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The spin of an airplane occurs for angles of attack beyond stall, where nonlinear aerodynamics dominates and

where complex and unpredictable behaviors might induce to question whether or not such a motion is chaotic. To

find an answer to this issue, wind-tunnel tests are carried out on a model of a fighter attached by its center of gravity

through an universal joint that allows only the three rotations. These degrees of freedom are analyzed according to

modern techniques for the study of “supposedly chaotic data.” It is found that, for increasing Reynolds number,

successive bifurcations take place with a consequent more complex structure of the attractor, which reveals some

features typical of quasi-periodic systems evolving toward chaos. The model is tested also in other configurations

(different nose and/or leading-edge extensions, presence or absence of tail planes) so as to verify the dependence of the

motion on some details. It is found that unpredictability and strong dependence on the initial conditions characterize

the basic configuration, whereas a blunt nose and leading-edge extensions make the motion extremely regular. Even

though the system might be on its route to chaos, a fully developed chaotic behavior is not observed.

Nomenclature

c = wing mean chord, m
f = frequency, Hz
k = reduced frequency, fc=U1
Re = Reynolds number, U1c=�
t = time, s
U = wind-tunnel streamwise velocity, m=s
�t = time interval, s
� = kinematic viscosity, m2=s
� = time delay
’, �,  = degrees of freedom (roll, pitch, and yaw), deg

Subscript

1 = asymptotic (freestream) conditions

I. Introduction

S PIN is an aggravated stall that results in autorotation [1]. The
flight path is a downward spiral, in which the airplane descends

toward the ground while rotating around a vertical axis, rolling,
yawing, pitching, and sideslipping as a consequence of being at some
angle of attack between stall and 90 deg [2]. For definitions of various
spin types and modes (equilibrium or steady vs oscillatory, erect vs
inverted, flat vs steep, etc.) the reader is referred to standard books, e.
g., [3].

During this motion, the control surfaces fall in the large wake
originating from the separated flow over the wing leading to loss of
control effectiveness. The combination of separated flows, high
rotational rates, and high coupling in all axes make spin one of the
most complicatedmotions an airplane can experience. This can result
in a very difficult spin recovery or, in the worst-case scenario, in fatal
accidents. The latter aremainly caused by the fact that the pilot can be
extremely disoriented and not able to give the required control input
to bring the aircraft back to a stable trimmed state. Therefore,
prediction and analysis of airplane spin characteristics together with

recovery strategies have been of great interest since the beginning of
aviation.

The analysis of spin is extremely complex, involving phenomena
such as flow separation and nonlinear aerodynamics. This led to the
development of highly specialized testing techniques for
documenting fully developed spin characteristics [4], such as
outdoor free-flight tests using radio-controlled models or tests in
vertical wind tunnels. Although these techniques provide
information regarding the spin behavior of an aircraft, they require
special facilities and apparatus, whichmay not be available easily [5–
7]. An alternative is flight testing, which can be particularly useful to
analyze the characteristics of spin entry and recovery. For instance,
Stough et al. [8] report some results obtained from flight tests on a
low-wing general-aviation research airplane performed by changing
tail configuration, mass distribution, position of center of gravity,
and control inputs. However, due to the limited ability of the
disoriented pilot to apply the proper spin recovery procedures (as a
consequence of the high angular rates), the use of suitable automatic
spin recovery schemes in flight tests is mandatory.

Because of the complications and costs of full-scale experiments
and scaledmodels in dedicated facilities, analytical techniques based
on results from conventional wind-tunnel tests were developed.
These techniques rely on the fact that there exists a balance between
the aerodynamic and inertial forces andmoments [9]. Suchmethods,
however, involve a significant computational effort and require
repetition of wind-tunnel tests for various control settings. These
problems, to a large extent, were overcome by the introduction of
bifurcation and continuation methods for analyzing aircraft
dynamics.

Bifurcation analysis is a popular method used to study nonlinear
systems. It was first initiated in flight dynamics by Carroll andMehra
[10] and Zagayonov and Goman [11]. Goman et al. [12] present an
extended review on the application of global stability and bifurcation
analysis for different nonlinear flight dynamics problems such as roll
coupling, stall, spin, etc. Guicheteau [13,14] studied several spin
motions leading to toroidal structures and chaos, and showed that
results from bifurcation analysis can be used in the design of control
surfaces for spin recovery. Bifurcation analysis applied to multiple-
attractor flight mechanics has also been considered [15].

The theoretical foundation of most contemporary continuation
methods, on the other hand, can be found in the seminal work of
Davidenko [16]. The method has evolved since then, but it is still a
fundamental tool for constructing equilibrium curves and/or
surfaces, which pose a considerable challenge and are needed for the
qualitative analysis.

As far as the recovery phase of spin is concerned, some of the
theoretical research was directed toward the analysis of the effect of
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geometric configuration on the early stage of recovery, such as the
effects of horizontal tail configurations and inertia moments
[9,17,18]. Functional optimization [19] and angular momentum
suppression method [20,21] were used to successfully determine an
optimal control or a valid method for recovering from spin. In these
studies, however, the efforts were directed at slowing angular rates to
bring the airplane into controllable conditions and reduce the angle of
attack to a region where aerodynamic controls are effective. Also,
methods for full automated spin recovery have been developed so as
to arrest rotation and restore prespin conditions [22].

The fact that aircraft flight dynamics is inherently nonlinear, both
from the point of view of the equations of motions and with regard to
the aerodynamic forces and moments, allowed the emergence of a
variety of qualitative new phenomena such as chaotic dynamics.

