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In the present work we revise results of transient growth in compressible boundary layers
(flat plate and sphere) to consider the complete Mack energy norm at the outlet, without
the assumption that the outflow perturbation is comprised solely of streaky structures.
Optimal perturbations are still in the form of counter-rotating streamwise vortices and
this justifies the choice of the scaling in the governing equations. A strong effect of the
complete (full) energy norm at the outlet is found for the flat plate in supersonic regimes.
No significant effects of the choice of the outlet norm can be appreciated for the sphere, in
the range of parameters that are relevant to wind tunnel testing or flight conditions.

Nomenclature

A,B,C

D,H ,M ,M̃ matrices

E energy of the perturbation

f vector of unknowns

G energy ratio parameter

i
√
−1

L augmented functional

M Mach number

p pressure

p vector of adjoint variables

Pr Prandtl number

R sphere radius

Re Reynolds number

T temperature

u streamwise velocity component

v wall-normal velocity component

w spanwise velocity component

x streamwise coordinate

y distance from the wall

z spanwise coordinate

β spanwise wavenumber

γ specific heat ratio

ν kinematic viscosity

θ meridional angle

ρ density

Subscripts

ad adiabatic conditions

e edge of the boundary layer

in inlet conditions

out outlet conditions

s basic state

w wall conditions

Subscripts

ad adiabatic conditions

I. Introduction

The problem of optimal disturbances, in the context of bypass transition to turbulence, has been of great
interest during the last decade. There are many applications where transition to turbulence occurs without
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exponential growth, but where there is great potential for transient growth of the disturbance energy in flows
that are stable to wave-like perturbations (Tollmien–Schlichting waves).
Transient growth arises from the coupling between slightly damped, highly oblique Orr-Sommerfeld and

Squire modes leading to algebraic growth followed by exponential decay in subcritical regions outside the
Tollmien-Schlichting neutral curve. A weak transient growth can also occur for two-dimensional modes
since the Orr-Sommerfeld operator and its compressible counterpart are not self-adjoint, and therefore their
eigenfunctions are not strictly orthogonal.1

Historically, the first approach to nonmodal disturbances was in the inviscid limit. It was found that the
streamwise disturbance velocity amplitude may grow algebraically in time, even though the basic flow does
not posses an inflection point.2 It was also showed that all parallel inviscid shear flows are unstable to a wide
class of three-dimensional disturbances3 and the result is independent of whether or not the shear flow is
unstable to exponential growth. The temporal analysis of the evolution of a three-dimensional disturbance
in a boundary layer4 revealed an initial algebraic growth followed by a viscous decay (transient growth). In
Ref. 5 optimal perturbations were first so named to denote the initial flow disturbances that produced the
maximum gain, defined as the ratio between the perturbation kinetic energies at the final and initial time. A
similar concept had, however, already been introduced for flow in a pipe.6 The first quantitative calculation
of three–dimensional optimal perturbations with respect to temporal growth for a parallel approximation of
the Blasius boundary layer can be found in Ref. 7. Other works,8,9, 10 carried out more than a decade ago,
recognized the great potential of nonmodal growth for explaining bypass transition.
Optimal perturbations in the spatial framework have only more recently been considered. The spatial

Cauchy problem within the scope of the linearized Navier–Stokes equations is, however, radically different
from the temporal one and ill posed. This is the main obstacle in applying to the spatial analysis the
same optimization methods used in the temporal case. The problem rises from the presence of modes
with a negative imaginary part of the streamwise wavenumber α. These are modes decaying upstream and
associated with the downstream boundary conditions. In Ref. 11 it was pointed out that if the downstream
boundary is moved far away, the upstream decaying modes can be neglected and the optimization can be
carried out within the scope of the Cauchy problem, similarly to the temporal analysis. The ill-posedness of
the spatial Cauchy problem was first overcome by considering the (linearized) boundary layer equations12,13

instead of the Navier–Stokes equations. In addition, nonparallel effects were included. It was found that
the optimal initial disturbance is composed of stationary streamwise vortices whereas the induced velocity
field is dominated by streamwise streaks. The maximum amplification occurs in the steady case (frequency
ω = 0) and for a non-zero value of the spanwise wavenumber β = 0.45 (scaled with l =

√
νL/U∞, ν being

the kinematic viscosity, U∞ the freestream velocity and L the longitudinal distance from the leading edge to
the location where output energy is maximized). In the spatial framework, optimal perturbations have also
been computed in the nonlinear case.14

