Optimal Disturbances in the Supersonic Boundary
Layer Past a Sharp Cone

Simone Zuccher? Ivan Shalaev' and Anatoli Tumint
University of Arizona, Tucson, AZ, 85721, USA

Eli Reshotko®
Case Western Reserve University, Cleveland, OH, 44106, USA

Optimal disturbances for the supersonic flow past a sharp cone are computed in order
to assess the effects due to flow divergence. This geometry is chosen because previously
published studies on compressible optimal perturbations for flat plate and sphere did not
allow to discriminate the influence of divergence alone, as many factors characterized the
growth of disturbances on the sphere (flow divergence, centrifugal forces and dependence
of the edge parameters on the local Mach number). Flow-divergence effects result in the
presence of an optimal distance from the cone tip for which the optimal gain is the largest
possible, showing that divergence effects are stronger in the proximity of the cone tip. By
properly rescaling the gain, wavenumber and streamwise coordinate due to the fact that
the boundary layer on the sharp cone is /3 thinner than the one over the flat plate, it
is found that both the gain and the wavenumber compare fairly well. Moreover, results
for the sharp cone collapse into those for the flat plate when the initial location for the
computation tends to the final one and when the azimuthal wavenumber is very large.
Results show also that a cold wall enhances transient growth.

I. Introduction

In many applications transition to turbulence occurs without the classical exponential growth. On the
contrary, a transient growth of the disturbance energy and a subsequent downstream decay is observed in
flows that are stable to wave-like perturbations such as Tollmien—Schlichting (TS) waves. The problem of
optimal disturbances, in the context of bypass transition to turbulence, has been of great interest during the
last decade.

Transient growth arises from the coupling between slightly damped, highly oblique Orr-Sommerfeld (OS)
and Squire modes leading to algebraic growth followed by exponential decay, in subcritical regions outside
the TS neutral curve. A weak transient growth can also occur for two-dimensional modes since the OS
operator and its compressible counterpart are not self-adjoint, and therefore their eigenfunctions are not
strictly orthogonal.

Historically, the first approach to nonmodal disturbances was in the inviscid limit and in the temporal
framework, where it was found that the streamwise disturbance velocity amplitude may grow algebraically
in time, even though the basic flow does not posses an inflection point.” Several other pioneering works
followed”>*->>% %" in the temporal framework, recognizing the great potential of nonmodal growth for
explaining bypass transition. For a brief account on the development of transient-growth studies, not only
in classical fluid mechanics but also in meteorology, the reader is referred to Ref.

Optimal perturbations in the spatial framework have only more recently been considered. The spatial
Cauchy problem within the scope of the linearized Navier—Stokes equations is, however, radically different
from the temporal one and ill posed, > raising some obstacles in applying to the spatial analysis the same
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optimization methods used in the temporal case. The ill-posedness of the spatial Cauchy problem was first
overcome by considering the (linearized) boundary layer equations'” ' instead of the Navier-Stokes equa-
tions, and including nonparallel effects. The optimal initial disturbance was found to be composed of
stationary streamwise vortices whereas the induced velocity field was dominated by streamwise streaks. In
the spatial framework, optimal perturbations have also been computed in the nonlinear case.

In the compressible case, and within the scope of the parallel flow approximation, temporal > '° and
spatial' > '%'” analyses of the transient growth phenomenon have been carried out. A model for transient
growth including non-parallel effects in the compressible boundary layer past a flat plate has also been
developed®’ and then extended to the compressible boundary layer past a sphere.’” """ In Refs. 10,
compressible optimal perturbations were calculated by including surface curvature effects and non-parallel
growth of the boundary layer. Moreover, the use of a full energy norm at the inlet'” and at the outlet":
was considered, motivated by fact that in a flow field dominated by streamwise vortices, the wall-normal
and spanwise velocity components at the outlet might also play a role in the energy norm to be maximized.
This could be the case of a blunt body, for which there are some indications that the largest transient
growth is located close to the stagnation point,”" where a flow field dominated by streaks might not yet been
established.

Despite the efforts done insofar, some issues regarding transition in supersonic flows are still open. One
of them is the long-standing blunt-body paradox,'’ according to which transition occurs in supersonic flows
behind the detached bow shock, in a region that is subsonic and characterized by a favorable pressure gradient
and therefore stable to TS-instability-like phenomena. Transient growth seems to be a promising mechanism
to explain such a paradox.'” However, the ultimate elucidation of the blunt-body paradox requires solving
the roughness receptivity problem, which can explain the origin of the perturbation. The latter issue has
not been addressed yet.

