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Abstract

The so-called “Padua points” give a simple, geometric and explicit construction of bivariate polynomial interpolation in the
square. Moreover, the associated Lebesgue constant has minimal order of growthO(log2(n)). Here we show four families of Padua
points for interpolation at any even or odd degree n, and we present a stable and efficient implementation of the corresponding
Lagrange interpolation formula, based on the representation in a suitable orthogonal basis. We also discuss extension of (non-
polynomial) Padua-like interpolation to other domains, such as triangles and ellipses; we give complexity and error estimates, and
several numerical tests.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Finding “good” nodes is a challenging problem in multivariate polynomial interpolation. Besides unisolvence,
which is itself a difficult topic (see, e.g., [3,11,14]), in order to get stability and convergence one seeks slow growth of
the Lebesgue constant.

In some recent papers, we studied a new set of points for bivariate polynomial interpolation in the square [−1, 1]
2,

nicknamed “Padua points” (cf. [10,4,7]). Such points allow us to give a simple, geometric and explicit construction of
the interpolation formula, since the Lagrange polynomials are written in terms of the reproducing kernel corresponding
to the product Chebyshev measure. Moreover, the Padua points have a Lebesgue constant with minimal order of
growth O(log2(n)), as has been rigorously proved in [4] for the upper bound and in [12,16] for the exact order of
growth.

In this paper, we exploit the explicit formula of the Lagrange polynomials to obtain a stable and efficient
representation of the interpolation polynomial at the Padua points, in terms of a classical orthonormal basis associated
with the product Chebyshev measure.
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The paper is organized as follows. In the next section we list four families of Padua points, which are here displayed
together explicitly for the first time, and we recall the associated interpolation formulas. In Section 3 we describe
in detail a stable and efficient implementation of interpolation at Padua points on rectangles, and we analyze its
computational cost and a related a posteriori error estimate. Moreover, we discuss extension to rectangles and to
non-polynomial Padua-like interpolation on domains with different geometric structures, like triangles and ellipses.
Finally, in Section 4 we show the behavior of the interpolation formula on a classical test set.

2. Interpolation at the Padua points

The Padua points were introduced [10] for even degrees as unions of two Chebyshev-like grids, and their properties
in bivariate interpolation studied numerically. In [4] their Lagrange polynomials were constructed explicitly, using the
fact that the points lie on an algebraic curve, the “generating curve”, and that they provide a cubature formula of high
algebraic degree of exactness. On the other hand, in [7] the problem of interpolation at the Padua points has been
faced in an abstract algebraic setting (polynomial ideal theory and multivariate orthogonal polynomials).

The points considered in [4], however, are not the original Padua points, but correspond to a rotation of 90 degrees.
In fact, there are four families of Padua points, obtainable from one another by a suitable rotation of 90 or 180 degrees.
Below we list them together for the first time, and for each family we give the corresponding generating curve as well
as the description (for both even and odd degrees) as a union of two Chebyshev-like grids.

We observe that:

• For each family, the Padua points are the self-intersections and boundary contacts of the generating curve in
[−1, 1]

2, and they match exactly the dimension of Π 2
n , the space of polynomials of degree at most n. In particular

there are two points lying on consecutive vertices of the square (the “top”, “bottom”, “left” and “right” pairs of
vertices), other 2n − 1 points lying on the edges of the square, the remaining points being self-intersections of the
corresponding generating curve.

• The Padua points are nodes of a cubature formula for the product Chebyshev measure which is exact for all
polynomials in a suitable subspace of Π 2

2n , containing Π 2
2n−1 (cf. [4]). Given a Padua point, say ξ , the corresponding

cubature weight is

wξ =
1

n(n + 1)
·

1/2 if ξ is a vertex point
1 if ξ is an edge point
2 if ξ is an interior point

(1)

• The first family is that of the original Padua points; the others correspond to successive rotations of 90 degrees,
clockwise for even degrees and counterclockwise for odd degrees.

In order to describe the four families and the corresponding interpolation formulas, we need the following notation:

zd
j = cos

jπ

d
, j = 0, . . . , d; Pads

n = {ξ = (ξ1, ξ2)} = As
∪ Bs,

where As and Bs are two grids of points that will be defined below for each family.