The compressible counterpart of the aforementioned works has also been considered. Temporal15 and
spatial16,11,17 analyses of the transient growth phenomenon have been carried out within the scope of parallel
flow approximation. A model for transient growth including non-parallel effects in the compressible boundary
layer past a flat plate has also been developed.18

Compressible optimal perturbations calculated by including surface curvature effects and non-parallel
growth of the boundary layer are still missing and can actually be of great importance to explain the long-
standing blunt body paradox.16 Depending on the choice of the norm, which states what quantity will be
maximized, constrained optimization in the framework of optimal perturbation can lead to quite different
results. In the incompressible framework, full inlet energy norm12 and energy norm including only the
spanwise and wall-normal velocity components13 were employed. In Ref. 12 both norms at the inlet and at
the outlet depend on the Reynolds number Re. However, in the limit Re → ∞ (practically for Re > 104)
results collapse on those obtained in Ref. 13.
The choice of the energy norm, therefore, can be a delicate issue, especially in the compressible case where

effects due to compressibility should be taken into account through the inclusion of density and temperature.
The physics of transient growth is mainly dominated by streamwise vortices12,13 and therefore the choice
of an initial energy excluding the streamwise velocity component, in the fashion proposed in Ref. 13, is
satisfactory. The choice of an outlet norm including only temperature and the component of the velocity
in the streamwise direction, however, might not represent completely the structure of the flow field if the
flow is not dominated by streamwise streaks. This could be the case of a blunt body, for which there are
some indications that the largest transient growth is located close to the stagnation point.19 Due to the
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short interval in the streamwise direction, a flow field mainly dominated by streaks might not be completely
established and thus the contribution of the wall-normal and spanwise velocity components to the energy
norm at the outlet could be non negligible.
The objective of the present work is therefore twofold. In the framework of compressible optimal per-

turbations, the use of a full energy norm at the outlet is considered and compared with the use of a partial
energy norm. Curvature effects are included in order to investigate optimal disturbances developing in the
compressible, non-parallel boundary layer over a sphere.

II. Governing equations

Governing equations for the steady, three-dimensional disturbance in a compressible flow are derived
from the linearized Navier–Stokes equations.
A small parameter ε = Href/Lref is introduced for scaling purposes, where Href =

√
νrefLref/Uref is a

typical boundary layer length in the wall-normal direction y and Lref is a typical scale of the geometry
(length of the flat plate L, radius of the sphere R, etc.). In the case of the flat plate Href = l =

√
ν∞L/U∞

(the subscript ∞ stands for freestream parameters, outside the boundary layer), while for the sphere Href =√
νrefR/Uref where the reference quantities are the values at the edge of the boundary layer at a certain

downstream location xref , x being the streamwise direction. The scaling parameter ε is thus strictly related

to the Reynolds number Re. For the flat plate ε = Re
−1/2
L , where ReL = U∞L/ν∞ is the Reynolds

number based on the length of the plate and freestream conditions, while for the sphere ε = Re
−1/2
ref , where

Reref = UrefR/νref is the reference Reynolds number based on the radius of the sphere R and reference
parameters.
As it follows from previous works regarding optimal perturbations in both incompressible and compress-

ible boundary layers,13,20,17,14,21 the disturbance flow is expected to be dominated by streamwise vortices
and therefore the following scaling is employed. The streamwise coordinate x is normalized with Lref , whereas
the wall-normal coordinate y and the spanwise coordinate z are scaled with εLref . The streamwise velocity
component u is scaled with Uref , wall-normal velocity v and spanwise velocity w with εUref , temperature T
with Tref and pressure p with ε

2ρrefU
2
ref . Density ρ is eliminated through the state equation.

Due to the scaling adopted, the second derivative with respect to the streamwise coordinate x is smaller
than the other terms, and is therefore neglected. This leads to a change in the nature of the equations from
elliptic (Navier–Stokes equations) to parabolic.
For the flat plate, perturbations are assumed to be periodic in z, so that a general variable can be

expressed as q(x, y) exp(iβz), where q(x, y) is the amplitude, which depends on x and y, β is the spanwise
wavenumber and i is the imaginary unit. Similarly, for the sphere, perturbations are assumed to be periodic
in the azimuthal direction φ as exp(imφ), where m is the azimuthal index.
If the vector of perturbations is f = [u, v, w, T, p]T (where the superscript T denotes the transpose), with

w = iw̃ (w̃ being the amplitude of the spanwise velocity component), the governing equations can be written
as follows:18

(Af)x = (Dfy)x +B0f +B1fy +B2fyy (1)

