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In this paper, we propose an approach to quantum λ-calculi. The ‘quantum data-classical

control’ paradigm is considered. Starting from a measurement-free untyped quantum

λ-calculus called Q, we will study standard properties such as confluence and subject

reduction, and some good quantum properties. We will focus on the expressive power,

analysing the relationship with other quantum computational models. Successively, we will

add an explicit measurement operator to Q. On the resulting calculus, called Q∗, we will

propose a complete study of reduction sequences regardless of their finiteness, proving

confluence results. Moreover, since the stronger motivation behind quantum computing is

the research of new results in computational complexity, we will also propose a calculus

which captures the three classes of quantum polytime complexity, showing an ICC-like

approach in the quantum setting.

1. Introduction

Quantum computing is a computational paradigm based on abstract computational

models which obey (totally or in part) to quantum mechanics’ physical laws. Quantum

computing is a promising paradigm as testified by a number of interesting results about

computational complexity (Grover 1999; Shor 1994, 1997). The seminal ideas behind

quantum computing are due to Feynman. He posed a simple but interesting question:

is a classical computer able to simulate a generic physical system? The problem can be

formulated in this way: given a physical system of N two-state (spin- 1
2 -like) interacting

particles, can it be fully described by a function of the shape ψ(x1, . . . , xN, t), where t

represents time? The answer to Feynman’s question is the following: the full description

of a classical system can be efficiently simulated by a classical computer with polynomial

slowdown. In the case of a quantum system, the slowdown is exponential.

The birth of quantum computing coincided therefore with the attempt to understand

how a computational device could be created in order to emulate an arbitrary physical

system. Feynman’s idea was resumed in Benioff (1980): he stated the first relationships

† The first version of this work was supported by the project ANR-08-BLANC-0211-01 ‘COMPLICE’
(Implicit Computational Complexity, Concurrency and Extraction), Laboratoire d’Informatique de Paris
Nord (LIPN), UMR CNRS 7030, Institut Galilée - Université Paris-Nord, 99 avenue Jean-Baptiste Clément,
93430, Villetaneuse.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

M. Zorzi 2

between the quantum mechanical model and a mathematical computational model such

as Turing machines. After these important introductory investigations, the first concrete

proposal for a quantum abstract computer is due to Deutsch, who introduced quantum

Turing machines (Deutsch 1985). He started from the probabilistic version of the Church–

Turing thesis, attempting to understand what physical basis were required in order to

define stronger and stronger versions of the thesis. Deutsch also introduced the first

quantum algorithm, subsequently called Deutsch’s algorithm (see Section 5, Example 8):

we can affirm that all the algorithmic results in the field of quantum computing are

partially inspired by Deutsch’s intuition.

Starting from Deutsch’s fundamental works, Bernstein and Vazirani defined the quantum

universal Turing machine, giving an accurate set of foundational results about the com-

putational model and its mathematical setting (Bernstein and Vazirani 1997). Bernstein

and Vazirani also developed a complexity theory for quantum computing, revisiting and

extending the results of the classical and the probabilistic cases.

Since quantum Turing machines, other models have been defined. In 1989, Deutsch

introduced quantum circuit families and this topic was subsequently developed in Yao

(1993), where the author further extended the quantum complexity theory. In Nishimura

and Ozawa (2009), the authors established the ‘perfect equivalence’ between quantum

Turing machines and quantum circuit families (this foundational result will be exploited

in Section 8, see also Appendix A.5). Another quantum model, the quantum random

access machine (QRAM), has been defined in Knill (1996); a QRAM is a classically

controlled machine enriched with a quantum device. On the grounds of the QRAM model

(see also Lanzagorta and Uhlmann (2009)), Selinger defined the first functional language

based on the so-called quantum data-classical control paradigm, giving a statically typed

language whose semantics, provided in terms of super-operators (Preskill 2006), are fully

abstract (Selinger 2004). The idea behind this ‘hybrid’ computational model is relevant

to the present work: in fact, the λ-calculi proposed in this paper are based on Selinger’s

approach.

The quantum computational paradigm had a strong impact on the notion of ‘com-

putational feasibility’ of problems. The most surprising result is due to Shor, which

proved that the factorization of integers and the discrete logarithm problems (for which

nowadays an efficient classical algorithm is still unknown) could be efficiently solved,

namely in polynomial time, by a quantum computer (Shor 1994, 1997). Shor’s algorithm

for prime factorization catalyzed the interest of the scientific community into the

quantum computing research. Other important quantum algorithms are Grover’s quantum

algorithm for efficient data search and the polytime quantum algorithm for the so-called

Simon’s problem (Nakahara and Ohmi 2008).

On these bases, several attempts to define quantum programming languages, either

imperative or functional, have been proposed over the last 15 years. On one hand, the

design of quantum programming languages is strongly oriented to the implementation of

quantum algorithms for a hoped evolution of technology towards a quantum architecture.

On the other hand, the definition of functional paradigmatic languages or functional

calculi can be a good instrument in order to investigate theoretical aspects of quantum

computing, in particular, the foundational basis of quantum computability.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

On quantum lambda calculi 3

The aim of this paper is to provide an overview on a possible approach to quantum

functional calculi. The results stated and proved in Dal Lago et al. (2009), Zorzi (2009),

Dal Lago et al. (2010) and Dal Lago et al. (2011) are here revisited a posteriori in an

unified setting.

At the same time, we hope this paper should be a ‘gentle’ introduction to quantum

computing’s mathematical framework and basic concepts to everyone which, starting from

a good background on lambda calculus and linear logic, is interested to an employment

of these familiar topics in a non-classical computational setting.

1.1. Synopsis

The paper is structured as follows:

— In Sections 2 and 3, we will introduce the mathematical framework of quantum

computing and quantum computing bases respectively. The expert reader may skip

this introductory part. The non-expert reader could also read Appendix A before

Section 5.

— Section 4 is devoted to a discussion about quantum computing peculiarities w.r.t.

classical and probabilistic computational paradigms.

— In Section 5, the quantum λ-calculus Q is introduced and studied.

— In Section 6, we extend Q with an explicit measurement operator, obtaining the

calculus Q∗.

— Section 7 is an ‘intermezzo’ about quantum functional languages.

— In Section 8, an implicit polytime quantum λ-calculus called SQ is proposed.

— In Appendix A, we briefly recall quantum computational models and polynomial time

quantum complexity classes (the expert reader may skip this part). In Appendix B,

some detailed proofs about a measurement operator defined in Section 2, and used in

Section 6, are proposed.

2. Mathematical framework of quantum computing (in a nutshell)

The most important concepts introduced by quantum mechanics, such as superposition

and entanglement (see Section 3), are essentially described in terms of properties of Hilbert

spaces. We recall here only essential notions. For the basic definitions of inner product

spaces, Hilbert basis, tensor product, Hilbert spaces and for an exhaustive treatment of

these topics, see e.g. Birkhoff and Mac Lane (1967) and Roman (2008).

2.1. The Hilbert space ℓ2(S)

In this paper, we will deal with particular cases of the Hilbert space ℓ2(S).

Let S be a finite or countable set and let ℓ2(S) be the set of square summable functions
{
φ | φ : S → C,

∑

s∈S
|φ(s)|2 < ∞

}

http://journals.cambridge.org
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equipped with

1. an inner sum + : ℓ2(S) × ℓ2(S) → ℓ2(S)

defined by (φ+ ψ)(s) = φ(s) + ψ(s);

2. a multiplication by a scalar · : C × ℓ2(S) → ℓ2(S)

defined by (c · φ)(s) = c · (φ(s));

3. an inner product† ⟨·|·⟩ : ℓ2(S) × ℓ2(S) → C
defined by ⟨φ|ψ⟩ =

∑
s∈S φ(s)∗ψ(s),

it is easy to show that ℓ2(S) is an Hilbert space.

The inner product ⟨·|·⟩ induces a norm defined as ||ψ|| = ⟨ψ|ψ⟩1/2 for each vector ψ in

ℓ2(S).

A vector in ℓ2(S) is normalized if its norm is 1.

Definition 1 (quantum state). A quantum state, or quantum register is any normalized

vector in ℓ2(S).

Notation 1. In the following we will use the ‘Bra/Ket-notation’, introduced by Paul Dirac.

Given a Hilbert space H, a ket |φ⟩ indicates a generic element (column vector) of H. Kets

like |φ⟩ are typically used to describe quantum state. The matching ⟨ψ| is called bra, and

denotes the conjugate transpose of |φ⟩.

The set B(S) = {|s⟩ : s ∈ S}, where |s⟩ : S → C, is defined by

|s⟩(s′) =

{
1 if s = s′

0 if s ̸= s′

B(S) is a Hilbert basis of ℓ2(S), usually called the computational basis in the literature.

2.2. Unitary operators

In quantum computing, the quantum computational steps are represented by linear

transformations between normalized vectors in ℓ2(S). Unitary operators are one of the

most important classes of operators involved in the mathematical description of quantum

mechanics. For our scope, we can restrict definitions to the finite-dimensional case.

Definition 2 (unitary operators – finite-dimensional case). Let H be a finite-dimensional

Hilbert space, and let U : H → H be a linear transformation. The adjoint of U is the

unique linear transformation U† : H → H such that for all φ,ψ

⟨Uφ,ψ⟩ = ⟨φ,U†ψ⟩. If U†U is the identity, we say that U is a unitary operator.

The tensor product of unitary operators is defined as follows:

† In order the inner product definition to make sense, we should prove that the sum
∑

s∈S φ(s)∗ψ(s) converges,
see Roman (2008).
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Definition 3 (tensor product of unitary operators). Let H1 and H2 be finite-dimensional

Hilbert spaces and let U : H1 → H1 and W : H2 → H2 be two unitary operators. The

linear unitary operator U ⊗ W : H1 ⊗ H2 → H1 ⊗ H2 is defined by

(U ⊗ W)(φ⊗ ψ) = (Uφ) ⊗ (Wψ)

with φ ∈ H1 and ψ ∈ H2.

For details, see Conway (1990) and Roman (2008).

2.3. Two important finite-dimensional Hilbert spaces

In the rest of the paper and in the literature, the following spaces are extensively used.

The space ℓ2({0, 1}n)

Let S = {0, 1}n, i.e. S is the set of finite binary strings of length n. The Hilbert space

H(S) is the standard space used in the field of quantum computing. This kind of space

is useful to describe bits, qubits and quantum registers.

For example, let us consider S = {0, 1}2. The computational basis of ℓ2(S) is

{|00⟩, |01⟩, |10⟩, |11⟩}, and a generic quantum register may be expressed, in the compu-

tational basis, as α1|00⟩ + α2|01⟩ + α3|10⟩ + α4|11⟩, where
∑

i |αi|2 = 1.

The space H(V)

Let V be a set of names and let S = {f|f : V → {0, 1}}, i.e. S is the set of classical

valuations of V into the set {0, 1}. ℓ2(S) is a Hilbert space of dimension 2#V .

Notation 2. In the following we will shorten ℓ2({0, 1}V ) with H(V).

This space is useful to describe quantum registers when we want to assign names

to qubits, without reference to their ordinal position (as it usually happens in the

literature and in the calculi we propose in this paper). By definition, the set of

quantum registers are normalized vectors of H(V), i.e. a quantum register will be a

function φ : {0, 1}V → C such that
∑

f∈{0,1}V |φ(f)|2 = 1 (normalization condition).

The space H(V) is equipped with the standard or (computational ) orthonormal† basis

B(V) = {|f⟩ : f ∈ {0, 1}V}.

Example 1. The standard basis of the space H({p, q}) is

{|p ,→ 0, q ,→ 0⟩, |p ,→ 0, q ,→ 1⟩, |p ,→ 1, q ,→ 0⟩, |p ,→ 1, q ,→ 1⟩}.

Let V ′ and V ′′ be two sets of names such that V ′ ∩ V ′′ = !. With H(V ′) ⊗ H(V ′′)

we denote the tensor product (defined in the usual way) of H(V ′) and H(V ′′). If

B(V ′) = {|fi⟩ : 0 ! i < 2n} and B(V ′′) = {|gj⟩ : 0 ! j < 2m} are the standard

† Given an inner product space V , a nonempty set U of vectors is an orthogonal set if for all ui, uj ∈ U, if
ui ̸= uj then ui⊥uj , i.e. ⟨ui, uj⟩ = 0. If each ui is also a normalized vector, then U is an orthonormal set (for
details, see Conway (1990); Roman (2008)).
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bases respectively of H(V ′) and H(V ′′), then H(V ′) ⊗ H(V ′′) is equipped with the basis

{|fi⟩ ⊗ |gj⟩ : 0 ! i < 2n, 0 ! j < 2m}. We will abbreviate |f⟩ ⊗ |g⟩ with |f, g⟩.
If V is a set of names, then IV is the identity on H(V), which is clearly unitary.

Moreover, it is easy to show that if V ′ ∩ V ′′ = ! then there is a standard isomorphism

is:

H(V ′) ⊗ H(V ′′)
is≃ H(V ′ ∪ V ′′).

In the rest of the paper, we will assume to work up to such an isomorphism (which

holds even if V ′ or V ′′ are empty). In particular, if Q ∈ H(V), r ̸∈ V and |r ,→ c⟩ ∈ H({r})
then Q ⊗ |r ,→ c⟩ will denote the element is(Q ⊗ |r ,→ c⟩) ∈ H(V ∪ {r}) .

If Q′ ∈ H(V ′) and Q′′ ∈ H(V ′′) are two quantum registers, with a little abuse of

language (authorized by the isomorphism defined above) we will say that Q′ ⊗ Q′′ is

a quantum register in H(V ′ ∪ V ′′).

The smallest quantum space H(!) (isomorphic to the field C), is called an empty

quantum register; it is nothing more than a unitary element of C (i.e. a complex

number c such that |c| = 1). We chose the scalar number 1 as the canonical empty

quantum register. In particular, the number 1 also represents the computational basis

of H(!).

We will sometimes use a ‘compact’ representation of quantum states. Let V be a set

of names with cardinality n " 1. Moreover, let Q ∈ H(V) and let r ∈ V . Each state Q
may be represented as

Q =
2n−1∑

i=1

αi|r ,→ 0⟩ ⊗ bi +
2n−1∑

i=1

βi|r ,→ 1⟩ ⊗ bi,

where {bi}i∈[1,2n−1] is the computational basis of H(V − {r}). Please note that if V = {r},
then Q = α|r ,→ 0⟩ ⊗ 1 + β|r ,→ 1⟩ ⊗ 1, that is, via the previously stated isomorphism,

α|r ,→ 0⟩ + β|r ,→ 1⟩.

Other definitions are now in order.

Let u ∈ H({0, 1}n) be the quantum register u = α1|0 . . . 0⟩ + · · · + α2n |1 . . . 1⟩ and let

⟨q1, . . . , qn⟩ be a sequence of names. u⟨q1 ,...,qn⟩ is the quantum register in H({q1, . . . , qn})
defined by u⟨q1 ,...,qn⟩ = α1|q1 ,→ 0, . . . , qn ,→ 0⟩ + · · · + α2n |q1 ,→ 1, . . . , qn ,→ 1⟩.
Let U : H(V) → H(V) be an operator and let ⟨q1, . . . , qn⟩ be any sequence of

distinguished names in V . Considering the bijection between {0, 1}n and {0, 1}{q1 ,...,qn},

U and ⟨q1, . . . , qn⟩ induce an operator U⟨q1 ,...,qn⟩ : H({q1, . . . , qn}) → H({q1, . . . , qn})
defined as follows: if |f⟩ = |qj1 ,→ bj1 , . . . , qjn ,→ bjn⟩ is an element of the orthonormal

basis of H({q1, . . . , qn}), then

U⟨q1 ,...,qn⟩|f⟩ def
= (U|b1, . . . , bn⟩)⟨q1 ,...,qn⟩,

where qji ,→ bji means that to the qubit named qji we associate the element bji of the

basis.

Let V ′ = {qj1 , . . . , qjk} ⊆ V . We naturally extend (by suitable standard isomorphisms)

the unitary operator U⟨qj1 ,...,qjk ⟩ : H(V ′) → H(V ′) to the unitary operator U⟨⟨qj1 ,...,qjk ⟩⟩ :

http://journals.cambridge.org
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H(V) → H(V) that acts as the identity on variables not in V ′ and as U⟨qj1 ,...,qjk ⟩ on

variables in V ′.

In the following, we assume that, when writing U⟨⟨p1 ,...,pn⟩⟩, the order in which the names

appear in the subscript matters. This convention is exploited in the following example.

Example 2. Let us consider the standard operator cnot : ℓ2({0, 1}2) → ℓ2({0, 1}2),

which acts on the computational basis as follows:

cnot|00⟩ = |00⟩
cnot|01⟩ = |01⟩

cnot|10⟩ = |11⟩
cnot|11⟩ = |10⟩.

The cnot operator is one of the most important quantum operators (see also Ex-

ample 4). Intuitively, the cnot operator complements the target bit (the second one) if

the control bit (the first one) is 1, and otherwise does not perform any action. Let us

fix the sequence ⟨p, q⟩ of variables, cnot induces the operator

cnot⟨⟨p,q⟩⟩ : H({p, q}) → H({p, q})

such that

cnot⟨⟨p,q⟩⟩|q ,→ 0, p ,→ 0⟩ = |q ,→ 0, p ,→ 0⟩;
cnot⟨⟨p,q⟩⟩|q ,→ 0, p ,→ 1⟩ = |q ,→ 1, p ,→ 1⟩;
cnot⟨⟨p,q⟩⟩|q ,→ 1, p ,→ 0⟩ = |q ,→ 1, p ,→ 0⟩;
cnot⟨⟨p,q⟩⟩|q ,→ 1, p ,→ 1⟩ = |q ,→ 0, p ,→ 1⟩.

Please note that |q ,→ c1, p ,→ c2⟩ = |p ,→ c2, q ,→ c1⟩, since the two expressions denote

the same function. Consequently cnot⟨⟨p,q⟩⟩|q ,→ c1, p ,→ c2⟩ = cnot⟨⟨p,q⟩⟩|p ,→ c2, q ,→ c1⟩.
On the other hand, the operators cnot⟨⟨p,q⟩⟩ and cnot⟨⟨q,p⟩⟩ are different: both act as

controlled not, but cnot⟨⟨p,q⟩⟩ uses p as control qubit while cnot⟨⟨q,p⟩⟩ uses q.

2.4. A measurement in H(V)

In this section, we give a mathematical definition of a measurement operator in H(V).

We define two linear maps which perform a destructive measurement on a quantum

register.

It will be used in Section 6, where we propose a quantum λ-calculus with explicit

measurement operator (Dal Lago et al. 2011; Zorzi 2009).

Definition 4 (destructive measurements). Let QV be a set of names with cardinality

n = |QV | " 1, r ∈ QV , {bi}i∈[1,2n−1] is the computational basis of H(QV − {r}) and let Q
be

∑2n−1

i=1 αi|r ,→ 0⟩ ⊗ bi +
∑2n−1

i=1 βi|r ,→ 1⟩ ⊗ bi ∈ H(QV). The two linear functions

mr,0,mr,1 : H(QV) → H(QV − {r})

such that

mr,0(Q) =
2n−1∑

i=1

αibi mr,1(Q) =
2n−1∑

i=1

βibi

http://journals.cambridge.org
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are called destructive measurements. If Q is a quantum register, the probability pc of

observing c ∈ {0, 1} when observing r in Q is defined as ⟨Q|mr,c
†mr,c|Q⟩ (called expected

value).

The name ‘destructive’ comes from the fact that the functions mr,c (c ∈ {0, 1}) map an

element of a Hilbert space of dimension 2n in an element of a Hilbert space 2n−1. Let us

define now the ‘normalized’ versions of mr,0 and mr,1:

Definition 5 (normalized destructive measurement). Given a set of names QV and r ∈ QV ,

the linear maps

Mr,0,Mr,1 : H(QV) → H(QV − {r})
are defined as follows:

1. if ⟨Q|m†
r,cmr,c|Q⟩ = 0 then Mr,c(Q) = mr,c(Q);

2. if ⟨Q|m†
r,cmr,c|Q⟩ ̸= 0 then Mr,c(Q) = mr,c(Q)√

⟨Q|m†
r,cmr,c|Q⟩

.