The work in [23] investigates regions of chaotic response in the
post-stall regime via bifurcation analysis. Methods of nonlinear
dynamicswere applied to the longitudinalmotion of a vectored thrust
aircraft at high angles of attack using data for the aerodynamic
coefficients obtained by NASA wind-tunnel tests on the F/A-18
high-alpha research vehicle (Harv) in the post-stall regime [24].
Chaoticmotionwas observed at certain frequencies, whereas at other
frequencies several limiting states coexist, e.g., chaotic attractor and
a limit circle, or two limit cycles. Periodic bifurcationswere observed
also while investigating the role of thrust vectoring in spin entry and
recovery [25].

Guided by these observations and by the fact that sometimes an
aircraft spin is called irregular because the pilot is not able to
recognize any known behavior, we performed some experiments to
address the possibility that a chaotic motion may appear in spins. In
fact, an aircraft has enough degrees of freedom to allow chaotic
motions [26] and its dynamics is strongly nonlinear. A further
motivation for a better understanding of the possible chaotic nature
of spin is the design of an automatic recovery system. A tendency to
chaos, in fact, means unpredictability and sensitivity to initial
conditions, which raises serious questions on the possibility to
control spin or to instruct the pilot on what to do to recover the
airplane. Control strategies based on quasi-static aerodynamic
models were quite unsuccessful [10], possibly because of the
consequent quasi-static nature of the bifurcation analysis involved.
Therefore, control strategies for aircraft spin recovery are necessarily
complex and nonlinear [27]. A recent review on this issue can be
found in [28], where the problem of spin recovery is addressed by
employing nonlinear dynamic inversion techniques.

In the present study a modular model of an aircraft, which would
perform the worst possible spin according to some conceptual
criteria, was tested. Mounted by its center of gravity through an
universal joint, it was free to rotate in a conventional wind tunnel for
the required number of revolutions. The time series of the three
coupled reference angles were recorded and then analyzed,
employing the typical tools of nonlinear dynamics and chaos.

II. Experimental Setup

A. Wind-Tunnel Setting

Tests were performed in a closed-loop wind tunnel with open test
section, whose usable portion is about 1.2 m in diameter. The flow
quality, therefore, was not excellent, with a turbulence level ranging
between 0.35 and 0.5%. This was not a major problem for these
experiments because theflowover themodel during spin tests is fully
turbulent and mainly separated. No effects of a possible residual
swirl were observed. In fact, they would have determined a constant
spin direction, regardless of the model tested. This did not occur
because the spin direction changed according to the model
configuration.

Because this is a conventional wind tunnel, the choice of how to
anchor the model posed some issues. The first one was whether to
allow all 6 degrees of freedom or only the 3 rotations. Because of the
formidable complications imposed by the first option, the simplest
solution was to support the model by its center of gravity, allowing
only rotations and employing a sting whose axis would be aligned
with the freestream flow. To assess how well this 3-degree-of-

freedom gimbaled rig represents the full 6-degree-of-freedom spin
motions, free-flight tests (e.g., in vertical wind tunnels) would be
needed. However, for the purpose of investigating the possible
chaotic nature of spin, which requires two independent spinmotions,
the present configuration with only 3 degrees of freedom is expected
to be satisfactory. Figure 1 reports a picture of the wind-tunnel setup.
A tripod is set in the divergent so as to anchor the sting to the wind
tunnel. Themodel had to be connected to the sting by a universal joint
and a hinge around the yaw axis to allow the three rotations ’, �,  .
The joint is shown in Fig. 2 along with the degrees of freedom ( 
denotes the yaw rotation). The model is anchored to the universal
joint through four screws (see the holes on the picture) so that its
lower side would be visible on Fig. 2 if bolted. Figure 3 reports the
reference frame with the goal of showing that ’ is the rotation of
plane � with respect to plane �, where � is fixed to the ground
reference frame. � is the rotation of plane � with respect to plane �,
and is the yaw rotation (i.e., in the direction normal to plane �). The
main limitation of such a joint is that rotations ’ and � are not
complete. This was not a problem in the present experiments because
the maximum angles for ’ and � were never reached in the tests, as

Fig. 1 Wind-tunnel test section setup, flow from right to left.

θ

ψ

φ

Fig. 2 Universal joint. The potentiometer that detects the rotation � is
visible.
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proved by the time series. Because the joint assembly is elongated in
one direction and the joint is buried inside the model, these maxima
for ’ and � are functions of  . In the worst-case scenario, i.e., for ’
and � greater than 65 deg and for certain values of  , the model can
hit the physical limits of the mechanism. However, from the plots
reported in Sec. IV, devoted to the results, it can be noticed that in all
tests ’ and � were always lower than 50 deg; thus, hitting could not
take place.Moreover, if any hitting occurred, it would have shownup
in the time series with sharp discontinuities in the time derivatives of
’ and �. Because such discontinuities were never observed in the
time series or in any plot, the possibility of the model hitting the
mechanical limits of the joint during the tests is excluded.

Chronologically, the design of the joint and the selection of the
way of detecting the motion were the very first steps in the design of
the experiments. In fact, the size of the joint would have fixed any
other model dimension because the model had to be realized to
contain the whole mechanism for the detection of the rotations [29].
Knowing that frictional damping had given many problems in wind-
tunnel tests for wing rocking, ball bearings were the first choice. The
smallest size of the standard commercial bearings, therefore,
provided the overall joint dimensions. For the detection of themotion
many systems were considered, i.e., magnetic, resistive, and photo-
electrical devices. For the sake of simplicity and for their reduced
size, small stopless potentiometers (visible in Fig. 2) were chosen.

B. Model Design

Themodelwas designed following the idea that a chaotic behavior
is theoretically possible if there are two independent spin motions
[30]. For our experiments, the first motion was assumed to be
governed by thewing stall [31] and the second one by the asymmetry
of the vortices originating from the nose of the forebody [32].

