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Abstract

The three-dimensional, algebraically growing instability of a Blasius boundary layer is studied in the nonlinear regime,
employing a nonparallel model based on boundary layer scalings. Adjoint-based optimization is used to determine the “optimal”
steady leading-edge excitation that provides the maximum energy growth for a given initial energy. Like in the linear case,
the largest transient growth is found for inlet streamwise vortices, that yield streamwise streaks downstream. Two different
definitions of growth are employed, providing qualitatively similar results, although the spanwise wavenumbers of optimal
growth differ by up to 20% in the two cases. The wavelength of the most amplified optimal disturbance increases with the
initial amplitude. For large input amplitudes, significant deformations of the mean velocity field are found; in such cases it is
reasonable to expect that nonlinear streaks may break down through a secondary instability.
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1. Introduction
1.1. Algebraic instability

Classical eigenvalue-based linear stability theory sometimes predicts stable behaviour for flows which experiments show
to become turbulent. For instance, the stability analysis of Hagen—Poiseuille pipe flow reveals that all eigenfunctions are sta-
ble; however, if the Reynolds numbReis large enough, transition is observed. In particular, recent experimental studies by
Hof et al. [1] have shown that the finite amplitude of the disturbance necessary to trigger transition in a pipe flow scales as
ORe 1 beyond a certaifiRethreshold. Moreover for certain flows, for example plane Poiseuille flow, transition practically
occurs at a Reynolds number considerably smaller than the critical value provided by the theory. This indicates that there
must exist a mechanism for the growth of disturbances which does not rely on the fact that (at least) one eigenmode of the
Orr—Sommerfeld equation has positive amplification factor.
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Ellingsen and Palm [2] and Landahl [3] identified an alternative mechanism for the growth of perturbations and described a
new phenomenon in wall-bounded flows according to which a longitudinal vortex superimposed to a two-dimensional boundary
layer can lift up low-velocity fluid from the wall and push down high-velocity fluid towards the #aihce the structure of
the boundary layer is elongated in the streamwise direction, with a typical IRE}/(H times greater than the boundary layer
thickness, the disturbance accumulated over the streamwise length BaH Bémes greater than the original one.

The combination of this basically inviscid amplification mechanism with the damping effect of viscosity leads to what is
nowadays calledlgebraic instabilityor transient growth This mechanism is also believed to be at the origin of the exper-
imentally observed pattern known as Klebanoff modes which appear to be the precursor of the so-called bypass transition
(Morkovin [5] and Morkovin and Reshotko [6]). Recent studies [7] show that in a spatially growing boundary layer, as opposed
to parallel pipe or channel flow, viscosity is not sufficient to damp the algebraic growth for streaks of sufficiently large spanwise
wavelength, so that the receptivity to low-amplitude streamwise vortices can play an important role in boundary layer transition.

1.2. Previous work on algebraic growth

Receptivity to upstream disturbances which can lead to boundary-layer transition via the transient growth mechanism was
first investigated by seeking the initial conditions, for the boundary layer past a flat plate, that produced the largest energy
amplification. This is known as the “optimal perturbation” approach.

All previously published work in this field is limited to a linearized analysis. Insofar as the temporal stability problem is
concerned, optimal perturbations were first so named by Farrell [8] to denote the initial flow disturbances that produced the
maximum gain, defined as the ratio between the perturbation kinetic energies at the final and initial time. This first approach
related to a two-dimensional plane channel flow. Actually, Boberg and Brosa [9] had already introduced a similar concept for
flow in a pipe, but Butler and Farrell [10] gave the first quantitative calculation of three-dimensional optimal perturbations with
respect to temporal growth, not only for plane Couette and Poiseuille flow, but also for a parallel approximation of the Blasius
boundary layer. Corbett and Bottaro [11] employed an optimal-control type of analysis to find the temporally growing optimal
perturbations for parallel boundary layers subject to streamwise pressure gradient; later, they studied the temporal growth in
swept boundary layers described by Falkner—Skan—Cooke similarity solution [12].

The problem of spatial stability was recently tackled by Luchini [13,14] and Andersson et al. [15,16]. They found that the
optimal initial disturbance is composed of stationary streamwise vortices whereas the induced velocity field is dominated by
streamwise streaks. The maximum amplification occurs in the steady case (frequer@yand for a non-zero value of the
spanwise wavenumbet = 0.45 (scaled withs = \/vL/ U, L being the longitudinal distance from the leading edge to the
location where output energy is maximized).

Andersson et al. [17], in the effort to identify a path of bypass transition, investigated via direct numerical simulation the
subsequent nonlinear evolution of the optimal perturbations given by the linear approach (those computed by Luchini [14] and
Andersson et al. [16]), focusing upon the “secondary” temporal instability of the streaks produced by the algebraic mechanism.
Results show that the streak’s critical amplitude, beyond which streamwise travelling waves are excited, is about 26% of the
free-stream velocity. They did not actually optimize the perturbations in the nonlinear case. Experimental evidence of the growth
of streaks and their breakdown is provided by Matsubara and Alfredsson [18]. Their study furnishes encouraging data for the
theories of algebraic growth and secondary instability and, at the same time, it indicates that large amplitude effects can be the
cause of a quantitative mismatch between the predicted spanwise wavenumber of the streaky structures and the measured on

A different approach to the study of Klebanoff modes was pursued by Wundrow and Goldstein [19]. Rather than searching
for the optimal initial disturbance profile, they considered the effect of a small-amplitude, steady streamwise-vorticity field
superposed to the flow over an infinitely thin flat plate. By breaking the domain into several regions, described by different
asymptotic approximations, Wundrow and Goldstein demonstrated that nonlinear, localized shear layers are produced down-
stream of the leading edge, with qualitative similarities with the direct numerical simulation results of Jacobs and Durbin [20]
of a boundary layer subject to free-stream turbulence. Unlike the present work, the study by Wundrow and Goldstein did not in-
volve any optimization; still, it paved important new ground for the understanding of the breakdown of streaks, and the ensuing
bypass transition phenomenon.