The just defined measurement operators belong to the class of the so-called general

measurements (Kaye et al. 2007; Nielsen and Chuang 2000) and satisfy some properties,

such as completeness. See Appendix B for statements and detailed proofs.

3. Quantum bits, quantum states and the framework of quantum mechanics

Quantum mechanics was born at the beginning of the 20th century, when it was clear that

the classical theories (such as Newton’s and Maxwell’s theories) had great problems in

order to explain and understand the unexpected results of several physical experiments.

Quantum mechanics is the mathematical framework in which it is possible to develop new

physical theories such as quantum physics, taking into account several surprising rules

and postulates.

Paul Dirac wrote: ‘Quantum Mechanics is more suitable in order to understand atomic

phenomena, and from several points of view, it appear a more elegant theory with respect to

the classical one’ (Dirac 1947). Nowadays, we can still say that we are able to understand

some aspects of the world and the universe only by accepting the unusual point of view

of quantum mechanics.

We will recall here the main ideas of quantum mechanics in a standard, intuitive way:

we introduce the basic notions through some postulates, which capture the fundamental

connections between the physical world and the mathematical formalism; the postulates

give furthermore the basis of quantum computing.

Quantum mechanics’ framework is able to interpret the structure, the evolution and

the interaction of quantum systems. The first postulate of quantum mechanics assigns to

quantum systems a mathematical representation in terms of Hilbert spaces.

Postulate I

The state of a system is described by a normalized vector in a Hilbert space H

http://journals.cambridge.org
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The Hilbert space H of a quantum system is called the state space, and the vector

represents a state vector, which completely describes the system.

This very simple postulate embeds two features of the quantum state: the linearity of

the system’s description (see also Postulate II) and the existence of a scalar product and of

a norm. In particular, the scalar product permits to link a probability to each observable.

As described in Section 2, each Hilbert space which describes a closed quantum system

is defined on the field of complex numbers. Let us consider the Hilbert space ℓ2(S) as

defined in Section 2.3, and let us take S = {0, 1}n.
The Hilbert space ℓ2(S) is the standard space used in quantum computing and it is

useful to describe quantum states in a simple, intuitive (but rigorous) way.

The most simple quantum system is a two-dimensional state space whose elements are

called quantum bits or qubits for short.

The more direct way to represent a quantum bit is a unitary vector in the two-

dimensional Hilbert space ℓ2({0, 1}). We will denote with |0⟩ and |1⟩ the elements of the

computational basis of ℓ2({0, 1}).
The states |0⟩ and |1⟩ of a qubit correspond to the boolean constants 0 and 1, which

are the only possible values of a classical bit. A qubit, however, can assume other values,

different from |0⟩ and |1⟩. In fact, every linear combination |ψ⟩ = α|0⟩ + β|1⟩ where

α, β ∈ C and |α|2 + |β|2 = 1, represents a possible qubit state. These states are said to be

superposed, and the two values α and β are called amplitudes. The amplitudes α and β

univocally represent the qubit with respect to the computational basis.

While we can determine the state of a classical bit, for a qubit we cannot establish with

the same precision the values α and β: quantum mechanics says that a measurement of a

qubit with state α|0⟩ + β|1⟩ has the effect of changing the state to |0⟩ with probability |α|2
and to |1⟩ with probability |β|2. We will discuss this when we introduce the measurement

postulate.

When defining quantum computational models, we need a generalization of the notion

of qubit, the quantum register or quantum state (Masini et al. 2008, 2011; Nishimura and

Ozawa 2009; Selinger 2004; Selinger and Valiron 2006; van Tonder 2004; Volpe et al.

2014). A quantum state can be viewed as a system of n qubits and, mathematically,

it is a normalized vector in the Hilbert space ℓ2({0, 1}n) (Definition 1). The standard

computational basis for ℓ2({0, 1}n) is

B = {|i⟩ | i is a binary stringof length n}.
In the literature, it is often written that ℓ2({0, 1}n) is the Hilbert space C2n . This is not

completely correct: we should say that ℓ2({0, 1}n) is isomorphic to C2n . It is possible to

prove that the map ν : ℓ2({0, 1}n) → C2n , such that for each element |i⟩ ∈ B, ν(|i⟩) =

(0 . . . 1 . . . 0)T (with 1 only in the (i + 1)th position), is an isomorphism of Hilbert spaces.

Note that ν maps the computational basis of ℓ2({0, 1}n) into the standard basis of C2n .

In the following, in order to not make the treatment heavy, we will work up to the

above defined isomorphism ν; namely, we will treat ℓ2({0, 1}n) (which has dimension 2n)

and C2n as the same space.

Note also that ℓ2({0, 1}n) ⊗ ℓ2({0, 1}m) is (up to isomorphism) ℓ2({0, 1}n+m); the iso-

morphism is given by the map |i⟩ ⊗ |j⟩ ,→ |ij⟩ (see also Postulate III for details about the

composition of quantum system).
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Example 3. Let us consider a two-level quantum system, i.e. a system of 2-qubits. Each

2-qubit quantum register is a normalized vector in ℓ2({0, 1}2) and the computational basis

is {|00⟩, |01⟩, |10⟩, |11⟩}. For example, 1√
2
|01⟩ + 1√

2
|00⟩ ∈ ℓ2({0, 1}n) is a quantum register

of 2-qubits.

The following postulate describes how an isolated physical system evolves over time.

Since normalized vectors represent physical systems, the (discrete) evolution of systems

can be viewed as a suitable transformation on Hilbert spaces. Postulate II ensures that

the evolution is linear and unitary†:

Postulate II

The time evolution of the state of a closed quantum system is described by

a unitary operator. Giving an initial state |ψ1⟩ for the closed system, for each

evolution to a state |ψ2⟩, there exists a unitary operator U such that |ψ2⟩ =

U|ψ1⟩.

Thus, a quantum physical system can be described in term of linear operators and in a

deterministic way‡.

In quantum computing we refer to a unitary operator U acting on a n-qubit quantum

register as an n-qubit quantum gate. Via the isomorphism ν we can represent operators

on the 2n-dimensional Hilbert space ℓ2({0, 1}n) with respect to the standard basis of C2n

as 2n × 2n matrices, and it is possible to prove that to each unitary operator on a Hilbert

space it is possible to associate an algebraic representation.

The application of quantum gates to quantum registers represents the pure quantum

computational step and captures the internal evolution of quantum systems.

The most simple quantum gates act on a single qubit: they are operators on the space

ℓ2({0, 1}), represented in C2 by 2 × 2 complex matrices.

For example, the quantum gate X is the unitary operator which maps |0⟩ to |1⟩ and |1⟩
to |0⟩ and it is represented by the matrix

(
0 1

1 0

)
.

† We refer to a closed system, i.e. to a system that interacts in no way with other systems or with the rest of
the world, the observer included. This is an approximation of reality, but it is a very common approximation
in physical theories. We accept this terminology in order to distinguish unitary evolution from quantum
measurement, which implies an explicit interaction of the system with the environment.

‡ It is possible to put in evidence the evolution with respect to time by adopting the notation ‘|ψ(t)⟩’, which
describes the state at the time t. As a consequence, Postulate II can be written as |ψ(t2)⟩ = U(t2, t1)|ψ(t1)⟩,
where we also pick out the temporal information for the unitary operator. It is possible to prove that U is an
unitary operator if the following condition holds: there exists a Hermitian operator A such that U = exp[iA].
By means of simple algebraic steps it is easy to derive that U(t2, t1) = exp[iA′(t2 − t1)] where A′ is again
a Hermitian operator. It is useful to write A′ in terms of an operator H (the Hamiltonian operator) which
has energy dimension, i.e. U(t2, t1) = exp[iH(t2 − t1)/h] where h is Planck’s constant. This condition gives
an alternative formulation (in differential form) of the second postulate: d

dt |ψ(t)⟩ = − i
hH |ψ(t)⟩. This is the

famous Schrödinger equation, formulated in 1926 (Maccone and Salasnich 2008).

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

On quantum lambda calculi 11

Being a linear operator, it maps a linear combination of inputs to the corresponding

linear combination of outputs, and so X maps the general qubit state α|0⟩ + β|1⟩ into the

state α|1⟩ + β|0⟩ i.e.
(

0 1

1 0

)(
α

β

)
=

(
β

α

)
.

Other important 1-qubit quantum gates are

Y ≡
(

0 −i

i 0

)
Z ≡

(
1 0

0 −1

)
.

The quantum gates X, Y , Z are the so-called Pauli gates.

Another interesting unitary gate is the Hadamard gate denoted by H which acts on the

computational basis in the following way:

|0⟩ ,→ 1√
2
(|0⟩ + |1⟩) |1⟩ ,→ 1√

2
(|0⟩ − |1⟩).

The Hadamard gate, which therefore is given by the matrix

H ≡ 1√
2

(
1 1

1 −1

)

is useful when we want to create a superposition starting from a classical state. It also

holds that H(H(|c⟩)) = |c⟩ for c = {0, 1}.
1-qubit quantum gates can be used in order to build gates acting on n-qubit quantum

states, since an n-qubit quantum register with n " 2 can be viewed as a composite system.

It is possible to combine two (or more) distinct physical systems into a composite one.

Postulate III tells us how tensor product of Hilbert space can describe the state space of

a composite system.

Postulate III

When two physical systems are treated as one combined system, the state space

of the two combined physical system is the tensor product space H1 ⊗ H2 of

the state spaces H1 and H2 of the component subsystems. If the first system is

in the state |φ1⟩ and the second system is in the state |φ2⟩, then the state of the

combined system is |φ1⟩ ⊗ |φ2⟩.

Notation 3. We will often omit the ‘⊗’ symbol, and will write the joint state as |ψ1⟩|ψ2⟩
or as |ψ1ψ2⟩.

The physical principles behind Postulate III thrust the composition law of probability. In

fact, the probability of obtaining two independent observables is exactly the product of

the probabilities of the single results.

If we have a 2-qubit quantum system, we can apply a 1-qubit quantum gate only to one

component of the system, and we implicitly apply the identity operator to the other one.
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For example, suppose we want to apply X to the first qubit. The 2-qubits input |ψ1 ⊗ψ2⟩
gets mapped to X|ψ1⟩ ⊗ I |ψ2⟩ = (X ⊗ I)|ψ1⟩ ⊗ |ψ2⟩.

3.1. Entanglement

Not all quantum states can be viewed as composite systems. In other words, if |ψ⟩ is

a state of a tensor product space H1 ⊗ H2, it is not generally the case that there exists

|ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2 such that |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩. Indeed, it is not always possible to

decompose an n-qubit state as the tensorial product of n qubits.

These non-decomposable state are called entangled and enjoy properties that we cannot

find in any object of classical physics. If n qubits are entangled, they behave as if connected,

independently of the real physical distance. The strength of quantum computation is

essentially based on the existence of entangled states (see, for example, the teleportation

protocol (Nielsen and Chuang 2000)).

Example 4. The 2-qubit states |ψ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩, |ψ⟩ = 1√

2
|01⟩+ 1√

2
|10⟩ are entangled.

The 2-qubit state φ = α|00⟩ + β|01⟩ is not entangled. In fact, it is possible to express it in

the mathematically equivalent form φ = |0⟩ ⊗ (α|0⟩ + β|1⟩).

3.2. Measurement

Describing unitary evolution of a quantum system, Postulate II assumes that the system

is closed, i.e. that it is not allowed to interact with its environment. This is a good

assumption in order to describe several properties, but a real system cannot always be

closed.

In a realistic perspective, a quantum system interacts with another one, and also with

a measurement apparatus. Since the evolution of the state during a measurement is not

unitary, so we need a new postulate.

Postulate IV

Let A be a physical system, and let B = {|φi⟩} be an orthonormal basis of a

state space HA for A. It is possible to perform a measurement on HA w.r.t. B that

given a state |ψ⟩ =
∑

i αi|φi⟩ leaves the system in the state φi with probability

|αi|2.

The described measurement is called von Neumann measurement, and it is a special kind

of projective measurements (see e.g. Isham 1995; Kaye et al. 2007; Nielsen and Chuang

2000). Projective measurement (here proposed in a simplified setting) is intuitive and it

is commonly used to explain the measurement postulate. It enjoys some properties. For

example, repeated measurements give the same result: if after a measurement the system

is (with the related probability) in the state φi, a second measurement applied on φi acts
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as the identity. Moreover, projective measurement destroys the superposition† but does

not modify the dimension of the Hilbert space.

Nevertheless, this is not the most general type of measurement in quantum mechanics.

The measurement process can be generalized according to the different ways one wants

to manipulate a given system. For example, one could want to apply two or more

successive measurements or apply unitary transforms both before and after a measurement.

A more comprehensive formalism for the description of measurement is the general

measurement (Isham 1995; Kaye et al. 2007; Nielsen and Chuang 2000). An example of

general measurement is the destructive measurement defined in Section 2.4. It is possible,

however, under certain assumptions, to show equivalence between general measurements

and projective measurements (see Nielsen and Chuang (2000) for a detailed discussion

about this topic).

3.3. No-cloning theorem

The no-cloning theorem states that quantum mechanics does not allow us to make a

copy of an unknown quantum state. It was discovered in the early 1980’s (Wooters and

Zurek 1982) and it captures one of the fundamental properties of quantum systems and

of quantum information.

One of the primitive operations in information theory is the copy of a datum but

when we deal with quantum data as qubits, quantum information suffers from lack of

accessibility in comparison to classical one.

Why is it not possible to duplicate a quantum bit? Let |ψ⟩ = α|0⟩ + β|1⟩ be a 1-qubit

quantum state. We could try to make a copy using a CNOT gate, as for the classical

case‡. Let then CNOT gate take the state |ψ⟩ as the control input, and a state initialized

to |0⟩ as the target input. The input state is therefore α|00⟩ + β|10⟩. As output, could the

CNOT gate give the tensor state |ψ⟩ ⊗ |ψ⟩?

The function of CNOT is to complement the second qubit only if the first is 1,

and thus the output state will be α|00| + β|11⟩. This is equal to the state |ψ⟩ ⊗ |ψ⟩ =

α2|00| + αβ|01| + αβ|10⟩ + β2|11⟩ if and only if αβ = 0.

In general, we can prove the following:

Theorem 1 (no-cloning theorem). There does not exist a unitary transformation U such

that, given a quantum state |φ⟩ and a quantum state§ |s⟩

U(|φ⟩ ⊗ |s⟩) = |φ⟩ ⊗ |φ⟩.

† In Postulate IV, the state |ψ⟩ collapses to an element of the orthonormal basis, totally loosing the quantum
superposition. It is possible, however, to define projective measurements also with respect to a single qubit,
i.e. it is possible to observe the i th qubit of the basis vectors. In this case, only a part of the superposition is
destroyed, possibly leaving the system in quantum superposition.

‡ If we take as control input a bit i and as target input a bit 0, the CNOT result is obviously i ⊗ i.
§ The state |s⟩ is assumed to be pure, i.e. a quantum state which is not a probabilistic distribution of other

quantum states. In quantum mechanics, the notion of pure state is opposed to the notion of mixed state, see
Kitaev et al. (2002) and Kaye et al. (2007) for detailed discussions.
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Proof. We propose an elementary proof, frequently proposed in the literature (see, for

example Nielsen and Chuang (2000)). Suppose, there exists the cloning operator U and

suppose this copying procedure works for two particular state |ψ1⟩ and |ψ2⟩.
We have

U(|ψ1⟩ ⊗ |s⟩) = |ψ1⟩ ⊗ |ψ1⟩
U(|ψ2⟩ ⊗ |s⟩) = |ψ2⟩ ⊗ |ψ2⟩.

If we take the inner product of the two equations (remember that U is unitary and

preserves the inner product) we obtain

⟨ψ1|ψ2⟩ = (⟨ψ1|ψ2⟩)2

which has only the solutions 0 and 1. So, either |ψ1⟩ = |ψ2⟩ or the two states are

orthogonal. Thus, a cloning device can only clone the states of the computational basis

(or classical states), but it is not possible to make a copy of a general quantum state.

4. Quantum computing: more than probabilistic computing!

The aim of the present section is to offer some intuitions about the potentiality of quantum

computing. The ‘thesis’ of quantum computer scientists is that quantum algorithms (or

quantum models), could outperform their classical and probabilistic counterparts. This

section wishes to provide some convincing arguments in this direction.

The ‘superpower’ of quantum computing essentially comes from exploiting two peculiar

phenomena. The first one is quantum parallelism (Nielsen and Chuang 2000).

Oversimplifying, quantum parallelism allows a quantum computer to evaluate a function

f(x) for different values x at the same time and it is able to extract information about

more than one of the values f(x) from a superposition state.

Given a function f : {0, 1} → {0, 1}, and a 2-qubit input |x, y⟩, the following circuit

Cf

y ⊕ f(x)

x x

y

is able to compute the value |x, y ⊕ f(x)⟩, where the operator ⊕ represents the addition

modulo 2. The transformation |x, y⟩ → |x, y ⊕ f(x)⟩ is easily shown to be unitary. In

particular, taking x = |0⟩+|1⟩√
2

and y = 0 as inputs, the output state will be |0,f(0)⟩+|1,f(1)⟩√
2

,

which provides information about f(0) and f(1) simultaneously.

A noticeable application of this situation can be found in Example 8, Section 5.13.1,

where we will propose the encoding of the popular Deutsch’s algorithm.

The second phenomenon (strongly related to quantum parallelism) is called quantum

negative interference. To explain it, we discuss the quantum logical gate
√

NOT (Deutsch

et al. 2000) (also called quantum coin flip QCF (Brassard 1994)) which has no classical
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counterpart. The
√

NOT gate is described by the following unitary matrix

√
NOT ≡ 1√

2

(
1 −1

1 1

)

which takes a vector in the plane and rotates it by 45 degrees counterclockwise.

For example, on input |0⟩, one has that
√

NOT(|0⟩) = 1√
2
(|0⟩ + |1⟩). If one measures the

state, following Postulate IV (Section 3), this means that one can observes |0⟩ and |1⟩ with

the same probability | 1√
2
|2 = 1

2 . Actually, one single application of the matrix behaves as

a random negation, yielding a fair superposition of basis vectors |0⟩ and |1⟩.
One could try to perform the same transformation taking into account a random gate,

i.e a bistochastic matrix (a matrix whose columns and rows entries sum up to 1). This can

be obtained by replacing in the
√

NOT matrix the amplitudes + 1√
2

and − 1√
2

with positive

probabilities 1
2 :

CP ≡ 1

2

(
1 1

1 1

)
.

Such a gate, dubbed here CP, simply performs a coin flip (on input |c⟩, c ∈ {0, 1}, it

returns |0⟩ with probability 1
2 and |1⟩ with probability 1

2 ). Observe that CP seems to behave

exactly like
√

NOT (once the superposition generated by
√

NOT has been observed, the

outputs of the two gates appear indistinguishable). The interesting quality of the quantum

gate appears when we link two gates in series.

On one hand, one can plainly verify that, given |c⟩ (c ∈ {0, 1}),
√

NOT(
√

NOT(|c⟩)) = |c⟩
(where c is the complement of c): the machine built out from the concatenation of two

copies of
√

NOT globally acts like a classical not gate.

On the other hand, a concatenation of two copies of CP works differently: the second

gate randomizes the vector again, yielding a fair distribution of |0⟩ and |1⟩. In general, it

is easy to verify that any number n of successive applications of CP is equivalent to the

application of a single CP gate.

The example shows a peculiar fact: after the second application of the
√

NOT gate,

the ‘randomization’ disappears: in some sense, applying a ‘randomizing’ operation to a

quantum state (which, observed, yields a random value) one produces a deterministic

outcome. What has happened? The answer comes from quantum negative interference.

Let us consider again the computation
√

NOT
√

NOT(|0⟩). The first application of the

quantum gate gives the state 1√
2
(|0⟩ + |1⟩); applying

√
NOT one more time, the first

summand of the superposition (|0⟩) turn into 1√
2
( 1√

2
(|0⟩ + |1⟩)) and the second summand

of the superposition (|1⟩) come to be 1√
2
( 1√

2
(−|0⟩ + |1⟩)). Indeed, the global state is

1√
2
( 1√

2
(|0⟩+ |1⟩))+ 1√

2
( 1√

2
(−|0⟩+ |1⟩)). By trivial algebraic manipulations one has: 1

2 (|0⟩)+
1
2 (|1⟩) − 1

2 (|0⟩) + 1
2 (|1⟩) = 1

2 (|1⟩) + 1
2 (|1⟩) = |1⟩.