This form of the governing equations is general and can be derived for different geometries such as flat plate,
sphere, sharp cone or blunt-nose cone. Nonzero elements of the 5 by 5 real matrices A, B0, B1, B2 and
D for the flat plate are defined in the appendix of Ref. 18, while for the sphere they are reported in the
appendix of Ref. 17.
As far as boundary conditions are concerned, all perturbations are required to be zero at the wall except

for p, while in the freestream all perturbations vanish except for v:

y = 0 : u = 0; v = 0;w = 0;T = 0

y →∞ : u→ 0;w → 0; p→ 0;T → 0
(2)

In order to isolate the derivative with respect to x, system (1) can be recast in a simple form as

(H1f)x +H2f = 0 (3)

where operators H1 and H2 are still 5 by 5 real matrices and contain the dependence on x and y due to
the basic flow:

H1 = A−D(·)y; H2 = −B0 −B1(·)y −B2(·)yy (4)
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System (3) is parabolic in nature and can be solved by means of a downstream marching procedure with
initial data specified at the inlet section of the domain x = xin.
It is worth noting that, due to the normalization chosen, the disturbance equations for the flat plate are

Reynolds number independent, i.e. Reynolds number Re does not enter explicitly in the equations, while
for the sphere they are not Reynolds number independent due to the parameter ε in the scaling, which is
associated with curvature effects.

III. Constrained optimization and adjoint discrete equations

As stated in the introduction, we are interested in finding initial optimal disturbances for the compressible
boundary layer over a flat plate and a sphere. The term “optimal” here refers to the initial condition that is
able to produce the worst possible scenario as far as transition is concerned. It is clear that the choice of a
specific quantity that can measure this worst possible scenario is neither easy nor unique. In previous works
dealing with optimal perturbations in the incompressible framework,12,13,20,14,21 the kinetic energy of the
disturbance field has always been the choice.
Once the objective function has been identified, the Lagrangian multiplier technique is employed in order

to solve the constrained optimization problem. In doing so the costate or adjoint equations are derived.
If this is applied to the discrete equations, the discrete version of the adjoint problem is obtained. The
procedure is outlined for a general case, as done in §II.

A. The objective function

In problems related to boundary-layer transition, the quantity that monitors the instability development is
typically the kinetic energy. In optimal perturbation studies the latter is usually maximized at the outlet of
the computational domain, but in other cases the integral of the kinetic energy over the whole domain has
been considered, especially for optimal control problems.20,14 Since one of the goals of the present study is
to check how the use of a “full energy norm” at the outlet can influence the results, the expression we choose
to maximize is Mack’s energy norm22 of the perturbation kinetic energy and temperature in the outlet plane,

Eout =

∫
∞

0

[
ρsout(u

2
out + v2

out + w2
out) +

ρ2
outTsout

γρsoutM
2
+

T 2
outρsout

γ(γ − 1)TsoutM2

]
dy. (5)

Expression (5) was derived for perturbations in the boundary layer over a flat plate within the temporal
framework and is here utilized for the spatial one, as done in Ref. 18 (for the sphere, the integration
generates a slightly different expression for the energy norm, which can be found in Appendix of Ref. 17).
After employing the equation of state for the basic flow and for the perturbation and normalizing p according
to the scaling in §II, the norm reads

Eout =

∫
∞

0

[
ρsout(u

2
out + v2

out + w2
out) +

psoutT
2
out

(γ − 1)Ts
2
outM

2

]
dy (6)

and can be more compactly recast in matrix form as

Eout =

∫
∞

0

(
fT
outM̃outfout

)
dy (7)

where the linear operator M̃out is a diagonal 5× 5 matrix

M̃out =




ρsout 0 0 0 0

0 ρsout 0 0 0

0 0 ρsout 0 0

0 0 0
psout

(γ − 1)Ts
2
outM

2
0

0 0 0 0 0




. (8)
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The initial condition is arbitrary, in the sense that in principle we can assign all five variables at xin.
However, in Ref. 13 it was observed that for the incompressible case, in the Re→∞ limit, the choice uin = 0,
pin = 0, vin and win related by the continuity equations guarantees the maximum gain in an input-output
fashion. This choice also correspond to the physical mechanism, observed in transitional boundary layer
flows, known as the lift-up effect,3 according to which streamwise vortices lift low momentum flow up (from
the wall) and push down high momentum flow causing streaks that eventually break down to turbulence. Led
by these considerations, here we focus on initial perturbations with only v and w nonzero, which correspond
to steady, streamwise vortices. It should be noticed, however, that in the case of finite Reynolds number, for
example Re = 1000, and for the incompressible boundary layer past a flat plate, the choice of a full energy
norm at both inlet and outlet guarantees the largest gain in the optimization.12

