for a given degree n and the
corresponding weights, see (1)–(7).

CHEB Subroutine which computes a Chebyshev (column) vector T(s), s ∈ [−1, 1],
see (10), by the three-term recurrence of the Chebyshev polynomials. It is
called by PADUA2, see (16)–(18), and by PD2VAL, see (15).

PADUA2 Subroutine which computes the coefficient matrix C0(f), see Sec. 3.2.

PD2VAL Function which returns the value of the interpolated function Lnf(x) at
an arbitrary target point x, see (15).

The software allows to manage also interpolation on rectangles, ellipses and trian-
gles (see Sec. 3.4). This is described in the three drivers DRVREC, DRVTRI, DRVELL,
that carry out, as guidelines, the interpolation of the Franke test function on the
unit square [0, 1]2, the unit triangle T ((0, 0), (1, 0), (0, 1)), and the disk with cen-
ter (0.5, 0.5) and radius 0.5, respectively. The driver DRVREC also shows how to
interpolate at the three other families of Padua points by composition with the
corresponding rotations.

4.1 Benchmarks

In this section we compare the performances of the old and new algorithms (see
Sec. 3) in the computation of the coefficient matrix C0, both implemented by using
the standard BLAS as well as the machine-specific optimized BLAS (ACML [AMD
2006] in our numerical experiments). For the relevant (double precision, general)
matrix-matrix products, the BLAS subroutine DGEMM is used. In all cases, from
Table II it is possible to see that the computation time for the evaluation of the
coefficients scales as n4 for the old algorithm (13) and as n3 for the new algorithm
(18), as expected. The speedup obtained by the new algorithm in this range of
degrees (order of hundreds, that is several thousands of interpolation points) turns
out to be of 2–3 orders of magnitude. On the other hand, one can appreciate that
the use of optimized BLAS becomes particularly important when dealing with very
high interpolation degrees.

Algorithm Library n = 100 n = 200 n = 300 n = 400

Old BLAS 0.11E1 0.15E2 0.73E2 0.23E3

ACML 0.18E0 0.14E1 0.58E1 0.16E2

New BLAS 0.60E-2 0.48E-1 0.94E0 0.22E1

ACML 0.30E-2 0.19E-1 0.56E-1 0.12E0

Table II. CPU times (seconds) for the computation of the coefficient matrix C0(f) in (14) by the

old and the new algorithms in Sec. 3.

The detailed environment of our numerical experiments is as follows:

CPU AMD Athlon MP 2800+

OS GNU/Linux 2.4.21

Compiler GNU Fortran (GCC) 3.3.1

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · M. Caliari, S. De Marchi and M. Vianello

Compiler options -march=athlon-xp -msse -mfpmath=sse -mno-sse2 -O3

BLAS BLAS (Basic Linear Algebra Subprograms) (cf. [Blackford et al.
2002])

ACML AMD Core Math Library (ACML) 3.1.0 (cf. [AMD 2006])

REFERENCES

AMD. 2006. AMD Core Math Library (ACML). Version 3.1.0. Available at

http://developer.amd.com/acml.aspx.

Bagby, T., Bos, L., and Levenberg, N. 2002. Multivariate simultaneous approximation. Constr.

Approx. 18, 569–577.

Blackford, L. S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux,

M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., and Whaley,

R. C. 2002. An Updated Set of Basic Linear Algebra Subprograms (BLAS). ACM Trans.

Math. Soft. 28, 2, 135–151. Available at http://www.netlib.org/blas/.

Bojanov, B. and Xu, Y. 2003. On polynomial interpolation of two variables. J. Approx. The-

ory 120, 267–282.

Bos, L., Caliari, M., De Marchi, S., and Vianello, M. 2006a. Bivariate interpolation at Xu

points: results, extensions and applications. Electron. Trans. Numer. Anal. 25, 1–16.

Bos, L., Caliari, M., De Marchi, S., Vianello, M., and Xu, Y. 2006b Bivariate Lagrange

interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143,
15–25.

Bos, L., De Marchi, S., Vianello, M., and Xu, Y. 2007. Bivariate Lagrange interpolation at
the Padua points: the ideal theory approach. Numer. Math., available online 5 October 2007.

Caliari, M., De Marchi, S., and Vianello, M. 2005. Bivariate polynomial interpolation on the

square at new nodal sets. Appl. Math. Comput. 165, 2, 261–274.

Caliari, M., De Marchi, S., and Vianello, M. 2007. Bivariate Lagrange interpolation at the

Padua points: computational aspects. J. Comput. Appl. Math., available online 23 October
2007.

Caliari, M., Vianello, M., De Marchi, S., and Montagna, R. 2006b. HYPER2D: a numerical

code for hyperinterpolation at Xu points on rectangles. Appl. Math. Comp. 183 , 1138–1147.

Carnicer, J. M., Gasca, M., and Sauer, T. 2006. Interpolation lattices in several variables.
Numer. Math. 102, 559–581.

de Boor, C., Dyn, N., and Ron, A. 2000. Polynomial interpolation to data on flats in Rd. J.
Approx. Theory 105, 2, 313–343.

Dunkl, C. F. and Xu, Y. 2001. Orthogonal Polynomials of Several Variables. Encyclopedia of

Mathematics and its Applications, vol. 81. Cambridge University Press, Cambridge.

Franke, R. 1982. Scattered data interpolation: tests of some methods. Math. Comp. 38, 181–200.

Gasca, M. and Sauer, T. 2000. Polynomial interpolation in several variables. Adv. Comput.

Math. 12, 377–410.

Reimer, M. 2003. Multivariate Polynomial Approximation. International Series of Numerical
Mathematics, vol. 144. Birkhäuser, Basel.

Sauer, T. 1995. Computational aspects of multivariate polynomial interpolation. Adv. Comput.

Math. 3, 219–238.

Xu, Y. 1996. Lagrange interpolation on Chebyshev points of two variables. J. Approx. Theory 87,

220–238.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