In the classical world it is not possible to observe this sort of interference, since in

classical probability theory probabilities can only be positive and no negative interference

phenomena can occur.

At a first glance, the potential power of quantum computing collapses with the peculi-

arities of the randomized computation. But during a quantum computation, phenomena

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

M. Zorzi 16

such as parallelism and negative interference can be exploited, making the model radically

different.

5. Q: a measurement-free quantum λ-calculus

In the main part of this article we will illustrate Q, a calculus for quantum computable

functions. Q has be introduced in Dal Lago et al. (2009), further developed in Dal Lago

et al. (2010) and successively extended in Dal Lago et al. (2011) (see also (Zorzi 2009)).

A calculus for quantum computable functions should present two very different

computational ‘aims’. On the one hand there is the unitary aspect of the calculus,

that captures the essence of quantum computing as algebraic transformations of state

vectors by means of unitary operators. On the other hand, it is possible to have the

control of the pure quantum computation: this, of course, relaxes the unitarity of the

paradigm (this means that it is not possible to describe each computational step as a

unitary transformation on a Hilbert space), embedding the pure quantum evolution in a

classical computation†. Behind this second aim, we have the usual idea of computation

as a sequence of discrete steps on (the mathematical description of) an abstract machine.

The relationship between these different aspects give rise to different approaches to

quantum functional calculi (as observed in Arrighi and Dowek (2008)).

If we divide the two features, i.e. we separate data from control, we adopt the so-called

quantum data – classical control approach.

This means that classical computation is independent from the quantum part: a classical

program (ideally in execution on a classical machine) computes some ‘directives’: these

directives are sent to a hypothetical device which applies them to quantum data. Therefore,

quantum data are manipulated by the classical program: classical computational steps

control the unitary part of the calculus. In general, the classical control acts on the

quantum side of the computation in two ways: by means of unitary transformation and

by means of data observation, i.e. by means of measurement (usually, in quantum calculi,

a syntactic primitive which acts as a measurement apparatus and returns a classical bit,

see Section 6). Another possible directive the control can perform is the creation of a new

quantum datum (see the function new in Section 5.8).

The calculus Q we propose strictly follows the quantum data – classical control

paradigm, going behind Selinger’s proposal for quantum functional languages (Selinger

2004; Selinger and Valiron 2006). In Figure 1, this concept is depicted as a client-server

architecture: a lambda evaluator client normalizes lambda terms and when a quantum

operation occurs, this step is ‘implemented’ by the quantum server. Notice that in Figure 1,

there does not exist any feedback from the quantum server to the classical evaluator. In

† This choice is theoretically sound in a realistic perspective: a classical control should be the ‘easy’ part of
quantum computing in a hybrid architecture built out of a classical machine and a quantum device. As
suggested in Selinger (2004) it is useful to think of a particular hardware on which a quantum language can
be implemented. A suitable model is the QRAM machine (Knill 1996), a general-purpose computer which
controls a quantum hardware device. Our Figure 1 is reminiscent of such a model.
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quantum register

new/ unitary 
operators

directives

( !x.M)!N

Classical  evaluator
+

directives sender

- add a qubit to the quantum register
- apply an unitary operator U 

to the quantum register

Fig. 1. Quantum client-server architecture without feedback.

fact, we will start from a measurement-free calculus (as explained and motivated in the

following section).

We will start with a careful operational analysis of Q. In Section 5.14.1, we will prove

that Q is ‘quantum Turing complete’ in the following sense: Q will be showed to be

equivalent to the class of finitely generated uniform quantum circuit families and (by

well-known results) to quantum Turing machines (see Appendix A.5). This is an essential

result, if we want to affirm that a calculus is a suitable instrument for the characterization

of quantum computable functions. For example, a promising calculus such as van Tonder’s

λq (which was the first proposal in this direction, as explained in Section 7) suffers from

the lack of formally proved results about its expressive power.

5.1. The principal features of Q

Developing Q, we made a number of choices with respect to several aspects of the calculus.

In the following paragraphs we will informally describe the principal features of Q, before

giving technical details.

5.2. Configurations

Computational steps in Q are defined between configurations.

A configuration is a triple [Q,QV ,M] that gives a full instantaneous description of the

state of a computation in Q: M is a term from a suitable grammar, Q is a quantum state,

QV is a set of quantum variables (a superset of those appearing in M). Computational

rules are of the form [Q,QV ,M] → [Q′,QV ′,M ′]; a configuration can evolve classically

(only the lambda term M is involved in the reduction and Q = Q′, QV = QV ′) or

nonclassically (the reduction involves also the quantum register and the set of quantum

variables).

The notion of configuration is a useful technical instrument in order to model quantum

computation forgetting any representation problem.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

M. Zorzi 18

5.3. Untyped setting

We will work in an untyped setting in order to capture the full expressiveness of the

calculus. In this way, we are able to prove the ‘quantum Turing completeness’ of Q,

showing the equivalence with the class of finitely generated uniform quantum circuit

families (see Appendix A.2, Definition 32).

Nevertheless, a term’s construction is not free. In fact, in order to respect quantum

features of data, we need to distinguish between linearity and duplicability. A term’s

generation is controlled by means of well-forming rules.

5.4. Linearity of the calculus (static): ‘bang’ operator

Q is a calculus designed for quantum computable functions. However, it deals with

linearity. Linearity corresponds to the constraint that in every term of the shape λx.M

there is exactly one free occurrence of the variable x in M. Thus, the quantum variables

occurring in a redex λx.M(N) are exactly the ones occurring in the reduct M{N/x}.
A linear term is neither duplicable nor erasable: this way we are able to guarantee

that the ‘no-cloning and no-erasing’ property is satisfied. The Q syntax includes the

modal operator ‘!’ (bang), which allows us to distinguish between different syntactical

objects which represent, respectively, classical (duplicable) and quantum (non-duplicable)

resources. In Q, a term in the form !N cannot contain (references to) quantum data.

5.5. Linearity of the calculus (dynamic): surface reduction

The set of well-forming rules captures the separation between the linear and the

classical part of the syntax. Moreover, we capture linearity ‘dynamically’, adopting surface

reduction (Simpson 2005): in Q it is not possible to reduce under the scope of the bang

operator ‘!’. Let us consider the term λ!xM(!N): a correct computation performs the

β-reduction obtaining M{N/x}; a wrong computation reduces the subterm N.

This is not the only way to enforce the no-cloning and no-erasing properties. Other

solutions have been proposed in the literature, see e.g. Altenkirch et al. (2007), where

duplication is modelled by means of sharing.

5.6. Absence of reduction strategies

Surface reduction (Simpson 2005) is the only restriction on reductions. We do not define

any reduction strategy for Q. The calculus is confluent in a strong sense: normal forms are

unique and also strong normalization and weak normalization are equivalent properties

of configurations. It is mandatory to stress that full confluence results are strongly related

to the absence of intermediate measurement steps. We will see in Section 6, that the

presence of an explicit measurement operator imports a probabilistic behaviour into the

computation, thus it is not possible to retrace confluence theorems in a standard form,

and it is necessary to reformulate the problem in a different way.
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5.7. Implicit measurement at the end of the computations

In Q it is not possible to classically observe the content of the quantum register. More

specifically, the language of terms does not include any measurement operator which,

applied to a quantum variable, has the effect of observing the value of the related qubit.

Therefore, we start from a measurement-free quantum λ-calculus. This means that we

assume to have a unique measurement at the end of the computation. This is a theoretical

well-founded choice (Aharonov et al. 1998; Nielsen and Chuang 2000; Selinger 2004).

Of course, measurement is a fundamental (nonunitary) computational step in some

important quantum algorithms. It also opens some interesting theoretical questions. For

these reasons, in Section 6, we extend the syntax of Q with an explicit measurement

constructor.

5.8. Syntax and well-forming rules

The language of terms of Q, given in the following grammar, is an extension of the syntax

of an untyped λ-calculus with constants.

x ::= x0, x1, . . . classical variables

r ::= r0, r1, . . . quantum variables

π ::= x | ⟨x1, . . . , xn⟩ linear patterns

ψ ::= π | !x patterns

B ::= 0 | 1 boolean constants

U ::= U0, U1, . . . unitary operators

C ::= B | U constants

M ::= x | r | !M | C | new(M) | M1M2 |
⟨M1, . . . ,Mn⟩ | λψ.M terms (where n " 2)

Principal points are the following:

— Variables are partitioned into classical and quantum variables: the first ones are the

usual variables of λ-calculus and they can be bound by a λ-abstraction; quantum

variables refer to qubits in the underlying quantum register. Roughly speaking,

quantum variables represents names of quantum bits.

— There are two sorts of constants, namely boolean constants (0 and 1) and unitary

operators: the first ones are useful for generating qubits and play no role in classical

computations; unitary operators are applied to tuples of quantum variables when

performing quantum computation. Then, in our system we take ‘built-in’ unitary

operators, with the watchfulness explained in the following. We associate to each

computable operator U ∈ U a symbol U, where U is a denumerable fixed set of

computable unitary operators (see Appendix A.1, Definition 30).

— The term constructor new(·) creates a new qubit when applied to a boolean constant.

For example, new(0) returns |0⟩.
— The syntax of terms includes a modal operator ! (the ‘bang’ operator) introduced in

term calculi for linear logic (see for example Wadler’s syntax (Wadler 1994)). Bang
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modality allows us to distinguish between those syntactical objects (λ-terms) that can

be duplicated or erased and those that cannot. In this way, we are able to erase and

duplicate classical terms, which do not contain references to quantum data. Roughly

speaking, a term is duplicable and erasable if and only if it is of the form !M and,

moreover, M does not contain quantum variables. This constraint is ensured ‘statically’

by the well-forming rules in Figure 2.
— The syntax allows pattern abstraction. A pattern is either a classical variable, a tuple of

classical variables, or a ‘banged’ variable, namely an expression of the kind !x, where

x is a name of a classical variable. In order to allow an abstraction of the kind λ!x.M,

the environment (see below) must be enriched with !-patterns, denoting duplicable or

erasable variables. Then, quantum variables cannot be lambda-abstracted: they can

be passed as an argument to a linear pattern by a particular kind of β-reduction (see

Section 5.10, Figure 3, rule q.β).

In the following, we assume to be working modulo variable renaming, i.e. terms

are equivalence classes modulo α-conversion (Barendregt 1984). Substitution up to α-

equivalence is defined in the usual way.

Notation 4. Let us denote with Q(M1, . . . ,Mk) the set of quantum variables occurring in

M1, . . . ,Mk . In the rest of the paper, a finite subset of quantum variables will be called a

quantum variable set (qvs).

Note 5.1. The expressive power of Q depends on the choice of the set U , the constants

which represent unitary operators. If one want, for example, to capture quantum Turing

machines in the style of Bernstein and Vazirani (1997), one fix U to be the set of computable

operators (see Appendix A, Definition 30). On the other hand, the expressivity results

given in Section 5.14.1 relates Q and quantum circuit families; clearly, those that can

be captured by Q terms with computable operators in U are precisely those (finitely)

generated by U (see Appendix A.2).

5.9. Well-forming rules

Since we are working in a untyped setting, term generation is controlled by well-forming

rules. Judgements are defined from various notions of environments, that take into account

the way the variables are used. In the following, a set of variables {x1, . . . , xn} is often

written simply as x1, . . . , xn. Analogously, the union of two sets of variables X and Y is

denoted simply as X,Y .

— A classical environment is a (possibly empty) set of classical variables. Classical envir-

onments are denoted by ∆ (possibly with indexes). Examples of classical environments

are x1, x2 or x, y, z or the empty set !. Given a classic environment ∆ = x1, . . . , xn, !∆

denotes the set of patterns !x1, . . . , !xn.
— A quantum environment is a (possibly empty) set of quantum variables. Quantum

environments are denoted Θ (possibly indexed). Examples of quantum environments

are r1, r2, r3 or the empty set !.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

On quantum lambda calculi 21

const
!∆ ⊢ C

q–var
!∆, r ⊢ r

classic-var
!∆, x ⊢ x

der
!∆, !x ⊢ x

!∆ ⊢ M
prom

!∆ ⊢!M

Λ1, !∆ ⊢ M Λ2, !∆ ⊢ N
app

Λ1, Λ2, !∆ ⊢ MN

Λ1, !∆ ⊢ M1 · · ·Λk, !∆ ⊢ Mk
tens

Λ1, . . . , Λk, !∆ ⊢ ⟨M1, . . . , Mk⟩
Γ ⊢ M

new
Γ ⊢ new(M)

Γ, x1, . . . , xn ⊢ M
lam1

Γ ⊢ λ⟨x1, . . . , xn⟩.M

Γ, x ⊢ M
lam2

Γ ⊢ λx.M

Γ, !x ⊢ M
lam3

Γ ⊢ λ!x.M

Fig. 2. Well-forming rules.

— A linear environment is a (possibly empty) set, denoted by Λ (possibly indexed), in the

form ∆,Θ where ∆ is a classical environment and Θ is a quantum environment. The

set x1, x2, r1 is an example of a linear environment.

— An environment, denoted by Γ (possibly indexed), is a (possibly empty) set in the form

Λ, !∆ where each classical variable x occurs at most once (either as !x or as x) in Γ.

For example, x1, r1, !x2 is an environment, while x1, !x1 is not an environment.

— A judgement is an expression Γ ⊢ M, where Γ is an environment and M is a term of

Q.

We say that a judgement Γ ⊢ M is well-formed (notation: ◃Γ ⊢ M) if it is derivable

by means of the well-forming rules in Figure 2. The rules app and tens are subject to

the constraint that for each i ̸= j, we have Λi ∩ Λj = ! (note that Λi and Λj are linear

environments).

Moreover, with d ◃ Γ ⊢ M we mean that d is a derivation of the well-formed judgement

Γ ⊢ M. If Γ ⊢ M is well formed, we say also that the term M is well formed with respect

to the environment Γ. We say that a term M is well formed if the judgement Q(M) ⊢ M

is well formed. It is possible to prove that if a term M is well formed then all its classical

variables are bound.

Notice that the structure of our terms is strongly based on the formulation of linear

logic proposed by Wadler (1994). Moreover, it is easy to observe that, by means of

well-forming rules,

a duplicable term !N cannot contain quantum variables.

This way, we statically guarantee that references to quantum bits can be neither

duplicable nor erasable. Dynamically, quantum properties will be assured by means of

surface reduction (Section 5.10).

5.10. Computations

Reductions in Q are defined between configurations. A configuration is a reformulation

of the notion of program state, introduced by Selinger (2004).

We formally define configurations as equivalence classes of preconfigurations, i.e. triples

of the kind [Q,QV ,M] where:
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— M is a term;
— QV is a finite qvs such that Q(M) ⊆ QV;
— Q ∈ H(QV).

Let θ : QV → QV ′ be a bijective function from a (nonempty) finite set of quantum

variables QV to another set of quantum variables QV ′. Then we can extend θ to any term

whose quantum variables are included in QV: θ(M) will be identical to M, except on

quantum variables, which are changed according to θ itself. Observe that Q(θ(M)) ⊆ QV ′.

Similarly, θ can be extended to a function from H(QV) to H(QV ′) in the obvious way.

Definition 6 (configurations). Two preconfigurations [Q,QV ,M] and [Q′,QV ′,M ′] are

equivalent iff there is a bijection θ : QV → QV ′ such that Q′ = θ(Q) and M ′ = θ(M). If

a preconfiguration C is equivalent to D, then we will write C ≡ D. The relation ≡ is an

equivalence relation. A configuration is an equivalence class of preconfigurations modulo

the relation ≡. Let Conf be the set of configurations.

The way configurations are defined, namely quotienting preconfigurations over a

relation ≡, is reminiscent of usual α-conversion in lambda terms.

5.11. Reduction rules

A computation in Q is a (possibly infinite) sequence of the form C0 = [QV0,QV0,M0] →α

[QV1,QV1,M1] →α . . . →α [QVk,QVk,Mk] →α . . . (where C0 is the initial configuration

and α ranges over a finite set of names of reduction rules).

A computational step, indeed, possibly involves each component of the configuration,

performing a reduction on the lambda term and eventually acting on quantum data.

Computations are formally introduced in Definition 10.

Reduction rules are in Figure 3. Let L = {Uq, new, l.β,q.β, c.β, l.cm, r.cm}. The set

L will be ranged over by α,β, γ. For each α ∈ L , we can define a reduction relation

→α⊆ C × C by means of the rules in Figure 3.

For any subset S of L , we can build a relation →S by just taking the union over

α ∈ S of →α. In particular, → will denote →L . The usual notation for the transitive and

reflexive closures will be used. In particular, →∗ will denote the transitive and reflexive

closure of →.

In the following we will also deal with some particular subsets of L :

Definition 7 (subsets of L ).

— Q = {Uq, q.β} is the set of quantum rules;

— nC = Q ∪ {new} = {Uq, q.β,new} is the set of non-classical rules (including quantum

reductions and new reductions);

— C = L − nC = {l.β, c.β, l.cm, r.cm} is the set of classical rules;

— K = {l.cm, r.cm} and N = L − K = {Uq, new, l.β,q.β, c.β} denote the sets of

commutative and non-commutative rules, respectively.

Let us explain the meaning of computational rules. By means of reductions, configurations

can evolve classically and nonclassically.
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β–reductions

[Q,QV, (λx.M)N ] →l.β [Q,QV, M{N/x}] l.β

[Q,QV, (λ⟨x1, . . . , xn⟩.M)⟨r1, . . . , rn⟩] →q.β [Q,QV, M{r1/x1, . . . , rn/xn}] q.β

[Q,QV, (λ!x.M)!N ] →c.β [Q,QV, M{N/x}] c.β

Unitary transformation of a quantum register

[Q,QV, U⟨ri1 , ..., rin⟩] →Uq [U⟨⟨ri1 ,...,rin ⟩⟩Q,QV, ⟨ri1 , ..., rin⟩] Uq

Creation of a new qubit and quantum variable

[Q,QV, new(c)] →new [Q⊗ |r &→ c⟩,QV ∪ {r}, r] new
(r is fresh, c ∈ {0, 1})

Commutative reductions

[Q,QV, L((λπ.M)N)] →l.cm [Q,QV, (λπ.LM)N ] l.cm

[Q,QV, ((λπ.M)N)L] →r.cm [Q,QV, (λπ.ML)N ] r.cm

where L is free for π

Context closure

[Q,QV, Mi] →α [Q′,QV ′, M ′
i ]

ti
[Q,QV, ⟨M1, . . . , Mi, . . . , Mk⟩] →α [Q′,QV ′, ⟨M1, . . . , M

′
i , . . . , Mk⟩]

[Q,QV, N ] →α [Q′,QV ′, N ′]
r.a

[Q,QV, MN ] →α [Q′,QV ′, MN ′]

[Q,QV, M ] →α [Q′,QV ′, M ′]
l.a

[Q,QV, MN ] →α [Q′,QV ′, M ′N ]

[Q,QV, M ] →α [Q′,QV ′, M ′]
in.new

[Q,QV, new(M)] →α [Q′,QV ′, new(M ′)]

[Q,QV, M ] →α [Q′,QV ′, M ′]
in.λ1

[Q,QV, (λ!x.M)] →α [Q′,QV ′, (λ!x.M ′)]

[Q,QV, M ] →α [Q′,QV ′, M ′]
in.λ2

[Q,QV, (λπ.M)] →α [Q′,QV ′, (λπ.M ′)]

Fig. 3. Reduction rules.

Let us consider the reduction schema [Q,QV ,M] →α [Q′,QV ′,M ′].