1.3. Emerging theories of transition

Transition to turbulence is a phenomenon dominated by nonlinear effects; it is thus important to briefly describe some very
recent developments that appear very promising in the pursuit of a satisfactory description of transition. The so-called theory of

1 A similar amplification mechanism based on the interaction of shear with longitudinal vortices had even earlier been proposed by Moffatt [4]
as the generation mechanism of large-scale structures in self-sustained free-shear turbulence and the source of elastic behaviour in its averas
stress-strain relationship.
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the self-sustained proce$81-23] arose out of efforts to understand how transitional and turbulent states are maintained near
walls by nonlinear feedback processes. Schematically such a process starts with the formation of longitudinal streaks out of
streamwise vortices through thi-up effect the breakdown of the streaks with the creation of travelling waves, and the vortex
regeneration process. Whereas each individual step of the process can be isolated and studied per se (cf. the work by Anderssor
et al. [17] on the breakdown of streaks, for example) only the consideration of finite amplitude states consisting simultaneously
of streaks, rolls and travelling waves provides the mean to each individual component of the process to sustain one another
against viscous decay. Once the realization came about that finite amplitude equilibrium solutions had to be searched for,
containing all of the “ingredients” above, the study of so-called “exact coherent structures” started. Without dwelling into too
many details, out of the scope of the present paper, we limit ourselves in pointing out that such a search has already produced
a remarkable success story for the case of the turbulent pipe flow: experimental results [24] and theory [25,26] provide flow
structures in such close agreement to one another to cause an outflow of papers in the popular science press (consult, for
example, the article by F. Busse, “Visualizing the dynamics of the onset of turbulence”, in the September 10, 2004 issue of
Scienceor that by C. Barenghi, “Turbulent transition for fluids”, in the December 2004 iss@hydics Worldor that in the
Novembre 2004News Scan Briefsection ofScientific Americanby the title “Piped-in Turbulence”).

1.4. Goal of the present work

After having pointed out the importance of nonlinearities, we feel that there is ample justification in developing a numerical
optimization procedure to search for nonlinear optimal disturbances by solving the complete boundary-layer equations.

Limiting the study to the linear approach yields a result which is independent of the initial energy of the perturbation,
since the whole disturbance field is defined up to a multiplicative constant. In the nonlinear evolution, once the energy has
grown beyond a certain threshold, nonlinear interactions begin to compensate for the amplification, producing a state which
eventually saturates. In this work we will limit ourselves to presenting the procedure and to optimizing the state with respect
to the disturbance kinetic energy of the flow, validating against known linear solutions. It could then be possible (and in fact it
is quite easy) to extend the present procedure to optimize other functionals, arguably more relevant in the context of transition,
such as the rate of disturbance energy production or dissipation (cf. the recent work by Plasting and Kerswell [27]), providing
a link to the emerging theories of transition briefly outlined in the previous section.

2. Problem formulation

The algebraic instability in the Blasius boundary layer is here studied in the context of the steady three-dimensional incom-
pressible boundary-layer equations. They are simpler to handle than the more general Navier—Stokes equations in that, since
they are parabolic in the streamwise direction, a marching technique is allowed for their numerical solution. In addition they
contain one dimensionless parameter less and provide a Reynolds-number-independent result. However, one must consider tha
two different three-dimensional formulations of the boundary layer approximation exist, depending on whether the spanwise
scale of the phenomenon considered is comparable to the streamwisé. swale the normal scale (as pointed out, among
others, by Luchini [7]). Both are consistent inner-outer expansions of the complete problem, but for different scalings of the
spanwise coordinate and velocity. The first case is typical of a three-dimensional outer stream, while the second is typical of
three-dimensionalities originating inside the boundary layer itself, such as, for example, Gértler vortices. For this reason we use
the second formulation. The equations, written in boundary-layer variables and in conservative form, read:

uy +vy +w; =0,
(uu)x + @v)y + (uw); —uyy —uzz =0, 1)
uv)x + (Vv)y + (Vw)z + py — vyy —vzz =0,

ww)x + (vw)y + (Ww); + p; — wyy —wzz =0,

where the streamwise velocity componanis made dimensionless with respect to the outer veld@ity, whereasy andw
(respectively wall-normal and spanwise components) are made dimensionless with re§Edt /5. Reis the Reynolds
number defined aRe= U L/v. The streamwise coordinate is normalized with a reference lengih the wall-normal
coordinatey and the spanwise coordinat@re made dimensionless with= Re"Y/2L = (vL/Uso)Y/2. Pressure is normalized
with Re—lpUgo, o being the density. It should be emphasized that what wepchire is the second-order term in the usual
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inner expansion of pressure, both the zero- and first-order terms being zero for Blasius flow. System (1) requires six boundary
conditions, three at the wall and three in the free stream:

u=0 aty=0, u=1 fory— oo,
v=0 aty=0, w=0 fory— oo, (2)
w=0 aty=0, p=0 fory— oo.

The system is parabolic inand therefore initial conditions are also required. However, only two initial conditions are allowed
for the boundary-layer equations, as opposed to three for the Navier—Stokes equations, so ibdix#d, v and w must

be related to each other. This can be proved [28,29] by combining the continuity equation anchttmentum equation so

as to eliminata:, between them, which gives an equation without argerivative nor pressure term. The latter represents a
constraint to be satisfied locally at anyincludingx = O: of the three initial velocity components only two are thus independent.
Moreover, when the streamwise componegntipstream of the leading edge, equals 1 uniformly iy andz, the constraint
binding the initial conditions simply reduces to the continuity equation. The initial conditions we shall consider therefore are

u©,y,z)=1,

3
v(0,y,2) =vo(y, 2), ®3)

w(0, y, z) = wo(y, z) being consequently derived frong and the constrainb, = —vy.