In the previously cited works concerning the compressible boundary layer past a sphere, """ several
effects contribute to the results, such as the geometrical divergence of the flow (in the azimuthal direction),
the centrifugal forces (in the streamwise direction), and the indirect dependence of the edge conditions (at
the edge of the boundary layer) on the Mach number through the meridional coordinate. On the contrary,
the supersonic boundary layer past a flat plate does not include any of these effects. A comparison between
flat-plate results and sharp-cone results, on the other hand, would shed some light on the role played by flow
divergence, due to geometrical factors only. In the case of sharp cone, in fact, there are no centrifugal forces
and the Mach number is constant in the streamwise direction, excluding two out of three effects present in
the compressible boundary layer past a sphere. An analysis of the optimal perturbations in the supersonic
flow over a sharp cone is, however, still missing.

The objective of the present work is therefore the characterization of optimal disturbances in the super-
sonic boundary layer over a sharp cone. The aim is twofold. Results here obtained, when compared with
the flat-plate and sphere cases, will elucidate the role played by the flow divergence alone. Secondly, the
extension to the axisymmetric case of the sharp cone represents an intermediate step towards the compu-
tation of optimal perturbations in the supersonic boundary layers for more realistic geometries, such as the
blunt-nose cone and three-dimensional geometries.

II. Governing equations

The governing equations for steady, three-dimensional disturbances in the supersonic flow past a sharp
cone are derived from the linearized Navier—Stokes equations, in the same fashion as in Refs. 20,19,10,11.

A small parameter € = Hyer/Lyer is introduced for scaling purposes, where Hyef = \/VrefLref/Urer is
a typical-boundary layer length in the wall-normal direction y and L. is a typical scale of the geometry
(length of cone L in the present case). The scaling parameter € is thus strictly related to the Reynolds
number € = Re;e}/ 2, where Reyef = Uret Lref/Vrer is the reference Reynolds number.

As it follows from previous works regarding optimal perturbations in both incompressible and com-
pressible boundary layers, > ~% =% %1% 11 the disturbance flow is expected to be dominated by streamwise
vortices and therefore the following scaling is employed.'¥ The streamwise coordinate z is normalized with
Lyer, whereas the wall-normal coordinate y is scaled with eLe. The azimuthal coordinate ¢, being an
angle, is not normalized. The streamwise velocity component u is scaled with Uef, wall-normal velocity v
and azimuthal velocity w with €U, temperature T' with Tier and pressure p with e2prerfef. Density p is
eliminated through the state equation.
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Due to the scaling adopted, the second derivative with respect to the streamwise coordinate x is smaller
than the other terms, and is therefore neglected. This leads to a change in the nature of the equations from
elliptic (Navier—Stokes equations) to parabolic.

Perturbations are assumed to be periodic in the azimuthal direction ¢ as exp(im¢), where m is the
azimuthal index, so that the general unknown can be expressed as ¢(z,y)exp(im¢), where g(x,y) is the
amplitude, which depends on z and y, and i is the imaginary unit.

If the vector of perturbations is f = [u, v, w, T,p]T (where the superscript T denotes the transpose), with
w = i (W being the amplitude of the spanwise velocity component), the governing equations can be written
as follows:

This form of the governing equations is general and can be derived for different geometries such as flat plate,
sphere, sharp cone or blunt-nose cone. Nonzero elements of the 5 by 5 real matrices A, By, By, B> and
D are reported in appendix A. New terms, relative to the flat-plate case, arise in the equation due to the
geometrical factor introduced by the half-angle of the cone tip 6.

As far as boundary conditions are concerned, all perturbations are required to be zero at the wall except
for p, while in the freestream all perturbations vanish except for v:

y=0: u=0v=0w=0;T=0

2
y—=>00: u=>0Gw—=>0p—>0T—0 @

In order to isolate the derivative with respect to z, system (1) can be recast as
(Hlf)z+H2f=0, (3)

where operators H; and H, are still 5 by 5 real matrices and contain the dependence on z and y due to
the basic flow:
H, :A_D(')y§ H, Z_BO_BI(')y_B2(')yy- (4)

System (3) is parabolic in nature and can be solved by means of a downstream marching procedure with
initial data specified at the inlet section of the domain x = z;,.

It is worth noting that the disturbance equations are not Reynolds-number independent (contrary to the
flat-plate case) because of the parameter € in the scaling, which is associated with geometrical effects.

III. Formulation of the optimization problem

The problem of finding arbitrarily normalized optimal perturbations practically reduces to performing
a constrained optimization. The constraints are the governing equations (3) and the normalization of the
initial condition, i.e. FEi, = FEy, Ei, being the energy of the perturbation at the inlet and Ey a constant
(typically 1). The objective function is a particular norm to be identified, and therefore arbitrary. However,
it should be a measure of the flow conditions relevant to the transition process. This choice is neither easy nor
unique. In previous works dealing with optimal perturbations in the incompressible framework," = % =% 2%
the kinetic energy of the disturbance field has always been the choice.