The leading-edge stall of the wing was ensured by the very bad
stall properties of the five-digit NACA23012 airfoil. The asymmetry
of the rollmoment induced by thewing stall provides autorotation for
the initiation of spin [33]. The wing was not twisted so as to enhance
these features.

The nose of the forebody, on the other hand, plays a fundamental
role in the initial stages of the second type of spin. In fact, it is well
known that beyond a certain angle of attack the flow over a cone is
dominated by asymmetrical vortices originating in the proximity of
the cone nose [34–37]. The consequent yawmoment, which depends
on some apex asymmetries, provides the yaw rotation.

Also, the geometry of the tail was chosen to favor the spin motion.
Among different possibilities, the “T” configuration was preferred
because it provides the maximum interference with the wing wake,
which, in turn, causes the most irregular effects similar to the “deep
stall” (or “superstall”) in forward flight. From the tests it was found, a

posteriori, that the “T” tail can interact with the vortices originating
from the nose of the model and determine the spin motion.

The manufacturing technology was the simplest possible, due to
time and budget constraints. Themain part of the fuselagewas a piece
of tube made of aluminum alloy with a conical sandwich aluminum-
carton nose. Thewingwas plastic foamwith a fiber-epoxy resin skin.
After some efforts, everything was designed small enough to be
contained in the useful part of the test section of our wind tunnel.
Figure 4 reports the sketch of the model in its basic configuration
(dimensions in millimeters). Additional features are as follows.
Wing surface: 60; 625 mm2, aspect ratio 6, trapezoidal wing.
Horizontal tail plane: surface 18; 700 mm2, aspect ratio 2.75
(rectangular). Vertical tail plane: surface 12; 600 mm2, sweep angle
50 deg. Figure 5 shows the picture of themodel in basic configuration
(as in Fig. 4), whereas Fig. 6 reports the picture of additional
configurations that were tested, with blunt nose and/or leading-edge
extensions (LEX). The blunt cone forming the forebody had the same
height as the sharp-cone configuration and the same base radius. The
frontal area of the model is about 2:33 � 10�2 m2, which
corresponds to a blockage of 2% (referred to the wind-tunnel
section).

The model was statically stable and accurately balanced. In
addition, its behavior was checked by spinning it “wind-off” so as to
ensure the correct performance of the whole joint mechanism.
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Fig. 3 Sketch of the reference frame. This is a roll–pitch–yaw sequence
(’, �,  ).
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Fig. 4 Sketch of the wind-tunnel model.

Fig. 5 Picture of the wind-tunnel model in basic configuration.
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III. Data Analysis

A. Data Reduction

The position of the model as a function of time is uniquely
determined by the time series of the three angles ’, �, and  (see
Figs. 2 and 3 for their definitions). These angles are obtained from the
output of the potentiometers (a voltage between 0 and 10 V)
converted in degrees through the (linear) calibration curve. The raw
voltage is sampled using a 12-bit analog-to-digital board that can
operate at high frequency (1 MHz).

The main inconvenience in the postprocessing of the data is the
fact that the rotation around the yaw axis causes a discontinuity in the
signal every time an entire rotation is completed. In practice, this
results in a periodic discontinuity of the signal that jumps from 0 to
360 deg every revolution. This inconvenience is removed by
restoring the continuity of the data, which in turn produces a time
series that looks like a periodic oscillation superimposed to a linear
function of time. Instead of high-passing such a signal so as to
retrieve the oscillation purged from the uniform rotation around the
yaw axis, we preferred to first fit the data with a linear function and
then subtract this linear dependence from the signal. The linear
behaviorwas obtained bybest-fitting the data in the sense of themean
squares. As opposed to high-passing the signal, this technique
removes only the linear dependence on time, whereas all the other
(low) frequencies are still present in the signal for the analysis.

B. Analysis of Chaotic Data

The analysis of “supposedly chaotic” time series is nowadays well
developed [38–41] and has been employed for investigating
experimental data obtained in the most diverse fields. Typically it
provides [42,43] 1) frequencies of motion, 2) period doubling, and
3) attractors (maybe strange, in some sense). The tools used to gather
this information from the time series are [38–41] 1) power spectra of
the signals, 2) phase portrait, 3) Poincarémaps, and 4) reconstruction
of the attractor in the embedding space.

The frequency analysis (power spectrum) provides the first
insights regarding the possible periodic, quasi-periodic, or chaotic
nature of the signal and can easily exclude the presence of chaos.
Specifically, a periodic signal is characterized by a single frequency
and its harmonics, detectable in the spectrum. This is the simplest
situation and can be verified, in case of multiple frequencies, by
checking if the frequency ratios are rational. It goes without saying
that, when dealing with experimental data, it might be sometimes
difficult to prove that a number is rational because of the uncertainties
in themeasurement. However, in our experiments it was quite easy to
discriminate between rational frequency ratios and irrational ones
(see Sec. IV devoted to the results). In the latter case the signal is said
quasi-periodic and the power spectrum typically becomes broader
than for periodic signals. The further increase of the number of
frequencies in the signal, toward a broader band, increases also the
chances for the signal to be chaotic. This broadband feature,
however, should not lead to the straightforward conclusion that the
signal is chaotic. In fact, also completely random signals are
characterized by a broadband spectrum (white noise) but are not
chaotic. Therefore, once the power spectrum excludes the possibility

of periodic or quasi-periodic behaviors, further investigations are
needed to assess the possible chaotic nature of the data.

Phase portrait is a more sophisticated tool that consists in plotting
the state variables (typically positions and velocities) as a function of
time in two- or three-dimensional spaces. The phase space has
usually a dimension greater than three, which implies the
impossibility to visualize the complete attractor. Alternatively, the
projection of the attractor on specific planes can be analyzed, but this
could generate possible intersections that might not be present in the
original phase space. Phase portrait is a powerful technique because
it shows clearly the nature of the attractor and thus can help to
visually discriminate between periodic, quasi-periodic, and chaotic
data. In particular, whereas periodic or quasi-periodic systems
provide a low number of trajectories (one for each frequency in the
power spectrum), chaotic behaviors produce a portrait that resembles
a bundle.

