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Abstract

GSGPEs is a Matlab/GNU Octave suite of programs for the computation of
the ground state of systems of Gross–Pitaevskii equations. It can compute
the ground state in the defocusing case, for any number of equations with
harmonic or quasi-harmonic trapping potentials, in spatial dimension one,
two or three. The computation is based on a spectral decomposition of
the solution into Hermite functions and direct minimization of the energy
functional through a Newton-like method with an approximate line-search
strategy.
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mathematically model a Bose–Einstein Condensate (BEC) for a mixture of differ-
ent interacting atomic species. The equations can be used both to compute the
ground state solution (i.e., the stationary order parameter that minimizes the en-
ergy functional) and to simulate the dynamics. For particular shapes of the traps,
three-dimensional BECs can be also simulated by lower dimensional GPEs.
Solution method: The ground state of a system of Gross–Pitaevskii equations is
computed through a spectral decomposition into Hermite functions and the direct
minimization of the energy functional.
Running time: about 30 seconds for a single three-dimensional equation with d.o.f.
40 for each spatial direction (test run output).

1. Introduction

The first experimental realization of Bose–Einstein condensate for atomic
gases [1] in 1995 gave rise to various theoretical and numerical investigations
on the equation modeling these phenomena, that is the Gross–Pitaevskii
Equation











i~∂ tΨ(x, t) =
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)

Ψ(x, t),

‖Ψ(·, 0)‖2
L2 = N

(1)

describing the order parameter Ψ: R
3 × R≥0 → C of an atomic species with

mass m, N being the number of atoms. The atoms are confined in a trapping
potential V : R

3 → R and g is the coupling constant defined by 4πσ
m

, where
σ is the scattering length. We observe that the normalization condition can
also take the form

‖Ψ(·, 0)‖2
L2 = 1

leading to a different definition of g (see, for instance, [2, 3, 4]). Few years
later, in 1997, Bose–Einstein condensation for a mixture of two different in-
teracting atomic species was firstly realized at JILA [5], exhibiting a partial
overlap between the wave functions. More recently, around 2003, triplet
species states were observed in [6]. The vector nature of the order parameter
exhibits some new structures and dynamics that are absent in the single com-
ponent case. This, again, stimulated various succeeding studies of numerical
and theoretical nature [7, 8, 9, 10].

In this paper, we present a suite of programs for the computation of the
ground state of a system of ℓ Gross–Pitaevskii equations (or Vector Gross–
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Pitaevskii Equation, VGPE)















i~∂tΨ
(l) =

(

− ~
2

2ml

∆ + Vl + ~
2

ℓ
∑

k=1

glk|Ψ(k)|2
)

Ψ(l),

∥

∥Ψ(l)
∥

∥

2

L2
= Nl, l = 1, . . . , ℓ

(2)

that is the order parameters
(

Ψ(1)(x, t), . . . , Ψ(ℓ)(x, t)
)

, where Ψ(l)(x, t) =
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with the chemical potential µl defined by
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We recall that there is a unique ground state solution with Φ(l)(x) real-
valued and non-negative for l = 1, . . . , ℓ (see [7]). In (2), Ψ(l) are the order
parameters of atomic species with masses ml. The number of atoms for each
species is Nl. We call gll intra-species coupling constants and glk = gkl,
l 6= k inter-species coupling constants; glk equals 2πσlk

ml+mk

mlmk
, where σlk

is the scattering length for the l-k species. We restrict ourselves to the
defocusing case σlk ≥ 0. Since for many situations the trapping potentials Vl

are harmonic or quasi-harmonic, we suppose that

Vl = Vl(x) = Vl(x1, x2, x3) =
ml

2

3
∑

i=1

ω2
lix

2
i + V ε

l (x),

where V ε(x) is a “small” correction to a standard harmonic potential.
The suite is able to compute the ground state in the full three-dimensional

environment, as well as in the lower dimensional cases, for any number ℓ of
components.

The method is based on a spectral decomposition of the solution into
Hermite functions and a Newton-like method for constrained minimization.
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2. Gross–Pitaevskii system of equations

The three-dimensional Gross–Pitaevskii system can be approximately re-
duced to a two-dimensional system (disk-shaped condensation) or even to a
one-dimensional system (cigar-shaped condensation), depending on the ratio
between the trap frequencies ωli, see [11, 2, 4]. In these cases, the systems are
formally equivalent to (2), with a different definition of the coupling constants
glk. For this reason, we will consider from now on a general d-dimensional
system of Gross–Pitaevskii equations, where d ∈ {1, 2, 3}.