In the compressible case, previous works”"> 7> > 1 maximized Mack’s energy norm“* of the perturbation
kinetic energy, density, and temperature (or simply the part containing v and T') in the outlet plane,

> 2 20,2 2 pguthout T02utp50ut
Eout /0 |:p80ut [uout +e (vout + wout)] + ’7psoutM2 ’Y(’Y _ I)TsoutMQ
in which the scaling described in §II is employed. Expression (5) was derived for perturbations developing in
the boundary layer over a flat plate within the temporal framework, and is here utilized for the spatial one,
as done in Ref. 20. After employing the equation of state for the basic flow and for the perturbation, and
observing that in the limit € - 0 v and w can be neglected (Reynolds-independent approach, see Ref. 13),
T2

the norm reads -
- 2 _ Psoutfout
Eout - ‘/0 |:p50utuout + (’Y _ ]_)T 2 M2:| dy7 (6)

sout

dy, (5)

or more compactly

Eyy = / (f()j;tMoutfout) dy, (7)
0
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where the linear operator M out 1S the diagonal 5 x 5 matrix

Psous 0 0 0 0
0 0 0 0 0
Mout: 0 00 pOt 0 (8)
Sou
0 00 — T e 0
(’7 1)T80utM
0 00 0 0 |

The initial condition for the compressible boundary-layer equations is not arbitrary, but only three of
the five variables can be imposed at z;,.”> However, in the incompressible case and for Re — o0, it was
observed that the choice u;, = 0, pin = 0, vin and wi, related by the continuity equation guarantees the
maximum gain in an input-output fashion'’ (in the incompressible case the number of independent initial
conditions is two; see also Refs. 26,13,27). This choice also corresponds to the physical mechanism, observed
in transitional boundary-layer flows, known as the lift-up effect,” according to which streamwise vortices lift
low momentum flow up (from the wall) and push down high momentum flow causing streaks that eventually
break down to turbulence. Led by these considerations, here we focus on initial perturbations with only v
and w nonzero, which correspond to steady, streamwise vortices.

The kinetic energy of the optimal disturbance fi,, if only vy, and wy, are nonzero, is therefore:

Ey, = / |ipsin62 (Ui2n + wlzn)] dy7 (9)
0

or more compactly
oo —_—
Ey, = / (flqr:Mmfm) dy; (10)
0

where M in is the 5 x 5 diagonal matrix

0 0 0 00

N 0 epy;, 0 0 0

Min,=|0 0 €pg, 00 (11)
0 0 0 00
0 0 0 00

The quantity to be maximized is G = Eqyt/ Fin, the ratio between the outlet and inlet norms. However,
in order to allow direct comparison with previous works, Ge? will be presented in the results section

o0 p TZ
[ i+ ey
Ge? =22 7 sout . (12)

/ [psin (vi2n + wlzn)] dy
0

Since the problem is linear, an arbitrary normalization for the initial disturbance at zi, can be chosen,
e.g. Ein, = Ey = 1, so that the maximization of (12) turns out to be equivalent to the maximization of
expression (7), i.e. J = Eoyus.

It should be clear now that the whole problem of finding optimal perturbations reduces to a constrained
optimization, in which we seek the initial conditions for the disturbance equations (3) that maximize (7) and
that satisfy the constraint Ei, = Ep at Zin, together with the direct equations (3) and boundary conditions (2)
at each = € (Zin; Tout)-

The details of the constrained optimization procedure are not reported here, as they can be found in

Refs. 10,11, to which the Reader is referred. The classical Lagrange multiplier technique is applied to the
discrete version of problem (3), which can be recast as C,y1f, 1 = B,f,, leading to the so-called adjoint
equationg”® 19 2% 25, 1410, 1 (here m denotes the m-th grid node in the streamwise direction z, f is the

vector of 5 X IV, unknowns at each n station, IV, being the number of grid nodes in the wall-normal direction
y; matrices C and B depend on z and y, as the basic flow does, and account for the discretization in both
x and y).
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The use of the discrete approach has several advantages among which the necessity of an “ad hoc” adjoint
code is avoided and a foolproof test is available by comparing the results of the direct and adjoint calculation,
which must match up to machine accuracy for any step size and not only in the limit of step size tending to
zero.” 1

The augmented functional £, which contains the objective function J = E,yt, the constraints (3) and
Ei, = Ey, and the Lagrange multipliers, is then manipulated by adding and subtracting a certain quantity
S0 as to rewrite it in a way more suited for its differentiation.'’>'" The optimization imposes d£ = 0, which
leads to the adjoint equations in the discrete form and coupling conditions between the direct and adjoint
problems at the inlet (zi,) and outlet (zoy¢). These conditions can be written in a matrix form so that their
application becomes straightforward. In order to retrieve the outlet conditions, a system needs to be solved
where the coefficient matrix is singular (due to p, = 0 in this approximation), reflecting the fact that at
least one out of five adjoint variables is free at x = zo,¢ and therefore can be chosen arbitrarily. For sake of
simplicity, we set ps (the fifth adjoint variable) to zero.