N = card
(
Pads

n

)
= dim

(
Π 2

n

)
=

(n + 1)(n + 2)

2
, s = 1, 2, 3, 4, (2)

and we recall that the reproducing kernel of Π 2
n ([−1, 1]

2) corresponding to the inner product generated by the product
Chebyshev measure can be written as

Kn(x, y) =

n∑
k=0

k∑
j=0

T̂ j (x1)T̂k− j (x2)T̂ j (y1)T̂k− j (y2), (3)

where T̂p is the normalized Chebyshev polynomials of degree p (i.e., T̂0 = 1, T̂p =
√

2Tp, Tp(·) = cos(p arccos(·))
being the usual Chebyshev polynomial of degree p); see, e.g., [13].

First family: Pad1
n :

generating curve: Tn(x) + Tn+1(y) = 0;
parametrization: γ1(t) = [− cos((n + 1)t), − cos(nt)], 0 ≤ t ≤ π ;
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Fig. 1. The first family of Padua points with the generating curves for n = 12 (left, 91 points) and n = 13 (right, 105 points), also as a union of
two Chebyshev-like grids, A (empty bullets) and B (full bullets).

• n even, n = 2m (see Fig. 1-left),{
A1

even = {(zn
2i+1, zn+1

2 j ), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m}

B1
even = {(zn

2i , zn+1
2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m}.

(4a)

These correspond to the points defined in [10, formula (9)] (in that formula there is a misprint; n − 1 has
to be replaced by n + 1).

• n odd, n = 2m + 1 (see Fig. 1-right),{
A1

odd = {(zn
2i+1, zn+1

2 j ), 0 ≤ i ≤ m, 0 ≤ j ≤ m + 1}

B1
odd = {(zn

2i , zn+1
2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m}.

(4b)

• Lagrange interpolant:

LPad1
n

f (x) =

∑
ξ∈Pad1

n

f (ξ)wξ (Kn(x, ξ) − Tn(x1)Tn(ξ1)) . (4c)

Second family: Pad2
n :

generating curve: Tn+1(x) + Tn(y) = 0;
parametrization: γ2(t) = [− cos(nt), − cos((n + 1)t)], 0 ≤ t ≤ π ;

• n even, n = 2m,{
A2

even = {(zn+1
2i+1, zn

2 j ), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

B2
even = {(zn+1

2i , zn
2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m − 1}.

(5a)

• n odd, n = 2m + 1,{
A2

odd = {(zn+1
2i+1, zn

2 j ), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

B2
odd = {(zn+1

2i , zn
2 j+1), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ m}.

(5b)

• Lagrange interpolant:

LPad2
n

f (x) =

∑
ξ∈Pad2

n

f (ξ)wξ (Kn(x, ξ) − Tn(x2)Tn(ξ2)) . (5c)
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Third family: Pad3
n :

generating curve: Tn(x) − Tn+1(y) = 0;
parametrization: γ3(t) = [cos((n + 1)t), cos(nt)], 0 ≤ t ≤ π ;

• n even, n = 2m,{
A3

even = {(zn
2i , zn+1

2 j ), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

B3
even = {(zn

2i+1, zn+1
2 j+1), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m}.

(6a)

• n odd, n = 2m + 1,{
A3

odd = {(zn
2i , zn+1

2 j ), 0 ≤ i ≤ m, 0 ≤ j ≤ m + 1}

B3
odd = {(zn

2i+1, zn+1
2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m}.

(6b)

• Lagrange interpolant:

LPad3
n

f (x) =

∑
ξ∈Pad3

n

f (ξ)wξ (Kn(x, ξ) − Tn(x1)Tn(ξ1)) . (6c)

Fourth family: Pad4
n :

generating curve: Tn+1(x) − Tn(y) = 0;
parametrization: γ4(t) = [cos(nt), cos((n + 1)t)], 0 ≤ t ≤ π ;

• n even, n = 2m,{
A4

even = {(zn+1
2i , zn

2 j ), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

B4
even = {(zn+1

2i+1, zn
2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m − 1}.

(7a)

• n odd, n = 2m + 1,{
A4

odd = {(zn+1
2i , zn

2 j ), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ m}

B4
odd = {(zn+1

2i+1, zn
2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m}.