System (1) with initial conditions (3) and boundary conditions (2) represents the “direct” (or “forward”) problem to be
solved. The next step in the formulation consists in identifying an objective function physically related to the stability charac-
teristics of the flow, so that its maximization yields the worst possible scenario.

2.1. Choice of the objective function

In previous work on optimal perturbations, the perturbation kinetic energy was typically chosen as a measure of the distur-
bance. In lack of a better “harmfulness” estimator, this seems to be a reasonable physical quantity. In our problem, however,
since a complete nonlinear calculation is performed, the flow field is not just decomposed as a base flow plus a small perturba-
tion, but as a sum of Fourier modes in the spanwise direction (cf. Appendix A). Mode zero contains both the unperturbed flow
(Blasius’ solution as we are dealing with a flat plate) and a mean-flow correction due to the interactions of the other modes.
Different energy definitions are therefore possible. The integral alargz of the kinetic energy of all modes, including mode
zero, is not a good choice because it is infinite (ho#ndv tend to a constant as— o). This could be avoided by taking,
instead of mode zero, only the mean flow correction, i.e. the difference between the total velocity field and Blasius’ solution.
This is not the typical choice of experimentalists (cf. Matsubara and Alfredsson [18]), who cannot easily distinguish between
base flow and mean flow correction, once nonlinearities kick in. Hence, as disturbance measure we have chosen the kinetic
energy of the oscillating part of the velocity, i.e. the sum of the energies of all modes, excluding mode zero. When integrated
alongy andz, this energy is a function of the streamwise coordinate only and its evolution from the inlet to the outlet is a good
indicator of the perturbation growth.

Once physical dimensions are taken into account, because of the different scaling of streamwise and crossflow velocity
components in the boundary-layer formulation, the perturbation kinetic energy as a functiocomthinsReand reads:

Z
1 _
Ew)=o //[|u’|2+ Re*(v/1 + [w'[?)] dy &, (4)
-Z0
with primes denoting the oscillating part of each variable with mode zero excluded; and/g. In an input—output frame-
work, however, the interest is typically in the ratio between the output energy and the input energy, as it repregaintsthe

the system. This can have at least two expressions. The first is the one used by Luchini [14] and Andersson et al. [16] for the
optimal-perturbation problem:

Eout _ [(1/22)) [%, [§°1Iu1? + Re1 (w12 + |w'|?)] dy dz],—1

GOUt:E—'_ Z roor 2 101,712 72 ' ®)
in  [(1/22)) [Z, [5" lu'1? + ReL([v/|% + |w'|?)] dy dz] y =0
A second possible one is given below:
Emean  (1/(22)) [%, [5° [/ 12+ ReL(v/ 2 + [w'|2)] dr dy o
Gmean= = (6)

En  [(1/(22)) [%, [/ 12+ ReL(v/|2 + [w/|?)] dy dzl,—o
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Expression (6) was used by Cathalifaud and Luchini [30] for their optimal-control problem, as they found that optimal control
based on minimizing the final energy (5) can produce very large overshoots in the disturbance energy curve at intermediate
positions before the end station, with obvious undesirable consequences on boundary layer transition.

Since the aim is to maximiz€&, by looking at the denominators of expressions (5) and (6) the obvious best choice is
u’(0, y, z) = 0. This yields aG which is O(Re) whenRe— oo, whereas:’(0, y, z) # 0 would lead toG of orderO(1). The
term Re~1(|v/|2 + |w’|2) in the numerators, as noted by Luchini [14], is inconsistent with the inner-outer expansion from
which the boundary-layer approximation is derived, unless higher-order terms are included in the inner-outer expansion itself.
By introducing the new definitions

z

1 oo 1 Z oo
EM(X)=§//|M’|2dydz; Ein=[§ff[lv’|2+|w’|2]dyd1} ; (7)

70 ~“z0 x=0
expressions (5) and (6) reduce at leading order to:

1
En(1) Ey(x)dx
Gout= Reg—.§ Gmean= Refog—‘, (8
in in

and contain the Reynolds numtReas a scaling factor only. Thus, also in the nonlinear regime the gain of whatever optimal
perturbation we shall find scales linearly with the Reynolds number.
In order to evaluate the pertinence of the two objective functions defined in (8), we introduce the weighted sum

1
J=a1Eu<1>+azf Eu(x) dx,
0

also noted as/ = a1 Eout + @2 Emean SO that for the special casg = 1 andap = 0 the objective is the maximization of the
energy at the final station, whereas tor = 0 andas = 1 the aim is to maximize the integral of the energy over the whole
domain.

2.2. Constrained optimization and discrete adjoint problem

The problem of finding the leading-edge perturbation that optimizes a given cost fugetsimply translates in a con-
strained optimization where the constraints &g(vg, wg) = Eg and the governing equations (1) with associated boundary
and initial conditions (2), (3). As stated earlier, sincgis related tovg, the problem reduces to finding.

A classical tool for the solution of constrained optimization problems is the Lagrange multiplier technique. It consists in
first introducing the augmented functiond) which contains the cosf, the constraints and the Lagrange multipliers. Since
the constraint (1) is in a differential form, integration by parts over the whole domain is required. Then, by infabsir®
i.e. that the variation of with respect to each of its independent variables must be zero, a set of adjoint equations along with
their boundary conditions (at=0 andy — oo) and “initial” conditions (atx = X) are obtained. Moreover, the procedure
furnishes the optimality condition at= 0, which provides the expression®jf as a function of the adjoint field. The details of
the derivation of the adjoint equations in the continuous framework have already been given by Zuccher et al. [31]. The set of
linear partial differential equations so obtained can be discretized and solved numerically by writing a new code from scratch,
possibly with a methodology inspired to that employed for the direct problem (Appendix A).