The kinetic energy of the optimal disturbance fin, if only vin and win are nonzero, is therefore:

Ein =

∫
∞

0

[
ρsin(v

2
in + w2

in)
]
dy, (9)

or more compactly

Ein =

∫
∞

0

(
fT
inM̃ infin

)
dy (10)

where M̃ in is a 5× 5 diagonal matrix

M̃ in =




0 0 0 0 0

0 ρsin 0 0 0

0 0 ρsin 0 0

0 0 0 0 0

0 0 0 0 0




(11)

Since the problem is linear, we can choose a certain normalization for the initial disturbance at xin, e.g.
Ein = E0 = 1.
From the above discussion it is clear that the whole problem of finding optimal perturbations reduces

to a “constrained optimization”, in which we seek the initial conditions for the disturbance equations (3)
that maximize (7) and that satisfy the constraint Ein = E0 at xin together with the direct equations (3) and
boundary conditions (2) at each x ∈ (xin;xout).

B. Constrained optimization

The classical Lagrange multiplier technique is one of the most known tools to solve constrained optimization
problems. As applied to optimal perturbations, numerous examples can be found in the literature regarding
the continuous version of such an approach, which leads to the so-called adjoint equations in a continuous
fashion. Rigorously speaking, in the theory of linear operators the adjoint equations are derived by satisfying
an equality involving an inner product.23,24 Therefore their form is not necessarily related to constrained
optimization problems. On the contrary, when the adjoint equations are derived from a constrained opti-
mization (as in our case) only if the objective function includes exclusively quantities at the boundaries of
the domain then their form is the same as those derived from an inner product equality. In fact, if we try to
maximize the integral of the energy over the whole domain (as opposed to the outlet energy only), a source
term arises in the adjoint equations.20,14,21 Less numerous are the examples where the Lagrange multiplier
technique is applied directly to the discrete equations.25,26,13,20,14,21

The use of the discrete approach has several advantages among which the necessity of an “ad hoc” adjoint
code is avoided and a foolproof test is available by comparing the results of the direct and adjoint calculation,
which must match up to machine accuracy for any step size and not only in the limit of step size tending to
zero.21 This is due to the conservation of a quantity which depends on x only.25,13 For a thorough discussion
on the issue of continuous versus discrete adjoints the reader is referred to Ref. 27.
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The numerical discretization of a general parabolic system of partial differential equations such as (3)
can always be recast as

Cn+1fn+1 = Bnfn (12)

where n denotes the n-th grid point in the streamwise direction x, f is the vector of unknowns (not with
only 5 elements but with 5×Ny, where Ny is the number of grid points in the wall-normal direction y) and
matrices C and B depend on x (as the basic flow does) and account for the discretization in both x and y.
The solution is found by marching forward in space from n = 0 (xin), given the initial condition f0, to n = N
(xout). The boundary conditions at the wall and for y →∞ are already included in the matrices rows. The

discrete objective function we aim to maximize is J = fT
NMN fN , where MN is the discrete version of M̃out

as defined in (7) and accounts for the discretization of the integral in y.
The augmented functional L, which contains the objective function J = Eout, the constraints (12) and

Ein = E0, and the Lagrange multipliers, is written as

L(f0, . . . , fN ) = fT
NMN fN +

N−1∑

n=0

[
pT

n (Cn+1fn+1 −Bnfn)
]
+ λ0[f

T
0 M0f0 −E0] (13)

where pn is the vector of Lagrangian multipliers, which depends on the streamwise location n and M 0 is

the discrete version of M̃ in as defined in (10), in the same fashion as MN . Only the dependence on fn
(n = 0, . . . , N) has been emphasized in L because its derivative with respect to the Lagrangian multipliers
(which is needed to impose δL = 0) would lead to the constraints, that are already known. The summation
between 0 and N − 1 in (13) involving pn reflects the integral along x. The integration by parts (which
would be performed in the continuous case) is here replaced by adding and subtracting pT

n+1Bn+1fn+1 in
the summation so that the terms can be rearranged as

N−1∑

n=0

[
pT

n (Cn+1fn+1 −Bnfn)
]
=

N−1∑

n=0

[
pT

nCn+1fn+1 − pT
n+1Bn+1fn+1

]
+

N−1∑

n=0

[
pT

n+1Bn+1fn+1 − pT
nBnfn

]