(7b)

• Lagrange interpolant:

LPad4
n

f (x) =

∑
ξ∈Pad4

n

f (ξ)wξ (Kn(x, ξ) − Tn(x2)Tn(ξ2)) . (7c)

Remark 1 (Convergence Rate). The Lebesgue constant of interpolation at the Padua points has optimal order of
growth ΛPads

n
= ‖LPads

n
‖ = O(log2(n)), s = 1, 2, 3, 4, as has been rigorously proved in [4,12,16]. In view of the

multivariate extension of Jackson’s theorem (cf., e.g., [1] and references therein), we have that for f ∈ C p([−1, 1]
2),

0 < p < ∞,

‖ f − LPads
n

f ‖∞ ≤
(
1 + ΛPads

n

)
En( f ) ≤ c( f ; p) log2(n) n−p, (8)

where c is a suitable constant (with n), dependent on f and p.

3. Implementation

In view of the explicit representations above, the computational core of interpolation at the Padua points is given
by an efficient treatment of the reproducing kernel. In [17,18], an elegant compact trigonometric formula for such a
kernel was given, which has been key for bounding rigorously the Lebesgue constant in [4].

Unfortunately, such a formula turns out to be severely ill-conditioned, and has to be stabilized. This has been done
in [6] in the context of interpolation at the Xu points (cf. [18]). Applied in the present framework to the interpolation
formulas (4c)–(7c), this method leads to a pointwise evaluation cost for the interpolant at the Padua points of the order
of 24csin N ≈ 12csinn2 flops for degrees n up to the hundreds, csin denoting the average cost of the sine function.
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On the other hand, in view of (3) there is another natural way of writing and computing the interpolant at the Padua
points, i.e. via its representation in the basis {T̂ j (x1)T̂k− j (x2)}, 0 ≤ j ≤ k ≤ n, which is orthonormal with respect to
the product Chebyshev measure. In fact, considering for simplicity only the family Pad1

n , in view of (3) and (4c) we
have that

LPad1
n

f (x) =

n∑
k=0

k∑
j=0

c j,k− j T̂ j (x1)T̂k− j (x2), (9)

where

c j,k− j = c j,k− j ( f ) =

∑
ξ∈Pad1

n

f (ξ)wξ T̂ j (ξ1)T̂k− j (ξ2), (k, j) 6= (n, n),

cn,0 = cn,0( f ) =
1
2

∑
ξ∈Pad1

n

f (ξ)wξ T̂n(ξ1). (10)

Clearly, for f ∈ Π 2
n these are exactly the Fourier(–Chebyshev) coefficients, i.e.

c j,k− j ( f ) = ϕ j,k− j ( f ) =
1

π2

∫
[−1,1]2

f (x1, x2)T̂ j (x1)T̂k− j (x2)
dx1dx2√

1 − x2
1

√
1 − x2

2

,

∀ f ∈ Π 2
n , and ∀(k, j), 0 ≤ j ≤ k ≤ n. (11)

Concerning the other families of Padua points, the construction is completely analogous. We only observe that the
coefficient to be halved is again cn,0 for the third family Pad3

n , while it is c0,n for the second and the fourth, Pad2
n and

Pad4
n .

The Fourier–Chebyshev representation (9) and (10) is more suitable for computation than that discussed above,
which relies on the stabilized compact formula for the reproducing kernel. Moreover, it admits a natural matrix
formulation, which allows one to design a simple and effective Matlab implementation (since Matlab bottlenecks
like recurrences and iteration loops are avoided; cf. [8]), or to use conveniently machine-specific optimized BLAS
(Basic Linear Algebra Subprograms) even in a Fortran (or C) implementation (cf. [9]). Another useful feature of the
Fourier–Chebyshev representation is the possibility of estimating a posteriori the interpolation error by the size of
some coefficients, as we shall see below.

3.1. Matrix formulation

For s = 1, 2, 3, 4, consider the matrices

D = D(Pads
n, f ) = diag

(
[wξ f (ξ), ξ ∈ Pads

n]
)

∈ RN×N , (12a)

Θi = Ti (Pads
n) =

· · · T̂0(ξi ) · · ·

...
...

...

