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Hyperinterpolation in the cubeI
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Abstract

We construct an hyperinterpolation formula of degree n in the three-dimensional cube, by using the numerical cubature formula
for the product Chebyshev measure given by the product of a (near) minimal formula in the square with Gauss–Chebyshev–Lobatto
quadrature. The underlying function is sampled at N ∼ n3/2 points, whereas the hyperinterpolation polynomial is determined by
its (n + 1)(n + 2)(n + 3)/6 ∼ n3/6 coefficients in the trivariate Chebyshev orthogonal basis. The effectiveness of the method is
shown by a numerical study of the Lebesgue constant, which turns out to increase like log3(n), and by the application to several
test functions.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Hyperinterpolation over general regions

Polynomial hyperinterpolation of multivariate continuous functions over compact domains or manifolds, originally
introduced by Sloan [1], is a discretized orthogonal projection on polynomial subspaces, which provides an
approximation method more general than the polynomial interpolation. Though the idea is very general and flexible,
and the problem in some sense easier than the multivariate polynomial interpolation [2], till now it has been used
effectively in few cases: the sphere [3,4], the square [5,6], and the disk [7].

Indeed, hyperinterpolation requires two basic ingredients, i.e. the explicit knowledge of a family of orthogonal
polynomials w.r.t. any measure on the domain, and a “good” cubature formula for that measure (positive weights and
high algebraic degree of exactness). It becomes an effective uniform approximation tool when its norm, as a projection
operator (the so-called Lebesgue constant), grows slowly.

The importance of these basic features can be understood by summarizing briefly the structure of
hyperinterpolation. Let Ω ⊂ Rd be a compact subset (or lower-dimensional manifold), and µ a positive measure
such that µ(Ω) = 1 (i.e., a normalized positive and finite measure on Ω ). For every function f ∈ C(Ω) the
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µ-orthogonal projection of f on Π d
n (Ω) (the subspace of d-variate polynomials of degree ≤ n restricted to Ω ) can be

written as

Sn f (x) =

∫
Ω

Kn(x, y) f (y)dµ(y) with Sn p = p for p ∈ Π d
n (Ω), (1.1)

where x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd), and the so-called reproducing kernel Kn is defined by

Kn(x, y) =

n∑
k=0

∑
|α|=k

pα(x)pα(y), α = (α1, α2, . . . , αd) (1.2)

the set of polynomials {pα, |α| = α1 + · · · + αd = k, 0 ≤ k ≤ n} being any µ-orthonormal basis of Π d
n (Ω), with

pα of total degree |α| (concerning the theory of multivariate orthogonal polynomials, we refer the reader to the recent
monograph by Dunkl and Xu [8]).

Now, given a cubature formula for µ with N = N (n) nodes ξ ∈ Ξ ⊂ Ω , ξ = (ξ1, ξ2, . . . , ξd), and positive weights
{wξ }, which is exact for polynomials of degree ≤ 2n,∫

Ω
p(x)dµ =

∑
ξ∈Ξ

wξ p(ξ), ∀p ∈ Π d
2n(Ω), (1.3)

we obtain from (1.1) the polynomial approximation of degree n

f (x) ≈ Ln f (x) =

∑
ξ∈Ξ

wξ Kn(x, ξ) f (ξ), (1.4)

where Ln p = Sn p = p for every p ∈ Π d
n (Ω). It is known that necessarily N ≥ dim(Π d

n (Ω)), and that (1.4) is a
polynomial interpolation at Ξ whenever the equality holds [1].

The hyperinterpolation error in the uniform norm, due to exactness on Π d
2n(Ω), can be easily estimated as

‖ f − Ln f ‖∞ ≤ (1 + Λn)En( f ), En( f ) = inf
p∈Π d

n (Ω)
‖ f − p‖∞,Ω ,

Λn = ‖Ln‖ = max
x∈Ω

∑
ξ∈Ξ

wξ |Kn(x, ξ)|

 , (1.5)

where Λn is the operator norm of Ln : (C(Ω), ‖ · ‖∞) → (Π d
n (Ω), ‖ · ‖∞), usually termed the “Lebesgue constant”

in the interpolation framework.
The aim of this paper is to make a first step towards three-dimensional hyperinterpolation, in the special case of

the cube. In the next section we describe the technique and discuss its main features, namely growth of the Lebesgue
constant, implementation and computational cost, theoretical and practical error estimates. In Section 3 we show the
effectiveness of hyperinterpolation on a set of trivariate test functions.

