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In this hands-on session you will use MATLAB to compute fundamental brain networks

features and investigate some aspects of brain topology. The hands-on is divided in four

parts which deals with the following topics:

1. Network adjacency matrices: visualization and interpretation

2. Measures of integration and segregation in small-world networks

3. Brain hubs and network visualization

4. Group-comparison for clinical studies and statistical issues

This  booklet  will  guide  you  through  a  series  of  exercises.  No  advanced  MATLAB

knowledge is required, and MATLAB tips-and-tricks will be provided to facilitate the coding

part. In the exercises you will also find some questions to help the discussion in the group. 

In  the  exercises  you  will  use  some  handy  MATLAB  toolboxes  dedicated  to  brain

connectivity  analysis.  You can get  extra  information on these toolboxes by visiting the

following resources:

Brain Connectivity Toolbox (BCT)

https://sites.google.com/site/bctnet/

This is a collection of MATLAB functions that compute graph theoretical measures

and implement a series of algorithms such as shortest path identification or network

community  detection.  The  graph  measures  and  algorithms  implemented  in  this

toolbox  are  described  in  the  paper  'Complex  network  measures  of  brain

connectivity: Uses and interpretations' (Rubinov and Sporns, 2010). During the lab,

it will be useful to have a look at the table at the end of the paper, which reports the

mathematical expressions of different graph measures. You can find the pdf of the

paper in the folder ‘Lab_Brain_Connectivity_And_Graphs/Resources’.

    

BrainNet Viewer

https://www.nitrc.org/projects/bnv

This is a MATLAB toolbox (with user interface) for 3D visualization of brain networks

(for the manual: ‘Lab_Brain_Connectivity_And_Graphs/Utilities/ ...

BrainNetViewer_20170403/BrainNet_Manual.pdf’).
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Getting started

To start this hands-on session, copy the folder 'Lab_Brain_Connectivity_And_Graphs' to

your Desktop.

Start MATLAB and change the MATLAB working directory to:

'...\Desktop\Lab_Brain_Connectivity_And_Graphs'.

To change the MATLAB working directory you can type the following command at the

MATLAB command line (insert your path):

>> cd('...\Desktop\Lab_Brain_Connectivity_And_Graphs')

Add the folder ‘Utilities’ and its subfolders to your MATLAB path. 'Utilities'  contains the

BrainNet Viewer, the BCT toolbox and some additional functions you will use in this lab.

>> addpath(genpath('Utilities'))

As a general remark, if you have any doubt concerning the usage, syntax or meaning of a

function you can type

>> doc function_name

to visualize the relative documentation. For example, check out what the function ‘genpath’

does by typing:

>> doc genpath
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MATLAB scripting

In programming languages,  scripts are text files containing sequences of instructions. A

script stores commands exactly as you would type them at the command line.

In this hands-on session it will be convenient to store your commands in a MATLAB script.

In this way you will be able to re-use the code at your convenience.

To initiate a new MATLAB script click the ‘New Script’ button in the  Editor tab. Write the

commands you have just learnt (‘cd’, ‘addpath’) in the script Editor. Note that you can also

insert comments in the script using the symbol ‘%’. Save your script clicking the ‘Save’

button and using the MATLAB scripts’ extension ‘.m’.

You can now execute your script by clicking the button ‘Run’ in the  Editor tab. This will

sequentially execute all the lines of code in the script, one after the other. 

In the hands-on session it will be more convenient to execute only one or few instructions

at a time. To execute only one or few lines of code, select them with the mouse, then right-

click and choose ‘Evaluate Selection’ (or simply select the code and hit the shortcut F9).
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Part 1. Gain confidence with brain connectivity matrices

In  the  morning  lectures  different  processing  steps,  algorithms  and  pitfalls  have  been

considered  for  the  estimation  of  structural  and  functional  brain  connectivity  networks.