By the linear transformation defined by

τ = ωt ξi =
√

cixi, ψ(l) = 4
√

c1 · . . . · cdΨ
(l), (3)

where
ci =

mωi

~
, m = ℓ

√
m1 · . . . · mℓ

and ω and ωi are free parameters, system (2) takes the form
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with

Ul = Ul(ξ) = Ul(ξ1, . . . , ξd) =
1

ω~
Vl

(

ξ1√
c1

, . . . ,
ξd√
cd

)

and

ϑlk =
~

ω
glk

√
c1 · . . . · cd.

The ground state ψ = (ψ(1), . . . , ψ(ℓ)) of GPEs system (4)

ψ(l)(ξ, t) = e−iνltϕ(l)(ξ), l = 1, . . . , ℓ

minimizes the energy functional

E(ϕ) =
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(5)

and the corresponding chemical potentials νl are

νlNl =
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− m

2ml

d
∑
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ωi

ω
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ℓ
∑
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∣

∣

∣

∣

∣
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=
µlNl

ω~
. (6)
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We observe that the relations with the corresponding physical quantities are

E(ϕ) =
E(Φ)

ω~
, νl =

µl

ω~
.

Several different examples can be found in literature, about the choice of
the free parameters ω and ωi. For instance, in the single-component case,
ω = ωi = ω11, i = 1, . . . , d is used in [2, 3] (and also in the multi-component
case [7]) and ω = ωi = mini{ω1i} in [11]. Another possible choice is ω = ωd

and ωi = ω1i, see [4].
Together with the constraints

Gl(ϕ) = 1 −
∥

∥ϕ(l)
∥

∥

2

L2

Nl

= 0, l = 1, . . . , ℓ, (7)

in order to compute the ground state solution it is possible to minimize the
Lagrange function

L(ϕ, η) = E(ϕ) +
ℓ

∑

l=1

ηlGl(ϕ),

where η = (η1, . . . , ηℓ) is the Lagrange multiplier, as suggested in [2]. Since
the local minima of L are solutions of ∇L(ϕ, η) = 0, we obtain, for l =
1, . . . , ℓ,

ηl

Nl

ϕ(l) =

(

− m

2ml

d
∑

i=1

ωi

ω
∂2

ξi
+ Ul +

ℓ
∑

k=1

ϑlk|ϕ(k)|2
)

ϕ(l)

and, multiplying by ϕ(l) and integrating over R
d and comparing with (6), we

get that the chemical potential νl coincides with the Lagrange multiplier ηl

divided by Nl.

2.1. Hermite spectral decomposition

When the trapping potential is close to a harmonic one, in order to dis-
cretize the minimization problem it is convenient to use a spectral approxima-
tion based on the eigenfunctions of the quantum harmonic oscillator, i.e. the
Hermite functions. We rewrite (4) as
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2
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(8)
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where

Dl = Dl(ξ1, . . . , ξd) = − m

ml

d
∑

i=1

ωi

ω

γ4
i

2
ξ2
i + Ul(ξ1, . . . , ξd).

The spectral decomposition is based on the functions Hγ
j (ξ) defined by

Hγ
j (ξ) = Hγ1

j1
(ξ1) · . . . · Hγd

jd
(ξd)e

− 1

2
(γ2

1
ξ2

2
+...+γ2

d
ξ2

d
),

where Hγi

ji
(ξi) are the univariate Hermite polynomials normalized in such a

way that {Hγ
j (ξ)}j are orthonormal with respect to the L2(Rd) scalar product

(see, for instance, [10]). Moreover they satisfy
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+
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i ξ

2
i

2

)

)
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λj =
d
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γ2

i

(

1

2
+ ji

)

.

