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ABSTRACT
The aim of the present study is to extend the linear unsteady

optimal-perturbation analysis of (Luchini 2000) to the nonlin-
ear regime. In order to account for the nonlinear interactions, a
Fourier expansion is applied in the streamwise direction and in
time and the solution is decomposed in Fourier modes along both
z andt. The optimal unsteady spanwise-sinusoidal leading-edge
excitation that provides the maximum energy growth for a given
initial energy and frequency can thus be determined. Of interest
will be that the optimal growth decreases with both.

INTRODUCTION
Algebraic instability

It is known that some instability mechanisms cannot be seen
in the classical Orr–Sommerfeld formulation (eigenvalue-based
linear stability theory). For instance, the stability analysis of
Hagen-Poiseuille pipe flow reveals that all all eigenfunctions are
stable; nevertheless, if the Reynolds number is large enough,
transition is experimentally observed.

An explanation was given by (Ellingsen & Palm 1975) and
(Landahl 1980): they identified a new mechanism of disturbance
amplification, according to which a longitudinal vortex super-
imposed to a two-dimensional boundary layer can lift up low-
velocity fluid from the wall and push down high-velocity fluid
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towards the wall. The disturbance accumulated over the stream-
wise length can beRe1/2 times greater than the original one since
the structure of the boundary layer is elongated in the stream-
wise direction (with a typical lengthRe1/2 times greater than the
boundary-layer thickness).

The combination of this basically inviscid amplification
mechanism with the damping effect of viscosity leads to what
is nowadays calledalgebraic instabilityor transient growth.

Previous work
Almost all previously published work in the field of alge-

braic instability is limited to a linearized analysis.
In the temporal stability framework, (Farrell 1988) com-

puted the initial flow disturbance that produces the maximum
gain (defined as the ratio between the perturbation kinetic ener-
gies at the final and initial time) in two dimensional plane channel
flow. (Boberg & Brosa 1988) had already introduced a similar
concept for flow in a pipe, but (Butler & Farrell 1992) gave the
first quantitative calculation of three-dimensional optimal pertur-
bations with respect to temporal growth, not only for plane Cou-
ette and Poiseuille flow, but also for a parallel approximation of
the Blasius boundary layer. (Corbett & Bottaro 2000) found the
temporal-growth optimal perturbations for parallel boundary lay-
ers subject to streamwise pressure gradient considering Falkner–
Skan base flow profiles and (Corbett & Bottaro 2001) studied the
temporal growth in swept boundary layers described by Falkner–
Skan–Cooke similarity solution.
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The problem of spatial stability for a Blasius boundary
layer was tackled by Luchini (1997, 2000) and by Andersson,
Berggren & Henningson (1998, 1999). An adjoint-based opti-
mization technique was used in order to determine the optimal
perturbation profile atx = 0 and the gain, defined as the energy
disturbance at the output divided by the energy disturbance at the
leading edge. The optimal spanwise wavenumber for a steady
linear perturbation was found to beβ = 0.45. Like previous au-
thors, they observed that the optimal initial disturbance is com-
posed of stationary streamwise vortices whereas the induced ve-
locity field is dominated by streamwise streaks.

Luchini (2000) also considered the possibility of unsteady
disturbances, computing the gain as a function of frequency for
the steady optimal wavenumber (β = 0.45). Results showed that
the maximum gain corresponds to steady initial perturbations
(ω = 0), and that for increasing frequency the gain monotoni-
cally decreases.

Andersson, Brandt, Bottaro & Henningson (2001) investi-
gated via direct numerical simulation the subsequent nonlinear
evolution of the optimal perturbations provided by the linear
approach (those computed by (Luchini 2000) and (Andersson
et al.1999)), focusing upon the secondary temporal instability
of the produced streaks. They did not actually optimize any per-
turbations in the nonlinear case.