On the other hand, it is also possible to solve the constrained optimization by applying the classical Lagrange multiplier
technique to the discrete direct problem. In doing so, the need of an “ad hoc” adjoint code is avoided and, in the context of
optimization, it is not even necessary to give a continuous interpretation to the discrete adjoint equations; it suffices to know
that adjoint-based optimization of the discrete equations will give an exact optimum of the discrete problem for any step size.
Provided the discrete problem is a consistent approximation of the continuous direct problem for step size tending to zero,
and provided the optimum is a-posteriori checked to lie within the range of initial conditions for which the approximation of
the direct problem converges, the correct result will be obtained. For further examples the reader is referred to Luchini and
Bottaro [29,32], Luchini [14] and Cathalifaud and Luchini [30]. For a thorough discussion on the issue of continuous versus
discrete adjoint we refer to Gunzburger [33]; for examples of inconsistent direct/adjoint discretization the reader can consult
Moore and Farrell [34].

The numerical discretization of a general parabolic system of partial differential equations such as (1) can be recast as

An+1fn+1 =Byf, (9)

wheren denotes the-th grid point in the streamwise direction f is the vector of unknowns and matricAsandB depend
on x (as the base flow does) and account for the discretizatian ynandz (in our case respectively second-order differences
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on uneven grids for both andy and Fourier decomposition ir). The solution is found by marching forward in space from
n =0, given the initial conditiorig, ton = N — 1. The boundary conditions at the wall and for> oo are already included in
matrices’ rows. The energy norm of the initial perturbation, in the discrete setting, can be expressed as

Ein =f{Mofo = Eo (10)

and the objective function a8 = ozlf};,M Nint+a2 Zfl\':lfIM nfn (matriceM g, M, andM y contain, again, the discretization

in all directions). The application of Lagrange multipliers to the discretized equations involves the same conceptual steps as its
continuous counterpart. The augmented functighalhich contains the cosft, the constraints (9) and (10), and the Lagrange
multipliers is written as

N-1
[/(f07 o, f n+1, fn) = O‘lfNMNfN + o2 Zf Mpfn + Z pn (An+lfn+l ann)] + )\O[fTM OfO — Eol (11)
n=1 n=0

wherep,, is the vector of Lagrange multipliers, function of the streamwise locatio®nly the dependence dnhas been
emphasized irC since derivation ofZ with respect to the Lagrange multipliers (required to enféx€e= 0) would simply
reproduce Eq. (9). The summation between 0 And 1 involving p, reflects the integral along. The integration by parts is
here replaced by adding and subtrac@igrananH so that the terms can be rearranged as

N-1 N-1 N-1
Z [pI(An—i-lfn-i-l - ann)] = Z [pIAn—Q—lfn—Q—l - p;|1-+1Bn+lfn+l] + Z [pI_H_Bn—i-lfn-i-l - pIann]
n=0 n=0 n=0
N-1
=Y PrAnsifas1 — Py 1Butafural + Py By Ty — pBofo,
n=0

and expression (11) can be rewritten as

N-1 N-1
Lo, fag1. fy) =aaf W Myfy +o2 Y 1 Mugafuia+ D [PpAnsafutrs — Py oqBusafasal
n=0 n=0
T T T
+pNBNfN — pOBofo-F)Lo[foMofo— Eol. (12)

It should be noticed that the summation with as a pre-factor covers the range from Q\e- 1 (instead of 1 taV) in order to
drop the dependence énin L.
As in the continuous case, the extremum condition is found vslfes 0, i.e.

DL
f0+ZDf 81 + foN 0,

which, in order to be satisfied for any arbitrdey f, 1 andfy, leads to

DL

Dfo po Bo + Zkofol\/lo =0, (13)
N-2 DL N-2 T - -

> o ¥ D [PhAL1 = PyyqBat1 + 200f, My 1] =0, (14)
n=0 " n=0

DL

m:Z{xlf}\}MN—FpLBNZO. (15)

Eq. (13) furnishes the optimality condition to be satisfied at 0 and Eq. (14) leads to

AIJrlpn = BIJr]_pn+l - 20‘2M;r,+1fn+17 (16)

which is nothing but the discrete form of the adjoint equations to be solved by marching backwards=frario x = 0 with
the initial condition derived from Eg. (15) solved fpy,.
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2.3. lterative optimization

The equations and conditions derived in the previous sections for the direct and adjoint problems can in principle be satis-
fied by solving the complete forward and backward problem as one big coupled system. However, doing so would require a
considerable computational effort and would not put the parabolic character of the equations to good use.

On the contrary, when seen separately the equations are parabolic in either the forward (direct problem) or backward (adjoint
problem) direction, suggesting the idea of an iterative approach. This involves alternating the solution of the direct and adjoint
equations until a converged solution is hopefully attained. At this gaint 0 will have been achieved. The procedure can be
summarized as follows:

[EnY

. An initial guess is taken for the initial conditidg atx = 0.

2. The parabolic direct problem (9), which is the discretized version of (1), is solved by marching forward in space=ffbm
tox=1(mnr=0,...,N—1).

3. Atx =1 (n=N) Eq. (15) solved foipy provides the initial condition for the adjoint solution. If the objective is the
maximization of the integral of the energy over the whole domain (i, i 0), the condition is simplpy = 0.

4. The adjoint problem (16) is marched backward in space freel tox =0 (n = N — 1,..., 0), starting from the initial
condition obtained at step 3. If the objective includes the mean energy, €0, in the equations there is a forcing term
containing the (now known) direct solutio2M Llle.

5. Once the adjoint solution is found, the optimality condition (13) determines the new initial condition for the direct problem
fo and the Lagrange multipliexg is chosen so that the constraifif; (fg) = Eg is satisfied. Since in the nonlinear case
convergence of a simple iteration cannot be assured, a relaxation involving the vijuet tfie previous iteration can be
introduced if necessary.

6. Step 2 is repeated using the initial conditions updated at step 5. The objective fufidS@valuated again and compared

with its previous value: if a smallef results, the relaxation parameter employed in the gradient method is halved and

step 2 repeated until an increase/bfappears (this is equivalent to a successive—bisection search, as explained in the next
paragraph).

