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1. Introduction

We consider the time-dependent partial differential equation

(1)
∂

∂t
u(t, ξ) = F

(

t, ξ, u(t, ξ),
∂

∂ξ
u(t, ξ), . . .

)

, t ∈ [0, T ], ξ ∈ Ω ⊂ R
d

subject to appropriate initial and boundary conditions. We assume that the es-

sential support of the solution, that is the closure of the set of points where the
magnitude of the solution is greater than some given threshold, is small with re-
spect to the domain of interest, and varying in time.

For the numerical solution of (1), we propose a meshfree integrator based on
stable and robust interpolation by compactly supported radial basis functions for
the spatial approximation and exponential integrators for the time evolution. Our
meshfree integrator controls the error both in space and time.

2. Meshfree integrators

In this section we briefly describe how we compute the numerical approximation
un(ξ) ≈ u(tn, ξ) for discrete times 0 = t0 < t1 < . . . < tN = T . For a detailed
description of the method, we refer to [2]. Given an approximation un−1(ξ) at
time tn−1, we interpolate it by compactly supported radial basis functions

un(ξ) ≈ s(ξ) =
∑

η∈H λη φ
(

‖ξ − η‖
)

using a set of interpolation points H = {η1, . . . , ηm}. The coefficients λη are
determined from the interpolation conditions s(ηi) = un−1(ηi), i = 1, . . . ,m. In
order to control the spatial interpolation error, we update the set of interpolation
points using a residual subsampling method. For this purpose, we measure the
difference between un−1 and its interpolant at a different set of check points. We
update the set of interpolation points (by a coarsening and a refinement procedure)
until the error at all check points lies between two given thresholds θc < θr.

Approximating the right-hand side in (1) we obtain a system of stiff ordinary
differential equations

w′(t) = Gn(t, w(t)), t ∈ [tn−1, tn],

where the vector w(tn−1) contains the values of un−1(ξ) at the interpolation and
check points. This system is solved with an exponential integrator. For a review
of such integrators, we refer to [6]. The required actions of matrix functions are
computed with the Real Leja Points Method (see, e.g., [5, 2]).

The numerical solution un(ξ) is finally constructed from the numerical approxi-
mation to w(tn). In order to control the error in time we use an embedded method.
The error in space is again controlled by a residual subsampling method. Unless
both errors are sufficiently small, we repeat the time step by taking a smaller step
size and/or a different set of interpolation points.
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3. Numerical example

We consider the solution of the nonlinear Schrödinger equation

(2)







iε∂tψ = −
ε2

2
∆ψ + V (x, y)ψ − |ψ|2pψ, (x, y) ∈ R

2, t > 0

ψ(0, x, y) = ψ0(x, y),

where 0 < p < 1. As initial value we take a two-bump solution

ψ0(x, y) =

2
∑

j=1

r

(

x − x̄j

ε
,
y − ȳj

ε

)

,

where x̄j , ȳj are given offset centres and r(x, y)e−iλt is the ground state solution
(see, e.g., [3]) of the associated nonlinear potential-free Schrödinger equation

i∂tφ = −
1

2
∆φ − |φ|2pφ, ‖φ‖2

L2 = m,

that is the solution φ(t, x, y) = r(x, y)e−iλt minimising the energy

E(φ) = E(r) =
1

2

∫

R2

|∇r|2dxdy −
1

p + 1

∫

R2

|r|2p+2dxdy.

From Newton’s laws

(3)

{

[ẍj(t), ÿj(t)] = −∇V (x(t), y(t)),

[xj(0), yj(0)] = [x̄j , ȳj ], [ẋj(0), ẏj(0)] = [0, 0]
for j = 1, 2

one infers (see [4]) that the solution of (2) behaves like

2
∑

j=1

r

(

x − xj(t)

ε
,
y − yj(t)

ε

)

exp

(

i

ε

(

xẋj(t) + yẏj(t) + θε
j (t)

)

)

,

where θε
j : R

+ → [0, 2π), j = 1, 2 are suitable shifts, up to an error depending on ε.
This dynamical behaviour, in which the shape of ψ(t, x, y) remains close to that
of the initial value ψ0(x, y), is typically known as soliton dynamics.

In order to solve (2), we apply the fourth-order splitting method SRKNb
6 by

Blanes and Moan [1]. The first part of the equation, with the Laplacian, is ap-
proximated in space using Wendland’s compactly supported radial basis function
φ3,2 (see [7]) and exactly integrated in time using an exponential integrator. The
second part, with the potential and the nonlinear term, has an analytic solution.

In Figure 1 we show the behaviour of the solution of (2) for

ε = 0.01, p = 0.2, V (x, y) =
3

2
x2 + y2,

with x̄1 = −3, x̄2 = 3, ȳ1 = ȳ2 = −3 at different times t. In this case, the solutions
of (3) are analytically known (they lie on Lissajous curves). We observe that the
shape of the two bumps is well preserved during time integration, their centres
of mass follow the Lissajous curves. Moreover, the location of the interpolation
points is always well spread around the essential support of the solution.
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Figure 1. Contour levels of the solution (left) and location of
interpolation points (right) at different times t.
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