Steady nonlinear optimal perturbations were first computed
by Zuccher, Luchini & Bottaro (2002). They solved the nonlin-
ear steady boundary layer equations by decomposing the velocity
field in a Fourier series along the spanwise direction, so that full
generality was allowed in considering their interaction and the
nonlinear effects induced by them. Their work showed that the
optimal wavenumber decreases when the initial energy increases.

The main goal of this work is to extend the nonlinear study
performed by (Zuccheret al.2002) to the unsteady case of (Lu-
chini 2000), so as to compute the optimal unsteady leading-edge
excitation that provides the maximum gain for a given initial en-
ergy.

PROBLEM FORMULATION
(Zuccher et al.2002), in order to find optimal perturba-

tions for the nonlinear algebraic instability of an incompressible
boundary layer over a flat plate, considered the general steady
three-dimensional incompressible boundary-layer equations, in
conservative form, and written in boundary-layer variables typ-
ical of three-dimensionalities originating inside the boundary
layer itself. Here we solve the corresponding unsteady equations:

ux +vy +wz = 0
ut +(uu)x +(uv)y +(uw)z−uyy−uzz = 0

vt +(uv)x +(vv)y +(vw)z+ py−vyy−vzz = 0
wt +(uw)x +(vw)y +(ww)z+ pz−wyy−wzz = 0

(1)

where theu velocity component is made dimensionless with re-
spect to the outer velocityU∞ and thev and w (respectively
wall-normal and spanwise) components are made dimension-
less with respect toRe−1/2U∞. Re is the Reynolds number de-
fined asRe= U∞L/ν. The streamwise coordinatex is nor-
malized with a reference lengthL, the wall-normal coordinate
y and the spanwise coordinatez are made dimensionless with
δ = Re−1/2L = (νL/U∞)1/2 and time is normalized with respect
to L/U∞. p, the second-order term in the inner expansion of
pressure, is made dimensionless with respect toRe−1ρU2

∞. Sys-
tem (1) requires six boundary conditions, three at the wall, where
y = 0, and three fory→ ∞

u = 0 aty = 0
v = 0 aty = 0
w = 0 aty = 0

u = 1 for y→ ∞
w = 0 for y→ ∞
p = 0 for y→ ∞

(2)

and two initial conditions (w is uniquely determined onceu
and v have been assigned, see (Zuccheret al.2002)). When
the streamwise component upstream of the leading edge, is uni-
formly u = 1, the constraint relating the initial conditions forv
andw simply reduces to the continuity equation so that the initial
conditions read:

u(0,y,z, t) = 1
v(0,y,z, t) = v0(y,z, t)

(3)

System (1) with initial conditions (3) and boundary condi-
tions (2) represents the direct or forward problem to be solved.

In order to perform an optimization, an objective function
needs to be specified. For this purpose the perturbation kinetic
energy is generally taken as a measure of the perturbation level,
even if this is not necessarily the only physical quantity signalling
transition. Accordingly, our objective function will be the gain
at the outletJ = Gout, defined as the ratio between the energy at
the outlet and the initial energy. In the boundary-layer limit of
infinite Reynolds number,Gout reads

Gout =
Eout

Ein
= Re

[Z T

−T

Z Z

−Z

Z ∞

0
[|ū|2]dydzdt

]

x=1[Z T

−T

Z Z

−Z

Z ∞

0
(|v̄|2 + |w̄|2)dydzdt

]

x=0

(4)

Constrained optimization
We want to find the initial condition̄v0(y,z, t) for the wall-

normal velocity component atx = 0 which makes the objective
function Gout an extremum for a given initial energyE0. For
this reason, we impose the constraintEin = E0 where the initial
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energyEin is

Ein =
[Z T

−T

Z Z

−Z

Z ∞

0
[|v̄|2 + |w̄|2]dydzdt

]

x=0
= E0 (5)

but sincew̄0 is related tov̄0, the initial perturbation energy can
be seen as depending on̄v0 only: Ein(v̄0) = E0.