The constrained optimization formulation requires the simultaneous solution of a large, coupled system
of direct equations, adjoint equations, boundary conditions and coupling conditions. Instead of doing it in
one shot, however, we employ the intrinsic parabolic nature of the equations to efficiently solve separately
the two coupled problems. Such an algorithm can be outlined in the following few steps. (1) a guessed

initial condition fi(r?) is provided at the beginning of the optimization procedure; (2) the forward problem is
solved at the é-th iteration with the initial condition £"; (3) the objective function J) = Eg;)t is computed

in
at the end of the forward iteration and compared to the objective function J(~1) = ng;l) at the end
of the previous forward iteration. If |7 /7= — 1] < ¢ (where ¢ is the maximum tolerance accepted
to stop the optimization) then the optimization is considered converged and the problem solved; (4) if
|7 /7= — 1| > € the initial conditions for the backward problem are assigned at the outlet and derived
from the direct solution at & = oyt; (5) the backward problem is solved from z = zoyt t0 = Zin; (6) a
new initial condition for the forward problem fi(niﬂ) is obtained from the solution of the backward problem
at ¢ = x;, employing the coupling condition at the inlet; (7) the loop is repeated from step (2) on until
it is eventually ended in step (3). It should be noted that this procedure does not necessarily guarantee
convergence. If there is an attractor for the solution, then the procedure will capture it and this happens

quite fast (2-3 forward-backward iterations).

IV. Discretization

A finite difference discretization scheme has been implemented to numerically solve equations (3) with
boundary conditions (2). For the sake of generality, grid nodes in x and y are not necessarily equally spaced.
A staggered grid is introduced in the wall-normal direction, with variables u, v, w and T known at the grid
nodes, and p known at the mid-grid (staggered) nodes. All equations are satisfied at the grid nodes except
for continuity, which is satisfied in the mid-grid nodes. The use of the uneven grid in y allows us to cluster
more nodes close to the wall so as to take into account the larger gradients of boundary layer quantities in
this region. The last node of the y-grid is located far enough from the wall to allow us to specify there the
boundary conditions for y — oo.

Fourth-order non-compact finite differences are used for the y discretization, employing six nodes so as to
allow 4th order accuracy for the second derivative. By using six nodes, the first derivative is automatically
5th order accurate and the function (when interpolated due to the staggered grid) is 6th order accurate.

Also the discretization in the streamwise direction is based on an uneven grid. Since the system of
boundary layer equations is parabolic, a second order backward discretization is chosen, which requires the
solution at two previous steps to be known. For the first step, however, a first order scheme is used because
only the initial condition is available.

For further details and for the thorough derivation of the discrete adjoint equations, the Reader is referred
to Refs. 10,

V. Results

The basic flow for the sharp cone is obtained from the flat-plate case by rescaling the wall-normal
coordinate y and its derivatives according to Mangler’s transformations.”’ The local Mach number, Miqc,
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Figure 1. Objective function Ge?: effect of zoys and m for § = 15°, Mo, = 6, Mjy = 4.367, T /Tug = 1, Tin = 0.2.
O, zout = 0.25; B, zout = 0.35 O, zTout = 0.35; @, xout = 0.4;

at the edge of the boundary layer was calculated assuming calorically perfect gas flow at free stream Mach
number My, = 6. The calculations are performed for cone half-angles of § = 15° and 25°. The main goal
in the presentation of the results is to discuss the effects originating from flow divergence induced by the
geometry.

Figure 1 shows the objective function G2 obtained from the optimization procedure for § = 15°. Adia-
batic boundary conditions are used for the temperature at the wall, T\, /Thq = 1, and the initial station is
kept constant, zij, = 0.2, while changing the outlet one. Results show that there exists a location, down-
stream of x;, = 0.2, where the curve of the maximum energy growth as a function of m = em reaches the
largest value, after which the maximum of the curve decreases with increasing xoys. Among the computed
curves, the maximum gain seems to be reached for z,y; = 0.35, but a better estimate can be obtained by
performing a parabolic interpolation of the data available at 8 = 0.035. In the latter way the maximum gain
is found for zoys = 0.34, i.e. for an interval Ax = Zouy — Zin = 0.14. When comparing results for zous < 1,
however, it should be kept in mind that the gain is normalized with Re,ef, and not with Regyt.

Figure 2 reports the same plots as in figure 1, with the difference that the inlet location is now at zi,, = 0.4.
As seen before, as the outlet location z4,¢ is moved downstream, the curve of optimal gain first shows an
increasing maximum but after z,,; = 0.7 the maximum decreases with z4y¢. In this case the estimated oyt
that causes the maximum gain is Zou = 0.67 and the interval Az = oy — Tin = 0.27 is greater than the
value Az = 0.14 previously observed for an inlet location closer to the cone tip. This means that divergence
effects are stronger in the proximity of z;, = 0, as one could argue from geometrical considerations.