By the decomposition of ϕ(l) into a common basis of Hermite functions
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in (5) and (7) and truncating the infinite sums, we get
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where the notation
J−1
∑

j=0

=

J1−1
∑

j1=0

· · ·
Jd−1
∑

jd=0

is used. Given the truncation to Ji coefficients for the spectral representation
along the direction i of ϕ(l), in order to be able to compute exactly the integral
corresponding to |ϕ(k)|2|ϕ(l)|2 in the energy functional in (10), it is necessary
to apply a Gaussian quadrature formula relative to the weight e−2γiξ

2

i with
2Ji − 1 nodes (polynomial exactness up to degree 4Ji − 3). In this way, it
is not possible to exactly compute the integral relative to the trap potential
Dl(ξ). Anyway, for a general potential Vl(x) it is not possible to have and
exact quadrature rule. On the other hand, if Vl(x) is harmonic, an integral
of type

∫

R

ξ2
i p2Ji−2(ξi)e

−γ2

i ξ2

i dξi =

∫

R

ξ2
i p2Ji−2(ξi)e
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i ξ2

i e−2γ2

i ξ2

i dξi =

=

∫

R

ξ2
i p2Ji−2(ξi)

Ji−2
∑

k=0

(γ2
i ξ

2
i )

k

k!
e−2γ2

i ξ2

i dξi+

+

∫

R

ξ2
i p2Ji−2(ξi)

∞
∑

k=Ji−1

(γ2
i ξ

2
i )

k

k!
e−2γ2

i ξ2

i dξi

has to be computed, where p2Ji−2(ξ) denotes a polynomial of degree 2Ji − 2.
With our choice of quadrature nodes and weights, the first part is exactly
computed (because of degree 4Ji − 4) and the second is O(1/(Ji − 1)!).
Quadrature nodes and weights are computed by the Matlab tool provided
in [12].

The choice of the scale γ is quite important. As suggested in [13], if the
support of the solution is contained in S = [−M1,M1] × . . . × [−Md,Md],
then, given the degrees of approximation J1, . . . , Jd, the scale should be cho-
sen in such a way that the convex hull of the quadrature nodes is S. Of
course, we are improperly using the term “support” as the region where the
solution is mainly concentrated, being exponentially decaying outside this re-
gion. A rough estimate of S can be obtained when the intra-species coupling
constants are large through the Thomas–Fermi approximation, for which the
support is really a compact set. In this way, since the maximum of the
quadrature nodes along direction i behaves like

√
2Ji − 1/γi, it is possible to

choose a quite optimal value for γ. On the other hand, when the potentials
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are standard harmonic and the coupling constants are small, it is possible to
choose γ in order to make vanishing the sum of the Dl which appears in the
energy functional. In fact, we have

ℓ
∑

l=1

Dl(ξ) =
ℓ

∑

l=1
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− m

ml

d
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ω

γ4
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i + Ul(ξ)
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=

=
ℓ
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(
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d
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i=1
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ω

γ4
i

2
ξ2
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m

d
∑

i=1

ω2
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ωωi

ξ2
i

2

)

=

=
d

∑
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ωi

ω

ξ2
i

2

(

−γ4
i

ℓ
∑
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m

ml

+
ℓ

∑

l=1

ml

m

ω2
li

ω2
i

)

which is zero if

γi =
4

√

√

√

√

∑ℓ

l=1
ml

m

ω2

li

ω2

i
∑ℓ

l=1
m
ml

(11)

This choice, in case of a single component, corresponds to using the eigen-
functions of the harmonic oscillator, with

γi =

√

ω1i

ωi

and it is our initial suggested choice for γ.

3. Constrained minimization

In order to describe the method used to minimize the energy, we restrict
ourselves to the case of one single component, the extension to more than
one species being straight forward. The constrained minimization problem
(10) takes the form

E(x) → min,

G(x) = 0.
x ∈ R

J1×...×Jd (12)

For the numerical solution of (12) we use a Newton-like method based on
SQP (Sequential Quadratic Programming). A detailed description of the
SQP method can be found, e.g., in [14, 15].
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Starting from a given approximation x(k) to the minimizer x⋆, we consider
the quadratic minimization problem Q

(

x(k), H(k)
)

∇E
(

x(k)
)T

s +
1

2
sTH(k)s → min (13a)

subject to the linearized constraint

G
(

x(k)
)

+ ∇G
(

x(k)
)T

s = 0, i = 1, . . . , ℓ. (13b)

The symmetric positive definite matrix H(k) denotes an approximation to the
Hessian of the Lagrangian L(x(k), y(k)) = E

(

x(k)
)

+y(k)G
(

x(k)
)

, y(k) ∈ R be-
ing the Lagrange multiplier. In order to derive a globally convergent method
we need a merit function, that is an additional function that measures the
progress from one iterate x(k) to the next one x(k+1) towards the solution x⋆.
Among the several possibilities, we take the so called exact penalty function

P (x) = E(x) + r |G(x)| , (14)

with an appropriate parameter r > 0. In [16] Han showed that the solution
s(k) of (13) is a descent direction of (14), if H(k) is positive definite and the
corresponding Lagrange multiplier y(k) is bounded by r. In order to find an
appropriate step length λk satisfying

P
(

x(k) + λks
(k)

)

< P
(

x(k)
)

,

we employ a backtracking line-search strategy as described in [17] and define
the new approximation x(k+1) by

x(k+1) = x(k) + λks
(k).