The complete procedure is repeated until the differencg ietween two successive iterations is smaller than a given thresh-

old. This is similar to the algorithm used, for the corresponding linear problem, by Luchini [14]. In that case, the iterative
optimization technique reduced to performing power iterations for the maximization of a Rayleigh quotient, a procedure which

is mathematically guaranteed to converge. Here the problem is nonlinear, and the optimization does not reduce to a Rayleigh
quotient; convergence cannot be mathematically assured and occasionally may not occur for very large values of the initial
energy. However, since a well defined objective function can be computed at every step, convergence can easily be restored by
a successive-bisection search, applied at the point in the loop where the coupling condition is impose@l. this means

that, instead of applying condition (13) straightforwardly, we introduce a parametgd, 1] such that the new initial condition

is updated partly with its value at the previous forward—backward iterdtioand partly with the solution coming from the

adjoint field at the same forward—backward iteration

k
29
Condition (13) is recovered fdr = 1. In practice, after completing steps 1 to 5 above, step 2 is repeated and the objective
function calculated and compared with its previous value. If a reduction is observed rather than an increase, the result is
discarded and step 2 repeated with a halved value oftil a monotonic increase in the objective function is achieved. This
bisection-search procedure was needed only for the highest considered value of the initial disturbanc&gretg0]. In
that case the increment was halved 3 times at about the third or fourth forward iteration, depending on the wavénkmber
all other cases, the relaxation factowas never halved.

‘ . e
FIHD — 1ot + M3 BEpS . (17)

3. Parametric study

For the reasons outlined in Section 2.1xat O ug is fixed and equal to 1, whileg can be derived fromg, which is the
only unknown. In Fourier space, the set of initial conditions is:
moden =0 moden > 1
Uo(0,y) =1, Un(0,y) =0,
Vo0, =0, V,0 =V,
Wo(0,) =0,  Wy(0,y)=W2(y).

@)
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Results shown below have been verified for grid convergence by repeating the computation over more refined grids. Numerical
tests indicate that an adequate number of grid points is 200 al¢eigstered near the leading edge) and 300 alo(dustered

near the wall). The outermost mesh point, where free-stream conditions are applied, is plaeeditain order to account for

the fact that at higltg and lowp the perturbation at = 1 extends up tg ~ 30. The decision on where to truncate the Fourier
series is taken by successively increasihgnd by comparing results with different spanwise resolutions. For low values of the
initial energy,N = 5 is found to be sufficient; aBg increases, up t& = 16 (i.e. a total of 33 Fourier modes) has to be used to
achieve grid-converged results.

3.1. Different objective functions: recovering the linear results

Results obtained by using two objective functions are shown in Fig. 1 for the optimal wavenumber, defined as the value
of g that maximizes7 for a fixed Eq (first two curves in the legend). The third curve of the legend is drawn for comparison
purposes. A low value of the initial energfiy = 107, is used in order to ensure the linear regime and allow comparison
with results available in the literature. In Fig. 1(a) the energy of the perturbation is represented as a function of the streamwise
coordinatex. If the aim is the maximization of the energy at the final station, the maximum value is reachedlatOn the
contrary, if the target is the integral of the energy along the streamwise coordinate, the energy at the end is somewhat lower,
but over a certain range of valuesof{x < 0.8) it is larger than in the first case. It is remarkable, however, how close the two
curves are to each other. This is contrary to what happens when an opposition control is applied [30], in which case the use of
different objective functions produces very different behaviours. In Fig. 1(b) the optimal initial velocity profiles are reported.
The initial perturbation that maximizes the final enefy: reproduces the one documented by Luchini [14] and Andersson et
al. [16], and this validates the code in the linear regime.

The curve with7 = EmeanandB = 0.45 has been included in each of these two figures to try and discriminate whether the
change in initial profile or the change / induced by the change in objective function, is mostly responsible for the result. It
can be concluded that the choice of the objective function determines a sizeable change in both initial prgfile and

In Fig. 2 the results of the optimization procedure are shown at the outlefl. They are normalized with respect to

Eout and correspond to the initial conditions reported in Fig. 1. Sinemdw are of ordelRe™1/2 with respect ta:, and
are therefore much smaller, only the modulus of theomponent is reported. It is observed that the shape of the solution at
the final station changes very little with the objective function, with the wavenumber and its ensuing optimal initial condition.
This is in agreement with the early experimental observations by G.I. Taylor [35] and with the higher-singular-value analysis of
Luchini [14] regarding the “near universality” of the output velocity profile in a linear context.

In the following, the functional7 = Emeanis optimized in both the linear and nonlinear regimes, partly to explore this
alternative ta7 = Eout, the focus of all previous studies of optimal perturbations, and partly to provide a framework to flow-
control results [31].
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YA - an — YR T
@ O j Emedn 0 40
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Fig. 1. Comparison between two different objective functions: (a) energy of the perturbation as a funetioomwhalized with respect to the
initial energy Eg. (b) Optimal perturbations normalized with respectf&g. The cases7 = Eout at 8 = 0.45 andJ = Emeanat 8 = 0.548,
correspond to the optim@, 7 = Emeanat 8 = 0.45 is reported for comparison at the same wavenunityes 107, linear behaviour.
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Fig. 2. Comparison between two different objective func-  Fig. 3. Mean gain for different initial energy valudg
tions. Streamwise velocity compondiit (1, y) at the final and different wavenumbers. Linear caseFg;=1: ———;
stationx = 1, normalized with respect t¢'Eout. Eg = 10: ---; Eg = 25: --+; Eg = 100: — —;
Eg=500: - —.