Poincaré maps are usually employed to “clean” the phase portrait
from the overwhelming number of trajectories, while retaining the
underlying information. In fact, even in the cases for which the
dimension of the phase space is less than four, the phase portrait
might sometimes look very confusing because of the presence of too
much information (trajectories) on the plot. If � is the trajectory in the
n-dimensional phase space, it is always possible to intersect it with a
surface �. The points so obtained constitute the Poincaré section,
which turns out to be a very simple plot, typically two-dimensional
(to be visualized). From the spatial disposition of the points
originating from the intersection with � it is possible to retrieve the
nature of the attractor. In particular, if there is only one point or very
few points the system is periodic (single frequency or harmonics),
whereas if the points on � form more complex and structured plots
then the system can be quasi-periodic or chaotic. If no structure can
be identified and the points occupy the whole section, the signal is
most likely random. Poincaré sections are particularly useful because
they allow the identification of the attractor given few information
(few points as opposed to full trajectories in the phase space) and can
easily discriminate between random and chaotic signals because the
latter have a strong spatial correlation.

Another technique for the analysis of observed chaotic data is the
reconstruction of the phase space from a single time series. This
would not be necessary for our experiments, because three state
variables are available. However, we wanted to check if the same
structure of the phase portrait could be retrieved by employing one
signal alone. The “embedding” theorem, attributed to Takens [44],
ensures that, if it is possible to observe (measure) a single scalar
quantity h�t�, then the geometrical structure of the complete system
can be unfolded in the space y�t� reconstructed from h�t� as
y�t� � fh�t�; h�t� ��; h�t� 2��; h�t� 3��; . . . ; h�t� �d � 1���g,
where d is the dimension of the embedding space. It goes without
saying that the choice of both � and d is a central issue for the
reconstruction. Without entering the details, for which the reader is
referred to [40], some good prescriptions should be followed for the
choice of �. First, it should be a multiple of the sampling time.
Second, it should not be too short, otherwise h�t� and h�t� ��would
not be sufficiently independent, i.e., some time delay is needed to
ensure an evolution that introduces new information. Finally, �
should not be too large because, being a chaotic system intrinsically
unstable, h�t� and h�t� �� would be completely uncorrelated for a
large value of �. On the other hand, the choice of d, which is an
integer, must guarantee that the attractor is unfolded such that no
unwanted overlaps occur. The latter could originate when the
attractor is projected on a lower-dimension space, as it happens for
the projections on a specific plane of the phase portrait. The theorem,
fortunately, provides a lower limit for d (sufficient condition),
d > 2dA, where dA is the dimension of the set on which the motion
lies (dA can be fractional).

IV. Results

Preliminary tests were conducted at fixed Reynolds number
Re�U1c=�, where c� 0:125 m. These tests aimed at visually
inspecting the model motion and estimating the minimum value of

Fig. 6 Picture of the wind-tunnel model in modified configuration.
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Reynolds number required for the spin to occur. If the Reynolds
number was not sufficient to excite the motion, an increment of
1 m=s was applied to the freestream speedU1 without stopping the
tunnel. This was done only during the preliminary tests, whereas
during the measurements in basic and modified configurations the
wind-tunnel velocity was always restarted from U1 � 0 and
gradually increased to the target value. Sometimes an impulse was
manually impressed to the model so as to force the rotation and to
observe whether there was any damping or forcing effect. Themodel
was effectively spinning, without a manual external forcing, for
Re > 4 � 104, i.e., for freestream speeds greater than about 5 m=s,
and spinning was always in the same direction for a fixed geometry.
On the contrary, changes in the geometry (nose and/or LEX) caused
changes in the spin direction. This confirmed what could have been
supposed by common knowledge of the flow over cones, according
to which any asymmetry on the cone surface would always produce
the same effects, thus leading to a single direction of rotation for a
given geometry.

A. Basic Configuration

All results discussed in this section refer to the model in Fig. 5.
Many tests were carried out in the range of Reynolds numbers
between 4 � 104 and 2:65 � 105, but here we report only the most
relevant plots to describe the typical features observed.

Figure 7 refers to Re� 4:8 � 104 and shows the power spectrum
of ’ (channel 1) as a function of the reduced frequency defined as
k� fc=U1. The main peak located at k� 5:3 � 10�3 (0.215 Hz)

corresponds to the number of revolutions per second around the yaw
axis. Almost the same plot is obtained for the power spectrum of �
(channel 2), reported in Fig. 8 for the same Reynolds number
Re� 4:8 � 104. Spectra of � and ’ look alike, except for some local
(and small) differences. This is clearly due to the coupling between
the angles ’ and � caused by the joint geometry.

The power spectrum of (i.e., channel 3 purged from the uniform
rotation around the yaw axis) is shown in Fig. 9. The same
fundamental reduced frequency k� 5:3 � 10�3 (f� 0:215 Hz) as
in channel 1 and channel 2 is found together with its second and third
harmonics. Compared to the preceding ones, however, this spectrum
is very rich, especially at low frequencies. The presence of the latter
imply long-period oscillations of the signal that are more visible in
the time series reported in Fig. 10.Whereas � (dashed line) is almost a
sinusoidal wave, (solid line) features slow oscillations on top of the
fundamental one at k� 5:3 � 10�3. The presence of the same
dominant frequency in all signals indicates the strong coupling
between all of them. However, in the spectrum of  the second and
third harmonics are more visible than in the spectra of ’ and �. One
might notice that the scale of Figs. 7 and 8 differs from that of Fig. 9.
This is due to the fact that the peaks in the spectra of ’ and � are very
sharp, and thus reach large values, whereas the peaks in the signal of
 are spread on larger bands of frequencies and are, therefore,
lower.