2. The case of the cube

In the case of the d-dimensional cube, orthogonal polynomials are explicitly known for the product Jacobi
measures [8]. The main difficulty in dealing with the hyperinterpolation of degree n is then to find a cubature formula
(for any of such measures) with algebraic degree of exactness not smaller than 2n, which uses a low number of
nodes (as low as possible, in principle). In particular, minimal cubature formulas, i.e. formulas which have degree
of exactness 2n + 1 and match Möller’s lower bound [9], seem the right choice. Unfortunately, minimal cubature in
dimension d > 1 is very difficult to construct, and even computing numerically nodes and weights of formulas at least
“close to minimal” is a challenging computational task [10–12].

Among the few minimal formulas with explicitly known nodes and weights, there is the formula for the product
Chebyshev measure in dimension 2 (square), originally given by Morrow and Patterson [13] for even degree n; see
also the construction of Cools and Schmid [14]. The nodes and weights for odd degrees were given by Xu [15], who
also proved that such points are suitable for bivariate polynomial interpolation (though in a polynomial subspace Vn ,
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Π 2
n−1 ⊂ Vn ⊂ Π 2

n ). Theoretical and computational aspects of bivariate interpolation at Xu points has been addressed
recently [16–18]. In particular, it has been proved rigorously that the corresponding Lebesgue constant is O(log2(n)),
which is the optimal rate for projection operators [19]. The same rate is obtained by the so-called “Padua points”,
which are the first known example of optimal unisolvent family of interpolation points in two variables [20,21].

We have used the minimal cubature formula above for bivariate hyperinterpolation on the square [6] and more
generally on rectangles [5]. The corresponding projection is not interpolant, but shares the good theoretical and
computational features of Xu-like and Padua-like interpolation, in particular the optimal rate of the Lebesgue
constant [5,6]. All these polynomial approximations are completely determined by a number of sampling points and
coefficients growing asymptotically like n2/2.

Extension of Xu-like or Padua-like interpolation to dimension 3 (cube) seems to be a very difficult task. Here,
we try to extend hyperinterpolation, with the limitation that a minimal cubature formula for the product Chebyshev
measure in the cube is not known.

As a first fundamental step towards three-dimensional hyperinterpolation of degree n, we begin by constructing
a cubature formula with the required degree of exactness, trying to keep low the number of nodes. Consider the
three-dimensional normalized product Chebyshev measure on Ω = [−1, 1]

3, factorized as

dµ3 = dµ2 ⊗ dµ1, dµ2 =
1

π2

dx1dx2√
1 − x2

1

√
1 − x2

2

, dµ1 =
1
π

dx3√
1 − x2

3

. (2.6)

The N1 = n + 2 Chebyshev–Lobatto points in [−1, 1]

Tn+1 = {zk}, zk = zk,n+1 = cos
kπ

n + 1
, k = 0, . . . , n + 1, (2.7)

as it is well known are nodes of a minimal quadrature formula for dµ1 (degree of exactness 2n+1), with corresponding
weights {wzk } are: w−1 = w1 = (n + 1)−1/2, wzk = (n + 1)−1 for the interior points.

Moreover, there exists a (near) minimal cubature formula for dµ2 on [−1, 1]
2 with degree of exactness 2n + 1,

whose nodes (ξ1, ξ2) belong to the two-dimensional Chebyshev-like set

Xn+1 = A ∪ B, card(Xn+1) = N2, (2.8)

where

• case n odd, n = 2m − 1

Aodd = {(z2i , z2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m − 1}

Bodd = {(z2i+1, z2 j ), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m}
(2.9)

with N2 = (n + 1)(n + 3)/2, and weights w(ξ1,ξ2) = (n + 1)−2 for the boundary nodes, and w(ξ1,ξ2) = 2(n + 1)−2

for the interior nodes (minimal formula, N2 equals Möller’s lower bound [9]).
• case n even, n = 2m