3.2. Nonlinear results

In Fig. 3 the mean gaili’ /Reis shown as a function of the wavenumigefor different values of the initial energgg.
The linear result (solid line) is obtained with a very low initial energy & 1(T7) and using only one spanwise mode. It can
be noticed that increasingg up to Eg = 1 makes no visible difference, meaning that the nonlinear regime is not yet reached
until Eg ~ 10. All curves present a maximum abgtimalwavenumbe which depends on the value &f. With increasing
Eq the maximum gain shifts towards lower wavenumbers and this dependence is stronger and more evidenkEgod itjie
linear regime, the optimum is found f@ = 0.548, which is more than 20% larger than the value found wifeg Eout. It
must, however, be emphasized that these gain curves are all rather flat, i.e. there is no strong spanwise wavelength selectivity
mechanism and the average wavenumber which is actually observed in experiments is strongly correlated to the spectrum of
incoming disturbances (cf. [18]).
Incidentally we mention that the curves of Fig. 3, if continued to lower wavenumbers, exhibit ghost images due to the fact
that the optimization algorithm converges on the same solution again, but for the second rather than the first harmonic.
According to Fig. 3, different comparisons can be set up to explore the parametric behaviour of optimal perturbations. For
instance, the influence of the nonlinear interactionEg@grows can be investigated by fixiffgand increasing the initial energy
or by comparing results at the optimal wavenumber. On the other hand, any possible dependence on the wavenumber can be
studied by fixingEg and varyingB. A further comparison between small and large valueBpEan disclose differences due to
nonlinear effects.
In Fig. 4(a) the perturbation enerdy, of the streak (as defined in (7)), normalized with respect to the initial engggy
is reported as a function of for a fixed wavenumbeg = 0.5 and differentEq’s up to 500. A linear amplification is clearly
observed forEg < 1 as all the curves collapse onto the linear result (solid line). For very high initial energy levels, on the
contrary, the curves exhibit a saturation plateau (i.e. the flat region observalilg f2/500 at 07 < x < 1). In Fig. 4(b) a
section in the plane = 0 of the initial optimal perturbatiomg(y, z) normalized with the square root of the initial energy
is reported. Only the wall-normal velocity component is shown becagse, z) is simply proportional to the derivative of
with respect to the wall-normal coordinatg,(and W,, are related by the continuity equation for each mejleA departure
from the linear behaviour can be observed everFge= 1. This difference can be appreciated in physical space, while if only
the first mode is compared, no significance discrepancy can be foundtgntil10. For increasingEg, the maximum of the
curve decreases and slightly shifts towards the wall. e 500 the trend is interrupted and the maximum moves away from
the wall, with a perturbation that decays slowlyyin
The difference between a lowg and a highEg case can be better appreciated by looking at the surfgge z)/+/Eg in
the cross-stream plane for two different valuesgf This is shown in Fig. 5; foEg = 1 there is only one peak, in the plane
z = 0; it is concentrated in a narrow region, and its value is higher tha oz 100, for which the maximum spreads on a
wider region of the planéy, z). This is a consequence of the nonlinear effects arthifs further increased multiple maxima
arise in the surface. In Fig. 6 the optimal disturbance velocityat0 is shown via vector plots. The figure confirms that the
optimal perturbation is in the form of counter-rotating vortices and produces a lift-up/push-down effegg £ak the center
of the vortices is located more or less in the center of the region occupied by the vortex itself. On the contrafy, vettegh,
the vortex center moves away from the wall and towards the downwash region.
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Fig. 4. Results at fixed wavenumbgr= 0.5 for increasing initial energyg. (a) Perturbation energ¥, (x)/Eg; (b) optimal perturbation
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Fig. 5. Surfacesg(y, z)/+/Eg at fixed wavenumbes = 0.5 for differentEg. (a) Eg = 1; (b) Eg = 100.
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Fig. 6. Disturbance velocity vector plots in the cross-stream plang atx =0, for 8 =0.5. (a) Eg = 1; (b) Eg = 100.

In Fig. 7 contours of the velocity component are displayed at two streamwise locatioas.5 andx = 1 (exit section) in
order to emphasize the role of the streaks. The effect of nonlinearities increasestittding towards the typical “mushroom”
shape characteristic of very high initial energies. The same kind of distortion was found by Andersson et al. [17].

Mode zero of the finalk- and v-profile, representing the mean flow contribution, is reported in Fig. 8, together with the
Blasius solution. FoEq > 10 the difference from Blasius’ solution becomes noticeable, and for very high initial energies, for
exampleEqg = 500, the solution at = 1 inside the boundary layer is profoundly distorted and definitely different from Blasius’,
rendering the flow susceptible to secondary breakdown. This issue will be discussed in Section 4.
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Fig. 9. Comparison at fixed initial energyy = 1 for different values of the wavenumbgr (a) Perturbation energ¥, (x)/Eq; (b) optimal
perturbatiornvg(y, z)/+/Eg in the planez = 0. The optimalg for this initial energy is plotted with solid lines.

Another manner of analyzing the results is to consider a fixed initial energy and varying waverguniibes is done in
Fig. 9, where the energk, as a function ofc and the optimal initial perturbation profile are reported for the dage- 1.
The energy plot, Fig. 9(a), indicates that the plateau observed forBygtt fixed 8 = 0.5 (Fig. 4(a)) also occurs for very low
initial energy, but at high wavenumbers. The straightforward conclusion is that the plateau is not directly related to the initial
energyEg or to the action of nonlinearities, but seems to be a characteristic of wavenumbers higher than the optimal one. This is
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Fig. 10. Comparison at fixed initial enerddp = 100 for different values of the wavenumbgr(a) Perturbation energ¥l,, (x)/Eg; (b) optimal
perturbationvg(y, z)/+/Eg in the planez = 0. The optimalg for this initial energy is plotted with solid lines.

confirmed by Fig. 10(a), where the energy behaviour is shown for theFpsel00, displaying qualitatively similar features.