— α ∈ C : we have a classical evolution. A reduction step from M is performed, obtaining

M ′ as reduct; Q and QV will not be modified, thus Q = Q′ and QV = QV ′. No

quantum variable has been created, and no unitary transformation has been applied

to the quantum register. The only significant component of the computational step is

the λ–term M.
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— α ∈ nC : we have a non-classical evolution. This kind of reduction step induces an

interaction between the term M and the quantum register. This class of reductions

(potentially) modifies the set QV and the quantum register Q in three possible way:

1. The redex is a quantum redex, i.e. a subterm of the kind (λ⟨x1, . . . , xn⟩.L)⟨r1, . . . , rn⟩
and α = q.β . In this case the computational step does not modify the quantum

register and the qvs (Q = Q′ and QV = QV ′), but the reduction ‘links’ the subterm

L to quantum data in Q by means of quantum variable names ⟨r1, . . . , rn⟩.
2. α = new, then the creation of a new quantum bit occurs by reducing a term of

the shape new(c) (where c is a classical bit). Such a reduction creates a new

quantum variable name r (a fresh variable): as a consequence, Q′ = Q ⊗ |c⟩ and

QV ′ = QV ∪ {r}. The new quantum variable name is a kind of pointer to the newly

created qubit. In the lambda term M ′ the subterm new(c) of M is replaced by the

quantum variable name r.

3. The redex is a term of the shape U⟨r1, . . . , rn⟩, where U is the name of a unitary

operator and r1, . . . , rn are quantum variables. In this case α = Uq and the reduction

corresponds to the application of a unitary transformation to the quantum register.

No modification in QV are performed, thus QV ′ = QV , because no change

to quantum variable names are expected; in the lambda term M the subterm

U⟨r1, . . . , rn⟩ will be replaced by ⟨r1, . . . , rn⟩, and Q′ is the normalized vector resulting

after the application of U on qubits ⟨r1, . . . , rn⟩ in Q.

Let us give some further words about the set K , where we assume that the term L is

free for π: it should appear redundant, but it plays an important role in Q. Commutative

rules permit to commute subterms in order to prevent quantum reductions that can block

classical ones. Moreover, commutative rules will be a useful technical tool in the proof of

standardization theorem (Section 5.13.1, Theorem 6).

As previously seen, the well-forming rules ensure statically that any term of the form

!M cannot contain quantum variables. In order to preserve this property under reduction,

reductions cannot be performed under the scope of a bang.

This constraint is named in the literature as surface reduction (Simpson 2005) and

preserves, dynamically, no-cloning and no-erasing properties on non-duplicable syntactical

objects. The following example shows what happens if a reduction occurs in the scope of

a bang.

Example 5 (a wrong computation in Q). Let us consider the following well-formed

configuration: [1,!, (λ!x.cnot⟨x, x⟩)!(new(1))]. Observe that the subterm !(new(1)) is a

duplicable term because it does not yet contain references to quantum data. The following

is a correct computation (we do not reduce in the scope of the bang and we perform

firstly the c.β-reduction):

[1,!, (λ!x.cnot⟨x, x⟩)!(new(1))] →c.β [1,!, cnot⟨new(1), new(1)⟩]
2→new [|p ,→ 1⟩ ⊗ |q ,→ 1⟩, {p, q}, cnot⟨p, q⟩)]
→Uq [|p ,→ 1⟩ ⊗ |q ,→ 0⟩, {p, q}, ⟨p, q⟩].
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However, if we permitted to reduce under the scope of the bang (namely reducing the

subterm new(1) before executing the c.β-reduction), we would obtain the computation:

[1,!, (λ!x.cnot⟨x, x⟩)!(new(1))] →new [|p ,→ 1⟩, {p}, (λ!x.cnot⟨x, x⟩)!(p)]
→q.β [|p ,→ 1⟩, {p}, cnot⟨p, p⟩)].

Notice that we have duplicated the quantum variable p, creating a double reference to

the same qubit. As a consequence we could apply a binary unitary transform (cnot) to a

single qubit (the one referenced by p), which is not compatible with the basic principles

of quantum computing.

Let us remark that the relation →α is neither a call-by-value nor a call-by-name strategy.

In Q the only limitation is that we forbid reductions under the scope of a ‘!’, and

nevertheless, confluence holds in a very strong sense (see Section 5.12.2). This is in

contrast with the calculus developed in Selinger and Valiron (2006), where a call-by-value

strategy is indeed necessary, even if we do not take into account the non-deterministic

effects of the measurement operator (see Section 7.2).

Some definitions on configurations (very reminiscent of equivalent definitions on lambda

terms) are in order now. The notion of a well-formed judgement can be extended to

configurations in a natural way:

Definition 8 (well-formed configuration). A configuration [Q,QV ,M] is said to be well

formed iff there is an environment Γ such that Γ ⊢ M is well formed.

In the following, by configuration we mean well-formed configuration.

We define now normal forms and computations.

Definition 9 (normal form). A configuration C ≡ [Q,QV ,M] is said to be in normal form

iff there is no D such that C → D. Let us denote by NF the set of configurations in normal

form.

Definition 10 (computations). If C0 is a configuration, a computation of length ϕ ! ω

starting with C0 is a sequence of configurations {Ci}i<ϕ such that for all 0 < i < ϕ,

Ci−1 → Ci and either ϕ = ω or Cϕ−1 ∈ NF.

If a computation starts with a configuration [Q0,QV0,M0] such that QV0 is empty (and,

therefore, Q(M0) is empty itself), then at each step i the set QV i coincides with the set

Q(Mi):

Proposition 1. Let {[Qi,QV i,Mi]}i<ϕ be a computation, such that Q(M0) = !. Then for

every i < ϕ we have QV i = Q(Mi).

Proof. Observe that if [Q,Q(M),M] → [Q′,QV ′,M ′] then by induction on reduction

rules we immediately have that QV ′ = Q(M ′) whenever QV = Q(M), and conclude.

Notation 5. In the rest of the paper, [Q,M] denotes the configuration [Q,Q(M),M].
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5.11.1. Examples of computations in Q. In the following examples we work with fixed

lengths of the inputs. In Q it is possible to deal with infinite encodings: an example can

be found in Section 5.14.1, where we will code (infinite) circuit families.

Example 6 (EPR states). We define a lambda term representing a quantum circuit that

generates an EPR state. EPR states are entangled quantum states used by Einstein,

Podolsky and Rosen in a famous thought experiment on quantum mechanics (1935).

EPR states can be easily obtained by means of cnot and Hadamard’s unitary operator

H. The general schema of the term is

M ≡ λ⟨x, y⟩.(cnot⟨Hx, y⟩)).

The term M takes 2-qubits as input and then gives as output an EPR (entangled) state.

We give an example of computation, with [1,M ⟨new(0), new(1)⟩] as initial configuration:

[1,M ⟨new(0), new(1)⟩] 2→new [|p ,→ 0⟩ ⊗ |q ,→ 1⟩, (λ⟨x, y⟩.(cnot⟨Hx, y⟩))⟨p, q⟩]
→q.β [|p ,→ 0⟩ ⊗ |q ,→ 1⟩, (cnot⟨Hp, q⟩)]

→Uq

[
|p ,→ 0⟩ + |p ,→ 1⟩√

2
⊗ |q ,→ 1⟩, (cnot⟨p, q⟩)

]

→Uq

[
|p ,→ 0, q ,→ 0⟩ + |p ,→ 1, q ,→ 1⟩√

2
, ⟨p, q⟩

]
.

After some reduction steps, two quantum variables p and q appear in the term and

the quantum register is modified accordingly. Finally, constants for unitary operators

corresponding to cnot and H are applied to the quantum state. The quantum register

|p ,→ 0, q ,→ 0⟩ + |p ,→ 1, q ,→ 1⟩√
2

is the so-called β00 EPR state.

Example 7 (exchange). Consider the following lambda term:

L ≡ λ⟨x, y⟩.(λ⟨a, b⟩.cnot⟨b, a⟩)((λ⟨w, z⟩.cnot⟨z, w⟩)(cnot⟨x, y⟩))

L builds a quantum circuit that performs the exchange of a pair of qubits.

[1, L ⟨new(1), new(0)⟩]
2→ [|p ,→ 1⟩ ⊗ |q ,→ 0⟩, (λ⟨x, y⟩.(λ⟨a, b⟩.cnot⟨b, a⟩)((λ⟨w, z⟩.cnot⟨z, w⟩)(cnot⟨x, y⟩))⟨p, q⟩]

(1)

→q.β [|p ,→ 1⟩ ⊗ |q ,→ 0⟩, (λ⟨a, b⟩.cnot⟨b, a⟩)((λ⟨w, z⟩.cnot⟨z, w⟩)cnot⟨p, q⟩])
→Uq [|p ,→ 1⟩ ⊗ |q ,→ 1⟩, (λ⟨a, b⟩.cnot⟨b, a⟩)((λ⟨w, z⟩.cnot⟨z, w⟩)⟨p, q⟩)]
→q.β [|p ,→ 1⟩ ⊗ |q ,→ 1⟩, (λ⟨a, b⟩.cnot⟨b, a⟩)cnot⟨q, p⟩]
→Uq [|p ,→ 0⟩ ⊗ |q ,→ 1⟩, (λ⟨a, b⟩.cnot⟨b, a⟩)⟨q, p⟩]
→q.β [|p ,→ 0⟩ ⊗ |q ,→ 1⟩, (cnot⟨p, q⟩)]
→Uq [|p ,→ 0⟩ ⊗ |q ,→ 1⟩, ⟨p, q⟩]. (2)
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Notice that the values attributed to p and q in the underlying quantum register are

exchanged between configurations (1) and (2).

5.12. Some good classical properties for Q

5.12.1. Subject reduction. Even if Q is type-free, term formation is syntactically controlled

by means of well-forming rules. It is therefore necessary to prove that the class of well-

formed terms is closed by reduction. For Q, a subject reduction theorem holds in a suitable

form.

A ‘standard’ property such as subject reduction is of course an expected property of

each good defined language. In this case it is also required by the fact that a particular

kind of variable, quantum variables, can be created dynamically during the computation.

This effect is due to the presence of new reductions [Q,QV , new(c)] →new

[Q ⊗ |r ,→ c⟩,QV ∪ {r}, r] which creates a new qubit from the classical constant c and a

quantum variable r.

Thus, the subject reduction theorem is formulated with respect to quantum variables

dynamically created in the computational step:

Theorem 2 (subject reduction).

If d ◃ Γ ⊢ M and [Q,QV ,M] → [Q′,QV ′,M ′] then ◃ Γ,QV ′ − QV ⊢ M ′.

Proof. The proof is by induction on the height of d and by cases on the last rule r of

d. In order to prove subject reduction, we need a number of intermediate results. Firstly

we have to prove that the weakening rule is admissible in the set of well-forming rules,

i.e. we have to prove the following statement:

Weakening For each derivation d, if d ◃ Γ ⊢ M and x does not occur in Γ, then

◃Γ, !x ⊢ M.

The proof is by induction on the derivation d.

Moreover, as usual, the proof of subject reduction requires suitable substitution lemmata.

We need three substitution lemmata, according to the different kind of variables we have

in the syntax:

Substitution lemma – linear case: if ◃Λ1, !∆, x ⊢ M and ◃Λ2, !∆ ⊢ N,

with Λ1 ∩ Λ2 = !, then ◃Λ1,Λ2, !∆ ⊢ M{N/x}.
Substitution lemma – nonlinear case: if ◃Λ1, !∆, !x ⊢ M and ◃ !∆ ⊢!N, then

◃Λ1, !∆ ⊢ M{N/x}.
Substitution lemma – quantum case: for every nonempty sequence x1, . . . , xn

if ◃Λ, !∆, x1, . . . , xn ⊢ M and r1, . . . , rn /∈ Λ, then ◃Λ, !∆, r1, . . . , rn ⊢
M{r1/x1, . . . , rn/xn}.

All proofs are by induction on the derivation and by cases on the last rule.

The proof of subject reduction proceeds by induction on the derivation of [Q,QV ,M] →
[Q′,QV ′,M ′]. Let us show some cases:

— r is app and the reduction rule is

[Q,QV , (λ⟨x1, . . . , xn⟩.P )N] →l.β [Q,QV , P {⟨r1/x1, . . . , rn/xn⟩}] q.β
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(the application generates a redex). Suppose we have the following derivation d:

d1···
Λ1, !∆, x1, . . . , xn ⊢ P

lam1
Λ1, !∆ ⊢ λ⟨x1, . . . , xn⟩.P

d2···
!∆, r1, . . . , rn ⊢ ⟨r1, . . . , rn⟩

app
Λ1,Λ2, !∆ ⊢ (λ⟨x1, . . . , xn⟩.P )N

Let us consider the reduction

[Q,QV , (λ⟨x1, . . . , xn⟩.P )⟨r1, . . . , rn⟩] →q.β [Q,QV , P {r1/x1, . . . , rn/xn}]. We note that the

reduction does not modify the QV set, so we just have to apply substitution lemma –

quantum case to d1 and d2: ◃Λ1, !∆ ⊢ P {r1/x1, . . . , rn/xn}.
— r is new

!∆ ⊢ c
new

!∆ ⊢ new(c)

We have the following reduction rule:

[Q,QV , new(c)] → [Q ⊗ |p ,→ c⟩,QV ∪ {p}, p].

By means of

q − var
!∆, p ⊢ p

we obtain the result.

— r is app and the reduction rule is

[Q,QV , L((λ⟨x1, . . . , xn⟩.P )N)] →l.cm [Q,QV , (λ⟨x1, . . . , xn⟩.LP )N] l.cm

Note that the reduction rule does not modify Q and QV . So, from derivation:

d1···
Λ1, !∆ ⊢ L

d2···
Λ′

2, !∆, x1, . . . , xn ⊢ P
lam1

Λ′
2, !∆ ⊢ λ⟨x1, . . . , xn⟩.P

d3···
Λ′′

2 , !∆ ⊢ N
app

Λ2, !∆ ⊢ (λ⟨x1, . . . , xn⟩.P )N
app

Λ1,Λ2, !∆ ⊢ L((λ⟨x1, . . . , xn⟩.P )N)

we exhibit a derivation of Λ1,Λ2, !∆ ⊢ (λ⟨x1, . . . , xn⟩.LP )N:

d1···
Λ1, !∆ ⊢ L

d2···
Λ′

2, !∆, x1, . . . , xn ⊢ P
app

Λ1,Λ
′
2, !∆, x1, . . . , xn ⊢ LP

lam1
Λ1,Λ

′
2, !∆ ⊢ λ⟨x1, . . . , xn⟩.LP

d3···
Λ′′

2 , !∆ ⊢ N
app

Λ1,Λ2, !∆ ⊢ (λ⟨x1, . . . , xn⟩.LP )N

Other cases are similar. For full details see Zorzi (2009).
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As a consequence of subject reduction, the set of well-formed configurations is closed

under reduction:

Corollary 1. If M is well formed and [Q,QV ,M]
∗→ [Q′,QV ′,M ′] then [Q′,QV ′,M ′] is

well formed.

Another immediate corollary (provable by induction) is the following ‘weakening

property’:

Corollary 2. If ◃Γ ⊢ M and [Q,QV ,M]
∗→ [Q′,QV ′,M ′] then ◃ Γ,QV ′ − QV ⊢ M.

5.12.2. Confluence. In Q, it is possible to show that strong normalization and weak

normalization are equivalent properties. This is due to the fact that confluence holds in a

very strong sense, thanks to surface reduction, which implies that in Q it is not possible

to erase diverging terms (Simpson 2005).

To prove many-step confluence, an ‘imperfect’ version of one-step confluence is proved.

One-step confluence cannot hold in its standard formulation because of the presence of

commutative rules. For example, starting from the configuration [Q,QV , (λπ.M)((λx.N)L)],

then both [Q,QV , (λπ.M)((λx.N)L)] →N [Q,QV , (λπ.M)(N{L/x})] and

[Q,QV , (λπ.M)((λx.N)L)] →K [Q,QV , (λx.(λπ.M)N)L] →N [Q,QV , (λπ.M)(N{L/x})]
are legal reduction steps.

Graphically, in presence of commutative rules, the following cases can occur:

This situation is represented in our version of one-step confluence:

Proposition 2 (one-step confluence). Let C,D, E be configurations with C →α D, C →β E

and D ̸= E. Then:

1. If α ∈ K and β ∈ K , then there is F with D →K F and E →K F .

2. If α ∈ N and β ∈ N , then there is F with D →N F and E →N F .

3. If α ∈ K and β ∈ N , then either D →N E or there is F with D →N F and E →K F .
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Proof.

Let C = [Q,QV ,M]. By induction on the lambda term M.

Thanks to Proposition 2 it is possible to prove the general statement about reduction

sequences of arbitrary length:

Theorem 3 (confluence). Let C,D1, D2 be configurations with C
m1−→ D1 and C

m2−→ D2.

Then, there is a configuration E with D1
n1−→ E and D2

n2−→ E with n1 ! m2, n2 ! m1 and

n1 + m1 = n2 + m2.

Graphically:
C

m1 m2

D1

n1

D2

n2

E

Proof. By induction on the length of the reduction sequence, and by cases depending

on the outcome of Proposition 2. The proof is quite long, for full details see Zorzi (2009)

and Dal Lago et al. (2010).

By means of confluence results, it is possible to prove the uniqueness of normal forms

in Q.

Theorem 4 (uniqueness of normal forms). Any configuration C has at most one normal

form.

Our very strong notion of confluence implies that:

strong and weak normalization are equivalent properties of configurations

as stated in the following theorem:

Theorem 5. A configuration C is strongly normalizing iff C is weakly normalizing.

To prove Theorem 5, we exploit another feature of Q: in a Q computation it is not

possible to build an infinite sequence of commuting reductions. This is Lemma 1:

Lemma 1. The relation →K is strongly normalizing. In other words, there cannot be any

infinite sequence C1 →K C2 →K C3 →K . . ..

Proof. Define the size |M| of a term M as the number of symbols in it. Moreover,

define the abstraction size |M|λ of M as the sum over all subterms of M in the form λπ.N,

of |N|. Clearly |M|λ ! |M|2. Moreover, if [Q,QV ,M] →K [Q,QV , N], then |N| = |M| but

|N|λ > |M|λ. This concludes the proof.

We are able now to prove Theorem 5:
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Proof of Theorem 5. Weak normalization implies strong normalization. Suppose, by

way of contradiction, that C is weakly normalizing but not strongly normalizing. This

implies there is a configuration D in normal form and sequence of m ∈ N reduction

steps from C to D. Since C is not strongly normalizing, there is also an infinite sequence

C ≡ C1, C2, C3, . . . with C1 → C2 → C3 → . . . From this infinite sequence, we can extract

a sequence of m + 1 reduction steps due to Lemma 1. Applying Proposition 3, we get

a configuration F and a sequence of one reduction step from D to F . However, such a

sequence cannot exist, because D is normal.

This conclude the ‘classical analysis’ of the calculus Q. In the following section, we will

state and prove new interesting quantum properties.

5.13. Some desirable quantum properties for Q

In the previous section, we explained two classical properties such as subject reduction

and confluence. These results confirm that the classical part of Q, (i.e. the control), is

well designed. However, Q is developed for quantum computing: we describe now two

important quantum features of Q. Firstly, a standardization theorem is stated and proved,

showing that computational steps in Q can be performed in a particular order, in which

all quantum reductions can be postponed. The standardization theorem strengthens the

common idea that a universal quantum computer should consist of a classical device

‘setting up’ a quantum circuit that is then fed with an input.

Secondly, Q is shown to be at least as expressive as the quantum circuit families model.

5.13.1. Standardization theorem: quantum computations in a standard form. Standard

forms of computations are an interesting topic in many computational models. For

example, in the probabilistic model, it was proved that a computation on a Turing

machine can be standardized into a computation separating stochastic and deterministic

parts.

In Q a similar result holds: from each computation, an equivalent computation in

standard form can be extracted. Informally, in a standard computation, computational

steps are performed in the following order: classical reductions, new reductions and

finally quantum reductions.

Remember the subsets of L of Definition 7.

Let C →α D and let M be the relevant redex in C; if α ∈ Q the redex M is called quantum,

if α ∈ C the redex M is called classical.

Different relevant redexes characterize different kinds of configurations:

Definition 11 (classes of configurations).

— A configuration C is called nonclassical if α ∈ nC whenever C →α D. Let NCL be the

set of non-classical configurations.

— A configuration C is called essentially quantum if α ∈ Q whenever C →α D. Let EQT

be the set of essentially quantum configurations.
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For example, C = [Q,QV , new(1)] ∈ NCL and C = [Q,QV , λ.⟨x1, . . . , xk⟩.⟨x1, . . . , xk⟩
(⟨r1, . . . , rk⟩)] ∈ EQT.