The projection of the attractor from the phase space onto the ’–�
plane is shown in Fig. 11. Trajectories visit, approximately, a single
loop, and the spin motion at Re� 4:8 � 104 is rather regular. It can
be noticed that the trajectory appears more as a bundle than as a clear
single orbit. This seems to be related to the particular configuration
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under investigation rather than to experimental noise or turbulence,
even if the latter certainly provide a contribution. The effect of noise
or turbulence, in fact, should be more pronounced at lower speeds,
but by comparing all tests in basic configuration it can be concluded
that the width of the “bundled orbit” remains roughly constant with
Reynolds number (see tests in the following figures). Changes in the
model configuration, on the contrary, show that the effects of noise or
turbulence are within 4 deg in the phase portrait (see, e.g., Fig. 27).

The fact that ’ remains almost constant every time it reaches its
maximum or minimum (around �30 and �30 deg) might look
suspicious and one could think that the oscillations of’ are limited by
some physical constraints imposed by the universal joint or by its
interaction with the model. This was excluded by visual inspection
while the model was rotating and by the fact that in the worst-case
scenario the limiting angles for ’ and � are about 65 deg (well above
30 deg). In addition, the vertical trajectories do not occur always at
the same value of ’, as it would happen in case of constraints, but
range between �32 and �18 deg for the lower values and between
14 and 30 deg for the greater ones. It should be noticed, finally, that if
any hitting occurred it would have resulted in sharp changes of the
slope and not in almost straight lines.

The increase of Reynolds number to Re� 8 � 104 leads to a first
bifurcation, as visible in Fig. 12. The first and highest peak still
corresponds to the frequency of revolution around the yaw axis,
k� 4:77 � 10�3, but a new one appears at about k� 1:3 � 10�2.
Because, apparently, the ratio between these two values is not a
simple rational number, the motion cannot be identified as periodic
and is supposedly quasi-periodic. The presence of the additional
higher frequency produces a more complex structure of the attractor,
which is shown in Fig. 13. Themain differencewith the case at lower

Reynolds number is the presence of smaller orbits within the bigger
ones. The general shape of the larger orbits remains unchanged but
they become slightly larger with ’ now ranging between �40 and
�40 deg, as opposed to 	30 deg previously observed. The inner
region of the attractor is thus more visited than what happened in
Fig. 11. It should be noticed that the smaller orbits arising in the
central region have almost the same shape as the larger ones, a typical
characteristic of fractals.
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channel 2).
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Fig. 14 Re� 1:12 � 105. Phase portrait onto ’–� plane (channel 1–
channel 2).
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Fig. 15 Re� 1:12 � 105. Poincaré section for �� 0 and _� > 0.
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A further increase of the Reynolds number to Re� 1:12 � 105

carries along amore complex structure of the attractor projected onto
the plane ’–�. In Fig. 14, two big trajectories seems to be associated
with three small ones. This is due to the presence of four frequencies
in the spectra, which are not reported but their values are plotted in
Fig. 28. Because their ratio is still an apparently irrational number,
the motion is believed to be quasi-periodic. More insights can be
obtained from Poincaré sections. Here we perform a cut in the plane

��� 0; _� > 0� and plot’ vs its time derivative _’. Figure 15 shows the
presence of a region frequently visited by the attractor and another
more rarely visited. The spatial correlation of the points in the map
suggests the quasi-periodic nature of the motion, possibly
developing toward chaos.

Figure 16 reports the projection of the attractor for
Re� 1:44 � 105. The general trend associated with the increase of
Reynolds number is confirmed. The center of the bigger trajectories
is further filled with smaller ones, whereas the external trajectories
remain unchanged. Even though 3 degrees of freedom are measured
and available, we wanted to check if this complex structure of the
attractor was contained in a single signal and could be unfolded in the
embedding space. This experiment is shown in Fig. 17, where
’�t��t� is plotted vs ’�t�with�t� 0:08 s. Only one-tenth of the
test is reported to make it more clear (a dark bundle would have been
visible otherwise). The very same structure as in Fig. 16 is
reproduced. In particular, small and large trajectories can be easily
recognized and the same shape of the orbit repeats at different scales.

The general trend of a progressive increase in the complexity of the
attractor as a function of the Reynolds number is confirmed also for
Re� 1:63 � 105. Figure 18 shows the presence of four peaks in the

spectrum, where the main one still corresponds to the number of
revolutions per second around the yaw axis and the others are in
irrational ratio with it. The quasi-periodic character of the motion is
thus evident. A further evidence that corroborates the hypothesis of
such amotion is the projection of the attractor, reported in Fig. 19. At
Re� 1:63 � 105, the internal region is almost completely covered
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Fig. 16 Re� 1:44 � 105. Phase portrait onto ’–� plane (channel 1–
channel 2).
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Fig. 17 Re� 1:44 � 105. Projection of the attractor from the
embedding space, �t� 0:08 s.
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Fig. 18 Re� 1:63 � 105. Power spectrum of ’ vs the reduced
frequency k� fc=U1.
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Fig. 19 Re� 1:63 � 105. Phase portrait onto ’–� plane (channel 1–
channel 2).
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Fig. 20 Re� 2 � 105. Phase portrait onto ’–� plane. The internal
region is completely filled.
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by the small orbits generated inside the bigger ones, with only one
small region left unvisited in the center. It should be noticed that the
external orbits remain unaffected by the increase of Reynolds
number.