Figure 3 shows the objective function Ge? obtained for # = 25° and inlet location x;, = 0.2. The general
trend of the results is the same as in the previous case. As the outlet station is moved downstream, the
maximum energy growth keeps increasing (see Zouy = 0.225, Touy = 0.25 and zoyy = 0.275) until a certain
location at which the curve is the largest possible (zoys = 0.3), after which the maximum growth starts
decreasing again (zout > 0.4). For § = 25° and zi, = 0.2 the estimated xo,¢ that leads to the maximum is
Zout = 0.32. The z-interval for reaching such a maximum is Az = 0.12, which is smaller than what was seen
for 8 = 15° and =i, = 0.2. This implies that divergence effects are stronger for a larger angle 6.

Figure 4 shows results for 8§ = 25° and z;, = 0.4. The behavior of the curves is still the same as before,
but the largest values of Ge? are now reached for an estimated zou = 0.64. Az = 0.24, being smaller than
Az = 0.27 observed for § = 15, confirms the fact already seen in figure 3 that flow-divergence effects are
stronger if the nose-tip angle is larger.

Figure 5 reports results for the flat plate in the same fashion as previously seen. The reason why these
plots are shown is that in the flat-plate case there are no effects due to the divergence of the flow and thus
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Figure 2. Objective function Ge?: effect of zoyt and m for § = 15°, Mo, = 6, Mjy = 4.367, Tw/Tug = 1, Tin = 0.4.
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Figure 3. Objective function Ge?: effect of 2oyt and m for § = 25°, My, = 6, Mo, = 3.218, Tw/Taa = 1, zin = 0.2.
X, Tout = 0.225; O, zout = 0.25; M, Tout = 0.275; O, zout = 0.3; ®, Tout = 0.45 A, Tout = 0.6.

by comparing figure 5 with the previous ones more insights can be gained regarding the influence of the
geometry. Conditions in figure 5 are M = 3.218 (the local Mach number on the 25° cone), adiabatic wall,
Zin = 0.4. Tt is clear that moving the outlet location downstream leads to a monotonic increase in the curve
of maximum energy growth, reaching larger values as z,yt moves downstream without a precise optimal
distance from z;,. This is a new finding with respect to previous figures and to previously published results
for flat plate,” in which only the inlet location zi, was changed, while keeping zoyt = 1.0. As metioned
earlier, however, when comparing results for z,yt < 1 it should be remarked that the gain is normalized with
Reyer, and not with Reoyt. The straightforward conclusion from the comparison between figure 5 and the
previous ones is that, once the inlet location is fixed, divergence effects result in the existence of an optimal
outlet location z,yy for which the largest energy growth is reached. This behavior was present also in the
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Figure 5. Objective function G/Re, flat plate: effect of zoyt and 8 for M = 3.218, T /Taq = 1, zin = 0.4. 0O,
ZTout = 0.45; B, Tout = 0.55;5 O, ZTout = 0.6; @, Tout = 1.05

sphere case, ™ '”>"" corroborating the conjecture of being due to the flow divergence only.

Figure 6 plots the reverse case to what was seen before. The gain Ge? is shown for the sharp-cone case,
keeping the outlet location fixed, zoys = 1.0, and changing the inlet location z;,. The other parameters are
0 = 25° My =6, Mioc = 3.218, and Ty, /Taq = 1. Results show that the largest energy growth is obtained
for 2, = 0.8, i.e. for Ax = 0.2. This is comparable with the value of Ax found before for the 25° cone,
supporting once more the observation that flow-divergence effects become weaker as we move downstream.
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Figure 6. Objective function Ge?: effect of z;, and m for § = 25°, Mo = 6, My, = 3.218, T /Tuqg = 1, Tout = 1.0.
O, zj, = 0.2; W, z;, = 0.4; O, xj, = 0.6; ®, z;;, = 0.8; A, z;, = 0.9.

VI. A quantitative comparison between flat-plate and sharp-cone results

Results presented in figure 5 certainly shed a new light on the differences between flat-plate and sharp-
cone geometries that can be attributed to flow divergence. However, the order of magnitude of the gain
reported in that figure differs quite remarkably from what shown in the figures regarding the sharp cone,
allowing only a qualitative comparison. In order to compare quantitatively the energy growth for the flat
plate and cone, both physics and scaling should be considered.

The physics suggests that the results for the sharp cone should reduce to those obtained for the flat plate
in the limits zi, — Zous and m — oco. The first is dictated by the fact that divergence effects (which are
the main difference between sharp-cone and flat-plate geometries) are negligible far from the cone tip (in
the proximity of Z,yt), as proved by the plots presented in §V. Moreover, when zj, — Zout there is not
enough streamwise development of the flow to let the divergence influence the results. The second limit
is due to the fact the the presence of many vortices in the azimuthal direction forces the flow to be less
sensitive to divergence and thus to behave like in the flat-plate case. Hence, in order to emphasize the effects
of divergence in the flow past the sharp cone, we focus on the limits x;, — Tous and m — 0o. The outlet
location z,ut = 1 is kept constant, as for the flat-plate case, so as to allow direct comparison. Changing s
would imply changing the Reynolds number Re when comparing results.