Aeven = {(z2i , z2 j ), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

Beven = {(z2i+1, z2 j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m}
(2.10)

with N2 = (n + 2)2/2, and weights w(ξ1,ξ2) = (n + 1)−2/2 for (ξ1, ξ2) = (1, 1) and (ξ1, ξ2) = (−1, −1),
w(ξ1,ξ2) = (n + 1)−2 for the other boundary nodes and w(ξ1,ξ2) = 2(n + 1)−2 for the interior nodes (near minimal
formula, the number of nodes is only one more than Möller’s lower bound).

Observe that Xn+1 is a symmetric set w.r.t. the diagonal, i.e. {(ξ2, ξ1) : (ξ1, ξ2) ∈ Xn+1} = Xn+1.
From the minimal formulas above, we can immediately obtain a product cubature formula for dµ3 (recall that

x = (x1, x2, x3) and ξ = (ξ1, ξ2, ξ3)).∫
[−1,1]3

f (x)dµ3 ≈

∑
ξ∈Xn+1×Tn+1

w(ξ1,ξ2)wξ3 f (ξ), (2.11)
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which is exact for polynomials of degree ≤ 2n + 1 using

N3 = card(Xn+1 × Tn+1) = N1 N2 ∼
n3

2
(2.12)

nodes. In fact, it is exact on Π 2
2n+1([−1, 1]

2) ⊗ Π 1
2n+1([−1, 1]) ⊃ Π 3

2n+1([−1, 1]
3).

Then, we can construct the hyperinterpolation polynomial of degree n at Xn+1 × Tn+1 as in (1.4)

Ln f (x) =

∑
ξ∈Xn+1×Tn+1

w(ξ1,ξ2)wξ3 Kn(x, ξ) f (ξ), (2.13)

where the reproducing kernel is defined as in (1.2) via the orthonormal basis

pα(x) = T̂α1(x1)T̂α2(x2)T̂α3(x3), 0 ≤ α1 + α2 + α3 ≤ n, (2.14)

T̂ j being the normalized Chebyshev polynomial of degree j , i.e. T̂0(·) = 1 and T̂ j (·) =
√

2 cos( j arccos(·)) for
j > 0. The hyperinterpolation polynomial is not interpolant [1], since N3 > dim(Π 3

n ([−1, 1]
3)) = dim(Π 3

n ) =

(n + 1)(n + 2)(n + 3)/6.

Remark. We have treated only the hyperinterpolation points Xn+1 × Tn+1 for simplicity, but there are clearly three
possible families of such product points in the cube. Indeed, we can take also Xn+1 in the second and third variables
and Tn+1 in the first, or Xn+1 in the first and third variables and Tn+1 in the second. Correspondingly, we have three
hyperinterpolation polynomials of degree n.

2.1. Growth of the Lebesgue constant

The effectiveness of the projection operator (2.13) as an approximation tool in the uniform norm, depends on the
growth of its norm (the so-called Lebesgue constant), cf. (1.5). Now, in view of (1.2) and (2.14) and of the following
bound for the weights, wξ = w(ξ1,ξ2)wξ3 ≤ 2(n + 1)−3, we have the estimate

Λn ≤ max
x∈Ω

 n∑
k=0

∑
|α|=k

|pα(x)|
∑

ξ∈Xn+1×Tn+1

w(ξ1,ξ2)wξ3 |pα(ξ)|


≤

16N3

(n + 1)3 dim(Π 3
n ) = 16

(n + 2)2(n + 3)2

12(n + 1)
∼

4
3

n3, (2.15)

which already shows that (2.13) is not a bad candidate for approximation in the uniform norm.
However, (2.15) turns out to be by far an overestimate of the actual Lebesgue constant. Indeed, a wide set of

numerical experiments on the maximization of the Lebesgue function

λn(x) =

∑
ξ∈Xn+1×Tn+1

w(ξ1,ξ2)wξ3 |Kn(x, ξ)|, (2.16)

up to degree n = 100, has shown that the maximum seems to be attained at the vertices of the cube and to increase
much more slowly, namely O(log3(n)). See Fig. 1, where the computed Lebesgue constant and its least-square
fitting by a cubic polynomial in log(n + 1) on n ∈ {10, . . . , 70}, namely (2/π)3 log3(n + 1) − 1.3 log2(n + 1)

+ 9.6 log(n + 1) − 8.3, up to degree n = 100 are displayed.
These numerical results lead to state the following

Conjecture 2.1. The Lebesgue function of the hyperinterpolation operator in the cube at the product points Xn+1 ×

Tn+1 can be bounded as

Λn = max
x∈[−1,1]3

λn(x) .