The plateau is only present at large wavenumbers, thus supporting the conclusion that this feature depends primarily on the
value of 8. An interesting possible repercussion of this could be that small-wavelength streaks, being less energetic, are less
easily destabilized by streamwise travelling wave disturbances. This statement must, however, be modulated by the realizatior
that small-wavelength streaks present internal regions of high spanwise shear, known to cause and to be well correlated tc
sinuous travelling modes of instability [36,37].

Such a plateau can be also observed in the results of Andersson et al. [17], who solved the nonlinear boundary-layer equation:
for a fixed initial condition corresponding to the optimal linear perturbatiog at0.45. In that case, results are shown for
different initial energiesg and the plateau is observed at high (8 is fixed). According to Figs. 9(a) and 10(a), what found
by Andersson et al. [17] can be ascribed to the fact that for those initial energies the wavenumber is higher than optimal.

An explanation of the dependence of the energy growth curvg aright be found in the inviscid limit. Fop — 0 the
forcing of the streaks is proportional foand therefore streaks with larger wavenumber will experience a larger initial growth.

On the other hand, the damping effect of viscosity is proportionaftso these perturbations also start to decay earlier. This
behaviour, typical of large-wavenumber initial perturbations, is supported by the results displayed in Figs. 9(a) and 10(a).

From Figs. 9(b) and 10(b) one can notice that the shape of the optimal perturbation also changes with wavenumber, with the
same trend for low- and high-initial-energy cases. The maximum shifts towards the wall and increisesraeases. For low
B the profile goes to zero very slowly with as shown in Figs. 9(b) fg8 = 0.4 and in 10(b) for8 =0.3.

The conclusion from Figs. 4-9 is that the wavenumber has a stronger influence on the shape of the optimal perturbation and
its ensuing growth than the initial energy level, providgglis not exceedingly large.

Finally, in Fig. 11 the solutions obtained for a variety of initial energy valbiggre shown, at the optimal wavenumber (cf.

Fig. 3 for an estimate of the optimal value @fas Eq varies). The first remark is that increasing the initial enefgyproduces
a variation in the energy growth but the change is much smoother than that observed gtdixéxked Eq. The shape of the
optimal perturbation at = O still shows a dependence @y, related to the fact that algbchanges.

4, Linksto streak breakdown

It is important at this point to try and link the disturbance amplitude &t0 to the possible breakdown of streaks, in order

to provide approximate bounds for the initial energy below which destabilization of the streaks should not take place. It has
been reported by Alfredsson (private communication, 1998) that “amplitudes of at least 20%” are needed for an instability
of the streaks to emerge. A similar threshold was detected by Bakchinov et al. [38] in their experiments in which streaks were
generated by roughness elements distributed regularly along the span of the wall, and the instability was triggered by a vibrating
ribbon upstream. In the inviscid linear stability analysis of Andersson et al. [17] the threshold amplitude for the occurrence of a
sinuous (subharmonic) instability of the parallel streaky flow vgite 0.45 was 26% of the free stream speed, whereas a larger
value (37%) was found for the amplification of a varicose mode. Results are not available for other spanwise wavelengths.
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To provide a conservative estimate of the threshold amplitude of the initial disturbamce @tthat eventually leads to
streaks that can break down, we take a “critical” amplitude of the nonlinear strea@kgial to 20%, withA defined as in
Andersson et al. [17]:

1
A=z [max(U —Ug) —min(U — UB)],
2Lyz ¥,z

whereUyp is the Blasius profile.
Since the results obtained so far for optimal nonlinear streaks give the functionaliferm (x; Eq, 8), we can, for each
given saturation value od and for eachB, retrieve the corresponding initial energy levg]. In a real physical situation the
initial energy level capable of yielding the given valuedht saturation will be larger, since leading edge conditions in a wind
tunnel are not optimal (in the sense considered here), but this should not prevent us from searching for a conservative bound.
Fig. 12 reports the value dfy which yields a streak whose downstream amplitude reaches the Aa@.2: the region
below the curve is where a secondary instability of the streaks is not expected. It is noteworthy that the curve presents a mini-
mum around3 = 0.46, which is very close to the linear optimal wavenumpBet 0.45 found by Luchini [14] and Andersson
et al. [16].
Within the limits of the arguments employed here one can argue that initial disturbance etgygies = O lower than
about 23 (with the present scaling employed for energy, it must be recalled that the value of 23 still needs to be dR&led by
do not meet the threshold required to trigger secondary instabilities and, as such, should not provoke streaks’ breakdown nor
the ensuing bypass transition.
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5. Summary and conclusions

This paper is devoted to the study of the steady, nonlinear, three-dimensional algebraically growing instability in the incom-
pressible boundary layer past a flat plate. An adjoint-based optimization technique is used in order to determine those optimal
perturbations at the leading edge that provide the maximum energy growth for a given initial energy.

The solution is decomposed in a finite number of Fourier modes along the spanwise diretibdiscretized using finite
differences inc andy. The velocity field can be viewed as the sum of a spanwise-uniform contribution due to mode zero, which
represents the unperturbed base flow plus a mean flow correction, and a spanwise-varying contribution due to all the other
modes. The energy of the latter contribution is taken as a measure of the growth of the algebraic instability.

The linear results by Luchini [14] and Andersson et al. [16] are reproduced by imposing a very low value of the initial
energy (so that the interactions between modes can be neglected) and choosing the energy at the final station as the objective
be maximized. An extended study for a range of wavenumbers and initial energies is then performed with the aim of maximizing
the integral of the energy over the whole domain. Results are compared at constant wavenumber, at constant initial energy anc
at the optimal wavenumber, defined as that valug @dr which the gain is a maximum.

If Egincreases, the maximum of the curve representingan/Reas a function of3 shifts towards smaller wavenumbers.