Furthermore,  principles  of  graph theory  and brain  network  characterization  have been

discussed.  You  could  for  example  refer  to  the  following  books  for  a  more  extensive

coverage of the topic: (Newman 2010), (Sporns 2016).  

In  this  hands-on  session  you  will  investigate  topological  features  of  structural  brain

networks  (or  structural  connectomes)  estimated  from  diffusion  spectrum  imaging  and

deterministic streamline tractography. Each network is completely defined by its adjacency

matrix, and it represents the macroscale white matter connectivity between 82 cortical and

subcortical  regions as defined by the FreeSurfer Desikan-Killiany atlas (Desikan et al.,

2006).

• Load data into MATLAB:

>> load('Data\Connectome_HandsOn_Dataset.mat');

Inspect  the variables that  you have just  loaded by having a look at  your  MATLAB

‘Workspace’ window. Double-click on a variable to visualize it. Use the ‘size’ command

to inspect the dimensions of your variables, e.g.:

>> size(SC_ctrl)

What are the dimensions of the variables ‘SC_ctrl’ and ‘SC_schz’?

What do these variables represent?

• Note that ‘SC_ctrl’ contains data from healthy subjects, while ‘SC_schz’ contains data

from chronic  schizophrenia  patients.  Let's  now extract  a  single-subject  connectivity

matrix:

>> A = SC_ctrl(:,:,1);

Use the command ‘imagesc’ to visualize the matrix ‘A’:

 >> figure, imagesc(A), axis equal tight, colorbar;
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(remember to check out the MATLAB documentation if you are curious to know more

about MATLAB commands).

In order to gain a better visual contrast between large and small connection weights,

display the connectivity matrix using a logarithmic scale:  

 >> figure, imagesc(log(A)), axis equal tight, colorbar;

>> title('log(connectivity matrix)');

Use the function ‘hist’ to visualize the histogram of the non-null connection weights:

 >> figure, hist(A(A>0),20), xlabel('Connectivity weights');

Note that MATLAB allows you to filter the elements of an array (or of  a matrix) by

applying one or more conditions to the array. In this case, the condition ‘(A>0)’ selects

the elements of ‘A’ which are larger than zero. 

What  does  a  row  of  matrix  ’A’  represent?  Does  the  matrix  represent  a  directed  or

indirected  network?  Can  you  identify  any  pattern  in  the  matrix  such  as  symmetries,

quadrants and diagonals? (to understand the ‘anatomical’ organization of the matrix, have

a look at the variable ‘labels’) Where do you find the connections with the higher and lower

connection weights? Are there self-loops?

How are the connection weights distributed? Are they normally  distributed? Given the

range of values you observe, what could these connection weights represent?

Desikan-Killiany atlas - https://brainder.org/tag/freesurfer/
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• The adjacency matrix you have been working on represents a weighted network. In this

exercise you will convert it to an unweighted network:

>> th = 0;

>> B = double(A > th);

Note  that  in  MATLAB  the  result  of  the  operation  ‘(A>th)’ is  a  logical  matrix.  It  is

convenient to convert it to a numerical matrix using the command ‘double’.

Visualize the matrix 'B' using ‘imagesc’ and compute its network density:

>> nn = size(B,1); % this is the number of nodes

>> d = nnz(B) / (nn * (nn-1));

Note that in MATLAB the symbol ‘%’ indicates a comment. ‘nnz’ returns the number of

non-zero elements in a matrix.

What is the meaning of the variable ‘th’? Could we choose a different threshold value? Is

there any relationship between the threshold value and the number of false positive and

false negative connections we might expect in the network ‘B’?

Is there any disconnected node in this network, for the chosen threshold value?

What is the network density? Can you explain the formula we used to compute it?