The convergence properties of the algorithm can be found in [10], where it is
shown that, under mild assumptions on E, on the sequence H(k) and r the
method is globally convergent.

In order to apply the just described method to our constrained min-
imization problem we have to specify the choice of H(k). The standard
choice H(k) = ∇2

xxL
(

x(k), y(k)
)

is, from a computational point of view, very
unattractive because it leads to the solution of full and, especially in higher
dimensions, large linear systems, which are the bottlenecks of such methods.
In order to end up with a sparse matrix we take only the main diagonal of

9



∇2
xxL

(

x(k), y(k)
)

. In principle, the matrix could be not a positive definite
matrix and should be modified, taking the absolute values of the entries and
replacing all values whose magnitude are smaller than a prescribed threshold
by 1, in order to prevent the matrix to become close to singular. Finally, it is
possible to scale the matrix in order to avoid undesired large steps resulting
in a large number of reductions in the line-search procedure. Let us mention
that our numerical experiments showed that the modifications above were
never needed, the values remained positive and bounded away form zero and
the step length were always reasonable.

We have not specified yet how we choose appropriate starting values for
the minimization procedure. To this end let us recall that for a standard
harmonic potential and zero coupling constant we can express the ground
state exactly using the Hermite spectral decomposition. Hence the idea is to
start with this setting and to solve several related problems, using a standard
continuation method (see, e.g., [18]), to reach the desired parameters. Let us
describe this in more detail. Instead of considering problem (1), we consider















i∂τψ =

(

d
∑

i=1

ωi

ω

(

−
∂2

ξi

2
+

γ4
i

2
ξ2
i

)

+ ρ̂D + ϑ̂|ψ|2
)

ψ,

‖ψ‖2
L2 = N

where ρ̂ and ϑ̂ are used as continuation parameters. We start with ρ̂ = ϑ̂ = 0
and increase these values step by step until ρ̂ = 1 and ϑ̂ = ϑ. For the
case ρ̂ = ϑ̂ = 0 we know the exact solution, hence no starting values are
needed; for the other problems we use as starting values the ground state of
the previous problem. The error estimate is given by the difference of the
chemical potential and the Lagrange multipliers divided by N .

These considerations allow us to minimize the energy functional in a fast
and efficient way.

4. Description of the programs

4.1. Common functions

4.1.1. init

This function precomputes the initial values for the solution, the contin-
uation parameters and the Hermite functions and corresponding quadrature
nodes and weights.
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The initial value for ϕl(ξ) is Hγ
0(ξ), which, in the single component case

with the suggested values for γ (11), corresponds to the the ground state
solution in the linear case with standard harmonic potential. For the same
reason, the initial value for ηl is the chemical potential

∑d

i=1
ωli

2ω
multiplied

by Nl. We use
Nl

Nl +
∫

Rd Dl(ξ) (Hγ
0(ξ))

2 dξ
.

as the initial value for the continuation parameter ρ̂l. This choice depends
on the given and the standard harmonic potential. If the potentials are very
close to each other, the corresponding initial value for ρl is chosen close to
1. Otherwise, it is smaller. As initial value for the coupling constants θ̂lk we
take

min

{

θlk,
1

Nk

}

.

4.1.2. groundstate

This function computes the ground state of a system of Gross–Pitaevskii
equations, through a continuation technique, using the minimization ap-
proach described in Section 3. In particular, it sets the tolerance and the
maximum number of iterations.

4.1.3. minimize

This function computes the ground state for the actual setting of the
continuation parameters using the method of SQP.

4.1.4. linesearch

This function computes the step length for a given search direction in
order to reduce the merit function.

4.1.5. newton

This function computes the minimum for a constrained quadratic min-
imization problem. In particular, it computes the search direction for the
actual step in the method of SQP.