We are able now to define standard computations:

Definition 12 (CNQ computation). A CNQ computation starting with a configuration C

is a computation {Ci}i<ϕ such that C0 ≡ C , ϕ ! ω and:

1. for every 1 < i + 1 < ϕ, if Ci−1 →nC Ci then Ci →nC Ci+1;

2. for every 1 < i + 1 < ϕ, if Ci−1 →Q Ci then Ci →Q Ci+1.

A CNQ computation is built on three different and ordered stages:

— first phase of the computation – classical reductions: this phase builds a lambda

term representing a quantum circuit, without any interaction with the underlined

quantum register;

— second phase of the computation – new reductions: this phase prepares the input,

i.e the quantum register without introducing any superposition;

— third phase of the computation – quantum reductions: in this phase the proper

quantum steps are performed, and unitary operators are applied to qubits (possibly

introducing superposition). Essentially, the circuit built in the first phase is applied to

the quantum register built in the second phase.

From an abstract perspective, we can consider a particular class of terms, called quantum

relevant terms (see Definition 14), as quantum circuit generators; this will be an important

technical ingredient in the proof of the expressive equivalence between Q and the quantum

circuit families model.

Theorem 6 (standardization). For every computation {Ci}i<ϕ such that ϕ ∈ N there is a

CNQ computation {Di}i<ξ such that C0 ≡ D0 and Cϕ−1 ≡ Dξ−1.

In order to prove Theorem 6 we need some intermediate results. Informally, we need

to prove that the class NCL of non-classical configurations is closed under new reduction,

while the class EQT of essentially quantum configurations is closed under quantum

reduction. This means that we need to prove that a new redex cannot generate a classical

redex, and that a quantum redex cannot generate a new redex.

Lemma 2.

i. If C ∈ NCL and C →new D then D ∈ NCL.

ii. If C ∈ EQT and C →Q D then D ∈ EQT.

Proof. i and ii follow from rules’ inspection. One has to define a notion of context

(a term with one hole) and proceeds by induction on the structure of the context. For a

complete and detailed proof see Zorzi (2009) and Dal Lago et al. (2010).

By means of Lemma 2 we can prove the standardization theorem.

Proof of standardization theorem

We build a CNQ computation in three steps:
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1. Let us start to reduce D0 ≡ C0 by using C reductions as much as possible. By

Theorem 5 we must obtain a finite reduction sequence D0 →C . . . →C Dk s.t. 0 ! k

and no C reductions are applicable to Dk .

2. Reduce Dk by using new reductions as much as possible. By Theorem 5 we must obtain

a finite reduction sequence Dk →new . . . →new Dj s.t. k ! j and no new reductions are

applicable to Dj . Note that by Lemma 2 such reduction steps cannot generate classical

redexes and in particular no classical redex can appear in Dj .

3. Reduce Dj by using Q reductions as much as possible. By Theorem 5 we must obtain

a finite reduction sequence Dj →Q . . . →Q Dm such that j ! m and no Q reductions

are applicable to Dm. Note that by Lemma 2 such reduction steps cannot generate C
redexes or new redexes and in particular neither C nor new reductions are applicable

to Dm. Therefore Dm is in normal form.

The reduction sequence {Di}i<m+1 is such that D0 →C . . . →C Dk →new . . . →new Dj →Q

. . . →Q Dm is a CNQ computation. By Theorem 4 we observe that Cϕ−1 ≡ Dm, which

implies the thesis.

The standardization theorem explains the structure of measurement-free quantum

computations, confirming the idea of a composite architecture device-server (i.e. the

advisability of quantum data-classical control approach). Moreover, it plays an important

role in the proof of the equivalence of Q with quantum circuit families: the possibility to

perform quantum steps after the classical ones will be extensively used in Theorem 9.

The following is another example of a Q-computation (that is also in standard form):

Example 8 (Deutsch’s algorithm). Deutsch’s algorithm is the first quantum algorithm to

have been defined. It allows one to compute a global property of a function by combining

results from two components of a superposition (Deutsch 1985). We refer here to the

Deutsch’s algorithm as presented in Nielsen and Chuang (2000). We propose an encoding

in Q’s syntax.

Let Wf be the unitary transformation such that Wf |c1c2⟩ = |c1, c2 ⊕ f(c1)⟩ (for any

given boolean function f and c1, c2 ∈ {0, 1}), and let H be the Hadamard transform.

The general quantum circuit that implements Deutsch’s algorithm is represented by the

following lambda term:

D ≡ λ⟨x, y⟩.((λ⟨w, z⟩.⟨Hw, z⟩)(Wf⟨Hx,Hy⟩)).

Deutsch’s algorithm makes use of quantum parallelism and interference (Section 4) in

order to determine whether f is a constant function by means of a single evaluation of

f(x).
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In order to perform such a task, we first evaluate the normal form of
[1,D⟨new(0), new(1)⟩].

[1,D⟨new(0), new(1)⟩]
2→new [|p ,→ 0⟩ ⊗ |q ,→ 1⟩, (λ⟨x, y⟩(λ⟨w, z⟩.⟨Hw, z⟩)(Wf⟨Hx,Hy⟩))⟨p, q⟩]

→q.β [|p ,→ 0⟩ ⊗ |q ,→ 1⟩, (λ⟨w, z⟩.⟨Hw, z⟩)(Wf⟨Hp,Hq⟩)]

→Uq

[
|p ,→ 0⟩ + |p ,→ 1⟩√

2
⊗ |q ,→ 1⟩, (λ⟨w, z⟩.⟨Hw, z⟩)(Wf⟨p,Hq⟩)

]

→Uq

[
|p ,→ 0⟩ + |p ,→ 1⟩√

2
⊗ |q ,→ 0⟩ − |q ,→ 1⟩√

2
, (λ⟨w, z⟩.⟨Hw, z⟩)(Wf⟨p, q⟩)

]

=

[
|p ,→ 0, q ,→ 0⟩

2
− |p ,→ 0, q ,→ 1⟩

2
+

|p ,→ 1, q ,→ 0⟩
2

+
|p ,→ 1, q ,→ 1⟩

2
, (λ⟨w, z⟩.⟨Hw, z⟩)(Wf⟨p, q⟩)

]

→Uq

[
|p ,→ 0, q ,→ 0 ⊕ f(0)⟩

2
− |p ,→ 0, q ,→ 1 ⊕ f(0)⟩

2
+

|p ,→ 1, q ,→ 0 ⊕ f(1)⟩
2

+
|p ,→ 1, q ,→ 1 ⊕ f(1)⟩

2
,

(λ⟨w, z⟩.⟨Hw, z⟩)⟨p, q⟩)
]

→q.β

[
|p ,→ 0, q ,→ 0 ⊕ f(0)⟩

2
− |p ,→ 0, q ,→ 1 ⊕ f(0)⟩

2
+

|p ,→ 1, q ,→ 0 ⊕ f(1)⟩
2

+
|p ,→ 1, q ,→ 1 ⊕ f(1)⟩

2
,

⟨Hp, q⟩
]

→Uq

[
|p ,→ 0⟩ + |p ,→ 1⟩√

2
⊗ |q ,→ 0 ⊕ f(0)⟩

2
− |p ,→ 0⟩ + |p ,→ 1⟩√

2
⊗ |q ,→ 1 ⊕ f(0)⟩

2
+

|p ,→ 0⟩ − |p ,→ 1⟩√
2

⊗ |q ,→ 0 ⊕ f(1)⟩
2

+
|p ,→ 0⟩ − |p ,→ 1⟩√

2
⊗ |q ,→ 1 ⊕ f(1)⟩

2
, ⟨p, q⟩

]

We have two cases:

— f is a constant function; i.e. f(0) ⊕ f(1) = 0.

In this case the normal form may be rewritten as (by means of simple algebraic

manipulations):

[(−1)f(0)|p ,→ 0⟩ ⊗ |q ,→ 0⟩ − |q ,→ 1⟩√
2

, ⟨p, q⟩].

— f is not a constant function; i.e. f(0) ⊕ f(1) = 1.

In this case the normal form may be rewritten as:

[(−1)f(0)|p ,→ 1⟩ ⊗ |q ,→ 0⟩ − |q ,→ 1⟩√
2

, ⟨p, q⟩].

If we measure (by means of a final external apparatus) the first qubit p of the term ⟨p, q⟩
in the normal form configuration, we obtain 0 if f is constant and 1 otherwise.

It is essential to stress again that quantum parallelism alone is not enough: a quantum

algorithm also has the ability to extract information about more than one of the value

f(x) from a superposition state at the same time, as Deutsch’s algorithm done.

Note that the computation is in standard form, i.e. all new reductions come before all

quantum reductions (in this example any classical reduction does not occur).

5.14. Infinite computations in Q

What about infinite computations? Of course, in Q it is possible to represent diverging

lambda terms, and so non-terminating computations occur. From a quantum computation

point of view, in the absence of an explicit measurement operator non-terminating

computations are not particularly interesting, because there is no final measurable
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quantum state, and consequently the transformations of the quantum register are in-

accessible.

The extension of standardization to the infinite case makes this observation explicit.

First of all, observe that we cannot have an infinite sequence of nC reductions, as the

following lemma shows:

Lemma 3. The relation →nC is strongly normalizing (i.e. there cannot be any infinite

sequence C1 →nC C2 →nC C3 →nC . . .).

Proof. Define the size |M| of a term M as the number of symbols in it, observe that if

[Q,QV ,M] →nC [Q,QV , N] then |N| < |M| and conclude.

As a consequence of Lemma 3 only the first, purely classical part of a CNQ computation

can diverge:

Proposition 3. Any infinite CNQ computation only includes classical reduction steps.

The following is a simple example of a non-normalizing term in Q (and then of an

infinite reduction): given M = λ!x.(x!x), clearly M(!M) → M(!M).

We can easily state and prove the standardization theorem also for infinite computa-

tions:

Theorem 7 (standardization for infinite computations). For every non-terminating compu-

tation {Ci}i<ω there is a CNQ computation {Di}i<ω such that C0 ≡ D0.

Proof. We build the CNQ computation in the following way: start to reduce D0 ≡ C0

by using C reductions as much as possible. This procedure cannot end, otherwise we

would contradict Lemma 3 and Theorem 5.

Infinite computations are quite irrelevant in the measurement-free case; on the contrary,

they play a fascinating role in the presence of an explicit measurement operator (see

Section 6).

5.14.1. Expressive power: equivalence with quantum circuit families In this section, we

analyse the expressive power of Q, showing that it is ‘quantum Turing complete’. We will

prove that the expressive power of Q is equivalent to a particular class of quantum circuit

families, and consequently (via the results of Nishimura and Ozawa (2009)) we obtain the

equivalence with the model of quantum Turing machines (as defined by Bernstein and

Vazirani (1997)).

Noticeably,

one single lambda term in Q represents an entire family of quantum circuits.

Two important considerations are now in order.

A lambda term is a finite object (we build it by a finite number of applications of

well-forming rules), and in particular it contains only a finite number of constants for

unitary transformations. As a consequence, we will restrict our attention to the class of

finitely generated quantum circuit families (Definition 32, Appendix A.2).

Moreover, in order to encode a quantum circuit family by means of a single lambda

term, we will exploit the classical content of Q. Whereas, in the previous examples we
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provided finite encodings, the encoding of quantum circuit families is an infinite encoding,

as a quantum circuit family defines an infinite class of functions. The pure linear part of

the calculus (it can easily be obtained forgetting modalities and with little adjustments to

the well-forming rules) is not enough: it permits us to encode only one single circuit, i.e.

a particular element of the family which represents the function for one particular input

size.

Before showing some aspects of the encoding, it is mandatory to say a few words about

the classical content of Q and the relationship with the standard untyped λ-calculus. The

untyped λ-calculus can be embedded in Q, but this does not mean that the encoding

of quantum circuit families is trivial. First of all, the translation into Q has to be done

carefully, because β-reduction in the lambda calculus does not correspond to surface

reduction in a calculus like Q: it is easy to build a non-normalizable classical lambda term

M such that its (call-by-name) translation M is clearly a normal form in Q. Moreover,

surface reduction shares a stricter relationship with weak head reduction: in this case if

M rewrites to N by weak head reduction, then M rewrites to N in Q, but the converse is

not true. Thus, the embedding into Q it is not immediate.

On the other hand, it is well known that the lambda calculus is Turing complete for

any reasonable encoding and this still holds for Q, even if the notion of reduction is

stricter. But showing ‘classical’ Turing completeness for Q (i.e. to prove that Q has at

least the expressive power of a Turing machine) does not imply, for free, the encoding of

quantum circuit families. This only implies that it is possible to compute the code Dn of

the nth circuit Cn of any quantum circuit family from input n, i.e. the ‘Gödel’s number’

of Cn. Since we want to evaluate Cn inside Q, we need to prove that the correspondence

Dn ,→ Cn is itself representable in Q and since the way quantum circuits are represented

and evaluated in Q has nothing to do with the encoding of the calculus itself, this is not

a consequence of the alleged (classical) Turing completeness of Q.

In this section, we will show that each finitely generated quantum circuit family can

be captured by a subclass of Q terms, called quantum relevant terms (Definition 14). In

particular, we will prove that the class of functions captured by quantum relevant terms

is exactly the class computed by quantum circuit families.

Informally, a quantum relevant term is a Q term which produces a list of quantum

variables when applied to a list of classical bits, something like the quantum version of

functions on natural numbers in classical recursion theory. It is clear that the way in

which we encode natural numbers and data structures is a crucial point. Moreover, we are

dealing also with quantum data which are, in general, nonerasable and non-duplicable.

Thus, a numbers of constraints have to be added to the encoding, in order to respect

quantum features. In this paper, we will give only the idea of the encoding. All details

can be found in Dal Lago et al. (2009) and Zorzi (2009).

We encode data, classical and quantum, using some variations on Scott’s numer-

als (Wadsworth 1980). In the case of quantum data, a strongly linear discipline is enforced

through a slightly different encoding. What is crucial from a computational point of view

is the way a quantum relevant term can possibly modify the underlying quantum register.

The encoding of data structures is long but quite standard. We summarize the essential

definitions about natural numbers and lists in the following paragraphs.
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5.14.2. Natural numbers. In the λ-calculus Q natural numbers are encoded nonlinearly.

Any natural number is duplicable by construction, since it has the shape !M for some M.

We have:

⌈0⌉ = !λ!x.λ!y.y

∀n ⌈n + 1⌉ = !λ!x.λ!y.x⌈n⌉

In the following, for each natural number n we denote ⌈n⌉ as its encoding in Q. As

usual, encodings of basic constructors such as successor and predecessor are provided.

Among other constructors, recursion is of course an essential ingredient. Thus, it is easy

to define a lambda term rec such that, for each M ∈ Q, rec!M ≡ M!(rec!M).

Structural recursion recnat on natural numbers is definable by means of rec.

5.14.3. Lists. Whereas, natural numbers are duplicable syntactical objects, in Q lists are

encoded linearly.

Given any sequence M1, . . . ,Mn of terms, we can build a term [M1, . . . ,Mn] encoding

the sequence as follows, by induction on n:

[] = λ!x.λ!y.y;

[M,M1 . . . ,Mn] = λ!x.λ!y.xM[M1, . . . ,Mn].

The occurrences of M and [M1, . . . ,Mn] which are part of [M,M1, . . . ,Mn] do not lie in

the scope of any bang operator.

It is routine to encode standard operations on list such as construction, destruction,

selection, extraction. Iteration is available on lists, too.

Representable functions in Q are defined as follows:

Definition 13. A (partial) function f : Nn → N is representable iff there is a term Mf such

that:

— Whenever Mf⌈m1⌉ . . . ⌈mn⌉ has a normal form N (with respect to
∗→C ), then N ≡ ⌈m⌉

for some natural number m.

— Mf⌈m1⌉ . . . ⌈mn⌉
∗→C ⌈m⌉ iff f(m1, . . . , mn) is defined and equal to m.

As already mentioned, Q reduction relation is quite different from the standard λ-

calculus reduction. In Dal Lago et al. (2009) and Zorzi (2009), it is possible to find the full

proof of the following proposition, which ensures the equivalence between representable

and partially recursive functions:

Proposition 4. The class of representable functions in Q coincides with the class of partial

recursive functions (on natural numbers).

We now formally define the class of quantum relevant terms.

In the following, given any subset S of L , the expression C ⇓S D means that C
∗→S D

and D is in normal form with respect to the relation →S . C ⇓ D stands for C ⇓L D.

Confluence and equivalence between weakly normalizing and strongly normalizing

configurations authorize the following definition:
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Definition 14 (quantum relevant terms). A term M is called quantum relevant (shortly, qrel )

if it is well formed and for each list ![!c1, ..., !cn] (ci ∈ {0, 1}) there is a quantum register Q
and a natural number m such that [1,!,M![!c1, ..., !cn]] ⇓ [Q, {r1, . . . , rm}, [r1, . . . , rm]].

The class of functions captured by quantum relevant terms coincides with the class of

functions which can be computed by finitely generated quantum circuit families.

The situation is summarized by the following diagram

where M is a quantum relevant term and (Ki)i is a finitely generated uniform quantum

circuit family. We sketch here both directions of the equivalence. Detailed proofs are given

in Dal Lago et al. (2009) and Zorzi (2009).

We start showing that each finite family of quantum circuit can be ‘represented’ in Q,

i.e that Q is at least as computationally strong as finitely generated uniform quantum

circuit families (Definition 32).

Theorem 8. For every finitely generated uniform family of quantum circuits (f, g, h) there

is a quantum relevant term Mf,g,h such that for each c1, . . . , cn (ci ∈ {0, 1}), the following

two conditions are equivalent:

— [1,!,Mf,g,h![!c1, ..., !cn]] ⇓ [Q, {r1, . . . , rm}, [r1, . . . , rm]];

— m = f(n) and Q = Φf,g,h(c1, . . . , cn).

Proof. We give the principal ideas of the proof, which is essentially an encoding work.

Since any recursive function can be represented in Q, we can assume that f, g and h are

representable whenever (f, g, h) is a uniform family of circuits.

Recall that:

— f : N → N computes the input dimension.

— h : N → N returns the index of the suitable circuit into the family with respect to the

input dimension.

An essential ingredient is the possibility to represent, in the calculus, elementary

permutations on terms. The nth elementary permutation of m elements (where 1 ! n < m)

is the function which maps n to n + 1, n + 1 to n and any other elements in the interval

1, . . . , m to itself. Any (finite) permutation can be effectively decomposed into a product of

elementary permutations. In particular, it is possible to define a term Mel which computes

the n+1th elementary permutation on lists: for every list [N1, . . . , Nm] with m > n, Mel(⌈n⌉)
[N1, . . . , Nm]

∗→C [N1, . . . , Nn−1, Nn+1, Nn, Nn+2, . . . , Nm].

Now, we are able to prove that any finitely generated family of circuits can be

represented in Q. Suppose that {Ki}i∈N is an effective enumeration of quantum circuits

(Appendix A.2) and assume it is based on an elementary set of unitary operators.
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Suppose that for every i ∈ N , the circuit Ki is

Ui
1, r

i,1
1 , . . . , ri,p(i,1)

1 , . . . ,Ui
k(i), r

i,1
k(i), . . . , r

i,p(i,k(i))
k(i)

where p : N × N → N and k : N → N are computable functions. Since (f, g, h) is finitely

generated, there is a finite family of gates G = {U1, . . . ,Ub} such that for every i ∈ N the

gates Uh(i)
1 , . . . ,Uh(i)

k(i) are all from G. Let ar(1), . . . , ar(b) be the arities of U1, . . . ,Ub. Since

the enumeration {Ki}i∈N is effective, we can assume the existence of a recursive function

u : N × N → N such that u(i, j) = x iff Uh(i)
j is Ux. Moreover, we know that for every

i ∈ N and for every 1 ! j ! k(h(i)), the variables

rh(i),1j , . . . , rh(i),p(h(i),k(h(i)))j

are distinct and in {r1, . . . , rf(h(i))}. So, there are permutations πij of {1, . . . , f(h(i))} such

that πij(x) = y iff rh(i),xj = ry for every 1 ! x ! p(h(i), k(h(i))). Let ρij be the inverse of πij .

Clearly, both πij and ρij can be effectively computed from i and j by means of a suitable

decomposition into elementary permutations. As a consequence, the following functions

are partial recursive (in the ‘classical’ sense):

— A function r : N × N → N which, given (i, j) returns the number of elementary

permutations of {1, . . . , f(h(i))} in which πij can be decomposed.