The technique of Lagrange multipliers is used to solve the
constrained optimization problem. For this purpose we intro-
duce a suitable functionalL , where the continuity and momen-
tum equations are multiplied bya(x,y,z, t), b(x,y,z, t), c(x,y,z, t),
d(x,y,z, t) and integrated over all space and time and the initial-
energy constraint is multiplied byλ0 Maximizing L implies that
its variationδL must be vanishing for unconstrained variations
in all the parameters which it depends upon. As in (Zuccher
et al.2002), it can be easily seen that the Fréchet derivatives
of the functionalL with respect to the Lagrange multipliers
a,b,c,d,λ0 reproduce the original constraints, respectively sys-
tem (1) and the energy constraint (5), while the derivatives of
the functional with respect to the direct variablesu,v,w, p, after
integration by parts, produce the set of adjoint equations:

cy +dz = 0
−bt +a∗x−2uxb+byv+bzw+czv+dxv+dxw+byy+bzz = 0
−bt +a∗y−2buy−byu+cxu+2cyv+dyw+czw+cyy+czz = 0
−bt +a∗z−2buz−bzu+czv+dyv+dxu+2dzw+dyy+dzz = 0

(6)
wherea∗ = a+ 2bu. This system is parabolic, just as the direct
system, but the marching direction of stable evolution is back-
wards from the outletx = 1 to x = 0, so that initial conditions
are required atx= 1. These are provided by the set of conditions
arising from the boundary terms (atx = 0, x = 1, y = 0 and for
y→∞) left over by the integration by parts. At the same time, an
initial condition atx = 0 for the direct problem is obtained from
the derivative with respect tōv0: it couples the direct to the ad-
joint solution in the course of the constrained optimization. The
boundary conditions for system (6) are:

b = 0 aty = 0
a∗−2bu+cy = 0 aty = 0

d = 0 aty = 0

c = 0 for y→ ∞
a∗−ub+cy = 0 for y→ ∞

d = 0 for y→ ∞
(7)

and the initial conditions atx = 1 read

c = 0 atx = 1
d = 0 atx = 1

a∗+
δGout

δu
= 0 atx = 1

(8)

The coupling condition atx = 0, which relates the direct and

adjoint problem, reduces to

c+λ0
δEin

δv̄
= 0 atx = 0 (9)

We solve this system by an iteration technique based on the
fact that, when seen separately, the direct equations are parabolic
in the forward and the adjoint equations in the backward direc-
tion. This iteration involves alternating the solution of the direct
and adjoint equations, and repeating until a converged solution
is attained. At this pointδL = 0 will have been achieved. A
similar procedure was also used by (Luchini 2000) for the corre-
sponding linear problem. In the nonlinear case, however, con-
vergence can only be achieved through a successive-bisection
search, where the value of the objective function is checked for
monotonic increase after every step. The reader is referred to
(Zuccheret al.2002) for further details.

IMPLEMENTATION AND NUMERICAL SOLUTION
Direct and adjoint solutions

For the purpose of numerical discretization, the solution of
the direct problem is expanded in a Fourier series along the span-
wise directionzand in timet. If

f (x,y,z, t) =
+N

∑
n=−N

+M

∑
m=−M

Fnm(x,y)einβz−imωt (10)

represents the general quantityu,v,w, p, the functionFnm(x,y) is
the complex amplitude of thenth mode inz and themth mode in
t and only depends onx andy.