4.1.6. jacobian

Computes the gradient of the Lagrange function and the gradient of the
exact penalty function.
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4.1.7. linsolv

This function solves the linear systems arising during the application of
the modified Newton method in an efficient way.

4.1.8. getscales

This function allows to choose the different ways to normalize the equa-
tions described in Section 2. Moreover, it sets the value of γ, according to
the suggested value (11).

4.2. Functions for the three-dimensional case

4.2.1. GSGPEs3d

This is a driver function to compute the ground state of the full three-
dimensional Gross–Pitaevskii equation











i~∂ tΨ(x, t) =

(

− ~
2

2m
∆ + V (x) + ~

2g|Ψ(x, t)|2
)

Ψ(x, t),

‖Ψ(·, 0)‖2
L2 = N

where m = 1.44 · 10−25 kg is the atomic mass of 87Rb, N = 104, V (x) is the
standard harmonic potential

V (x) =
m

2
(ω2

1x
2
1 + ω2

2x
2
2 + ω2

3x
2
3), ω1 = ω2 = ω3/

√
8 = 2π × 90 Hz

and g = 4πσ/m, σ = 5.62 ·10−9 m. With these choices, the driver reproduces
the test run output in [4], taking into account of the different normalization of
the L2 norm to N instead of 1. The number of Hermite functions is set to 40
for each spatial dimension. The values of the parameters and the definition
of the potential are set inside the function as follows:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% USER DEFINED PARAMETERS %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Number of components

ell = 1;

% Number of Hermite functions in x and y direction

J = [40, 40, 40];

h = hbar;

% Atomic masses of the species (87Rb)
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m = 1.44e-25;

% Number of particle of the species

N = 1e4;

% Frequency of the harmonic part of the potential

omega = [2*pi, 2*pi, 2*sqrt(8)*pi]*90;

% Scattering length

sigma = 368.8/(4*pi*sqrt(m*omega(1)*omega(2)/h/omega(3)))/N;

% Scale of Hermite functions (see getscales.m)

[gamma,omegai,omegabar,mbar] = getscales(m,omega);

% Function name of the potential

potential{1} = @potential1;

%%% PARAMETERS FOR THE PLOT

% x range (used only for the evaluation).

% The y and z ranges are equal to the x range

% (but can be modified inside function plots).

xmin = -4;

xmax = 4;

% Resolution of the surface (only used for the plot)

M = 201;

%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% POTENTIAL FUNCTION %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%

function f = potential1(x,y,z,m,omega)

% Potential V1 is a function of the coordinates x,y,z,

% the mass m and the harmonic part frequency omega.

% It may depend also on other local parameters.

% possible center of displacement

x0 = 0;

y0 = 0;

z0 = 0;

% possible rotation

Omega = 0;

f = m*((omega(1)*(cos(Omega)*(x-x0)+sin(Omega)*(y-y0))).^2+...

(omega(2)*(sin(Omega)*(x-x0)-cos(Omega)*(y-y0))).^2+...

(omega(3)*(z-z0)).^2)/2;
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%%%%%%%%%%%%%%%%%%%

%%% OUTPUT DATA %%%

%%%%%%%%%%%%%%%%%%%

% The output gs is a structure containing:

% gs.h = Dirac constant

% gs.m = Atomic mass of the species

% gs.N = Number of particles

% gs.sigma = Scattering length

% gs.omega = Frequency of the harmonic part of the potential

% gs.phis{1} = Hermite coefficients of the ground state

% gs.potential{1} = Potential function

% gs.mu = Chemical potential of the ground state

% gs.energy = Energy of the ground state

In case of a Vector Gross–Pitaevskii Equation (ℓ > 1), m, N, omega and sigma

are arrays, see the two-dimensional example in Section 4.3.1.

4.2.2. plothermite3d

Given the coefficients {ϕj} and a Cartesian grid of points, it computes
the values of the Hermite spectral representation

J−1
∑

j=0

ϕjHγ
j (ξ)

at the grid points.

4.2.3. real2spectral3d

Given the values of a function ϕ(l)(ξ) at the quadrature nodes of the
Gaussian formula, it computes the corresponding coefficients in the Hermite
spectral representation.