The scaling is important as well. The fact that the boundary layer over the cone is /3 thinner than
the boundary layer over the flat plate and the choice of the same length scale L. for the definition of the
Reynolds in both cases suggest that G/Re for the flat plate’”>'"'" must be compared with 3Ge?. On the
other hand, the wavenumber 2/ H efplate must be compared with

mz _ mHrefeone z
- )
R R Hrefcone

meo =

where z is the transversal coordinate along the surface and R is the local radius. The comparison between
B2/ Hrefplate and m¢ therefore reduces to the comparison between § and mHrefeone/R- However, since

Hietcone = Hrefplate/ V3, and R = L, sin @, by taking into account that € = Hiefplate/ Lret, One gets

mHl‘efcone — erefplate — erefplate _ me _ m
R V3R V3Lsin# V3sinf  +/3sin’

Figure 7 shows the gain as a function of the wavenumber for different angles 8 and different intervals of
AZx = Zoyt — Zin, for both the flat plate and sharp cone. Many conclusions can be deduced from this plot.
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and m/(v/3sinf) respectively, effect of zj, and wavenumber. M. = 3, Tw/Taq = 1, Tous = 1.0. O, § = 15° and
zin = 0.95; A, 8 = 15°, zj, = 0.95 and ¢ = 0.0001; O, § = 15° and =z, = 0.97113; v, 8 = 25° and z;, = 0.95; A, flat
plate, zij;, = 0.91340; ®, flat plate, z;, = 0.95.

First, the scaling. All results obtained for the cone in the case zi, = 0.95 and zoy = 1.0 (O, A, v, ©) scale
correctly for small values of the wavenumber, regardless of #. This is an a posteriori test on the correctness
of the scaling. Secondly, e does not have any effect on the gain, as it is proved by the comparison between the
cases € = 0.001 (O0) and € = 0.0001 (A), both referring to zin = 0.95, Zous = 1.0 and 6 = 15°. All results are
obtained for € = 0.001, unless otherwise stated. Third, the comparison between cone (empty symbols) and
flat plate (full symbols) should be carried out with further care with respect to Az. In fact, because of the
difference in the boundary layer thickness between flat plate and cone, distances Az having about the same
value in boundary-layer thicknesses should be considered. We suggest to compare AZcone With Azpjate / \/3,
implying that the sharp-cone cases z € [0.95;1] and z € [0.97113;1] should be compared respectively with
the flat-plate cases z € [0.91340;1], and z € [0.95;1]. Figure 7 confirms it by showing that results for the
sharp cone and flat plate collapse onto each other for m — 0o, when the correct intervals Az are considered
(see 0 vs. m and O vs. e).

Figure 8 reports the comparison between sharp cone (empty symbols), § = 15°, and flat plate (full
symbols) for the properly rescaled Az (i.e. O compares with B, 0 with @, A with A, and v with v). It
can be noted that the difference in the energy growth between the two geometries diminishes as xj, — Zout
(see for example the sharp-cone case xi, = 0.95, v, compared to the flat-plate case x;, = 0.91340, v) and
m — 00, confirming what one should expect.

Figure 9 shows the effect of the wall temperature together with the comparison between the two geometries
in the limits zin = Zouy and m — oo. Empty symbols refer to sharp cone (6 = 15°) and full symbols to flat
plate. It can be noted that a cold wall, i.e. T /Toq = 0.5 (0 and v for sharp cone, corresponding to the cases
e and v for the flat plate) enhance the energy growth, as already pointed out in previous studies.””> """
Moreover, not only the gain is larger for a cold wall, but also the wavenumber for which the optimum is
reached. When comparing adiabatic versus cold wall results, it should be noted that in the cold case the
gain is larger for small values of the wavenumber, while is becomes smaller for larger wavenumbers (see for
instance the cases 0 and e, for which the discriminating wavenumber is about 8 ~ 1.05). Moreover, for very
large values of the wavenumber, results for the two geometries collapse onto each other, as a consequence of
the m — oo limit previously described. This behavior is consistent, for each case considered (see also O vs.
m,and v vs. V).