Under the previous expansion, the nonlinear terms in equa-
tions (1) produce a double summation containing a convolution.
For example, denoting byf (x,y,z, t) andg(x,y,z, t) two generic
variables among (u,v,w), one has:

f (x,y,z, t)g(x,y,z, t) =
+N

∑
n=−N

+M

∑
m=−M

einβz−imωtCFG
nm (x,y) (11)

where

CFG
nm (x,y) =

b

∑
k=a

d

∑
h=c

Fkh(x,y)Gn−k,m−h(x,y) (12)

and a = max(−N,n + N); b = min(N,n − N); c =
max(−M,m + M); d = min(M,m− M). Introducing ex-
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pressions (10) into equations (1) yields:

(Unm)x +(Vnm)y + inβWnm = 0

−imωUnm+(CUU
nm )x +(CUV

nm )y+
inβCUW

nm − (Unm)yy+n2β2Unm = 0

−imωVnm+(CUV
nm )x +(CVV

nm)y+
inβCVW

nm − (Vnm)y +n2β2Vnm+(Pnm)y = 0

−imωWnm+(CUW
nm )x +(CVW

nm )y+
inβCWW

nm − (Wnm)yy+n2β2Wnm+ inβPnm = 0

(13)

For this parabolic system inx and y we choose a second-
order implicit backward-Euler finite-difference discretization. In
addition, a non uniform grid is used in either direction, which
becomes finer near the leading edge inx and near the wall iny.

After discretization, system (1) becomes a system of nonlin-
ear algebraic equations, an iterative solution of which is required.
The nonlinear coefficientsCFG

nm (x,y) couple every mode of each
variable (u,v,w, p) to every other one and therefore a complete
Newton linearization would involve a relatively large linear sys-
tem, which needs a large amount of memory and a large compu-
tational time in order to be solved. For this reason, according to
the procedure already tested in (Zuccheret al.2002), we adopt
an incomplete linearization and decouple the different modes
(n,m) so that a separate narrow-banded system must be solved
for each mode. In any case, at convergence the same exact solu-
tion is obtained as from the complete Newton iteration.

The adjoint problem, following the same approach as (Zuc-
cheret al.2002), (Cathalifaud & Luchini 2000) and (Luchini &
Bottaro 1998), is solved by taking the adjoint of the discrete di-
rect equations, thus gaining the possibility of a perfect test that
can be obtained by comparing the results of the direct and adjoint
calculation for any step size and not only in the limit of step size
tending to zero. Since an optimization using the discrete adjoint
produces the exact optimum of the discretized problem, the cor-
rect result can be guaranteed if only the discrete direct problem
is a consistent approximation of the continuous direct problem,
without any additional need to verify the consistency of the ad-
joint problem.

The adjoint problem is solved by a similar incomplete New-
ton iteration (which in this case amounts to an iterative solution
of a linear system of algebraic equations), while marching in the
backward direction fromx = 1 to x = 0.

RESULTS
In the following we shall assume a sinusoidal dependence

of the initial perturbationv0 on the spanwise coordinatezand on
time t, so that only mode (0,0), which represents the base flow,

and modes(±1,±1), which represent a sinusoidal perturbation
in z and/ort, are present atx = 0. Two cases will be considered:
a travelling wave, where only mode (1,1) and its complex con-
jugate are present, and a standing wave, where all four modes
(±1,±1) are simultaneously present.

In figure 1 the gain is reported as a function of wavenumber
β for different values of the initial energyE0 and for the steady
case (ω = 0). The linear result (solid line) corresponds to figure 1
of (Luchini 2000). As found by (Zuccheret al.2002), when the
initial energy increases the optimal wavenumber, defined as the
wavenumber for which the gain is maximum, decreases. There
is a difference between this figure and the corresponding fig-
ure of (Zuccheret al.2002) in that the objective function here
is the final energyEout, whereas in the former paper it was the
average energy over the complete length of the boundary layer.
The overall qualitative behaviour is unchanged, but the optimal
wavenumber changes by roughly 20% depending on the objec-
tive function.
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Figure 1. GAIN AS A FUNCTION OF β FOR DIFFERENT VALUES OF

THE INITIAL ENERGY E0, STEADY CASE (ω = 0).

Linear: ————; E0 = 200: - - - - - -; E0 = 500: ––·––·––; E0 = 1000: - - - - - -.