4.2.4. phirw3d

Given the Hermite coefficients of the functions ϕ(l)(ξ), l = 1, . . . , ℓ, it
computes the corresponding values at the quadrature nodes of the Gaussian
formula.
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4.3. Functions for the two-dimensional case

Here we comment the driver function GSGPEs2d, the remaining functions
for the two-dimensional case being equivalent to the functions described in
sections 4.2.2–4.2.4 for the three-dimensional case.

4.3.1. GSGPEs2d

This is a driver function to compute the ground state of a system of
ℓ = 3 two-dimensional Gross–Pitaevskii equations. The parameters are as
follows: m1 = m2 = m3 = 1.44 · 10−25 kg, N1 = N2 = N3 = 107, glk =
2πσlk(ml + mk)/(mlmk), σlk = 10−6, l 6= k and σll = 10−7. The potentials
are

V1(x1, x2) =
m1

2

[

ω2
11(x − x0)

2 + ω2
12y

2
]

V2(x1, x2) =
m2

2

[

ω2
21(x cos Ω + y sin Ω)2 + ω2

22(x sin Ω − y cos Ω)2
]

V3(x1, x2) =
m3

2

[

ω2
31(x + x0)

2 + ω2
32y

2
]

with




ω11 ω12

ω21 ω22

ω31 ω32



 =





3
2
π π
π 2π
3
2
π π



 Hz, x0 = 10−5 m, Ω =
π

4
.

The number of Hermite functions is set to 100 for each spatial direction. The
values of the parameters and the definition of the potential are set inside the
function as follows:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% USER DEFINED PARAMETERS %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Number of components

ell = 3;

% Number of Hermite functions in x and y direction

J = [100,100];

h = hbar;

% Atomic masses of each species (87Rb)

m = [1.44e-25; 1.44e-25; 1.44e-25];

% Number of particles of each species

N = [1e7; 1e7; 1e7];

% Frequencies of the harmonic part of the potentials
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omega = [1.5*pi, pi;

pi, 2*pi;

1.5*pi, pi];

% Scattering lengths

sigma = [1e-7, 1e-6, 1e-6;

1e-6, 1e-7, 1e-6;

1e-6, 1e-6, 1e-7];

% Scale of Hermite functions (see getscales.m)

[gamma,omegai,omegabar,mbar] = getscales(m,omega);

% Function names of the potentials

potential{1} = @potential1;

potential{2} = @potential2;

potential{3} = @potential3;

%%% PARAMETERS FOR THE PLOT

% x range (used only for the plot).

% The y range is equal to the x range

% (but can be modified inside function plots).

% The (function value) range is automatic.

xmin = -5;

xmax = 5;

% Resolution of the surface (only used for the plot)

M = 101;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% POTENTIAL FUNCTIONS %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = potential1(x,y,m,omega)

% Potential V1 is a function of the coordinates x,y,

% the mass m and the harmonic part frequency omega.

% It may depend also on other local parameters.

% center displacement

x0 = -1e-5;

y0 = 0;

% rotation

Omega = 0;

z = m*((omega(1)*(cos(Omega)*(x-x0)+sin(Omega)*(y-y0))).^2+...
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(omega(2)*(sin(Omega)*(x-x0)-cos(Omega)*(y-y0))).^2)/2;

function z = potential2(x,y,m,omega)

% Potential V2 is a function of the coordinates x,y,

% the mass m and the harmonic part frequency omega.

% It may depend also on other local parameters.

% center displacement

x0 = 0;

y0 = 0;

% rotation

Omega = pi/4;

z = m*((omega(1)*(cos(Omega)*(x-x0)+sin(Omega)*(y-y0))).^2+...

(omega(2)*(sin(Omega)*(x-x0)-cos(Omega)*(y-y0))).^2)/2;

function z = potential3(x,y,m,omega)

% Potential V3 is a function of the coordinates x,y,

% the mass m and the harmonic part frequency omega.

% It may depend also on other local parameters.

% center displacement

x0 = 1e-5;

y0 = 0;

% rotation

Omega = 0;

z = m*((omega(1)*(cos(Omega)*(x-x0)+sin(Omega)*(y-y0))).^2+...