· · · T̂n(ξi ) · · ·


︸ ︷︷ ︸

ξ∈Pads
n

∈ R(n+1)×N , i = 1, 2, (12b)

C0 = C0(Pads
n, f ) =


c0,0 c0,1 · · · · · · c0,n
c1,0 c1,1 · · · c1,n−1 0
...

... . .
.

. .
. ...

cn−1,0 cn−1,1 0 · · · 0
cn,0 0 · · · 0 0

 ∈ R(n+1)×(n+1), (12c)
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the latter being the upper left triangular part of

B = B(Pads
n, f ) = Θ1 DΘ t

2 ∈ R(n+1)×(n+1) (13)

with the modification c0,n = b0,n , cn,0 = bn,0/2 for the first and the third family, and c0,n = b0,n/2, cn,0 = bn,0 for
the second and the fourth family. Then it is easy to see that, setting

τi (x) = [T̂0(xi ), . . . , T̂n(xi )]
t (column vector), i = 1, 2, (14)

the interpolant at the Padua points can be computed in the form (9) as

LPads
n

f (x) = (τ1(x))t C0τ2(x). (15)

Even with an array of M target points, say X , the interpolant can be computed through matrix operations, avoiding
iteration loops completely (which is essential in Matlab). In fact, setting

Ti (X) =

· · · T̂0(xi ) · · ·

...
...

...

· · · T̂n(xi ) · · ·


︸ ︷︷ ︸

x∈X

∈ R(n+1)×M , i = 1, 2,

we have that

LPads
n

f (X) = [LPads
n

f (x)]x∈X = diagonal of (T1(X))t C0T2(X). (16)

Remark 2 (Beyond the Square). Clearly, we can immediately extend interpolation at the Padua points to a function
defined on a generic rectangle R(a, b) = [a1, b1] × [a2, b2], via the affine mapping σ : [−1, 1]

2
→ R(a, b),

σi (t1, t2) = (bi − ai )ti/2 + (bi + ai )/2, i = 1, 2. Indeed, the interpolation formula becomes simply

LPads
n

f (x) = (τ1(σ
−1(x)))t C0(Pads

n, f ◦ σ )τ2(σ
−1(x)). (17)

It is also possible to construct non-polynomial interpolation formulas at Padua-like points on bivariate domains with
different geometric structures (such as triangles, generalized rectangles, generalized sectors) by means of suitable (as
smooth as possible) surjective transformations of the square (cf. [5]). For example, for the triangle T (u, v, w) with
vertices u = (u1, u2), v = (v1, v2) and w = (w1, w2) it is possible to use the Proriol (also known as Duffy) map
σ : [−1, 1]

2
→ T (u, v, w), σi (t1, t2) = (vi −ui )(1+t1)(1−t2)/4+(wi −ui )(1+t2)/2+ui , i = 1, 2, and for the ellipse

E(c, α, β) centered at c = (c1, c2) with x1-semiaxis α and x2-semiaxis β, it is convenient to use the starlike polar
map σ : [−1, 1]

2
→ E(c, α, β), σ1(t1, t2) = c1 −αt2 sin (π t1/2) , σ2(t1, t2) = c2 +βt2 cos (π t1/2). Then we have an

interpolation formula like (17), where, since σ is surjective but non-invertible, we denote by σ−1(x) a suitable choice
(when necessary) in the inverse image of x through σ (e.g., σ−1(w) = (0, 1) for the triangle, σ−1(c) = (0, 0) for
the ellipse). Observe that the starlike polar map for the ellipse distributes the interpolation points more symmetrically
with respect to the usual polar coordinates, and shows a better interpolation error (cf. [5]).

Remark 3 (Computational Cost). First, we observe that a simple analysis of the matrix-like interpolation algorithm
gives the following complexity estimates for construction (excluding evaluation of the function f at the Padua points),
and evaluation at a set of M target points:

• construction: cost of (12b) + cost of (12c) ≈ 2cTnN + 2(n + 1)2 N flops;
• evaluation: M× (cost of (14) + cost of (15)) ≈ M(2cTn + 4(n + 1)2) flops,

where N is the number of Padua points (cf. (2)), and cT denotes the average evaluation cost of a single Chebyshev
polynomial via its trigonometric representation (suitable in Matlab), or via the three-term recurrence (suitable in
Fortran: here, cT ≈ 2). This complexity estimate shows that on a large number of evaluation points, say M � N , the
present implementation is more convenient than that based on the stabilized Xu formula for the reproducing kernel
(cf. [6]), whose cost is of the order of 24csin N M flops, since 2cTn + 4(n + 1)2