The effect of nonlinearities at non zero frequency is illus-
trated in figure 2, which reports the dependence of the gain
on the initial energy for various frequencies and a wavenumber
β = 0.45, corresponding to the optimal wavenumber in the lin-
ear and steady case. It can be observed that also in the nonlinear
regime the maximum amplification occurs forω = 0, and the
decrease of gain with both frequency and initial energy is mono-
tonic.

Results reported in figure 2 have been obtained usingN =
3 andM = 3 modes. In order to check the dependence on the
number of modes, further tests have been performed usingN = 4,
M = 3 for E0 = 200andE0 = 500finding no appreciable change
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Figure 2. GAIN AS A FUNCTION OF E0 FOR DIFFERENT VALUES

OF THE FREQUENCY ω, AT β = 0.45.

of gain in the first case, and a relative change of10−5 in the
second. Since the computational cost increases rapidly with the
number of modes, further tests may require significant changes
in the numerical method.

In figure 3 thev component of the optimal perturbation at
x = 0 is reported for the steady case and different values of the
initial energy, at a fixed wavenumberβ = 0.45. The behavior is
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Figure 3. V COMPONENT OF THE OPTIMAL PERTURBATION FOR

ω = 0 AND DIFFERENT VALUES OF THE INITIAL ENERGY E0, AT

FIXED OPTIMAL WAVENUMBER β = 0.45.

quite regular and the maximum moves away from the wall asE0

increases.
In figure 4 thew component of the optimal perturbation at

x = 0 is reported for the steady case and different values of the
initial energy, at fixed wavenumberβ = 0.45. Since the initialw

is proportional tovy, its profile goes to zero where thev compo-
nent reaches its maximum.
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Figure 4. W COMPONENT OF THE OPTIMAL PERTURBATION FOR

ω = 0 AND DIFFERENT VALUES OF THE INITIAL ENERGY E0, AT

FIXED OPTIMAL WAVENUMBER β = 0.45.

In figure 5 the energy growth is shown for the steady case
and different values of the initial energy, at fixed wavenumber
β = 0.45. The curve decreases and tends to become flatter for
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Figure 5. ENERGY AS A FUNCTION OF THE STREAMWISE COOR-

DINATE FOR ω = 0 AND DIFFERENT VALUES OF THE INITIAL EN-

ERGY E0, AT FIXED OPTIMAL WAVENUMBER β = 0.45.

increasing initial energy, as observed by (Zuccheret al.2002)
when maximizing the mean energy.

In figure 6 thev component of the optimal perturbation is
shown for the linear case and different values ofω, at fixed
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wavenumberβ = 0.45. The position of the maximum moves
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Figure 6. V COMPONENT OF THE OPTIMAL PERTURBATION FOR

THE LINEAR CASE AND DIFFERENT VALUES OF ω, AT FIXED OPTI-

MAL WAVENUMBER β = 0.45.

away from the wall and its value increases for increasingω, but
the behavior seems otherwise quite regular.

On the other hand, figure 7 shows a visible difference be-
tween the steady and unsteady optimal perturbations. The ab-
solute value of thew component of the optimal perturbation at
x = 0 no longer passes through zero becausev andw are generic
complex functions ofy.
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Figure 7. V COMPONENT OF THE OPTIMAL PERTURBATION FOR

THE LINEAR CASE AND DIFFERENT VALUES OF ω, AT FIXED OPTI-

MAL WAVENUMBER β = 0.45.

The energy growth for the linear case and different values of

ω, atβ = 0.45, is reported in figure 8. At high frequency a plateau
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Figure 8. ENERGY AS A FUNCTION OF THE STREAMWISE COOR-

DINATE FOR THE LINEAR CASE AND DIFFERENT VALUES OF ω, AT

FIXED OPTIMAL WAVENUMBER β = 0.45.

is observed, which resembles the plateau observed by (Zuccher
et al.2002) in the case of high wavenumber forω = 0.
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