(
2
π

log(n + 1)

)3

, n → ∞. (2.17)

Moreover, the maximum is attained at the vertices of the cube.
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Fig. 1. The Lebesgue constant of hyperinterpolation in the cube up to degree 100.

Notice that this is just the asymptotic growth of the Lebesgue constant of trivariate tensor-product interpolation of
degree n at (n + 1)3 product Chebyshev–Lobatto points [22].

2.2. Implementation

From the computational point of view, the representation of the hyperinterpolation polynomial in the underlying
orthonormal basis {pα} is more convenient. This is immediately obtained by (2.13) and (1.2)

Ln f (x) =

n∑
k=0

∑
|α|=k

cα pα(x), (2.18)

where

cα = cα( f ) =

∑
ξ∈Xn+1×Tn+1

w(ξ1,ξ2)wξ3 pα(ξ) f (ξ). (2.19)

It is worth stressing that the coefficients {cα} can be computed once and for all, as soon as the function has been
sampled at Xn+1 × Tn+1. This means that, whereas the number of function evaluations is N3 ∼ n3/2 (cf. (2.12)), the
function is then “compressed”, up to the hyperinterpolation error (see the next section), into (n+1)(n+2)(n+3)/6 ∼

n3/6 coefficients.
Given the sample, the computation of the coefficients {cα} can be organized as follows. In view of (2.14), it is

convenient to precompute {T̂s(ξi )}, 0 ≤ s ≤ n, i = 1, 2, 3, for every hyperinterpolation point ξ , by the three-term
recurrence of the Chebyshev polynomials. This has a cost of the order of 2n4 flops. The bulk of the procedure is then
given by the evaluation of the sum in (2.19) for every α, which has a total cost of about 3N3 dim(Π 3

n ) ∼ 5n6/12 flops.
A computational complexity growing like O(n6) seems prohibitive when a high hyperinterpolation degree is

needed. There is, however, a simple way to reduce the complexity to O(n5) and the overall computing time. Indeed,
by ordering the multiindexes α = (α1, α2, α3) as (i, j − i, k − j), we can rewrite the coefficients in the following way
(cf. (2.14))

cα = c(i, j−i,k− j) =

∑
ξ3∈Tn+1

wξ3 T̂k− j (ξ3)ci, j−i (ξ3), 0 ≤ i ≤ j ≤ k ≤ n,

ci, j−i (ξ3) =

∑
(ξ1,ξ2)∈Xn+1

w(ξ1,ξ2)T̂i (ξ1)T̂ j−i (ξ2) f (ξ). (2.20)

Then, for every ξ3 ∈ Tn+1 we can compute the intermediate coefficients {ci, j−i (ξ3)} as elements of a triangular
(n + 1) × (n + 1) matrix C(ξ3) = [cs,t (ξ3)], 0 ≤ s ≤ t ≤ n, using the optimized linear algebra routines instead of
“for” loops. This is just the computational trick adopted for bivariate hyperinterpolation [5] (indeed the {ci, j−i (ξ3)}

are bivariate hyperinterpolation coefficients). In our Fortran implementation of hyperinterpolation in the cube [23],
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Table 1
Computation of the hyperinterpolation coefficients {cα} at a sequence of degrees

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

Pts. 864 5324 16 384 37 044 70 304 119 164
Coeffs. 286 1771 5456 12 341 23 426 39 711

CPU (s)
Basic 0.010 0.165 1.829 16.34 58.62 165.63
OptBLAS 0.007 0.0018 0.089 0.269 0.672 1.481

Speed-up 1.4 9.2 20.6 60.7 87.2 111.8

we have used optimized BLAS libraries [24], which allow us to obtain considerable speed-ups at high degree. See
Table 1, where we report the CPU time (s) for the computation of the hyperinterpolation coefficients {cα} of a given
sample at a sequence of degrees, by the basic algorithm (only “for” loops) and by the matrix algorithm with optimized
matrix products (the tests have been done on an AMD Athlon 2800+ processor machine with 2 Gb RAM).