=

N−1∑

n=0

[
pT

nCn+1fn+1 − pT
n+1Bn+1fn+1

]
+

pT
NBN fN − pT

0 B0f0,

and expression (13) can be rewritten as

L(f0, . . . , fN ) = fT
NMN fN +

N−1∑

n=0

[
pT

nCn+1fn+1 − pT
n+1Bn+1fn+1

]
+

pT
NBN fN − pT

0 B0f0 + λ0[f
T
0 M0f0 − E0].

(14)

As in the continuous case, the stationary condition is found when δL = 0

δL
δf0

δf0 +
N−2∑

n=0

[
δL

δfn+1
δfn+1

]
+

δL
δfN

δfN = 0,

which, in order to be satisfied for any arbitrary f0, fn+1 and fN , leads to

δL
δf0

= −pT
0 B0 + 2λ0f

T
0 M0 = 0 (15)

δL
δfn+1

= pT
nCn+1 − pT

n+1Bn+1 = 0, n = 0, . . . , N − 2 (16)

δL
δfN

= 2fT
NMN + pT

NBN = 0 (17)

Equation (15) furnishes the optimality condition to be satisfied at xin and equation (16) leads to

pT
nCn+1 − pT

n+1Bn+1 = 0, (18)

which is the discrete form of the adjoint equations to be solved by marching backwards from xout to xin with
the initial condition provided by equation (17) solved for pN .
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1. Outlet conditions

From expression (17) follows
B

T
NpN = −2MT

N fN (19)

where BN is the discrete representation of H1out and is singular due to the fact that the fifth column in
H1 is made of zeros as px = 0 in this approximation (the last column of matrix A is made of zeros). This
implies that the solution cannot be found unless the solvability condition is satisfied. The singularity of H 1

is not simply a practical numerical problem for the solution of (19) but contains deeper information and
insights regarding the initial condition for the adjoint variables. The impossibility to determine a unique
solution of (19) translates into the fact that at least one out of five adjoint variables is free at x = xout and
therefore can be chosen arbitrarily. For sake of simplicity, we set p5 (the fifth adjoint variable) to zero.

2. Inlet conditions

By imposing δL/δfin = 0 condition (15) was obtained. The operator M 0 is the discrete counterpart of M in

and is singular (as M out) so M
−1
0 does not exist and (15) can not be solved. However, M 0 is diagonal and

therefore the j-th element of f0 corresponding to M 0jj 6= 0 can be retrieved by

f0j =





(pT
0 B0)j

2λM0jj
if M0jj 6= 0

0 if M0jj = 0

(20)

The multiplier λ is found by imposing E0 = Ein.

C. An optimization algorithm

The constrained optimization developed above has enabled us to write a set of equations and boundary
conditions that must be satisfied simultaneously. More specifically, we first need to solve system (12) from
x = xin (n = 0) to x = xout (n = N) with initial conditions at xin expressed by (20). We refer to this as the
direct or forward problem. Then we need to solve system (18) from x = xout (n = N) to x = xin (n = 0),
with initial conditions derived from (19) and provided at x = xout. We call this the adjoint or backward
problem.
A quite large system of linear equations supplemented by initial and boundary conditions has to be

solved. Instead of doing it in one shot, however, we employ the intrinsic parabolic nature of the equations
to efficiently solve separately the two coupled problems. Such an algorithm can be outlined in the following
few steps:

1. a guessed initial condition f
(0)
in is provided at the beginning of the optimization procedure

2. the forward problem (12) is solved at the n-th iteration with the initial condition f
(n)
in

3. the objective function J (n) = E
(n)
out is computed at the end of the forward iteration and compared to the

objective function J (n−1) = E
(n−1)
out at the end of the previous forward iteration. If |J (n)/J (n−1)−1| <

εt (where εt is the maximum tolerance accepted to stop the optimization) then the optimization is
considered converged

4. if |J (n)/J (n−1)−1| > εt the initial conditions for the backward problem (19) are assigned at the outlet
and derived from the direct solution at x = xout

5. the backward problem (18) is solved from x = xout to x = xin

6. a new initial condition for the forward problem f
(n+1)
in is obtained from the solution of the backward

problem at x = xin employing (20)

7. the loop is repeated from step 2 on
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It should be noticed that the above procedure does not necessarily guarantee convergence. If there is
an attractor for the solution, then the procedure will capture it and this happens quite fast (2-3 forward-
backward iterations) when the norm proposed in Ref. 13 is used. On the other hand, it was observed
that when the full energy norm is employed the convergence is generally much slower, depending on the
wavenumber β, reaching the fastest convergence in the proximity of the optimal β.