The input energy level below which nonlinear effects are negligible is determined and the mean velocity profile at the final
station turns out to be indistinguishable from Blasius’; for higher initial energies nonlinear effects are clearly seen especially
from the presence of strong distortions in the mean flow profiles at the end of the plate. The appearance of a plateau in the curve
of the disturbance energy versusloes not necessarily indicate nonlinear saturation; the same plateau takes place at very low
Eg and highg, and its presence is, hence, more of a characteristic of closely spaced streaks than of nonlinear effects.

At this stage it is still impossible to provide a complete account of bypass transition in boundary layers. In the present study
we have aimed at identifying the leading-edge perturbations that maximize the disturbance kinetic energy of the flow, employing
optimal-control theory; it is possible that a different choice of the cost functional would have produced a different response. In
particular, it might be interesting to identify the optimal initial conditions capable of producing the most intense shear layers
downstream, to try and link nonlinear optimization results to available experimental observations of burst and turbulent spots.
This is obviously a formidable task, and the definition of an admissible objective function is far from simple. Also, in view of
recent developments briefly reviewed in Section 1.3 it seems very promising for future work to focus on the search of finite
amplitude travelling wave solutions in the boundary layer, by employing an unsteady model.

Finally, this work has extended the previous transient-growth theory to the fully nonlinear regime, providing the background
for the optimal and robust control of nonlinear Klebanoff modes, an important task for laminar-flow-control technology.

Acknowledgements

The research by SZ at Politecnico di Milano was made possible by a Ph.D. grant awarded by CIRA, Centro Italiano di
Ricerche Aerospaziali. The work was started in Toulouse, where SZ spent six months in the framework of a Marie Curie
Training Site Fellowship awarded by the EU.

Appendix A. Implementation and numerical solution of the direct problem

In order to account for a general, not necessarily sinusoidal, spanwise dependence of the flow field, the solution is expandec
in a Fourier series along the spanwise directiol

[e.¢]

fEy= ) Fuxye (A1)

n=—oo

represents any one of the quantitie®, w, p, the functionF;, (x, y) is the complex amplitude of theh mode and depends on
x andy only. Under the given expansion, each of the nonlinear terms in Egs. (1) produces a double summation containing a
convolution. Thus:

Un)x + (Va)y +inBWy =0,

(CYY), +(CFY), +inBCYY — Un)yy +np2Uy, =0,

(€YY + (V) +inBCYY = (Va)y +n?B2V + (Pu)y =0,
(CYM), + (V) +inBCY Y — (Wa)yy +n2B2Wy +inf Py =0,

(A2)
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where the coefficienf.‘,fG(x, y) is defined as

min(N,n+N)

CFo.y = > F(x, Y)Gp_i (x, ) (A3)
k=max(—N,n—N)

and the number of modes is restrictedMdor discretization purposes.

Since system (A.2) is parabolic, we choose a second-order backward finite-difference scheme. A first-order discretization
has also been used for testing purposes. In addition, in account of the fact that the solution becomes singul@raxid
thus a very high-density grid is required to preserve accuracy close to the leading edge, a non-uniform grid is employed. In
the wall-normal direction, second-order central finite differences are used, over a non-uniform grid with points more tightly
clustered near the wall. This choice of the grid and the fact that equations are written in conservative form allow us to compute
the boundary layer solution without recurring to boundary layer coordinates.

Upon implicit discretization (A.2) becomes a system of nonlinear algebraic equations, which is handled by incomplete New-
ton iteration. A complete Newton linearization would involve a relatively large linear system, because the nonlinear coefficients
C,fG(x, y) couple every mode of each variablg {, w) to every other one. The main drawback of this technique is that a very
large system needs to be solved and thus a large amount of memory and computing time would be required. To overcome this
difficulty we use an incomplete linearization in which modes with differeate uncoupled, and a separate narrow-band alge-
braic system must be solved for eachAfter each iteration the residue is computed and, if it is greater than a certain threshold,
all the modes are computed again using the results from the previous iteration.

For this purpose, we linearize (A.2) and separate each migdie two contributionsF,, = F, + f,, whereF,, is the current
guess from the previous iteration ayiglis a small unknown correction. On neglecting quadratic termsfiike, y)g,,—x (x, y)
in the coefficientCI'C (x, y), and pruning the summations

min(N,n+N) min(N,n+N)
Fign—k and > JkGn—k
k=max(—N,n—N) k=max(—N,n—N)

to the only termsFpg, and f, G we obtain:
min(N,n+N) _
e~ Y RGui+Foga+ fGo=Cf % + Foga + f2Go.
k=max(—N,n—N)
After these modifications, the original nonlinear coupling coef‘ﬁci@)ﬁlG (x, y) has been reduced to a linear form that
couples mode and mode zero only. It should be noted that, since at convergenfgsadire zero, the converged solution is not

altered at all; only the rate of convergence is, but on the other hand each iteration is now much faster. The system of equations
thus reads:

KoAf, 4+ Byfy, = —ry,

whereK g accounts for tha-derivative (first or second order); the vector of unknowns is

Un
fo=| ™1,
Wn
Pn
and
1 0 0 0 Oy ing 0
A 2_(70 o o 0’ B, _ Bz (Up), inﬂljo 0 ,
Vo Up O O 0 B3> inBVo Oy
Wo 0 Up O 0 (Wo), Baz inp
with

By = (Vo) +inpWo — (-)yy +n2p2,
Bap=(2Vo), +inBWo— ()yy + n’g2,
Baz= (Vo) + 2inBWo — (), +n°p°.
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The residue ,,, which must be driven to zero by the iteration, can be rewrittan,asrg + (r1), Wherer 1 contains the terms
to be differentiated inr andrg all the other terms:

Vn)y +inB Wy T,
€Yy +inBCTV — (@), +n262T, clv
O (), 4 BT — Wy 40282V 4 By || €TV
VW) +inBCIYW — (W) yy +n2B2W, +inp B, cuw

The numerical solution of the direct problem is obtained by marching inxtbection, fromx = 0 to x = 1, while at each
step driving the iterative solution of the implicit difference equations to convergence.
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