— A function q : N × N × N → N such that q(i, j, x) = y iff the xth elementary

permutation of {1, . . . , f(h(i))} in which πij can be decomposed is the yth elementary

permutation.

— A function s : N × N → N which, given (i, j) returns the number of elementary

permutations of {1, . . . , f(h(i))} in which ρij can be decomposed.

— A function t : N×N×N → N such that t(i, j, x) = y iff the xth elementary permutation

of {1, . . . , f(h(i))} in which ρij can be decomposed is the yth elementary permutation.

The term representing the quantum circuit family is built out of the following

subterms:

— Minit that, given a list L of boolean constants and a natural number ⌈n⌉, computes the

input list for Kh(n) from L.

— Mcirc, that, given a natural number ⌈n⌉ builds a term computing the unitary trans-

formations involved in Kh(n) acting on lists of quantum variables with length f(n).

— Mlength, which applied to a list [!N1, . . . , !Nm] computes the length (the representation

⌈m⌉ of the number of the elements).

Now, the term Mf,g,h is:

λ!x.(Mcirc(Mlengthx))(Minit!x(Mlengthx)).

For the full encoding of Mf,g,h see, Dal Lago et al. (2009) and Zorzi (2009).

We now state the converse of Theorem 8, completing the proof of the equivalence with

quantum circuit families. In the following, we will use the compact notation [Q,M] for

configurations (Note 5, Section 5.10).

Theorem 9. For each qrel M there is a uniform quantum circuit family (f, g, h) such that

for each list c1, . . . , cn the following two conditions are equivalent:
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— [1,M![!c1, . . . , !cn]] ⇓ [Q, [r1, . . . , rm]]

— m = f(n) and Q = Φf,g,h(c1, . . . , cn).

The proof of Theorem 9 is quite intuitive. Noticeably, here the standardization theorem

plays a central role. In fact, we can assume that all non-quantum reduction steps can

be done before any quantum reduction step. Thus, it is possible to work on quantum

relevant terms in separate stages, building the quantum circuit family in two phases.

Firstly, we consider reduction steps in the set nQ = L − Q and we show that from a

quantum relevant term it is possible to extract, regardless of the input vector, an essentially

quantum term. Let M be a qrel term, let ![!c1, . . . , !cn], ![!d1, . . . , !dn] be two lists of bits

(with the same length) and suppose that [1,M![!c1, . . . , !cn]] ⇓nQ [Q, N] (notice that N

cannot contain any boolean constant, since M is assumed to be a qrel). By applying

exactly the same computation steps that lead from [1,M![!c1, . . . , !cn]] to [Q, N], we can

prove that [1,M![!d1, . . . , !dn]] ⇓nQ [Q′, N], where Q and Q′ live in the same Hilbert space

H(Q(N)) and are both elements of the computational basis. Moreover, any computational

step leading from [1,M![!c1, . . . , !cn]] to [Q, N] is effective, i.e. it is intuitively computable

(in the classical sense). Therefore, by the Church–Turing’s thesis we obtain the following:

Proposition 5. For each qrel M there exists a term N and two total computable functions

f : N → N and g : N × N → N such that for every n ∈ N and for every c1, . . . , cn,

[1,M![!c1, . . . , !cn] ⇓nQ [|r1 ,→ cg(n,1), . . . , rf(n) ,→ cg(n,f(n))⟩, N], where we conventionally set

c0 ≡ 0 and cn+1 ≡ 1.

Note that, at this stage, we have built the quantum circuit from the description function

with respect to the input and we have also built the input, i.e. the quantum register.

Let us now consider computations from essentially quantum terms.

Let [Q,M] ∈ EQT and let us suppose that [Q,M] ⇓Q [Q′, [r1, . . . , rm]]. Then Q and

Q′ live in the same Hilbert space H(Q(M)) = H(Q([r1, . . . , rm])) = H({r1, . . . , rm}). The

sequence of reductions in this computation allows us to build in an effective way a unitary

transformation U such that Q′ = U⟨r1 ,...,rm⟩(Q). This is captured by the following:

Proposition 6. Let M be a term only containing quantum redexes. Then, there is a circuit

K such that Q′ = UK(Q) whenever [Q,M] ⇓Q [Q′,M ′]. Moreover, K is generated by gates

appearing in M. Furthermore K can be effectively computed from M.

The proof of Theorem 9 follows as a direct consequence of Propositions 5 and 6.

6. Adding measurement operators: theoretical problems and technical instruments

If a quantum state does not interact with the ambient (i.e. with something able to perform

a measurement) its evolution is deterministic: in fact, as explained in Sections 2 and 3,

it persists in a linear, unitary evolution by means of unitary operators (Postulate III).

In Q, data and control are separated: on the one hand, quantum data live in the

quantum world, and all quantum register transformations are unitary and invertible; on

the other hand, the classical part of the calculus, the control, enjoys good computational

properties. In Q it is not possible to classically observe the content of the quantum
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+
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(Classical data obtained by
  measurements  can be used 
  in the following steps of 
  the computation)

Interaction 
classical-quantum 

worlds

Fig. 4. Quantum client-server architecture with feedback.

register: the language of terms does not include any measurement operator that, applied

to a quantum variable, has the effect of observing the value of the related qubit. This

is in contrast, for example, with Selinger and Valiron’s λsv (where such a measurement

operator is indeed part of the language of terms) and with other calculi for quantum

computation (like the measurement calculus (Danos et al. 2007)), where the possibility of

observing is even more central (see Section 7). A measurement-free calculus is good for

foundational investigations, and the choice of performing a unique, final measurement

at the end of the computation does not modify the expressive power or the theoretical

generality of the calculus. In Q we are potentially able to encode any quantum computable

functions, but we may not be able to ‘reformulate’ algorithms that provide intermediate

measurement steps (even if we know that the same algorithms can be rewritten in terms

of a unique final measurement). In an arbitrary quantum algorithm, quantum data can

be observed: this interaction with the quantum state gives a set of observables, i.e. a

probabilistic distribution of classical data which can be used in the following steps of the

computation.

An explicit measurement constructor becomes an essential ingredient if we want to

encode the process of iterated/intermediate measurements of algorithms like Shor’s

one.

The extension of Q with a measurement operator meas(·) (in the style of λsv) is not

problematic from a linguistic point of view. The architecture in Figure 1 can be updated

with a feedback from the quantum server to the client, which uses the observed data as

classical constants (see Figure 4).

The problem is rather to prove that the extended calculus again enjoys good quantum

and computational properties.
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6.1. The measurement problem: from physics to computer science

The so-called measurement problem is one of the most fascinatingly tricky points of

quantum mechanics. Different approaches to it give different interpretations of the theory,

leaving some questions still unanswered.

In quantum computing Postulate V induces less foundational choices, but the possibility

to observe quantum data changes the features of the computational framework in a

sensible way.

An explicit measurement operator in the syntax allows an observation at an intermediate

step of the computation. In quantum calculi the intended meaning of a measurement is

to observe the status of a possibly superposed quantum bit: this observation gives as

output a classical bit and the two possible outcomes 0 and 1 can be observed with two

probabilities summing to 1. The output of a measurement can be successively used in the

following step of the computation as a classical datum. For example, let us consider the

following configuration (written in the extended syntax of Q∗, Section 6.2):

C = [1,!, (λ!x.(if x then 0 else 1))(meas(H(new(0))))]

From C it is possible to build two different computations, depending on the output

measurement of the quantum state 1
2 (|0⟩ + |1⟩) created by the redex meas(H(new(0))): the

expression meas(H(new(0))) can evaluate (with equal probability) to 0 or to 1. The first

case yields the normal form C1 ≡ [p ,→ 1, {p}, 0] with probability 1/2, and the second case

yields the normal form C2 ≡ [p ,→ 0, {p}, 1] with probability 1/2.

Thus a measurement redex breaks confluence, importing a probabilistic behaviour

into the computations. In this situation, a ‘classical’ notion of confluence seems to be

irremediably lost.

Let us change our point of view. Taking the configuration C of the previous example, we

can say that it rewrites deterministically to the probability distribution of configurations

{p1 : C1, p2 : C2}, with p1 = p2 = 1
2 . A computation involving measurement should be seen

as a rewriting between distributions of configurations, which takes into account all the

possible results of measurements steps. Under this point of view, an interesting question

is the following: is it possible to preserve equivalence between different strategies? In

other words, if divergence coming from a single measurement redex is irrecoverable, is it

possible to avoid divergence coming from different redexes?

In this second case, the question has a positive answer. The proof of this confluence

result, which involves probabilistic instruments, is the main result about Q∗. In Section 6.5,

the strong confluence result (the equivalence between different strategies) will be stated

and proved for mixed states†, distributions of Q∗ configurations. It is easy to extend in a

natural way the notion of reduction between configurations to reduction between mixed

† This name is ‘imported’ from physics. When the knowledge about a quantum system is complete, the wave
function |φ⟩ fully describes the system, as seen in Postulate I. When the knowledge of the system is not
complete, another mathematical instrument is used, the so-called density matrix ρ =

∑
i pi|φi⟩. The density

matrix describes a mixture of pure quantum states i.e. a set, {pi : |φ⟩} of pure states with linked probabilities.
The system described by the density matrix can be described with probability pi by the vector |φi⟩. For a full
treatment of this topic, see for example Isham (1995).
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states. Reduction on mixed states is a non-probabilistic relation, and in this way quantum

computation with intermediate measurements can be described into a standard rewriting

system with a standard notion of confluence.

We will not reason directly with mixed states. We proceed first by studying a new

notion of computation, called probabilistic computation, which extends the usual notion of

computation as a sequence of reduction steps. A probabilistic computation is a possibly

infinite tree, in which the binary choice corresponds to the two different outcomes of

a measurement. The set of leaves of a probabilistic computation is consequently a

probabilistic distribution of configurations.

It is possible to reformulate the confluence theorem in the following way: for every

configuration C and for every configuration in normal form D, there is a fixed real number

p such that the probability of observing D when reducing C is always p, independently of

the reduction strategy (this is essentially the main result of Section 6.4).

Note that our result does not come only from the fact that distributions of possible

outcomes are considered instead of single results: confluence is a feature of Q∗ and it is not

an obvious property. For example the quantum lambda calculus defined in Selinger and

Valiron (2006) does not enjoy such a property: call-by-value and call-by-name strategies

give different distributions of outcomes (see Section 7, where we will provide an overview

on this calculus and a comparative example).

6.2. Syntax, well-forming rules and computations in Q∗

The syntax of Q∗ extends the syntax of Q with two new constructs if (·) then (·) else (·)†

and meas(·):

x ::= x0, x1, . . . classical variables

r ::= r0, r1, . . . quantum variables

π ::= x | ⟨x1, . . . , xn⟩ linear patterns

ψ ::= π | !x patterns

B ::= 0 | 1 boolean constants

U ::= U0, U1, . . . unitary operators

C ::= B | U constants

M ::= x | r | !M | C | new(M) | M1M2 |
meas(M) | if N then M1 else M2 |
⟨M1, . . . ,Mn⟩ | λψ.M | terms (where n " 2)

The set of well-forming rules of Q (Figure 2, Section 5.8) is extended with the following

two rules:

Γ ⊢ M
meas

Γ ⊢ meas(M)

Λ ⊢ N !∆ ⊢ M1 !∆ ⊢ M2
if

Λ, !∆ ⊢ if N then M1 else M2

† The if (·) then (·) else (·) constructor can be thought of as syntactic sugar, as, of course, can the boolean
constants 0 and 1.
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The main important novelty is of course the presence of the explicit construct for

measurement, meas(·), which, informally, takes a (name of) a quantum bit as an argument

and returns a classical bit. The measurement operator has an effect on the quantum

register. In Q∗, in fact, three kinds of quantum register transformations can occur: ‘new

operations’ (which add qubits to the current state) as in Q; ‘unitary transformation’ as in

Q; and the ‘single qubit destructive measurement operator’.

The contraction of a measurement redex as meas(q) (see reduction rule measr in

Figure 5, below) corresponds, at the level of a quantum register, to the application of a

suitably defined function which maps a normalized vector in a certain Hilbert space into

another normalized vector in a smaller dimension Hilbert space. More precisely, for each

qvs QV and for each quantum variable r ∈ QV , we assume to have two, measurement

based, linear transformations of quantum registers: Mr,0,Mr,1 : H(QV) → H(QV − {r})
(see Definition 5, Section 2.4). Given a quantum register Q ∈ H(QV), the measurement

of the qubit named r in Q gives the outcome c (with c ∈ {0, 1}) with probability

pc = ⟨Q|Mr,c
†Mr,c|Q⟩ and produces the new quantum register Mr,cQ√

p
c

. This probabilistic

behaviour also involves the control (i.e. the third component of the configuration, the

lambda term). In fact, the reduction relation →α (as for Q, defined between configurations),

has to be parameterized by a probability p.

Let L ∗ = {Uq, new, l.β,q.β, c.β, l.cm, r.cm, if1, if2,measr}. For every α ∈ L ∗ and for

every p ∈ R[0,1], we define a relation →p
α⊆ Conf × Conf by the set of reductions in

Figure 5. The notation C →α D stands for C →1
α D.

We will still adopt surface reduction, as for Q: reduction is not allowed in the scope of

any ! operator.

Furthermore, we forbid reduction in N and P in the term if M then N else P .

We distinguish again three particular subsets of L ∗:

Definition 15 (subsets of L ∗).

— K = {l.cm, r.cm}
— N = L ∗ − (K ∪ {measr})
— nM = L ∗ − {measr}.

In the following, we write M →α N meaning that there are Q, QV , R and RV such that

[Q,QV ,M] →α [R,RV , N]. Similarly for the notation M →S N where S is a subset of

L ∗.

In Q (Section 5) infinite computations do not play an important role, because the

(classical) divergent phase of the computation does not permit the access to quantum

reduction steps. In presence of explicit measurement the situation is quite different.

In Q∗, an infinite computation can tend to a configuration which is essentially different

from the configurations in the computation itself.

In other words, an infinite numbers of computational steps can be necessary in order to

reach a probabilistic distribution of finite configurations. The following examples provides

an explanation of this phenomenon.
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[Q,QV, (λx.M)N ] →1
l.β [Q,QV, M{N/x}] [Q,QV, (λ!x.M)!N ] →1

c.β [Q,QV, M{N/x}]

[Q,QV, (λ x1, . . . , xn .M) r1, . . . , rn ] →1
q.β [Q,QV, M{r1/x1, . . . , rn/xn}]

[Q,QV, if 1 then M else N ] →1
if1

[Q,QV, M ]

[Q,QV, if 0 then M else N ] →1
if2

[Q,QV, N ]

[Q,QV, U ri1 , ..., rin ] →1
Uq [U ri1 ,...,rin

Q,QV, ri1 , ..., rin ]

[Q,QV, meas(r)] →pc
measr [Mr,c(Q),QV − {r}, !c] (c ∈ {0, 1} and pc = |mr,c

†mr,c|Q [0,1])

[Q,QV, new(c)] →1
new [Q⊗ |r c ,QV ∪ {r}, r] (r is fresh)

[Q,QV, L((λπ.M)N)] →1
l.cm [Q,QV, (λπ.LM)N ]

[Q,QV, ((λπ.M)N)L] →1
r.cm [Q,QV, (λπ.ML)N ]

[Q,QV, M ] →p
α [R,RV, N ]

ti
[Q,QV, , M1, . . . , M, . . . , Mk ] →p

α [R,RV, M1, . . . , N, . . . , Mk ]

[Q,QV, N ] →p
α [R,RV, P ]

r.a
[Q,QV, MN ] →p

α [R,RV, MP ]

[Q,QV, M ] →p
α [R,RV, P ]

l.a
[Q,QV, MN ] →p

α [R,RV, PN ]

[Q,QV, M ] →p
α [R,RV, N ]

in.new
[Q,QV, new(M)] →p

α [R,RV, new(N)]

[Q,QV, M ] →p
α [R,RV, N ]

in.meas
[Q,QV, meas(M)] →p

α [R,RV, meas(N)]

[Q,QV, M ] →p
α [R,RV, N ]

in.if
[Q,QV, if M then L else P ] →p

α [R,RV, if N then L else P ]

[Q,QV, M ] →p
α [R,RV, N ]

in.λ1
[Q,QV, (λ!x.M)] →p

α [R,RV, (λ!x.N)]

[Q,QV, M ] →p
α [R,RV, N ]

in.λ2
[Q,QV, (λπ.M)] →p

α [R,RV, (λπ.N)]

Fig. 5. Reduction Rules for Q∗.

Example 9 (infinite computation in Q∗).

Let us consider the configuration

E = [1,!, (Y!(λ!f.λ!x.if x then 0 else f(meas(H(new(0))))))(meas(H(new(0))))]

where Y is a fix point operator. Note that after a finite number of reduction steps C

rewrites to a distribution in the form {
∑

1<i!n
1
2i : [1,!, 0], 1 −

∑
1<i!n

1
2i : D}, and only

after an infinite number of reduction steps the distribution {1 : [1,!, 0]} is reached.

As a consequence, the study of infinite computations is significant in this setting.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

M. Zorzi 46

C

1

[p 0, {p}, (λ!x.(if x then 0 else 1))(meas(H(p)))]

1/2

p 0+p 1√
2

, {p}, (λ!x.(if x then 0 else 1))(meas(p))

1/2 1/2

1

[p 0, ∅, λ!x.(if x then 0 else 1)(0)]

1

[p 0, ∅, (if 0 then 0 else 1)]

1

[p 0, ∅, 1]

[

[ [

p 1, ∅, λ!x.(if x then 0 else 1)(1)]

1

[p 1, ∅, (if 1 then 0 else 1)]

1

[p 1, ∅, 0]

Fig. 6. Example of probabilistic computation.

6.3. A probabilistic notion of computation

We introduce here the notion of probabilistic computation, which permits one to deal with

distributions of possible results and represents the main technical ingredient to retrace

confluence in presence of measurements.

A probabilistic computation is a notion more general than a sequence of reductions

and less general than the reduction tree. Informally, probabilistic computations are trees

in which each node has at most two sons, and in which the binary choice is exactly

represented by the two different outcomes (0 or 1) of a qubit measurement. For example,

let us take the configuration C = [1,!, (λ!x.(if x then 0 else 1))(meas(H(new(0))))] of

Section 6.1.

In Figure 6, a probabilistic computation (where we labelled arrows with probabilities)

with root C is given.

We will represent computations as (possibly) infinite trees. A (possibly) infinite tree T

will be an (n+ 1)-tuple [R,T1, . . . , Tn], where 0 ! n ! 2, R is the root of T and T1, . . . , Tn

are its immediate subtrees.

Definition 16 (probabilistic computation).

i. A nonempty set of (possibly) infinite trees S is said to be a set of probabilistic

computations if P ∈ S iff (exactly) one of the following three conditions holds:

1. P = [C] and C ∈ Conf .

2. P = [C,R], where C ∈ Conf , R ∈ S has root D and C →nM D

3. P = [(p, q, C), R, Q], where C ∈ Conf , R ∈ S has root D, Q ∈ S has root E and

C →pc
measr

D, C →qc
measr

E with pc, qc ∈ R[0,1], c = 0, 1 and c is the complement of c;
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ii. The set of all probabilistic computations is the largest set P of probabilistic computa-

tions with respect to set inclusion.

iii. The set of finite probabilistic computations is the smallest set F of probabilistic

computations with respect to set inclusion.

In the point i-3 of the definition above, we mean that the configuration D and E are

respectively obtained from the outcome 0 or 1 of the measurement of the qubit r. Without

loss of generality, we can assume for example that the left subcomputation R (with root

D) comes from the observation of 0 and the right subcomputation Q (with root E) comes

from the observation of 1. In the following, we will sometimes omit the subscripts c and

c in the reductions →pc
measr

and →qc
measr

.

Note that the sets P and F of Definition 16 exist because of the Knapster–Tarski

theorem.

With a little abuse of language, sometimes we will say that the root of P = [(p, q, C), R, Q]

is C , diverging from the above definition without any danger of ambiguity. We define now

maximal probabilistic computations, the ‘lifting’ of the normal form notion in this setting.