IV. Discretization

A finite difference discretization scheme has been implemented to numerically solve the equations (3)
with boundary conditions (2). For sake of generality, grid points in x and y are not necessarily equally
spaced. A staggered grid is introduced in the wall-normal direction, with variables u, v, w and T known
at the grid points, and p known at the mid-grid (staggered) points. All equations are satisfied at the grid
points except for continuity, which is satisfied in the mid-grid points. The use of the uneven grid in y allows
us to cluster more nodes close to the wall so as to take into account the large gradients of boundary layer
quantities in this region.
The last point of the y-grid is located far enough from the wall to allow us to specify there the boundary

conditions for y →∞.
Fourth-order non-compact finite differences are used for the y discretization, employing six points so as to

allow 4th order accuracy for the second derivative. By using six points, the first derivative is automatically
5th order accurate and the function (when interpolated due to the staggered grid) is 6th order accurate.
Also the discretization in the streamwise direction is based on uneven grid. Since the system of boundary

layer equations is parabolic, a second order backward discretization is chosen, which requires the solution at
two previous steps to be known. For the first step, however, a first order scheme is used because only the
initial condition is available.
After the discretization, the original system of partial differential equations (3) can be re-written in the

following form: [
C0

n+1H
1
n+1 +H

2
n+1

]
fn+1 = −C1

n+1H
1
nfn − C2

n+1H
1
n−1fn−1 (21)

where coefficients C0
n+1, C

1
n+1 and C

2
n+1 account for the streamwise discretization and matrices H

1
n+1 and

H
2
n+1 are the discretized version of respectivelyH1 andH2 introduced in §II. The solution is thus completely

determined once the initial condition f0 = fin is given at xin. Clearly, for the first step in x a first-order
approximation is used for the derivative since data are available only at one point upstream, not two.
Equation (21) can be easily rewritten in a form similar to (12)

Cn+1fn+1 = C1
n+1Bnfn + C2

n+1Bn−1fn−1 (22)

where Cn+1 =
[
C0

n+1H
1
n+1 +H

2
n+1

]
and Bn = −H

1
n

Contrary to the simple form (12), which refers to a scheme where the new solution fn+1 depends
on fn only, the discrete equation (21) depends on fn and fn−1 due to the second order approximation
in x. Therefore, the discrete adjoint system is slightly different from (18). More specifically, by re-
peating the same steps as in §B, the constraint Cn+1fn+1 − C1

n+1Bnfn − C2
n+1Bn−1fn−1 = 0 is left

multiplied by the vector of Lagrangian multipliers pn and then all terms are included in the summa-
tion on n (in the streamwise direction) to form the functional for the constrained optimization. Within
this summation, we first add and subtract the quantity pT

n+1

[
C1

n+2Bn+1fn+1 + C2
n+2Bnfn

]
and rearrange

the summation as
∑

pT
n [Cn+1fn+1] −

∑
pT

n+1

[
C1

n+2Bn+1fn+1 + C2
n+2Bnfn

]
and then we add and sub-

tract the quantity pT
n+2

[
C1

n+3Bn+1fn+1

]
so that the final form of the summation is

∑
pT

n [Cn+1fn+1] −∑
pT

n+1

[
C1

n+2Bn+1fn+1

]
−∑

pT
n+2

[
C2

n+3Bn+1fn+1

]
. In this way, all terms are right multiplied by fn+1 so

that the derivative of the functional L with respect to fn+1 leads to the adjoint discrete equation in the form

pT
nCn+1 − pT

n+1C
1
n+2Bn+1 − pT

n+2C
2
n+3Bn+1 = 0, (23)

where the solution at step n is obtained by marching upstream in space from the outlet to the inlet and
needs two steps downstream to be computed.
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V. Results

Results for both flat plate and sphere are discussed. For the flat plate case, all the results presented
in Ref. 18 obtained there with a spectral collocation method (SCM) were repeated and the code verified
against them (this verification is omitted here). Only original results regarding the use of the full energy
norm (FEN) at the outlet are considered and compared to the partial energy norm (PEN). On the other
hand, the code for optimal perturbations on the sphere was verified against Ref. 17 (SCM) and results are
here presented for both partial and full energy norm at the outlet. The inlet norm is kept in the form (9),
which encompasses v and w only.
The base flow for the flat plate is the same as in Ref. 18 and is obtained from a conventional similarity

solution; for the case of the sphere, baseflow details can be found in Ref. 17.

A. Flat plate

Here we consider a perfect gas with a specific heat ratio γ = 1.4, Prandtl number Pr = 0.7 and viscosity
depending on T only, in accordance with the Sutherland law. The stagnation temperature T0 is fixed and
equal to 333 K. Emphasis is on the use of the full energy norm at the outlet, which includes not only u and
T (as done in Ref. 18) but also also v and w, as described in the section devoted to the optimization (§A).