• In many situations it can be interesting to obtain a network representative of a whole

group of subjects. A possible way to build a group-representative network is to select

the connections that are present in at least a certain percentage of subjects over the

group. To build the group-representative network of our healthy subjects we will first

threshold each individual connectivity matrix:

>> ns = size(SC_ctrl,3); % this is the number of subjects

>> for i = 1:ns

>>     SC_ctrl_bin(:,:,i) = double(SC_ctrl(:,:,i) > th);

>> end

>> C = sum(SC_ctrl_bin,3) / ns;
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Note  that  the  for-loop allows  code  to  be  executed  repeatedly:  in  our  case  the

thresholding instruction is executed for each subject i, with i going from 1 to 15 (for i =

1:ns).

Check the size of the variables 'SC_ctrl_bin' and 'C'. Visualize the matrix 'C' using the

command 'imagesc' and plot its histogram:

>> figure, hist(C(:),15), xlabel('Connection recurrence');

Note that this instruction uses the symbol ‘:’ to select all the elements of matrix ‘C’. 

Now build your group-representative matrix ‘SC’:

>> th_perc = 0.5;

>> SC = double(C >= th_perc);

What is the meaning of each entry of the matrix ‘C’? Can you comment on its structure?

How many region pairs are consistently connected (or disconnected) over the 15 healthy

subjects? Are there many connections that are not reproducible over subjects? Could one

use the recurrence matrix ‘C’ for data quality control?

What does the variable ‘th_perc’ represent? What is the density of the network ‘SC’? Do

you expect it to be larger or smaller than the single-subject density values?
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2. Network measures of integration and segregation:

    Is the brain small-world?

In this part of the lab you will compute network measures to characterize integration and

segregation  properties  of  brain  structural  networks.  Broadly  speaking,  integration

measures quantify “how easy it is” to go from one node of the network to another distant

node of the network. Brain integration properties are thought to underline high-order brain

functions such as cognitive processing  and have been shown to  be  affected in  many

different disorders. Segregation measures describe the level of connectedness between

‘neighbouring’ nodes in a network, at multiple hierarchical levels. The presence of groups

of highly interconnected brain regions mirrors functional specialization properties. If you

want your can have a look at some review on this topic, such as (Bullmore and Sporns

2012), (Sporns, 2013).

As  it  has  been  discussed  in  the  morning  lectures,  a  network  that  combines  good

integration and segregation properties is called ‘small-world’.

So, is the brain a small-world network?

• Let’s consider the group-representative network that you have just created:

>> figure, imagesc(SC), axis equal tight;

>> title('Group-representative connectivity matrix');

Use  the  Brain  Connectivity  Toolbox  functions  to  compute  the  distance  matrix

associated with 'SC':

>> D = distance_bin(SC);

>> figure, imagesc(D), axis equal tight, colorbar;

>> title('Distance matrix');

What does each entry of matrix ‘D’ represent? Do you remember the concept of shortest

path?

Which  are the  minimum  and  maximum  distances  between  two  nodes  in  this  brain

network? What is the unit of measurement of the distance values? Would that be the same

for a weighted network?
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Do you remember the concept of network efficiency? How does it relate to the distance

matrix?

• Compute  the  global  efficiency  and  the  average  clustering  coefficient  of  the  brain

network using the BCT. Note that the clustering coefficient is a nodal measure, so you

will get a value for each one of the 82 nodes in the network. Average the nodal values

to get a measure representative of the whole-network local connectedness:

>> Eff = efficiency_bin(SC);

>> Cl = clustering_coef_bu(SC);

>> Cl_avg = mean(Cl);

Can you compute yourself the network efficiency from matrix ‘D’? (compare your result

with the output of the BCT function 'efficiency_wei') How does the network efficiency relate

to the characteristic path length of the network?

What does the clustering coefficient represent? Compute by hand the clustering coefficient

of  a  brain  region  and  double-check  your  result  with  the  output  of  the  BCT  function

‘clustering_coef_bu’. Consider for example the left transverse temporal cortex, which has

numerical ID 74.

Display the ‘Eff’ and ‘Cl_avg’ values. Does the ‘SC’ network demonstrate high efficiency?