Definition 17 (maximal probabilistic computation). A probabilistic computation P is

maximal if for every leaf C in P , C ∈ NF.

We can give definitions and proofs over finite probabilistic computations i.e. over F by

ordinary induction. The same is not true for arbitrary probabilistic computations, since

P is not a well-founded set.

Definition 18 (sub-computation). Let P ∈ P be a probabilistic computation. A finite

probabilistic computation R ∈ F is a sub-computation of P , written R ⊑ P iff one of the

following conditions is satisfied:

— R = [C] and the root of P is C .

— R = [C,Q], P = [C, S], and Q ⊑ S .

— R = [(p, q, C), Q, S ], P = [(p, q, C), U, V ], Q ⊑ U and S ⊑ V .

Since the outcomes of a probabilistic computation P are given by the configurations

which appear as leaves of P , it should be useful, for example, to know the probability of

observing a normal form, or to count the number of times a certain normal form occurs.

Thus, we state now some ‘quantitative properties’ of probabilistic computations. Let

δ : Conf → {0, 1} be a function defined as δ(C) = 0 if the quantum register of C is 0 and

δ(C) = 1 otherwise.

Definition 19. For every finite probabilistic computation P and every C ∈ NF we define

P(P ,C) ∈ R[0,1] by induction on the structure of P :

— P([C], C) = δ(C);

— P([C], D) = 0 whenever C ̸= D;

— P([C, P ], D) = P(P ,D);

— P([(p, q, C), P , R], D) = pP(P ,D) + qP(R,D);

Informally, P(P ,C) is the probability of observing C as a leaf in P . Similarly, we define

N (P ,C),which represents the number of times C appears as a leaf in P :
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Definition 20. For every finite probabilistic computation P and every C ∈ NF, we define

N (P ,C) ! ℵ0 by induction on the structure of P :

— N ([C], C) = 1;

— N ([C], D) = 0 whenever C ̸= D;

— N ([C, P ], D) = N (P ,D);.

— N ([(p, q, C), P , R], D) = N (P ,D) + N (R,D).

In the following we will also refer to P(P ), the probability of observing any configuration

(in normal form) as a leaf in P , and to N (P ), the number of times any configuration

appears as a leaf in P . These definitions can be easily obtained from Definitions 19 and

20.

It is possible to extend quantitative properties to arbitrary, possibly infinite, probab-

ilistic computations. We exploit the fact that R[0,1] and N ∪ {ℵ0} are complete lattices

(with respect to standard orderings), and we extend the above notions to the case of

arbitrary probabilistic computations, by taking the least upper bound over all finite

subcomputations. Thus, we have the following definition:

Definition 21. If P ∈ P and C ∈ NF, then:

— P(P ,C) = supR⊑P P(R,C),

— N (P ,C) = supR⊑P N (R,C),

— P(P ) = supR⊑P P(R),

— N (P ) = supR⊑P N (R).

Notice that, since C ∈ NF, for finite P the two notions coincide.

We are now ready to state and prove our confluence result.

6.4. Strong confluence for Q∗

In this section, we will prove the main result about Q∗. The confluence result can be

informally described in the following way: any two maximal probabilistic computations P

and R with the same root have exactly the same quantitative and qualitative behaviour, that

is to say, the following equations hold for every C ∈ NF:

— P(P ,C) = P(R,C): the probability of observing C is independent from the adopted

strategy (then all strategies are equivalent).

— N (P ,C) = N (R,C) and N (P ) = N (R): the number of (not necessarily distinct) leaves

in any probabilistic computation does not depend on the strategy

— P(P ) = P(R): the probability of converging is not affected by the underlying strategy.

We define our confluence result as ‘strong’ because equalities like the ones above do

not even hold for the ordinary λ-calculus. It is easy to show a counterexample. Let us

take the lambda term (λx.λy.y)Ω. It is the root of the following two (linear) maximal

computations:
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The first has one leaf [1,!, λy.y] and the second one has no leaves at all.

The proof of the strong confluence theorem (Theorem 10) is quite long. We omit

non-interesting auxiliary results, but we will dwell on some lemmata which present non-

standard proof-theoretical contents or are essential to introduce the theorem. For full

details see Zorzi (2009).

As for Q, Q∗ does not enjoy the diamond property in a classical sense, because of the

presence of commutative reduction rules. The quasi-one-step confluence we state below

retraces exactly Proposition 2 (Section 5.12.2). In presence of measurements, we also

have some ‘good’ cases induced by measurement (cases 3, 5 and 6 of Proposition 7);

unfortunately, during the computations, the case C →measr D and C →measr E also

occurs, and it cannot be solved.

Proposition 7 (quasi-one-step confluence). Let C,D, E be configurations with C →p
α D,

C →s
β E. Then

1. If α ∈ K and β ∈ K , then either D = E or there is F with D →K F and E →K F .

2. If α ∈ K and β ∈ N , then either D →N E or there is F with D →N F and E →K F .

3. If α ∈ K and β = measr , then there is F with D →s
measr F and E →K F .

4. If α ∈ N and β ∈ N , then either D = E or there is F with D →N F and E →N F .

5. If α ∈ N and β = measr , then there is F with D →s
measr F and E →K F .

6. If α = measr and β = measq (r ̸= q), then there are t, u ∈ R[0,1] and a F such that

pt = su, D →t
measq F and E →u

measr F .

Proof. By induction on M.

Note that, as for Q, the strong normalization property for →K (Lemma 1) still holds.

The proof of the strong confluence theorem (Theorem 10) is essentially based on quasi-

one-step confluence and on a suitable version of the strip lemma (Barendregt 1984); to

state the strip-lemma, we need to compare quantitatively probabilistic computations.

Some definitions are in order now.

We define the branch degree B(P ) of a finite probabilistic computation P by induction

on the structure of P :

— B([C]) = 1.
— B([C, P ]) = B(P ).
— B([(p, q, C), P , R]) = B(P ) + B(R).
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Please observe that B(P ) " 1 for every P .

We also define the weight W(P ) of a finite probabilistic computation P by induction

on the structure of P :

— W([C]) = 0.

— Let D be the root of P . If C →K D, then W([C, P ]) = W(P ), otherwise W([C, P ]) =

B(P ) + W(P ).

— W([(p, q, C), P , R]) = B(P ) + B(R) + W(P ) + W(R).

The following is a probabilistic variation on the classical strip lemma of the λ-calculus.

We detail some cases of the proof, which is quite nonstandard.

Lemma 4 (probabilistic strip lemma). Let P be a finite probabilistic computation with

root C and positive weight W(P ).

— If C →N D, then there is R with root D such that W(R) < W(P ), B(R) ! B(P ) and

for every E ∈ NF, it holds that P(R,E) " P(P , E), N (R,E) " N (P , E), P(R) " P(P )

and N (R) " N (P ).

— If C →K D, then there is R with root D such that W(R) ! W(P ), B(R) ! B(P ) and

for every E ∈ NF, it holds that P(R,E) " P(P , E), N (R,E) " N (P , E), P(R) " P(P )

and N (R) " N (P ).

— If C →q
measr D and C →p

measr E, then there are R and Q with roots D and E

such that W(R) < W(P ), W(Q) < W(P ), B(R) ! B(P ), B(Q) ! B(P ) and for every

E ∈ NF, it holds that qP(R,E) + pP(Q,E) " P(P , E), N (R,E) + N (Q,E) " N (P , E),

qP(R) + pP(Q) " P(P ) and N (R) + N (Q) " N (P ).

Proof. By induction on the structure of P :

— P cannot simply be [C], because W(P ) " 1.

— If P = [C, S], where S has root F and C →N F , then:

– Suppose C →N D. If D = F , then the required R is simply S . Otherwise, by

Proposition 7 (quasi-one-step-confluence), there is G such that D →N G and

F →N G. Now, if S is simply [F], then the required probabilistic computation is

simply [D], because neither F nor D are in normal form and, moreover, W([D]) =

0 < 1 = W(P ). If, on the other hand, S has positive weight we can apply the IH to

it, obtaining a probabilistic computation T with root G such that W(T ) < W(S),

B(T ) ! B(S), P(T ,H) " P(S,H) and N (T ,H) " N (S,H) for every H ∈ NF. Then,

the required probabilistic computation is [D,T ], since

W([D,T ]) = B(T ) + W(T ) < B(T ) + W(S)

! B(S) + W(S) = W(P );

P([D,T ], H) = P(T ,H) " P(S,H)

= P(P ,H);

N ([D,T ], H) = N (T ,H) " N (S,H)

= N (P ,H).

– Suppose C →K D. By Proposition 7 one of the following two cases applies:
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• There is G such that D →N G and F →K G Now, if S is simply [F], then

the required probabilistic computation is simply [D, [G]], because W([D, [G]]) =

1 = W(P ). If, on the other hand, S has positive weight we can apply the IH to

it, obtaining a probabilistic computation T with root G such that W(T ) ! W(S),

B(T ) ! B(S) and P(T ,H) " P(T ,H) for every H ∈ NF. Then, the required

probabilistic computation is [D,T ], since

W([D,T ]) = B(T ) + W(T ) ! B(T ) + W(S)

! B(S) + W(S) = W(P )

P([D,T ], H) = P(T ,H) " P(S,H)

= P(P ,H);

N ([D,T ], H) = N (T ,H) " N (S,H)

= N (P ,H).

• D →N F . The required probabilistic computation is simply [D, S]. Indeed:

W([D, S]) = B(S) + W(S) = W([C, S]) = W([P ]).

– Suppose C →q
measr D and C →p

measr E. By Proposition 7, there are G and H such

that D →N G, E →N H , F →q
measr G, F →p

measr H . Now, if S is simply F , then

the required probabilistic computations are simply [D] and [E], because neither F

nor D nor E are in normal form and, moreover, W([D]) = W([E]) = 0 < 1 = W(P ).

If, on the other hand, S has positive weight we can apply the IH to it, obtaining

probabilistic computations T and U with roots G and H such that W(T ) < W(S),

W(U) < W(S), B(T ) ! B(S), B(U) ! B(S), qP(T ,H) + (p)P(U,H) " P(S,H) and

N (T ,H) + N (U,H) " N (S,H) for every H ∈ NF. Then, the required probabilistic

computations are [D,T ] and [E,U], since

W([D,T ]) = B(T ) + W(T ) < B(T ) + W(S)

! B(S) + W(S) = W(P );

W([E,U]) = B(U) + W(U) < B(U) + W(S)

! B(S) + W(S) = W(P ).

Moreover, for every H ∈ NF

qP([D,T ], H) + pP([E,U], H) = qP(T ,H) + pP(U,H)

" P(S,H) = P(P ,H)

N ([D,T ], H) + N ([E,U], H) = N (T ,H) + N (U,H)

" N (S,H) = N (P ,H).

— The other cases are similar.

Proposition 8 follows from the probabilistic strip lemma. This is a simulation result:

if P and R are maximal and they have the same root, then P can simulate R (and

vice-versa).
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Proposition 8. For every maximal probabilistic computation P and for every finite

probabilistic computation R such that P and R have the same root, there is a finite

sub-computation Q of P such that for every C ∈ NF, P(Q,C) " P(R,C) and N (Q,C) "
N (R,C). Moreover, P(Q) " P(R) and N (Q) " N (R).

Proof. Given any probabilistic computation S , its K -degree nS is the number of

consecutive commutative rules you find descending S , starting at the root. By Lemma 1

(Section 5.12.2), this is a good definition. The proof goes by induction on (W(R), nR),

ordered lexicographically:

— If W(R) = 0, then R is just [D] for some configuration D. Then, Q = R and all the

required conditions hold.

— If W(R) > 0, then we distinguish three cases, depending on the shape of P :

– If P = [D, S], E is the root of S and D →N E, then, by Lemma 4, there is a

probabilistic computation T with root E such that W(T ) < W(R) and P(T ,C) "
P(R,C) for every C ∈ NF. By the inductive hypothesis applied to S and T ,

there is a sub-probabilistic computation U of S such that P(U,C) " P(T ,C) and

N (U,C) " N (T ,C) for every C ∈ NF. Now, consider the probabilistic computation

[D,U]. This is clearly a sub-probabilistic computation of P . Moreover, for every

C ∈ NF:

P([D,U], C) = P(U,C)

" P(T ,C) " P(R,C)

N ([D,U], C) = N (U,C)

" N (T ,C) " N (R,C).

– If P = [D, S], E is the root of S and D →K E, then, by Lemma 4, there is a

probabilistic computation T with root E such that W(T ) ! W(R) and P(T ,C) "
P(R,C) for every C ∈ NF. Now, observe that we can apply the inductive hypothesis

to S and T , because W(T ) ! W(R) and nS < nP . So, there is a sub-probabilistic

computation U of S such that P(U,C) " P(T ,C) and N (U,C) " N (T ,C) for

every C ∈ NF. Now, consider the probabilistic computation [D,U]. This is clearly

a sub-probabilistic computation of P . Moreover, for every C ∈ NF:

P([D,U], C) = P(U,C)

" P(T ,C) " P(R,C)

N ([D,U], C) = N (U,C)

" N (T ,C) " N (R,C).

– P = [(p, q, D), S1, S2], E1 is the root of S1 and E2 is the root of S2, then, by

Lemma 4, there are probabilistic computations T1 and T2 with root E1 and

E2 such that W(T1),W(T2) < W(R) and pP(T1, C) + qP(T2, C) " P(R,C) for

every C ∈ NF. By the inductive hypothesis applied to S1 and T1 (to S2 and T2,

respectively), there is a sub-probabilistic computation U1 of S1 (a sub-probabilistic

computation U2 of S2, respectively) such that P(U1, C) " P(T1, C) for every
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C ∈ NF (P(U2, C) " P(T2, C) for every C ∈ NF, respectively). Now, consider

the probabilistic computation [(p, q, D), U1, U2]. This is clearly a sub-probabilistic

computation of P . Moreover, for every C ∈ NF:

P([(p, q, D,U1, U2], C) = pP(U1, C) + qP(U2, C)

" pP(T1, C) + qP(T2, C) " P(R,C).

This concludes the proof.

We are now able to prove our main result:

Theorem 10 (strong confluence). For every maximal probabilistic computations P and R

such that P and R have the same root, and for every C ∈ NF, P(P ,C) = P(R,C) and

N (P ,C) = N (R,C). Moreover, P(P ) = P(R) and N (P ) = N (R).

Proof. Let C ∈ NF be any configuration in normal form. By definition:

P(P ,C) = supQ⊑P {P(Q,C)} P(R,C) = supS⊑R{P(S, C)}.

Now, consider the two sets A = {P(Q,C)}Q⊑P and B = {P(S, C)}S⊑R . We claim the two

sets have the same upper bounds. Indeed, if x ∈ R is an upper bound on A and S ⊑ R,

by Proposition 8 there is Q ⊑ P such that P(Q,C) " P(S, C), and so x " P(S, C). As a

consequence, x is an upper bound on B. Symmetrically, if x is an upper bound on B, it is

an upper bound on A. Since A and B have the same upper bounds, they have the same

least upper bound, and P(P ,C) = P(R,C). The other claims can be proved in exactly the

same way. This concludes the proof.

6.5. Computing with mixed states

In the previous section we proved the strong confluence theorem for probabilistic

computations. This result can be reformulated on mixed states, informally introduced

in Section 6.1.

More formally, a mixed state is a finite support distribution of configurations:

Definition 22 (mixed state). A mixed state is a function M : Conf → R[0,1] such that

there is a finite set S ⊆ Conf with M(C) = 0 except when C ∈ S and, moreover,∑
C∈S M(C) = 1. Mix is the set of mixed states.

A mixed state M will be denoted with the linear notation {p1 : C1, . . . , pk : Ck} or as

{pi : Ci}1!i!k , where pi is the probability M(Ci) associated with the configuration Ci, and

where {C1, . . . , Ck} is the set S from the above definition.

Remember the discussion in Section 6.1: the reduction between mixed states, as

a deterministic reduction between distributions, permits us to avoid the probabilistic

behaviour of computations, and retrace results proved in the previous section in a

standard, deterministic rewriting system.

The reduction →p
α between configurations can be extended to mixed states in the

following way:
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Definition 23 (mixed-reduction). The reduction relation !=⇒ between mixed states is

defined in the following way: {p1 : C1, . . . , pm : Cm} !=⇒ M iff there exist m mixed

states M1 = {qi1 : Di
1}1!i∈n1 , . . . ,Mm = {qim : Di

m}1!i!nm such that:

1. For every i ∈ [1, m], it holds that 1 ! ni ! 2;

2. If ni = 1, then either Ci is in normal form and Ci = D1
i or Ci →nM D1

i ;

3. If ni = 2, then Ci →p
measr D

1
i , Ci →q

measr D
2
i , p, q ∈ R[0,1], and q1

i = p, q2
k = q;

4. ∀D ∈ Conf . M(D) =
∑m

i=1 pi · Mi(D).

Given the reduction relation !=⇒, the corresponding notion of computation (that we call

mixed computation, in order to emphasize that mixed states play the role of configurations)

is completely standard.

We again need to deal with quantitative properties of computations:

Definition 24 (probability of observing a configuration in a mixed state). Given a mixed

state M and a configuration C ∈ NF, the probability of observing C in M is defined as

M(C) and is denoted as P(M, C).

Observe that if M !=⇒ M ′ and C ∈ NF, then P(M, C) ! P(M ′, C). If {Mi}i<ϕ is a

mixed computation, then

sup
i<ϕ

P(Mi, C)

always exists, and is denoted as P({Mi}i<ϕ, C).

Note 6.1. A maximal mixed computation is always infinite. Indeed, if

M = {pi : Ci}1!i!n and for every i ∈ [1, n], Ci ∈ NF, then M !=⇒ M.

Proposition 9 is an essential tool for the proof of Theorem 11. Note that equivalence

between different probabilistic computations with the same root (Theorem 10) is used.

Proposition 9. Let {Mi}i<ω be a maximal mixed computation and let C1, . . . , Cn be

the configurations on which M0 evaluates to a positive real. Then there are maximal

probabilistic computations P1, . . . , Pn with roots C1, . . . , Cn such that supj<ϕMj(D) =∑n
i=1 (M0(Ci)P(Pi, D)) for every D.

Proof. Let {Mi}i<ω be a maximal mixed computation. Observe that M0 !=⇒m Mm for

every m ∈ N . For every m ∈ N let Mm be

{pm1 : Cm
1 , . . . , p

m
nm

: Cm
nm

}.

For every m, we can build maximal probabilistic computations Pm
1 , . . . , P m

nm
, generatively: as-

suming Pm+1
1 , . . . , P m+1

nm+1
are the probabilistic computations corresponding to {Mi}m+1!i<ω ,

they can be extended (and possibly merged) into some maximal probabilistic computations

Pm
1 , . . . , P m

nm
corresponding to {Mi}m!i<ω . But we can even define for every m, k ∈ N with

m ! k, some finite probabilistic computations Qm,k
1 , . . . , Qm,k

nm
with root C1, . . . , Cnm and such
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that, for every m, k,

Qm,k
i ⊑ Pm

i

Mk(D) =
nm∑

i=1

(
Mm(Ci)P(Qm,k

i , D)
)
.

This proceeds by induction on k−m. We can easily prove that for every S ⊑ Pm
i there is k

such that S ⊑ Qm,k
i : this is an induction on S (which is a finite probabilistic computation).

But now, for every D ∈ NF,

sup
j<ω

Mj(D) = sup
j<ω

n0∑

i=1

(
M0(Ci)P(Q0,j

i , D)
)

=
n0∑

i=1

(
M0(Ci) sup

j<ω
P(Q0,j

i , D)

)

=
n0∑

i=1

(
M0(Ci)P(P 0

i , D)
)
.

This concludes the proof.

Theorem 11 says that maximal mixed computations with the same root are equivalent

in the following sense: normal form configurations have the same probability of being

observed.

Theorem 11. For any two maximal mixed computations {Mi}i<ω and {M ′
i }i<ω such

that M0 = M ′
0, the following condition holds: for every C ∈ NF, P({Mi}i<ω , C) =

P({M ′
i }i<ω , C).

Proof. A consequence of Proposition 9. Sketch: suppose, by way of contradiction and

without loosing generality, that P({Mi}i<ϕ, C) < P({M ′
i }i<ψ , C). This means there exists

a natural number n ! ψ such that P({Mi}i<ϕ, C) < P({M ′
i }i<n, C). The idea is that you

can apply Proposition 8 to the finite probabilistic computations induced by {M ′
i }i<n and

to the corresponding maximal probabilistic computations induced by {Mi}i<ϕ, obtaining

a contradiction.