(omega(2)*(sin(Omega)*(x-x0)-cos(Omega)*(y-y0))).^2)/2;

%%%%%%%%%%%%%%%%%%%

%%% OUTPUT DATA %%%

%%%%%%%%%%%%%%%%%%%

% The output gs is a structure containing:

% gs.h = Dirac constant

% gs.m = Atomic masses of each species

% gs.N = Number of particles of each species

% gs.sigma = Scattering lenghts of each species

% gs.omega = Frequency of the harmonic part of the potentials

% gs.phis{1:ell} = Hermite coefficients of the ground state
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% gs.potential{1:ell} = Potential functions

% gs.mu = Chemical potentials of the ground state

% gs.energy = Energy of the ground state

4.4. Functions for the one-dimensional case

Here we comment the driver function GSGPE1d, the remaining functions
for the one-dimensional case being equivalent to the functions described in
sections 4.2.2–4.2.4 for the three-dimensional case.

4.4.1. GSGPEs1d

This is a driver function to compute the ground state of a system of ℓ = 2
one-dimensional Gross–Pitaevskii equations. The parameters are as follows:
m1 = m2 = 1.44 · 10−25 kg, N1 = N2 = 107, glk = 2πσlk(ml + mk)/(mlmk),
σlk = 10−2 m−1. The potentials are

V1(x1) =
m1

2
ω2

11(x − x0)
2, V2(x1) =

m2

2
ω2

21(x + x0)
2

with ω11 = ω21 = π Hz and x0 = 10−5 m. The number of Hermite functions
is set to 100. The values of the parameters and the definition of the potential
are set inside the function as follows:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% USER DEFINED PARAMETERS %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Number of components

ell = 2;

% Number of Hermite functions in x direction

J = 100;

h = hbar;

% Atomic masses of each species (87Rb)

m = [1.44e-25; 1.44e-25];

% Number of particles of each species

N = [1e7; 1e7];

% Frequencies of the harmonic part of the potentials

omega = [pi;

pi];

% Scattering lengths of each species

sigma = [1e-2, 1e-2;
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1e-2, 1e-2];

% Scale of Hermite functions (see getscales.m)

[gamma,omegai,omegabar,mbar] = getscales(m,omega);

% Function names of the potentials

potential{1} = @potential1;

potential{2} = @potential2;

%%% PARAMETERS FOR THE PLOT

% x range (used only for the plot).

% The (function value) range is automatic.

xmin = -10;

xmax = 10;

% How much fine is the surface (only used for the plot)

M = 101;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% POTENTIAL FUNCTIONS %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function V = potential1(x,m,omega)

% Potential V1 is a function of the coordinate x,

% the mass m and the harmonic part frequency omega.

% It may depend also on other local parameters.

% center displacement

x0 = 1e-5;

V = m*omega^2*(x-x0).^2/2;

function V = potential2(x,m,omega)

% Potential V2 is a function of the coordinate x,

% the mass m and the harmonic part frequency omega.

% It may depend also on other local parameters.

% center displacement

x0 = -1e-5;

V = m*omega^2*(x-x0).^2/2;

%%%%%%%%%%%%%%%%%%%

%%% OUTPUT DATA %%%
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%%%%%%%%%%%%%%%%%%%

% The output gs is a structure containing:

% gs.h = Dirac constant

% gs.m = Atomic masses of each species

% gs.N = Number of particles of each species

% gs.sigma = Scattering lenghts of each species

% gs.omega = Frequency of the harmonic part of the potentials

% gs.phis{1:ell} = Hermite coefficients of the ground state

% gs.potential{1:ell} = Potential functions

% gs.mu = Chemical potentials of the ground state

% gs.energy = Energy of the ground state
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Appendix A. Test run output

Considering the driver function GSGPEs3d described in Section 4.2.1,
the output will look like

>> tic,GSGPEs3d,toc

Iteration 1 in the continuation method

Iteration 2 in the continuation method

Iteration 3 in the continuation method

[. . . ]

Iteration 27 in the continuation method

Iteration 28 in the continuation method

Iteration 29 in the continuation method

Computing the ground state

mu and energy as in test run output [DC07]

mu =

3.9006

E =

2.8752
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ans =

h: 1.0546e-34

m: 1.4400e-25

N: 10000

sigma: 5.6169e-09

omega: [565.4867 565.4867 1.5994e+03]

phis: {[40x40x40 double]}

potential: {[1x1 function_handle]}

mu: 6.5792e-31

energy: 4.8496e-27

Elapsed time is 30.527741 seconds.

The elapsed time is measured with Matlab 7.6.0 (R2008a) on a 2.20 GHz
Intel Core2 Duo.
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