Does  it  demonstrate  high  clustering  properties?  Can  you  interpret  the  efficiency  and

clustering values in absolute terms? Generally speaking, which basic network properties

can influence the efficiency and clustering values?

• It is difficult to assess whether a network has high or low integration or segregation

properties without comparing it to a reference model. In their seminal paper, Watts and

Strogatz  compared a series  of  networks  to  a  reference random network  where  all

connections have the same probability to be drawn (Watts and Strogatz, 1998). Here,

we need to think about a good reference model to probe the brain network integration

and segregation properties.

By  definition,  a  reference  model  preserves  some  properties  of  the  object  under

investigation, while destroying some other properties of the object. Which properties of

the brain network would you preserve in a fair reference model?

Use the BCT to compute a reference network from the ‘SC’ network and visualize it:
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>> R = randmio_und(SC, 100);

>> figure, subplot(1,2,1), imagesc(SC), axis equal tight;

>> title('Brain network');

>> subplot(1,2,2), imagesc(R), axis equal tight;

>> title('Randomized network');

Visually compare the brain network and its randomized version. What do you observe?

Can you recognize characteristic patterns (symmetries, quadrants, etc.) in the randomized

network?

What is the density of the randomized network? Have the two networks the same number

of nodes and the same number of connections? Pick up a network node and check its

number of connections in both the brain and the randomized network. Are they different?

• Compute the characteristic path length and the clustering coefficient of the randomized

network and compare them with the brain network values (for example by computing

their ratio):

>> Cpl = sum(sum(D) / (nn-1)) / nn;

>> D_rand = distance_bin(R);

>> Cpl_rand = sum(sum(D_rand) / (nn-1)) / nn;

>> Cl_rand = clustering_coef_bu(R);

>> Cl_rand_avg = mean(Cl_rand);

>> Cpl_ratio = Cpl / Cpl_rand;

>> Cl_ratio =  Cl_avg / Cl_rand_avg;

Do  the  'Cpl_ratio'  and  'Cl_ratio'  values  tell  us  something  about  the  brain  network

organization? How is the small-world index defined? Can you compute the small-world

index for the brain network? Is the brain a small-world network?

Estimate  a  new  randomized  version  of  the  brain  network  (using  the  ‘randmio_und’

function) and re-compute the small-world index. Do you obtain the same numerical result

as before? How can you handle this issue?
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(Watts and Strogatz, 1998)
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Part 3. Brain hubs and network visualization

In this section we will identify the most topologically central regions in the brain network,

usually referred to as network 'hubs'. On this topic see for example (van den Heuvel and

Sporns, 2011).

• Compute the nodal degrees of the group-representative network 'SC' and visualize the

degree  distribution  and  the  degree  sequence  of  the  brain  network.  The  degree

distribution is the probability distribution of the network degrees and is very important

when  studying  network  properties.  The  degree  sequence  is  the  monotonic  non-

increasing sequence of the sorted nodal degrees:

>> k = sum(SC); % nodal degrees

>> figure, hist(k,10), title('Degree distribution');

>> [k_sorted, k_index] = sort(k, 'descend');

>> figure, bar(k_sorted), title('Degree sequence');

>> % Set figure properties

>> xticklabel_rotate(1:nn, 90, labels(k_index));

>> set(gcf,'Units','Normalized','OuterPosition',[0 0 1 1]);

Have a look at the documentation of the functions 'sum' and 'sort' to understand their

output. Check out the size and content of the variables 'k',  'k_sorted'  and 'k_index'.

Note that the MATLAB command 'set' can be used to set the properties of a figure ('gcf'

stands for 'get current figure'). Here we are setting the labels of the x-axis and the size

of the figure.

Why do we use the function 'sum' to compute the degrees? How is the nodal degree

defined?

Visually inspect the degree sequence of the brain network 'SC'. Have all the nodes similar

degree? What is the minimum degree of a node? What is the maximum degree? Are there

some nodes with degree equal to zero? What would that mean?
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Re-consider the randomized network 'R'. Do you think that the degree distributions of 'R'

and 'SC' will be different? Compute and visualize the degree distribution of the randomized

network 'R'. What do you expect to observe? 