Re = 10
3

Re = 10
4

Re → ∞

β

G
/R

e

10.80.60.40.20

0.0018

0.0016

0.0014

0.0012
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0.0004

0.0002

Figure 1. Objective function G/Re: effect of Re and β
for M = 3, Tw/Tad = 1, xin = 0 xout = 1.0

β

G
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0.004
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0

Figure 2. Objective function G/Re: effect of β, Tw/Tad

and norm choice Partial Energy Norm (PEN - only u2

and T 2) Full Energy Norm (FEN) for M = 0.5, Re =
103, xin = 0 xout = 1.0. ×, PEN; ¤, Tw/Tad = 1.00; ◦,
Tw/Tad = 0.50; M, Tw/Tad = 0.25.

Figure 1 shows the effect of the Reynolds number Re on the gain G/Re, where G = Eout/Ein. The plot
refers to the case Mach numberM = 3, adiabatic wall, initial station for the computation xin = 0, and outlet
station xout = 1.0. It is clear that the Reynolds number has quite a strong influence only for Re < 10

4, while
for values greater than this limit, results do not differ significantly from the Reynolds-independent case.
The effect of the norm for different temperature factors Tw/Tad, where Tw is the wall temperature and

Tad the recovery temperature, atM = 0.5 is reported in figure 2 (xin = 0, xout = 1.0). The Reynolds number
for the case of full energy norm is Re = 103. It can be concluded that at low Mach number M = 0.5, though
large enough to allow compressible effects, the choice of the norm does not produce a remarkable difference.
The conclusion drawn from figure 2 does not extend to larger values of Mach number. In figure 3, a

moderate supersonic Mach number M = 1.5 is considered. The effect of increasing M is clearly to shift the
maximum of the curves towards smaller values of β and to enhance the difference between results obtained
with different norms. This is particularly true for Tw/Tad = 1.00.
In the supersonic case,M = 3, reported in figure 4, a difference up to 17% can be detected when comparing

PEN with FEN. This difference is remarkably higher for low values of the wavenumber β. Incidentally, this
was visible also in figure 2 of Ref. 12 for M = 0.
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Figure 3. Objective function G/Re: effect of β, Tw/Tad

and norm choice Partial Energy Norm (PEN - only u2

and T 2) Full Energy Norm (FEN) for M = 1.5, Re =
103, xin = 0 xout = 1.0. ×, PEN; ¤, Tw/Tad = 1.00; ◦,
Tw/Tad = 0.50; M, Tw/Tad = 0.25.
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Figure 4. Objective function G/Re: effect of β, Tw/Tad

and norm choice Partial Energy Norm (PEN - only
u2 and T 2) Full Energy Norm (FEN) for M = 3, Re =
103, xin = 0 xout = 1.0. ×, PEN; ¤, Tw/Tad = 1.00; ◦,
Tw/Tad = 0.50; M, Tw/Tad = 0.25.
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Figure 5. Objective function G/Re: effect of xin and β and norm choice Partial Energy Norm (PEN - only u2

and T 2) Full Energy Norm (FEN) for M = 3, Tw/Tad = 1, xout = 1.0. ¤, xin = 0.0; ◦, xin = 0.2; M, xin = 0.4; full
symbols refer to FEN, empty ones to PEN.

A further comparison between the use of full or partial energy norm at the outlet is shown in figure 5.
Curves differ not only because of the energy norm but also for the initial location xin, which ranges from 0 to
0.4. As reported in Ref. 17, moving xin downstream produces a much higher energy growth. From figure 5,
however, it can be noticed that the significant difference observed between comparing the cases xin = 0.0
and xin = 0.2 is no more present when comparing results for xin = 0.2 and xin = 0.4. The use of the full
energy norm (as opposed to the partial energy norm), provides an energy growth much larger than in all
previous cases, where different Mach numbers and temperature factors where considered. For xin = 0.4 and
β = 0.1 this difference is on the order of 62%.
Velocity profiles for these conditions (M = 3.0, Re = 103, xin = 0.4, xout = 1.0 and β = 0.1) are reported

in figures 6 and 7, where FEN is compared with PEN. Optimal perturbations at xin = 0.4 (figure 6) reveal
that the use of the full energy norm does not produce significant changes in v, while more discrepancies are
seen in w. On the other hand, outlet profiles (figure 7) for the full energy norm case show a larger effect
on v, rather than on w. Profiles of u and T at the outlet are not reported because there is not a significant
effect on them (as expected).
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T 2) Full Energy Norm (FEN) for M = 3.0, Re = 103,
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Figure 7. Outlet profiles at xout = 1.0: effect of norm
choice Partial Energy Norm (PEN - only u2 and T 2)
Full Energy Norm (FEN) for M = 3.0, Re = 103, xin =
0.4 xout = 1.0 and β = 0.1.