At Re� 2 � 105 (Fig. 20) the internal region of the attractor
projection is, eventually, completely filled with the small orbits.
However, this enhanced complexity of the attractor (compared to the
cases at smaller Reynolds number previously reported) does not alter

substantially the Poincaré section obtained for �� 0 and _� > 0.
Figure 21 shows the presence of only twomain regions visited by the
attractor, as found at lower Reynolds number, but their shape does
not seem to change considerably. The only difference is that now
more points are visible for negative values of _’.

B. Modified Configurations

The rather complex nature of the spin motion observed in basic
configuration, particularly visible in the projection of the attractor
onto the ’–� plane and in the power spectra, raised the question
whether the same complexity could be found also for modified
configurations of the wind-tunnel model. Further tests were thus
conducted to assess the influence of nose, wing geometry, tail planes,
and their mutual interactions on the spin motion. In this section the
following configurations are considered: 1) blunt nose, 2) leading-
edge extensions on the wings, and 3) blunt nose� LEX. The
analysis of the model motion without tail planes is reported in
Sec. IV.C. The model with blunt nose and LEX is as reported in
Fig. 6.

Results for the blunt-nose case obtained at Re� 1:28 � 105 are
reported in Figs. 22 and 23. In this configuration the wing is
trapezoidal, as in Fig. 5, whereas the nose is as in Fig. 6. The power
spectrum reveals the presence of four peaks. The first one is the
frequency of revolution around the yaw axis, whereas the others are
the third, fourth, and fifth harmonics. This is new compared to the
previous spectra presented. Even though the spectrum is very rich, all
frequencies are clearly in natural ratio, and thus themotion is periodic
and not particularly complex. This is confirmed by the projection of
the attractor, shown in Fig. 23, which features some big orbits
confined in a relatively small region and visited together with some
other smaller ones. It should be noticed that in this configuration the
model was spinning in the opposite direction than in basic
configuration. This excludes the possibility of a spin motion
determined by residual swirl in the wind-tunnel flow and reinforces
the hypothesis of a strong dominance of the fuselage through the
influence of nose-vortices asymmetry.

The addition of LEX alone to the original conical nose produces
the results in Figs. 24 and 25. The power spectrum shows only two
very sharp peaks, where the first one is the usual frequency of
revolution around the yaw axis and the second one is its third
harmonics. The motion is thus much more regular than its
counterpart in basic configuration, for which at the same Reynolds
number Re� 1:28 � 105 four peaks in irrational ratios are found
(see Fig. 28). The projection from the phase space, Fig. 25, features a
system of large and small orbits, very similar in the topology to what
was found for the basic configuration. Themain difference, however,
is that the presence of LEX excludes the possibility for ’ and � of
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Fig. 21 Re� 2 � 105. Poincaré section for �� 0 and _� > 0.
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Fig. 22 Re� 1:28 � 105, blunt-nose configuration. Power spectrum of
’ vs the reduced frequency k� fc=U1.
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Fig. 23 Re� 1:28 � 105, blunt-nose configuration. Phase portrait onto
’–� plane.
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Fig. 24 Re� 1:28 � 105, LEX configuration. Power spectrum of ’ vs
the reduced frequency k� fc=U1.
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being simultaneously small and enlarges their ranges between
	50 deg. A reasonable interpretation of this behavior is that the
addition of other surfaces (LEX) produces an increase in the roll
damping, which does not allow the rise of further frequencies or the
total covering of the central region of the projection. During all tests
with LEX the model was spinning in the same direction as in basic
configuration. This reconfirms that spin was dominated by the
fuselage rather than the wing.

Because both blunt nose andLEXmade the spinmore regular, also
their simultaneous effect was investigated. Figure 26 shows the
power spectrum,with amajor peak at k� 3:1 � 10�3, corresponding
to the frequency of spin around the yaw axis, and two very small
peaks, which are its second and third harmonics. The motion is
almost purely sinusoidal, because the amplitude of these harmonics
is about 30 times smaller than the main frequency. This is confirmed
by the projection of the phase portrait, Fig. 27. The trajectories are, by
far, the closest to those of a pure periodic motion that could be
observed in this campaign of experiments. The effects of blunt nose,
which does not promote the formation of dangerous asymmetric
vortices that could interfere with the tail planes producing strong
yaw- and roll-excitingmoments, andLEX,which by increasing pitch
and roll damping stabilize the spin, together contribute to the
regularization of the post-stall motion. The model in this
configuration was spinning in the same direction as with blunt
nose alone, i.e., opposite to the pointed nose. This confirms, once
more, the fundamental role played by the fuselage compared to the
wing.Another unique feature of this configuration is that only the left
region of the resulting Poincaré section was visited.

C. Influence of Tail Planes

From the tests carried out in modified configurations, particularly
with blunt nose, it seems that the aerodynamic influence of the
fuselage geometry is a crucial factor for the onset of spin. This is
mainly due to the yaw moments caused by the fact that nose vortices
break down differently depending on whether the nose is a sharp or
blunt cone. However, the nose and the fuselage might have also
another affect on the excitation of spin. In fact, the vortices
originating from the sharp-cone fuselage could interact with the tail
planes, especially the horizontal one, causing asymmetric roll
moments. This was not considered in the initial design of the model,
but deserved further investigations, which have been carried out
without the horizontal and/or vertical tail planes. It should be noticed
that the model without tail planes was rebalanced to reduce possible
alterations of the spin characteristics due to a modified mass
distribution.

The model without the horizontal tail plane does not spin but
oscillates in pitch only, at a very high angle of attack. Sometimes it
starts to rotate in yaw direction, but stops very soon. The reason is,
probably, that without the pitching moment due to the stabilizer, the
angle of attack is very high, the nose vortices burst very close to the
apex, and the asymmetrical loads are therefore too small to induce the
spin motion.