How could you identify the hubs of the brain network? Can you list some of the brain

hubs? Can you guess why a damage to a hub region (e.g., a localized stroke insult) can

be particularly harmful?

Do the hub regions form a rich-club in the brain network 'SC'? Is this always the case?

• The nodal  degree  is  only  one  of  the  possible  measures  of  nodal  centrality.  Other

centrality  measures are for  example  the closeness centrality  and the  betweenness

centrality.  Indeed,  you can easily  compute the nodal  closeness centrality  using the

distance matrix 'D'  that you have computed in Part  2 of the lab. The betweenness

centrality is defined as the number of shortest paths in the network that pass by a given

node.  Different  measures of  centrality  are inter-related but  express slightly  different

aspects  of  the  node  topological  roles  in  the  network.  You  could  compute  different

centrality measures for brain regions and assess their relationship with a correlation

analysis.

You might also be curious about weighted network measures and their relationship with

binary network measures. Compute a group-representative weighted network 'SCw' for

the healthy subject group and its nodal strengths. Compare the nodal degrees and the

nodal strengths:    

>> SCw = zeros(nn);

>> for i = 1:nn

>>    for j = 1:nn

>>        this_connection = SC_ctrl(i,j,:);

>>        SCw(i,j)=mean(this_connection(this_connection>0));

>>   end

>> end

>> SCw(isnan(SCw)) = 0;

>> SCw = SCw .* SC;

>> figure, imagesc(SCw), colorbar, axis equal tight;
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>> title('Weighted connectivity matrix');

>>

>> kw = sum(SCw);  % nodal strength

>> figure, plot(k,kw,'o'), grid on;

>> xlabel('Degree'), ylabel('Strength');

Note that the MATLAB command 'zeros' generates (initializes) an empty matrix of size

nn rows X nn columns. The command 'SC_ctrl(i,j,:)' selects the values of the ith row, jth

column and all the 3rd-dimension elements of the 3D array 'SC_ctrl'. The command  '.*'

performs the element-wise multiplication of  two matrices.  In  the previous code you

have used two nested  for loops: the first one walks through the rows of the matrix

'SCw', the second one walks through its columns.

Why did you multiply the 'SCw' connectivity matrix by the binary matrix 'SC'? Why did you

perform the mean on the non-zero elements of the current connection values in the for

loop ('Scw(i,j) = mean(this_connection(this_connection > 0))')? Could have you chosen a

different strategy?

Which kind of relationship do you expect to observe between the nodal degree and the

nodal strength in a brain network? Do you think this relationship applies to all  kind of

networks, or does it tell you something about the structure of the brain network?

• It is often useful to visualize the results of your analyses with a 3-dimensional plots

where nodes are represented as balls and connections as sticks. Visualize the brain

network 'SCw' using the BrainNet Viewer (BNV) toolbox.  You can familiarize with the

toolbox having a quick look at the online documentation or at the pdf manual that you

find  in  the  'Lab_Brain_Connectivity_And_Graphs/Utilities/BrainNetViewer_20170403'

folder.

Before starting the toolbox save the 'SCw' connectivity matrix as a text file using the

'dlmwrite' MATLAB function. Assign to the text file the extension '.edge', which is the

extension recognized by the BNV toolbox:

    >> dlmwrite('Data\BNV_Data\my_SCw.edge',SCw,'delimiter','\t');
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You  also  need  to  create  a  second  text  file  with  extension  '.node'  containing  the

information about the nodes of the network. A BNV node file must contain 6 columns

with  the  following  data:  x  y  z  node  coordinates  (columns 1-3),  node  color  (scalar

values, column 4), node size (scalar values, column 5) and node labels (column 6,

optional).  Load  into  MATLAB the  nodes'  coordinates  associated  with  the  Desikan-