Figure 10 reproduces the behavior of the energy growth (including only the perturbations u and T') as a
function of the streamwise coordinate, where the latter is properly rescaled so as to allow a direct comparison
between the sharp-cone case § = 15°, z € [0.95;1.0] (solid line) and the flat-plate case = € [0.91340;1.0]
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Figure 8. Objective function, comparison between G/Re (flat plate, full symbols) and 3Ge? (sharp cone, empty
symbols) as a function of 8 and 7~n/(\/§sin 0) respectively, effect of zij, and wavenumber. Mi,c = 3, Tw/Toq = 1,
Zout = 1.0. Sharp cone: O, § = 15° and z;, = 0.6; O, § = 15° and z;, = 0.8; A, § = 15° and zj, = 0.9; v, § = 15° and
Tin = 0.95. Flat plate: W, z;;, = 0.30718; ®, z;, = 0.65359; A, zi, = 0.82679; V¥, zi, = 0.91340.
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0
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Figure 9. Objective function, comparison between G/Re (flat plate, full symbols) and 3Ge? (sharp cone, empty
symbols) as a function of § and /(v/3sinf) respectively, effect of z;,, wavenumber and Ty /Toq- Mo = 3,
Zout = 1.0. Sharp cone: 0O, 0 = 15°, Ty /Taq = 1.0 and zin, = 0.95; O, 8 = 15°, Ty /Taq = 0.5 and zin = 0.95; A,

0 =15°, Ty /Taq = 1.0 and zi, = 0.97113; v, 0 = 15°, Tw/Teq = 0.5 and z;, = 0.97113. Flat plate: W, z;, = 0.91340 and
Ty /Tag = 1.0; ®, i, = 0.91340 and Ty /Taq = 0.5; A, Tin = 0.95 and Ty /Thg = 1.0; ¥, zin = 0.95 and Ty /Taq = 0.5.

(dashed line). Since the comparison is done at the optimal wavenumbers (m = 0.186 and 8 = 0.537), the
energy grows monotonically with the streamwise coordinate””:
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Figure 10. Energy (u2,7?) as a function of the streamwise coordinate Tcone. Comparison between G/Re (flat
plate, dash line) and 3Ge? (sharp cone, solid line) at the optimal wavenumbers 7 = 0.186 and 8 = 0.537 for
6 = 15°, Mo = 3, Tout = 1.0, T3y /Taq = 1. For the flat plate, z has been rescaled as Tplate,,; — (Tplategys — z)/V/3.

VII. Conclusion

Optimal disturbances originating in the supersonic boundary-layer flow past a sharp axisymmetric cone
have been studied.

Such a geometry is motivated by several factors. Similar studies previously published™ "> *">** reported
optimal perturbations for flat plate and sphere, with the consequence that a direct comparison between
them is extremely complicated due to the many effects present in the case of the sphere (flow divergence,
centrifugal forces and dependence of the edge parameters on the local Mach number). The sharp cone, on
the other hand, represents a simpler geometry characterized by flow-divergence effects only (with respect
to the case of flat plate), allowing us to identify these effects. Moreover, in the development of the studies
towards a more realistic three-dimensional supersonic case, the sharp cone geometry represents a natural
step before the blunt-nose cone geometry.

Equations are obtained from the linearized Navier—Stokes equations by employing a scaling that assumes
the perturbation dominated by streamwise vortices. This leads to parabolic-in-z equations. The optimization
is carried out in an iterative manner, relying on the alternate solution of the direct and adjoint problems
related by coupling conditions at the inlet and outlet.

Results are carried out for different conditions.

A first set is obtained by keeping the inlet location fixed and changing the outlet location. An optimal
distance from the inlet is found, for which the curve of the maximum gain is the largest. This Az (Az =
Tout —Tin) increases when the inlet location is moved downstream, proving that divergence effects are stronger
in the proximity of the cone tip. Increasing the half-cone angle leads to a decrease of Az (compared for the
same values of i, ), supporting the intuitive idea that for larger angles divergence effects are stronger. When
these results are compared with the case of the flat plate, it becomes clear that the presence of an optimal
downstream location for the energy growth is an unique characteristic of flows dominated by geometrical
divergence, such as sharp cone and sphere. For the flat plate case, in fact, given an inlet station ziy,, the
curve of optimal energy gain reaches larger values monotonically as the outlet location is moved downstream,
contrary to the cases of sharp cone and sphere.

A second set of results in obtained keeping the outlet location fixed and changing the inlet one. The
gain, wavenumber and Az are properly rescaled taking into account the half-cone angle 6 and the fact that
the boundary layer on the sharp cone is v/3 thinner than the one over the flat plate. By comparing the two
geometries, it is found that both the gain and the wavenumber scale fairly well and that results for the sharp
cone collapse into those for the flat plate in the limits zy, — Zous and m — oco.
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Results show also that a cold wall enhances transient growth.
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A. Matrices for compressible flow past a sharp cone

Assuming that the basic flow is known, let z, ¥y and ¢ denote the three independent coordinates, where
z is the streamwise distance from the nose tip, y the wall-normal distance and ¢ the azimuthal angle. With
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this notation, u,v,w are the corresponding velocity field, that together with temperature T and pressure p
form the set of problem’s unknowns. Density p is related to T" and p by the state equation and thus is not
an explicit unknown.