The model without the vertical tail plane spins easily, even at low
Reynolds numbers, and very similarly to the basic configuration. The
motion is not very complex, probably due to the absence of the
aerodynamic interaction between the nose vortices and the vertical
plane.

Finally, without tail planes the model does not spin at all,
confirming the important role played by their aerodynamic
interaction with the vortices originating from the nose.

From these considerations it seems that the vertical tail plane does
not essentially affect the spin, whereas the horizontal one plays an
important role in the onset and in themaintenance of the spinmotion.
This hypothesis is supported by the fact that (incipient) spin motion
without the vertical tail plane is not so different from the one in basic
configuration. Two possible explanations of this behavior could be
given. According to the first one, probably an asymmetric
distribution of the aerodynamic load on the horizontal tail plane, due
to the interaction with the wing and fuselage wakes, can produce a
roll moment not damped by the wings. The induced roll motion
causes a yawmoment because of the different drag on the twowings,
eventually leading to spin.

The other possible explanation is that the presence of the stabilizer
contributes to reduce the angle of attack of the model. At low
incidence, the nose vortices are not yet broken down and their
asymmetry could produce a yaw moment strong enough to spin the
airplane.
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Fig. 25 Re� 1:28 � 105, LEX configuration. Phase portrait onto ’–�
plane.
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Fig. 26 Re� 1:28 � 105, blunt nose�LEX configuration. Power
spectrum of ’ vs the reduced frequency k� fc=U1.
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Fig. 27 Re� 1:28 � 105, blunt nose�LEX configuration. Phase
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To check the validity of this suppositions, it was decided to attempt
smoke flow visualization for the basic configuration. The tail and the
pointed nose were particularly investigated as they were supposed to
be the most critical for the spin motion.

During flow visualization on the tail the model was kept fixed at
the two pairs of angles �’; �� corresponding to a sudden change in the
phase portrait seen in all plots of the basic configuration, namely, the
pairs ��35 deg;�35 deg� and (35 deg, 35 deg). In these conditions
it was found that the flow over the horizontal tail plane is attached
only on half of it, whereas it is separated on the other one due to the
wakes of the wing and the fuselage. This asymmetry provokes
inevitable asymmetric aerodynamic moments accompanied by
sudden changes in the trajectories, particularly visible on the
projections of the attractor.

The other set of flow visualizations was carried out over the nose,
at two angles of attack, �� 40 deg and �� 70 deg. At low
incidence the nose vortices are effective (not broken down yet), and
thus they influence themotion either via their asymmetric breakdown
or via their interaction with the tail. On the contrary, at large
incidence (�� 70 deg) vortex breakdown has already taken place
and their aerodynamic influence on spin is negligible.

V. Is the Motion in Basic Configuration
on a Route to Chaos?

It appears from the results showed for the model in basic
configuration that the motion has both regular and quasi-periodic
aspects, in a possible route toward chaos.

It has been found that for increasing Reynolds number the motion
becomes more complex and the frequencies detected are not in
simple ratios. Figure 28 summarizes the dependence of the number of
frequencies and their behavior as a function of the Reynolds number.

At low Reynolds number, only the primary frequency
corresponding to the number of revolutions per second around the
yaw axis is present. Two successive bifurcations take place, at about
Re� 5:6 � 104 and Re� 8:7 � 104. Within the range of freestream
Reynolds numbers that was possible to test (the limit on the
maximum speed is dictated by the wind-tunnel fan), no further
bifurcations occurred and no more than four frequencies could be
detected in the signals. These frequencies seem not to be harmonics
as their ratio with the primary one is not a rational number. It should
be noticed that the reduced frequency k is a slightly increasing
function of the Reynolds number only for the primary and second
frequencies, whereas the other two frequencies that appear for Re >
8 � 104 are almost constant or slightly decreasing with Reynolds
number. The overall change in the reduced frequencies is, however,
quite small.

Figure 28 provides also some information related to the
aerodynamics of the forebody. The primary and second frequencies
feature an apparently anomalous behavior for Reynolds number
greater than about 1:8 � 105, with a sort of upward step. The
corresponding Reynolds number based on the diameter is about
Red � 1:7 � 105, which is quite close to the critical Reynolds
number for a cylinder Red 
 2 � 105. Therefore, the strong increase
in the reduced frequency might be due to the aerodynamics of the
forebody.

The features summarized in Fig. 28, with the appearance of further
frequencies in apparently irrational ratios while increasing a
parameter (Reynolds number), are typical of quasi-periodic systems.
However, in their route to chaos many systems experience the quasi-
periodic stage right before the complete evolution to chaos.
Therefore, even though a chaotic behavior has not been observed
during these experiments, the question of whether the system
depending on the parameter Reynolds number is on its route to chaos
is legitimate.

The answer cannot be “no” because some evidence of typical
behaviors of systems evolving toward chaos were found. The
structure of the attractor, for instance, becomes more and more
complex as the Reynolds number increases, clearly resembling a
bundle. Moreover, quite regular trajectories are found at low
Reynolds number, but as soon as the second frequency appears,

smaller loops show up in the projection of the attractor. Incidentally,
the shape of these smaller loops is the same as the bigger ones, in a
fashion similar to what happens on different scales for fractals. To
show this more clearly, Fig. 29 reports only one-tenth of the plot
showed in Fig. 13. The smaller orbits are similar to the bigger ones,
exhibiting their fractal nature, but no further smaller scales exist. As
seen in the section devoted to the results, Sec. IV, at low Reynolds
number only one big trajectory can be recognized, whereas the
increase of Reynolds number leads to the appearance of small loops,
progressively covering all the internal region for high values of the
Reynolds number.