For the flat-plate case it can be concluded that an energy norm including v and w at the outlet provides a
significant difference with respect to the case where only u and T are considered and that this effect increases
with the Mach number and xin.

B. Sphere

Figure 8 provides an example of comparisons between present results and previously published ones17 (θ
denotes the meridional angle, which is associated with the streamwise direction). It goes without saying
that the agreement is extremely good, but the purpose of the figure is not to show the agreement, rather to
provide better insights regarding the dependence of G on the the choice of θin and θout (respectively inlet and
outlet locations). It can be noticed that when the range of θ is small the gain is the largest. The difference
θout − θin, however, is not the only factor that causes a larger energy growth. In fact, curves with the same
θout − θin (5 deg) but with different θin clearly show that the strongest transient growth is achieved close to
the stagnation point.
However, the main outcome from figure 8 seems to be that the divergence of the flow caused by the

spherical geometry is responsible for large transient energy growth in the proximity of the stagnation point.
Moreover, this effect is much stronger when the difference θout − θin is small. Due to the short downstream
development of the flow, one issue is that maybe the optimal perturbation in the form of counter rotating
vortices still dominates the flow field and therefore the choice of the partial energy norm at the outlet could
be misleading. On the contrary, the use of the full energy norm (which encompasses not only u and T but
also v and w) at the outlet would clarify this issue.
Figure 9 shows the effect of norm choice and ε. Quite a number of curves are reported because comparisons

of FEN have meaning depending on the value of ε, but results with the PEN change with ε as well. The
constant parameters are θin = 2.0 deg, θout = 5.0 deg θref = 30.0 deg and Tw/Tad = 0.5. For ε = 10

−3

there is basically no difference between using PEN and FEN. However, it is precisely in this range of ε that
it is meaningful to investigate the behavior of the solution, since it corresponds to the estimate values for
wind tunnel conditions and flight tests, as reported in figures 6 and 7 of Ref. 17. For higher values of ε the
difference between the use of the two norms seems to be more evident.
The conclusion from figure 9 is, however, that the maximum appreciable difference is confined to within

about 1% of the parameters of interest.
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Figure 8. Objective function Gε2: effect of interval
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θref = 30.0 deg, Tw/Tad = 0.5. ¤, ε = 1·10−3; ◦, ε = 2·10−3;
M, ε = 3 · 10−3; full symbols refer to FEN, empty ones
to PEN.

VI. Conclusions

Optimal perturbations in the compressible regime have been considered for both flat plate and sphere.
An adjoint-based optimization technique is employed and the discrete costate problem is obtained from the
discretized direct problem by applying the Lagrangian multipliers technique in the discrete framework. This
simplifies the code, reduces the number of possible errors, and allows the automatic generation of coupling
conditions at the inlet and outlet. The code has been verified against available results.18,17

The main contributions of the present work are the analysis including the full energy norm at the
outlet and the fully discrete approach (including the coupling conditions), which considerably facilitates
its implementation. In previous works regarding compressible optimal disturbances the quantity that was
maximized was always an incomplete Mack’s norm, including only u and T in the fashion proposed by
Luchini13 in the incompressible case. This norm, however, does not consider the effect of v and w at the
outlet, because they scale with the Reynolds number and therefore are neglected as they are much smaller
than u and T .
Results for the flat plate show that when the Reynolds number is on the order of 103, a significant

difference in the energy growth (up to 62%) is found between the two choices of the outlet energy norm (full
or partial). This is particularly true for supersonic Mach numbers and downstream locations of the initial
point for the calculation (xin = 0.4). On the other hand, when compressible effects are considerable but the
basic flow is subsonic, the difference between the full and partial energy norms is not a critical factor. If the
Reynolds number is greater than 104, vout and wout do not play a significant role even in supersonic flows.
Results for the sphere show that the largest gain occurs close to the stagnation point and for a small

range of the meridional angle, raising the issue of the use of a full energy norm at the outlet in order to
account for the possibly still undeveloped streaky structure of the perturbation field. Results reveal that, in

the range of interesting values of Reref (related to the small parameter ε = Re
−1/2
ref ) that are typical of wind

tunnel tests or flight conditions (ε = O(10−3)), no significant role is played by v and w at the outlet.
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