Killiany  parcellation  and  use the  provided  function  'generate_node_file'  to  create  a

'.node' text file readable by BrainNet Viewer. You can choose which kind of information

you want to encode in the node color and size attributes. For example you could color-

code the network hubs, and scale the node size according to the degree: 

>> % Color-code the node according to their 'hubness'

>> hubs = k_index(1:8);

     >> n_color = zeros(nn,1);

>> n_color(hubs) = 1;

>> % Scale the size of the node according to the degree

>> n_size = k;

>> % Load node coordinates

>> load('Data\BNV_Data\centroids_bert.mat');

>> % Create .node text file

>> filepath = 'Data\BNV_Data\my_nodes.node';

>> generate_node_file(filepath, coord, n_color, n_size);

Now that you have generated the necessary input files, start the BNV toolbox. To start

the BNV toolbox type 'BrainNet' at the MATLAB prompt:

>> BrainNet

Load the 'my_nodes.node' and 'my_SCw.edge' files using the [ File > Load Files > Data

file Browse...  ] commands then press 'Ok'. Spend some time playing with the toolbox

and discover its functionalities. For example you could:

- visualize the network adjacency matrix using the 'ViewMatrix' button

- change the visualization perspective using the 'Sagittal/Axial/Coronal' buttons
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Do you notice any symmetry in the brain network? Can you identify the network hubs

from their size? Where are the brain hubs localized (frontal / occipital / ... areas)?

- explore the node visualization options using the [ Option > Option > Node ] menu

  and color the network nodes according to their degree (4th column of the .node file)

  [ Node > Color > Colormap ]

- explore the edge visualization options ([ Option > Option > Edge ]). You can scale

and color the network edges according to their weights

An example of brain network visualization using the BrainNet Viewer
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4. Group-comparison

In this section you will apply the concepts acquired in the previous exercises to investigate

brain network alterations in schizophrenia disorder. You will analyze the brain networks of

schizophrenia patients (SCHZ)  and healthy controls  (CTRL) using the weighted global

efficiency,  the  weighted  clustering  coefficient  and  the  weighted  closeness  centrality

measures.

The variables 'SC_schz' and 'SC_ctrl' contain the brain connectivity matrices of 15 chronic

schizophrenia  patients  and  15  age-  and  gender-matched  healthy  subjects.  The

connectivity matrices are weighted by the connection density (not to be confounded with

the network density!), defined as the number of streamlines connecting two brain regions

normalized by the average streamlines length and the average surface of the connected

regions (Hagmann et al., 2008). These data are part of a published dataset (Griffa et al.,

2015).  If  you are  interested to  this  specific  topic,  you might  want  to  check out  some

reviews on connectomics in schizophrenia and brain disorders, for example (Fornito et al.,

2017).

• Compute  the  weighted  global  efficiency  of  the  individual  SCHZ  and  CTRL  brain

networks:

>> % Loop over subjects

>> for i = 1:ns

>>    % CTRL

>>    this_network = SC_ctrl(:,:,i);

>>    this_network = this_network./(sum(this_network(:))/2);

>>    Eff_ctrl(i) = efficiency_wei(this_network);

>>    % SCHZ

>>    this_network = SC_schz(:,:,i);

>>    this_network = this_network./(sum(this_network(:))/2);

>>    Eff_schz(i) = efficiency_wei(this_network);

>> end
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Read the documentation of the 'efficiency_wei' function and note the normalization of

the  connectivity  matrix  weights  ('this_network  =  this_network./

(sum(this_network(:))/2);').  Why did we normalize the individual  connectivity matrix?

Could have we chosen a different strategy?

• Compare the network efficiency of the patients' and controls' groups, and check out the

MATLAB documentation of the 'ranksum' and 'ttest2' functions.