� 24csin N = 12csin(n + 1)(n + 2)

already for relatively small values of n.
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Remark 4 (Error Estimate). An important feature in the practical use of polynomial interpolation is the possibility
of having a reliable and if possible a posteriori estimate of the interpolation error. To this end, representation of the
interpolant in a suitable orthogonal basis is useful. This is the reason, for example, why in their recent paper on the
univariate Chebfun system [2], Battles and Trefethen switch from the barycentric Lagrange form of the interpolant
(suitable for computation) to its representation in the Chebyshev orthogonal basis (suitable for estimating the error).
Here, the Fourier–Chebyshev representation (9)–(11) is suitable for both purposes. In fact, consider c j,k− j and ϕ j,k− j
as linear functionals on C([−1, 1]

2, ‖ · ‖∞). Then, in view of (11) and the fact that the {wξ } are weights of a
cubature formula exact on constants, denoting by p∗

n the best uniform polynomial approximation of degree n to
f ∈ C([−1, 1]

2),

|c j,k− j ( f ) − ϕ j,k− j ( f )| ≤ (‖c j,k− j‖ + ‖ϕ j,k− j‖) ‖ f − p∗
n‖∞

≤ 2

 ∑
ξ∈Pads

n

wξ +
1

π2

∫
[−1,1]2

dx1dx2√
1 − x2

1

√
1 − x2

2

 ‖ f − p∗
n‖∞ = 4En( f ), (18)

for every (k, j), 0 ≤ j ≤ k ≤ n. Moreover, indicating by Sn f the truncated Fourier–Chebyshev expansion of f ,
Sn f (x) =

∑n
k=0

∑k
j=0 ϕ j,k− j ( f )T̂ j (x1)T̂k− j (x2), and observing that LPads

n
and Sn are both projection operators on

Π 2
n , we have

‖LPads
n

f − Sn f ‖∞ ≤ (‖LPads
n
‖ + ‖Sn‖)‖ f − p∗

n‖∞ = O
(

log2(n)En( f )
)

. (19)

The growth estimate ‖LPads
n
‖ = O(log2(n)) has been proved in [4], whereas the fact that ‖Sn‖ = O(log2(n)) is

within the much more general results of [16]. From the inequality (19) we immediately get

‖ f − LPads
n

f ‖∞ ≤ an, an = ‖ f − Sn f ‖∞ +O
(

log2(n) En( f )
)

.

Thus, we can conjecture the following a posteriori error estimate (which is substantially validated by the numerical
results):

‖ f − LPads
n

f ‖∞ ≤ an ≈ ‖ f − Sn f ‖∞ ≤ 2
∞∑

k=n+1

k∑
j=0

∣∣ϕ j,k− j ( f )
∣∣

≈ 2
n∑

k=n−2

k∑
j=0

∣∣ϕ j,k− j ( f )
∣∣ ≈ 2

n∑
k=n−2

k∑
j=0

∣∣c j,k− j ( f )
∣∣ . (20)

The passage from the first to the second row in (20), though empirical, is reminiscent of popular error estimates for
one-dimensional Chebyshev expansions, based on the size of the last two or three coefficients (cf., e.g., [2]). Here,
we resort indeed to the coefficients corresponding to the last three degrees k, namely k = n − 2, n − 1, n. Notice
that the first and the last approximation in (20) are justified by (8) and (19), and (18), respectively. The latter, in
particular, seems to give an overestimate of the final error by an order of O(nEn( f )). In practice, however, as in the
one-dimensional case it happens that (20) tends to be an overestimate for smooth functions, and an underestimate for
functions of low regularity (due to fast/slow decay of the Fourier–Chebyshev coefficients). The behavior of this error
estimate has been satisfactory in almost all our numerical tests (see the next section).