2.3. Error estimates

In view of the multivariate extension of Jackson’s theorem (cf., e.g., Bagby et al. [25] and references therein), we
have that for f ∈ Cm([−1, 1]

3), m > 0,

‖ f − Ln f ‖∞ ≤ (1 + Λn) En( f ) ≤ C( f ; m) (1 + Λn) n−m, (2.21)

where C is a suitable constant (with n), dependent on f and m. In view of the conjecture above on the growth of the
Lebesgue constant, we then expect convergence for such f , with the rate given in (2.21). However, this “a priori”
estimate is essentially qualitative.

An important feature would be the availability of a reliable and if possible “a posteriori” quantitative estimate of the
error. To this purpose, here we can use the fact that hyperinterpolation is a discretized truncated Fourier–Chebyshev
expansion.

First, observe that for polynomials of degree not greater than n the {cα} are exactly the Fourier–Chebyshev
coefficients, i.e. for every α, 0 ≤ |α| ≤ n, we have cα( f ) = ϕα( f ), where

ϕα( f ) =

∫
[−1,1]3

pα(x) f (x)dµ3, ∀ f ∈ Π 3
n . (2.22)

Now, consider cα and ϕα as linear functionals on C([−1, 1]
3, ‖ · ‖∞). In view of the fact that the cubature

formula (2.11) is exact on constants, denoting by p∗
n the best uniform polynomial approximation of degree n to

f ∈ C([−1, 1]
3),

|cα( f ) − ϕα( f )| ≤ (‖cα‖ + ‖ϕα‖) ‖ f − p∗
n‖∞

≤ 2
√

2

 ∑
ξ∈Xn+1×Tn+1

w(ξ1,ξ2)wξ3 +

∫
[−1,1]3

dµ3

 ‖ f − p∗
n‖∞ = 4

√
2En( f ), (2.23)

for every α. Moreover, observing that Ln and the truncated Fourier–Chebyshev expansion Sn (cf. (1.1)) are both
projection operators on Π 3

n , we have

‖Ln f − Sn f ‖∞ ≤ (‖Ln‖ + ‖Sn‖) ‖ f − p∗
n‖∞ = (Λn +O(log3(n))En( f )). (2.24)

Estimates of Λn have been discussed in Section 2.1, whereas the fact that ‖Sn‖ = O(log3(n)) is within the much
more general results recently proved by Vertesi [19]. We can now give the following a posteriori error estimate, by
the chain of estimates
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Table 2
Hyperinterpolation errors and their a posteriori estimates (in parenthesis) on Renka’s test functions in the unit cube

n F1 F2 F3 F4 F5 F6

10 1.5E−1 2.1E−1 2.0E−2 4.9E−4 1.5E−1 1.5E−2
(3.4E−1) (8.7E−1) (1.5E−1) (4.1E−3) (1.8E−1) (1.5E−2)

20 3.4E−2 5.8E−2 2.8E−5 1.5E−9 9.7E−4 7.2E−4
(3.8E−2) (2.7E−1) (2.3E−4) (2.3E−8) (2.5E−3) (5.7E−4)

30 3.1E−3 1.6E−2 3.6E−8 7.2E−15 8.7E−7 4.5E−5
(4.8E−3) (8.0E−2) (3.6E−7) (1.4E−14) (3.9E−6) (3.2E−5)

40 1.3E−4 4.8E−3 6.2E−11 2.5E−14 2.0E−10 3.1E−6
(2.7E−4) (2.3E−2) (5.5E−10) (8.4E−15) (1.4E−9) (2.2E−6)

50 2.5E−6 1.4E−3 8.1E−14 3.5E−14 1.9E−14 2.4E−7
(7.3E−6) (6.6E−3) (8.7E−13) (1.1E−14) (1.5E−13) (1.6E−7)