The scaling is as described in §II. The unknowns in the disturbance equations are only five and are
assumed to be proportional to exp (im¢), where m is the azimuthal index and i the imaginary unit.

In what follows viscosity p, is assumed to be a function of temperature only, and therefore u!, stands for
the derivative du,/dTs.

Transformations of the linearized equations lead to the system of partial differential equations

(Af), = (Df,), + Bof + B:f, + Bof,,, 1)
where A, By, By, By and D are 5 x 5 matrices, and can be recast as
(H,f), + Hof = 0. (2)
Operators H, and H» are still 5 X 5 matrices and contain the dependence on z and y:
Hi=A-D()y; Hz=-Bo— Bi()y — Ba2(")yy- ®3)

The expression to be maximized, in the limit ¢ — 0 (i.e. Re — ©0), is the integral in the wall-normal
direction of the kinetic energy and temperature. After the transformations imposed by the geometry, Eout
reads

oo 2 Psout Tout
. [ [
Eout = /0 Sln0($ + €y cot 0) pSOutuout ++ (7 _ I;T 2u M2 dy: (4)

Sout
where the term sin§(z + ey cot §) stems from the integration over the whole domain, i.e. over the three
independent variables.
The nonzero elements of the matrices are here reported, with the wavenumber 3 defined as f =
m/(z + ey cot B), m being m = em.

Continuity equation:

All = Ps; U
A14 — _ps S.
Ts 7p
B11 — _ s .
0 (z +eycoth)’
dp
Bl2 — _ s,
0 6y )
By® = _aﬂps§
V. psU.
B4 9 PsVs sUs
?3 Ay ( T + Ts(x + ey cot 8)
B;® = —ps;
v
B4 — PsVs
1 Ts ’
z-momentum equation:
A2l = 2pSUS;2
U
424 — _PsYs .
onv,
V. 2pU.
B21 __ PsVs _ 2 sUs
0 66yU s (z + ey cot h)
B22 - _ PsUs
0 3y
333 = _/BpsUs;

0 (psVsU 0 oU psU2
p» - < sVsUs v ' s sUg
0 ay( T, >+6y (“S ay>+T5<x+eycow)
Bfl = a/“LS - psVs;

Oy
B%Z = —psUs;
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psUsVs  ,0Us.
TS Ns 8y ?
Bgl = Ms;

24 _
Bi* =

y-momentum equation:
20
At =p Vo + = Ns

3 Oy

A% = psUs; 5

34 psUsVs ot Us.
A - Ts l’l’s 6y7

2 0 [Ops 1 2 0ps

Bl =" S S Yt N 1

0 36$<8y)+(w+eycot0)( 3 oy pV)

0psV, psU.

B2 =_9 5’8 2, _ __ P87S

0 Oy p (z + ey cot 8)

28 Ous

B33:_ sVs — o 5

0 BpsV: 3 dy

34 _ 1 psUsVs 1 , OUs _2 8# _}_ﬁ PsVs2

O 7 (z+eycoth) T, 3t 3% 0y oy \ T,

Oy [40Vs 20U [0
Oy |30y 3 0z | Oz
gl Ms 20

U.\ , 40°V, | 10°,
Y 3 0y2  30z0y

~ 3(z +eycoth + 3 0z’
4
B¥ = —2p,V, + = O
30y

Bu

B =2
34 , [40Vs 20U, psV2 2U, ,
Bl = Y + - Hs
30y 30z T 3(z + ey cot §)

B35 =-1;

4
B32 3/15,
D31 = &

3 b)

¢-momentum equation:

A = ps%s[}
444 = HsPYs .

3T, '’
B — psB Ops ﬂaﬂs 2Bus

= - - CPPs
3ps Ox (z + ey cot 8)

B2 — s Ops _ aﬂs
o 7 3p, Oy dy

OpsVs 2psU.
B4 — _ 2 . sVs sUs i
0 B us Oy (z +eycoth)’
B4 — _,B,Us 2 psVs + psUsﬁﬁ Ps\ wsUs B
0 3ps Oy 3Ts Oz \ ps 3T, (x + ey cot 6)
20py OUs | 2Bpi OV ABUspy
3 Or 3 0z 3(z+eycoth)’
By® = p;
op
B = —p,V, + ays
B — _B,us s
1 3TS ’
B33 = Hs;
Energy equation:
AP = p,Ty;
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v —10ps psTs

B51 — _ .
0 v 0z (z+eycoth)’
Op,T.
B52 — 78,
0 6:!/ )
BSS = —BpsTs; )
oU, B%u 1 0 oT.
54l (1) M2 s _ s = 9 [, 19Ls),
BO /,LS(’)’ ) ref ( 6y ) Pr + Pr 6y Mg 6y )
oU.
B = 20— M2,
Bi]z = —psTs;
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