4. Numerical tests

In Table 1 we show the errors of interpolation at the first family of Padua points in the max-norm normalized to the
max deviation of the function from its mean, at a sequence of degrees, n = 10, 20, . . . , 60, on a well-known suite of
10 test functions used in [15]. The corresponding “true” errors have been computed on a 100 × 100 uniform control
grid. In the table we report also (in parentheses) the a posteriori empirical error estimate given by the last term of (20),
normalized as above. The tests have been done using the Fortran code in [9].

The last four functions are considered more challenging for the testing of interpolation methods at scattered
points, due to their multiple features and abrupt transitions. Here, we can see that only F10 and, much less severely,
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Table 1
“True” and estimated (in parentheses) normalized errors of interpolation at the Padua points for the test set in [15]

n F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

10 9E−2 4E−1 8E−3 4E−4 4E−2 1E−4 3E−1 1E−1 3E−1 5E−1
(2E−1) (6E−1) (6E−2) (2E−2) (2E−1) (2E−3) (1E+0) (4E−1) (1E+0) (8E−1)

20 7E−3 6E−2 1E−5 7E−10 6E−5 4E−8 8E−6 3E−3 7E−3 1E−1
(2E−2) (8E−2) (8E−5) (1E−7) (8E−4) (4E−7) (2E−4) (1E−2) (4E−2) (6E−2)

30 1E−4 1E−2 2E−8 2E−14 1E−8 2E−11 7E−13 2E−5 4E−5 6E−2
(8E−4) (1E−2) (1E−7) (4E−14) (2E−7) (2E−10) (2E−11) (1E−4) (2E−4) (2E−2)

40 3E−6 2E−3 2E−11 4E−14 4E−13 6E−14 4E−14 6E−8 1E−7 4E−2
(1E−5) (2E−3) (2E−10) (1E−14) (2E−11) (1E−13) (8E−15) (6E−7) (6E−7) (8E−3)

50 1E−8 4E−4 1E−13 6E−14 1E−15 1E−13 7E−14 5E−11 2E−10 3E−2
(8E−8) (4E−4) (4E−13) (1E−14) (1E−15) (2E−14) (1E−14) (6E−10) (1E−9) (6E−3)

60 4E−11 6E−5 2E−13 7E−14 1E−15 1E−13 1E−13 6E−14 2E−13 2E−2
(2E−10) (6E−5) (2E−14) (2E−14) (1E−15) (2E−14) (1E−14) (4E−13) (1E−12) (4E−3)

Table 2
CPU times (in seconds) for construction of the interpolation polynomial at the Padua points (excluding evaluation of f ) and evaluation at
M = 10 000 target points, using Matlab and Fortran (with optimized BLAS) implementations

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

MATLAB
Constr. 0.0025 0.0045 0.0110 0.0282 0.0556 0.0955
Eval. 0.1465 0.2523 0.3721 0.5022 0.6346 0.7676

FORTRAN-oBLAS
Constr. 0.0010 0.0050 0.0110 0.0200 0.0350 0.0550
Eval. 0.0050 0.0140 0.0240 0.0360 0.0510 0.0670

F2 are really “difficult” for interpolation at the Padua points. In all the other cases the approximation behavior
of the interpolation polynomial is quite satisfactory. It is interesting to observe that with the oscillating function
F7(x1, x2) = 2 cos(10x1) sin(10x2) + sin(10x1x2), the error starts decaying rapidly as soon as the degree n allows us
to recover the oscillations. On the other hand, the troubles with F10 are natural, since it has a gradient discontinuity
in the center of the square, whereas the Padua points cluster at the boundary. As for the empirical error estimates, we
can see that they tend to overestimate (at least far from machine precision), except for F10, where they underestimate
the true errors. In general, we can consider the behavior of the (normalized) a posteriori estimate (20) satisfactory. We
stress also that our implementation of interpolation at the Padua points is very stable. Indeed, we could interpolate at
much higher degrees without drawbacks. For example, we can take n = 300 (N = 45 451 Padua points), obtaining
an error of 9E−12 for the test function F2.

In Table 2 we have reported the CPU times corresponding to our implementations in Matlab and Fortran, with
optimized BLAS (oBLAS for short) libraries. The tests have been made on an AMD Athlon 2800 + processor machine
with 2 Gb RAM. The resulting interpolation method is very fast. Notice that, due to optimized linear algebra, in both
implementations the times scale differently (and more favourably) than what would be predictable from the flops
counting in Remark 3.
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