60 2.4E−8 4.2E−4 3.3E−14 3.3E−14 5.0E−15 1.8E−8
(1.1E−7) (1.9E−3) (1.1E−14) (1.1E−14) (1.6E−15) (1.2E−8)

‖ f − Ln f ‖∞ ≈ ‖ f − Sn f ‖∞ ≤ 2
√

2
∞∑

k=n+1

∑
|α|=k

|ϕα( f )|

≈ 2
√

2
n∑

k=n−1

∑
|α|=k

|ϕα( f )| ≈ 2
√

2
n∑

k=n−1

∑
|α|=k

|cα( f )| . (2.25)

The passage from the first to the second row in (2.25), though empirical, is reminiscent of popular error estimates
for the one-dimensional Chebyshev expansions, based on the size of the last two coefficients [26]. Here, we resort
indeed to the coefficients corresponding to the last two degrees k, namely n − 1 and n. Notice that the first and the
last approximation in (2.25) are justified by (2.21), (2.24) and (2.23), respectively. The latter, in particular, seems to
give an overestimate of the final error by an order of O(n2 En( f )). In practice, however, as in the one-dimensional
case it happens that (2.25) tends to be an overestimate for smooth functions, and an underestimate for functions of
low regularity (due to fast/slow decay of the Fourier–Chebyshev coefficients). The behavior of this error estimate has
been satisfactory in almost all our numerical tests (see the next section).

3. Numerical tests

In Table 2 we show the hyperinterpolation errors on a suite of six trivariate test functions in [0, 1]
3 which exhibit a

variety of behavior at a sequence of degrees, n = 10, 20, . . . , 60:

F1(x1, x2, x3) = .75 exp[−((9x1 − 2)2
+ (9x2 − 2)2

+ (9x3 − 2)2)/4]

+ .75 exp[−(9x1 + 1)2/49 − (9x2 + 1)/10 − (9x3 + 1)/10]

+ .5 exp[−((9x1 − 7)2
+ (9x2 − 3)2

+ (9x3 − 5)2)/4]

− .2 exp[−(9x1 − 4)2
− (9x2 − 7)2

− (9x3 − 5)2
];

F2(x1, x2, x3) = [tanh(9x3 − 9x1 − 9x2) + 1]/9;

F3(x1, x2, x3) = [1.25 + cos(5.4x2)] cos(6x3)/[6 + 6(3x1 − 1)2
];

F4(x1, x2, x3) = exp[−(81/16)((x1 − .5)2
+ (x2 − .5)2

+ (x3 − .5)2)]/3;

F5(x1, x2, x3) = exp[−(81/4)((x1 − .5)2
+ (x2 − .5)2

+ (x3 − .5)2)]/3;

F6(x1, x2, x3) = [64 − 81((x1 − .5)2
+ (x2 − .5)2

+ (x3 − .5)2)]1/2/9 − .5.

We notice that these functions were also considered by Renka in [27]. We observe that extending hyperinterpolation
from the reference cube [−1, 1]

3 to any parallelepiped is trivial via the usual affine componentwise change of
variables. The errors are measured in the max-norm normalized to the max deviation of the function from its
mean. The “true” errors have been computed on a 30 × 30 × 30 uniform control grid. In the table we report also
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(in parenthesis) the a posteriori empirical error estimate for hyperinterpolation, given by the last term of (2.25)
normalized as above. The tests have been done by the Fortran code HyperCube [23].

From the numerical tests we can see that the hyperinterpolation formula in the cube, computed as described above
via its representation in the Chebyshev orthogonal basis, is a stable and efficient approximation tool for the functions
with some regularity that can be sampled without restrictions. It can be used at high degree without serious drawbacks,
and is accompanied by a satisfactory error estimate.
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[9] H.M. Möller, Lower bounds for the number of nodes in cubature formulae, in: Numerische Integration (Tagung, Math. Forschungsinst.,

Oberwolfach, 1978), in: Internat. Ser. Numer. Math., vol. 45, Birkhäuser, Basel, Boston, Mass, 1979, pp. 221–230.
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