>> p_Eff = ranksum(Eff_ctrl,Eff_schz);

>> [h,p_Eff_ttest] = ttest2(Eff_ctrl,Eff_schz,'tail','both');

>> figure, boxplot([Eff_ctrl',Eff_schz'],{'CTRL','SCHZ'}),

>> title('Weighted network efficiency');

Is the efficiency of the schizophrenia brain networks increased or decreased compared to

the control group? How could you interpret this result?

What is the output of the 'ranksum' function? What is the difference between the Student's

t-test and the Wilcoxon rank-sum test? Which statistical test is more appropriate in this

case?

• In  the  previous  exercise  you  found  that  the  efficiency  of  the  schizophrenia  brain

networks is decreased when compared to an age- and gender-matched control group.

We  would  like  now  to  identify  which  brain  regions  underlie  this  global  efficiency

decrease.  Compute  the  nodal  closeness centralities  of  the  SCHZ and  CTRL brain

networks. Remember that the nodal closeness centrality is defined as the inverse of

the average shortest path length from one node to all the other nodes in the network:   

>> for i = 1:ns

>>     % CTRL

>>     this_network = SC_ctrl(:,:,i);

>>     this_network = this_network./(sum(this_network(:))/2);

>>     connection_lengths = 1 ./ this_network;
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>>     connection_lengths(isinf(connection_lengths))= 0;

>>     [this_d,~] = distance_wei(connection_lengths);

>>     ClCent_ctrl(i,:) = 1 / (sum(this_d) / (nn-1));

>>         

>>     % SCHZ

>>     this_network = SC_schz(:,:,i);

>>     this_network = this_network./(sum(this_network(:))/2);

>>     connection_lengths = 1 ./ this_network;

>>     connection_lengths(isinf(connection_lengths))= 0;

>>     [this_d,~] = distance_wei(connection_lengths);

>>     ClCent_schz(i,:) = 1 / (sum(this_d) / (nn-1));

>> end

>> 

>> figure,subplot(1,2,1),hist(ClCent_ctrl(:)),title('CTRL');

>> subplot(1,2,2), hist(ClCent_schz(:)), title('SCHZ');

Read the documentation of the 'distance_wei'  BCT function. What is the difference

between a connection-weight and a connection-length matrix?

Check out the size of the variables 'ClCent_ctrl' and 'ClCent_schz'. Which values do

these variable contain? How would you identify  which brain regions have impaired

network centrality in patients compared to control subjects? Is a multiple comparison

correction needed in this case? Which multiple comparison correction methods do you

know?

• Compare the closeness centralities of  the 82 brain regions between the  CTRL and

SCHZ groups. Note that for each comparison you will get a single p-value, for a total of

82 p-values:

>> for i = 1:nn

>>    p_ClCent(i)=ranksum(ClCent_ctrl(:,i),ClCent_schz(:,i));

>> end
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>> figure, plot(p_ClCent,'o'), hold on;

>> plot([1 nn],[0.05 0.05],'--');

>> xlabel('node'), ylabel('p-values');

>> title('Nodal p-values CTRLvsSCHZ');

Apply a multiple-comparison correction to limit the false discovery rate (FDR) at 0.05

probability using the function 'FDR_main' included in the 'Utilities' folder:

>> ii_survive = FDR_main(p_ClCent, 0.05, 'bh95');

>> labels(ii_survive)

How many  brain  regions  have  impaired  closeness centrality  in  schizophrenia  patients

compared to  healthy  controls?  Have these regions decreased or  increased closeness

centrality  values? How many nodes present  a  p-value  smaller  than 0.05? How many

nodes survive the FDR-correction?

Would you be able to apply a Bonferroni correction to the closeness centrality p-values?

How many p-values survive the Bonferroni correction? What is the difference between

FDR and Bonferroni correction? Which correction is more appropriate in this case?

Which are the brain regions with impaired connectivity in schizophrenia patients? Are the

connectivity impairments concentrated in one lobe or hemisphere, or are they relatively

spread over the whole brain network? Do you expect to observe the same alterations in a

smaller/larger sample?
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