Some other insights regarding the possibility for the system of
being in a route to chaos have been obtained from some Poincaré
maps. In those sections it was possible to identify “clouds” of points,
located in particular regions of the space and thus with some spatial
structure (see Sec. IV). A further postprocessing of the data was then
carried out to understand if there is any recognizable pattern in the
way the attractor switches from one region to the other and if the
motion exhibits sensitivity to initial conditions. From two tests in the
same conditions (basic configuration, Re� 1:28 � 105) the
sequence of passages from one to the other cloud was detected by
marking with “1” the presence in the most crowded region (right-
hand cloud) and with “0” the presence in the other one. Results are
here reported:

Sequence 1 (227 intersections with the plane �� 0 and _� > 0): 1 1
0 1 1 10 1 1 1 1 1 01 1 1 0 1 10 1 1 1 0 1 11 1 1 0 1 1 01 1 1 0 1 11 1 1 1
1 1 0 11 1 0 1 1 1 10 1 1 1 1 10 1 1 1 0 1 11 1 1 0 1 1 10 1 1 1 1 11 1 1 1
0 1 1 10 1 1 1 0 1 10 1 1 1 1 10 1 1 1 1 1 01 1 1 1 1 0 11 0 1 1 1 01 1 1 0
1 1 1 01 1 1 0 1 1 10 1 1 1 1 11 1 1 0 1 1 11 0 1 1 0 1 11 0 1 1 1 01 1 1 1
1 0 1 11 0 1 1 0 1 11 1 1 0 1 11 0 1 1 1 0 11 1 0 1 1 0 11 0 1 1 1 01 1 1 0
1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1
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Fig. 28 Reduced frequency vs Reynolds number.
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Fig. 29 Re� 8 � 104. Partial phase portrait (1=10 of the total test) onto
 –� plane.
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Sequence 2 (237 intersections with the plane �� 0 and _� > 0): 1 0
1 1 1 0 1 11 1 1 1 1 1 11 0 1 1 1 0 11 1 1 1 0 11 1 0 1 1 0 11 0 1 1 1 0 11
1 0 1 1 0 11 1 0 1 1 1 01 1 1 0 1 1 10 1 1 0 1 11 0 1 1 0 1 11 1 1 0 1 1 10
1 1 0 1 1 01 1 0 1 1 1 11 1 1 1 1 1 10 1 1 0 1 11 0 1 1 1 1 10 1 1 1 0 1 11
0 1 1 1 1 11 0 1 1 0 1 11 0 1 1 1 0 11 1 1 1 0 11 1 1 0 1 1 10 1 1 0 1 1 10
1 1 0 1 1 10 1 1 1 0 1 11 1 1 0 1 1 01 1 1 0 1 11 1 1 0 1 1 10 1 1 1 1 1 11
1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1

The fact that there is no definitive sequence repeating itself in each
test suggests that the motion in basic configuration is quite
unpredictable and certainly not periodic. On the other hand, because
a similar sequence cannot be observedwhen comparing the two tests,
it can also be concluded that the spin motion in basic configuration is
sensitive to initial conditions. The latter is typical of nonlinear and
chaotic systems.

The question of whether the motion is quasi-periodic or chaotic
can thus be answered. The motion observed in these experiments is
not chaotic, but might be on its route to chaos. The power spectra are
typical of quasi-periodic systems, but the attractor shows
characteristics of systems developing toward chaos, especially the
impossibility to predict which region of the phase space will be
visited by the attractor (the same happens for Lorenz attractor) and
sensitivity to initial conditions.

A simple explanation could be that at higher Reynolds numbers
chaos might appear, but this state was not achieved in the present
experiments due to the physical limitations of the wind-tunnel
capabilities (maximum Reynolds number reachable). A different,
and more physical, explanation might be found in the role of the
aerodynamic forces. In fact, they are the exciting source of the spin
motion, but when they do not excite they damp it, thus inhibiting the
development of further higher frequencies and/or lower
subharmonics.

VI. Conclusions

The model of an airplane designed to feature the worst possible
spin has been tested in a conventional wind tunnel.

In basic configuration (conical nose and trapezoidal wing) the
motion can be classified as quasi-periodic. The number of
frequencies detected in the power spectra increases with the
Reynolds number from one, corresponding to the number of
revolution around the yaw axis, to four. Two successive bifurcations
occur, and the ratio between the frequencies so originated is not a
simple (rational) number. This suggests the presence of a quasi-
periodic motion, possibly on its route to chaos. Further analyses
involving projection of the attractor and Poincaré sections have thus
been carried out. Even though a clear chaotic behavior cannot be
assessed, many characteristics typical of chaotic systems have been
found. The complex structure of the attractor, and especially the
unpredictability of the regions occupied by the attractor in the phase
space while switching from one region to another (as for Lorenz
attractor), could leave room for a possible evolution to chaos.
However, only the initial aspects of this route have been observed,
and a true fractal nature of the motion is not established.

Tests in modified configurations showed that the original conical
nose is largely responsible for the spin motion and has a negative
effect on it. On the contrary, blunt nose and leading-edge extensions
(LEX) ensure a much more regular behavior. Not only did they
promote an almost purely periodicmotion, but they also increased by
a factor of three the Reynolds number necessary for the onset of spin.
By removing one or both tail planes it has been verified that the
horizontal one plays an essential role in the incipient spin motion,
because it seems to be an almost necessary condition for spin to
occur.

Flow visualizations supported the hypothesis about the
aerodynamic interactions between the nose vortices and the tail
planes. Thus, although the original ideamotivating this studywas the
possible coupling between thewing and fuselage spins, it seems from
the tests that the main coupling is between the nose and the tail
planes.

This study, by correlating the qualitative dynamic behavior of spin
characteristics with changes in geometry, provides also direct

guidance on potential ways of modifying the spin features of an
aircraft.
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