7. Intermezzo: quantum higher-order languages

In this section, we will recall some contributions in the definition of quantum languages.

We will principally focus on functional calculi. In Section 7.4 we will spend few words

about other important approaches such as the measurement calculus (Danos et al. 2007),

providing some bibliographic references for the interested reader.

It is mandatory to say that the first defined quantum λ-calculus, here dubbed λq , has

been introduced in van Tonder (2004). λq is a higher-order, quantum functional language

without an explicit measurement operator, whose terms’ generation is based on Wadler’s

formulation of linear logic (as for Q). λq includes explicit constants for quantum bits
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and quantum gates; it aims to model interesting quantum features such as reversibility (a

notion of history, is proposed) and superposition between terms is admitted: this means

that (differently from Q) the syntax allows to write expressions like M + N, where M

and N are lambda terms and the symbol + represents a formal sum. As a matter of

fact, terms in superposition can only differ in occurrences containing the constants 0 and

1 van Tonder (2004). Consequently, in λq two terms M and N in superposition differ only

for qubits values. An informal proof about the equivalence of λq with quantum Turing

machines is sketched.

λq is a corner stone in the brief history of quantum functional calculi and van Tonder’s

proposal is a valid platform for several investigations (Arrighi et al. 2008; Dal Lago and

Zorzi 2013, 2014).

Nevertheless, here we will focus on other calculi, in our opinion more useful to the

non-expert reader in order to understand how a quantum calculus can be build and used

as a programming paradigm. Where appropriate, we will make some comparisons among

them and with respect to our Q and Q∗.

7.1. The languages λsv and QML,

We propose an overview on two distinct foundational proposals: the quantum λ-calculus

with classical control defined in Selinger and Valiron (2006), here dubbed λsv, and the

functional language QML (Grattage 2006, 2011).

7.2. Selinger’s λsv

After the first attempt to define a quantum higher-order language in two unpublished

papers (Maymin 1996, 1997), Selinger rigorously defined a first-order quantum functional

language (Selinger 2004). Subsequently the author, in joint work with Valiron (Selinger

and Valiron 2006), defined a quantum λ-calculus with classical control, inspired by the

QRAM architecture (Lanzagorta and Uhlmann 2009).

The main goal of Selinger and Valiron’s work is to give the basis of a typed quantum

functional language. The idea is to define a language where only data (the qubits)

are superposed, and where programs live in a standard classical world. This means, in

particular, that it is not necessary to have objects such as λ-terms in superposition (i.e.

to have in the syntax expressions of the kind
∑

i αiMi, where αi is an amplitude and Mi

is a lambda term). The approach is well condensed by the slogan: ‘quantum data-classical

control’ (see also Section 5). The proposed calculus, here dubbed λsv, is based on a call-

by-value λ-calculus enriched with constants for unitary transformations and an explicit

measurement operator which allows the program to observe the value of 1-qubit.

Reductions are defined between program states, whose definition is similar to the one of

configuration (Section 5.10). Because of the presence of measurement, the authors provide

the operational semantics introducing a suitable probabilistic reduction system, in order

to define a probabilistic call-by-value procedure for the evaluation.

The type system of λsv is based on linear logic in order to control over the linearity

of the system (linearity is extended to higher types), by distinguishing between duplicable
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and non-duplicable resources. Selinger and Valiron develop the following type syntax:

A,B ::= α|X|!A|A # B|⊤|A ⊗ B where α ranges over a set of type constants, X ranges

over a countable set of type variables and ⊤ is the linear unit type.

The authors restrict the system to be affine, i.e. contraction structural rule is not allowed.

This choice is justified by the no-cloning property of quantum states. The type system

avoids run time errors and is also equipped with subtyping rules, which provide a more

refined control of the resources. The calculus enjoys some good properties such as subject

reduction and progress, and a strong notion of safety. The authors also develop a new

interesting quantum type inference algorithm, based on the idea that a linear (quantum)

type can be viewed as a decoration of an intuitionistic one.

The following is an example of λsv well-typed term. The nw constant behaves like our

new constant.

Example 10. The quantum circuit EPR (see Example 6, Section 5.11.1) is encoded in λsv

as EPR = λx.CNOT ⟨H(nw(0)), nw(0)⟩ and has type !(⊤ → (qbit ⊗ qbit)) where qbit is

the base type of qubits.

λsv ’s reductions are performed in a call-by-value setting. This is a central characteristic

of the calculus, which makes λsv different from Q (and principally from Q∗, which has

an explicit measurement operator), where no strategy is imposed. The following example

shows that is essential to choose a precise strategy and that different strategies are not

equivalent.

Let us consider, for examples, the following (well typed) term in λsv:

M ≡ (λx.x ⊕ x)(ms(H(nw(0)))

where ⊕ is (the encoding of) a XOR operator and ms is the λsv measurement operator.

Using a call-by-value strategy (dubbed →cbv), if we start from the program state [!,M]

we obtain the following computation:

[!,M] →cbv [|0⟩, (λx.x ⊕ x)(ms(H(p))] →cbv [ 1√
2
(|0⟩ + |1⟩), (λx.x ⊕ x)(ms(p))].

The measurement step ms(p) yields the equiprobable program states [|0⟩, (λx.x ⊕ x)(0)]

and [|1⟩, (λx.x⊕x)(1)] which reduce, respectively, to [|0⟩, (0)] and [|1⟩, (0)]. Thus the initial

state [!,M] evaluate to 0 with probability 1.

Using a call-by-name reduction strategy, the state [!,M] reduces with the same

probability 1
4 to one of the following states: [|01⟩, 1], [|01⟩, 1], [|00⟩, 0] and [|11⟩, 0].

Therefore, the output is 0 or 1 with equal probability 1
2 .

Moreover, as the authors observe, a mixed strategy can produce an hill-formed term.
Starting from the same program state [!,M], let us consider the following computation,
where some steps of call-by-value are followed by call-by-name reductions (dubbed →cbn):

[!,M] →∗
cbv

[
1√
2
(|0⟩ + |1⟩), (λx.x ⊕ x)(ms(p))

]
→cbn

[
1√
2
(|0⟩ + |1⟩), (ms(p)) ⊕ (ms(p))

]
. . .

The last state [ 1√
2
(|0⟩ + |1⟩), (ms(p)) ⊕ (ms(p))] is not a legal program state, since the

qubit name p has been duplicated.

In Selinger and Valiron (2009), the authors provide a categorical semantics for λsv .

As they declare in Selinger and Valiron (2009), the construction of a concrete model
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for higher-order quantum computations is still a partially open, interesting problem.

For some recent investigations on semantic models, see Gay and Makie (2009). See

also Hashuo and Hoshino (2011), where the authors define a particle-style geometry of

interaction (Abramsky et al. 2002; Haghverdi and Scott 2002) for λsv .

7.3. Altenkirch et Grattage’s QML

Another noticeable contribution in the definition of quantum functional calculi is QML,

a typed quantum language for finite quantum computations. QML has been developed

in Altenkirch and Grattage (2005), Grattage (2006), Altenkirch et al. (2007) and Grattage

(2011). Here, we mainly refer to Grattage (2006), Altenkirch et al. (2007) and Grattage

(2011). QML addresses programming issues rather than foundational questions and permits

to encode quantum algorithms in a simple way (more precisely, a single term is able to

encode a quantum circuit, i.e. a single term captures an algorithm of type Qk # Qk , where

Q is the type of the qubits for a given k ∈ N). The syntax allows to build expressions

such as αt, where α is an amplitude and t is a term, or expressions like t + u where the

symbol ‘+’ represents the superposition of terms. However, superposition is controlled

by a restrictive notion of ‘orthogonality’ between terms, defined by means of a suitable

notion of inner product between judgements (Altenkirch et al. 2007). Intuitively, t⊥u holds

when t and u are ‘distinguishable in some way’ (Grattage 2011): in other words, one can

derive the judgement true⊥false from t⊥u by means of orthogonality rules. Orthogonality

judgements are inferred automatically by static analysis of QML’s terms (Grattage 2011).

Quantum superposition can be combined with the conditional construct. The syntax

includes both the usual if then else and the quantum conditional if◦ then else ; the

quantum conditional if◦ then else is only allowed when the values in the branches are

orthogonal. As an example, the following term represents the encoding of the Hadamard

gate in QML:

had x = if◦x then

(
1√
2
false +

(
− 1√

2

)
true

)
else

(
1√
2
false +

1√
2
true

)
.

Comparing it with λsv, QML shows a different approach to the (central) problem of

copy and discard quantum data. In QML it is possible to write expressions like

let x = (false + true)in ⟨x, x⟩ which (apparently) violates no-cloning properties, since the

variable x is duplicate in the let expression.

This expression does not actually clone quantum data (this is guaranteed by the formal

semantics (Altenkirch et al. 2007)); on the contrary, it shares one copy of the quantum

datum between different references.

This idea is captured by the formulation of the type system, where no restrictions

are imposed on the use of the structural rule of contraction. QML’s type system is

based on strict (multiplicative) linear logic, i.e. linear logic with contraction, but without

implicit weakening. This makes it different from λsv type system, which is affine (implicit

contraction, which potentially introduce syntactical violation of the no-cloning property,

is not allowed).
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Example 11 (CNOT in QML). In the following, Q is the type of quantum bits and ⊗ is

the linear logic tensor between linear types.

Let qnot x = if◦x then false else true be the encoding of not gate.

qnot has type Q # Q. Let us define cnot : Q # Q # Q ⊗ Q as

cnot c x = if◦c then ⟨true, qnot x⟩ else ⟨false, x⟩.

In QML,, measurement is modelled by means of conditional operator. For more details,

see Grattage (2006).

For QML, some semantics have been proposed. QML’s operational and denotational

semantics are developed in terms of quantum circuits and superoperators (Preskill 2006)

respectively. An equational theory for the measurement-free fragment of QML has been

proposed in Altenkirch et al. (2007). Moreover, Grattage defined a compiler (developed

in Haskell) for the language (Grattage 2011). In an ongoing project, this perspective is

currently developed and extended. For a complete overview on this topic, see AA.VV.

(2013).

7.4. Other approaches

In Arrighi and Dowek (2008), the linear algebraic λ-calculus L is proposed. L is an

untyped calculus, where linear combinations of lambda terms are admitted (as e.g. in the

algebraic λ-calculus of Vaux (2006, 2009)) and linearity is enforced by means of suitable

reduction rules. The authors claim the language suitable for a quite easy ‘specialization’

into a quantum functional language. Others references about this approach are (Arrighi

et al. 2012a,b).

Starting from the seminal paper (Nielsen 2003), some measurement based calculi have

been defined. In particular, the so-called measurement calculus (Danos et al. 2007)

has been developed as an efficient rewriting system for measurement based quantum

computation. In Danos et al. (2007), the authors defined a calculus of local equations for

1-qubit one-way quantum computing. Roughly speaking, the idea is that a computation

is built out of three basic commands, entanglement, measurement and local correction.

The authors define a suitable syntax for these primitives, which permits the description

of patterns, i.e. sequences of basic commands with qubits as input–output. By pattern

composition, it is possible to implement quantum gates and quantum protocols. Moreover,

a standardization theorem, which has some important consequences, is stated and proved.

Measurement calculus has subsequently been extended and further developed in several

papers (see, for example, (Danos et al. 2009)).

8. Taming quantum complexity classes

One of the strong motivations behind quantum computing is computational complexity:

as showed in Shor (1994, 1997), quantum computers seem to be able to efficiently solve

classical hard problems, thanks to the potential speed up in the execution time induced

by superposition phenomena.
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Quantum complexity theory has been developed since the 90s: several quantum classes

have been defined and several results have been proved. Since quantum models are

very complex, it seems to be interesting to characterize quantum complexity classes by

machine-free and resource-independent systems, following the so-called implicit computa-

tional complexity (ICC) approach. The ICC approach involves a number of different

methodologies which include, among others, proof-theoretical methods (logical systems,

types systems), and bounded versions of arithmetic. A trend in linear logic community is

to design type system inspired to controlled-complexity versions of linear logic, such as

bounded linear logic (Girard et al. 1992), light linear logic (Girard 1998) and soft linear

logic (Lafont 2004). Some examples of ICC-oriented calculi are: (Baillot and Mogbil 2004),

a lambda calculus, sound and complete for polynomial time computations; (Gaboardi

et al. 2013), where a characterization of the complexity class PSPACE is given; (Baillot

et al. 2011), in which optimal reduction is studied by means of elementary and light affine

logic inspired type systems. See Baillot et al. (2009) and related bibliographic references

for an overview on some recent ICC trends.

In this section, we will see some results about a significant fragment of Q, called SQ.

SQ is a measurement-free polytime quantum λ-calculus inspired by soft linear logic. We

will prove that the construction of lambda terms may be controlled in order to capture

a class of terms for which the size and the normalization procedure are polynomially

bounded. SQ has been developed in Dal Lago et al. (2010), and up to our knowledge it

is the only quantum polytime calculus that has appeared in the literature.

8.1. The polytime quantum λ-calculus SQ: syntax and well-forming rules

SQ has the same syntax as Q; the only difference is that we restrict the constants

representing unitary operators to the subclass U of polytime computable operators on

ℓ2{0, 1}n (see Definition 30). Then, for each operator U ∈ U , there exists a symbol U in

the grammar which represents it. This restriction is justified by the observations made in

Appendix A.

All assumptions made for Q still hold. SQ is a ‘refinement’ of Q: in particular, we have

to control the use of resources, in order to manipulate the intrinsic complexity of the

system. The well-forming rules of SQ are strong enough to guarantee polystep termination

of computations (Section 8.4).

Note that we are still defining an untyped language: in fact, the structure of untyped

terms is itself sufficient to enforce properties such as soundness and completeness w.r.t.

polynomial time, even in the absence of types. The non-quantum fragment of SQ is

very similar (essentially equivalent) to the language of terms of Baillot and Mogbil’s soft

λ-calculus (Baillot and Mogbil 2004).

In SQ, resources are strongly monitored. As a consequence, we need to refine the notions

of environment Γ and judgement Γ ⊢ M. There are three kinds of variables: classical (x),

banged (!x) and sharped (# x). Intuitively a !-variable represents a syntactical object that

has to occur zero or once in a term, whereas a #-variable can occur in the term as many

times as we want but at least once. Judgements and environments are defined taking into

account the way the variables are used:
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— A classical environment is a (possibly empty) set (denoted by ∆, possibly indexed)

of classical variables. With !∆ we denote the set !x1, . . . , !xn whenever ∆ is x1, . . . , xn.

Analogously, with #∆, we denote the environment #x1, . . . ,#xn whenever ∆ is x1, . . . , xn.

If ∆ is empty, then !∆ and #∆ are empty. Notice that if ∆ is a nonempty classical

environment, both #∆ and !∆ are not classical environments.

— A quantum environment is a (possibly empty) set (denoted by Θ, possibly indexed) of

quantum variables.

— A linear environment is a (possibly empty) set (denoted by Λ, possibly indexed) ∆,Θ

of classical and quantum variables.

— A non-contractible environment is a (possibly empty) set (denoted by Ψ, possibly

indexed) Λ, !∆ where each variable name occurs at most once.

— An environment (denoted by Γ, eventually indexed) is a (possibly empty) set Ψ,#∆

where each variable name occurs at most once.

In all the above definitions, we are implicitly assuming that the same (quantum or

classical) variable name cannot appear more than once in an environment, e.g. x, !y,#z is

a correct environment, while x, !x is not.

Judgements are defined in a standard way: a judgment is an expression Γ ⊢ M, where

Γ is an environment and M is a term.

Notation 6. If Γ1, . . . ,Γn are (not necessarily pairwise distinct) environments, Γ1 ∪ . . .∪ Γn

denotes the environment obtained by means of the standard set-union of Γ1, . . . ,Γn.

The role of the underlying environment in well-formed judgements can be explained as

follows. If Γ, x ⊢ M is well formed, then x appears free exactly once in M and, moreover,

the only free occurrence of x does not lie in the scope of any ! construct. On the other

hand, if Γ,#x ⊢ M is well formed, then x appears free at least once in M and every free

occurrence of x does not lie in the scope of any ! construct. Finally, if Γ, !x ⊢ M is well

formed, then x appears at most once in M.

We say that a judgement Γ ⊢ M is well formed (notation: ◃Γ ⊢ M), if it is derivable by

means of the well-forming rules in Figure 7. In the app and tens rules, we relies on the

assumption that the environment in the conclusion is well formed (multiple occurrences

of the same variable name are not allowed).

If d is a derivation of the well-formed judgement Γ ⊢ M, we write d ◃ Γ ⊢ M. If Γ ⊢ M

is well formed we say that M is well formed with respect to the environment Γ, or, simply,

that M is well formed.

Notice that the full-promotion rules prom (reminiscent of Scott’s rule for modal logic)

forces the parallel introduction of the operator ‘!’ on the left and on the right side of the

sequent: this induces a controlled nesting of ‘!’. Notice also that in arrow introduction

rules abs3 and abs4 the distinction between banged and sharped variables disappears.

As for Q, it is easy to prove that if a term M is well formed all its classical variables

are bound.
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const
!∆ ⊢ C

qvar
!∆, r ⊢ r

cvar
!∆, x ⊢ x

der1
!∆, #x ⊢ x

der2
!∆, !x ⊢ x

Ψ1, #∆1 ⊢ M1 Ψ2, #∆2 ⊢ M2
app

Ψ1, Ψ2, #∆1 ∪ #∆2 ⊢ M1M2

Ψ1, #∆1 ⊢ M1 · · · Ψk, #∆k ⊢ Mk
tens

Ψ1, . . . , Ψk, #∆1 ∪ #∆2 ∪ · · · ∪ #∆k ⊢ ⟨M1, . . . , Mk⟩

∆1 ⊢ M
prom

!∆2, !∆1 ⊢!M

Γ ⊢ M
new

Γ ⊢ new(M)

Γ, x1, . . . , xn ⊢ M
abs1

Γ ⊢ λ⟨x1, . . . , xn⟩.M

Γ, x ⊢ M
abs2

Γ ⊢ λx.M

Γ, #x ⊢ M
abs3

Γ ⊢ λ!x.M

Γ, !x ⊢ M
abs4

Γ ⊢ λ!x.M

Fig. 7. Well-forming rules.

8.2. Computations and operational properties of SQ

The notions of configurations and reductions are exactly the same as Q. Even if the

well-forming rules of SQ are different from those of Q, the well-formed terms of SQ are

also well formed with respect to Q.

Therefore we adopt for SQ the same reduction rules as Q, given in Figure 3 (Section 5.10).

Good operational properties hold for SQ. They partially come from equivalent results

on Q with some significant differences.

— SQ enjoys the subject reduction property, and the subject reduction theorem has to

been reformulated in the following way:

Theorem 12 (subject reduction for SQ). If ◃Λ, !∆1,#∆2 ⊢ M1

and [Q1,QV1,M1] → [Q2,QV2,M2] then there are environments ∆3,∆4, such that

∆1 = ∆3,∆4 and ◃Λ, !∆3,#∆4 ∪ #∆2,QV2 − QV1 ⊢ M2. Moreover, QV2 − QV1 =

Q(M2) − Q(M1).

We omit the long proof, but it is mandatory to say that, differently from the proof of

Theorem 2, it is quite complex. The main point is the presence of the patterns !x and

#x, which are both mapped into the term λ!x by means of the →! and →# rules. See

Zorzi (2009) and Dal Lago et al. (2010) for full details.

— SQ enjoys confluence exactly as for Q. Confluence can be proved directly (as done

for Q), but it can also be derived as a consequence of Q’s confluence (Theorem 3),

exploiting the fact that the set of SQ terms is a subset of Q terms.
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— Finally, standardization also still holds: from each soft quantum computation an

equivalent computation can be built, in which classical reductions are performed

before new reductions and new reductions precede all purely quantum steps. The

standardization result (Theorem 6, Section 5.13.1) is useful for the proof of soundness

in Section 8.4.

Note 8.1. In order to simplify the treatment in Sections 8.3 and 8.4, we will consider

reduction between terms rather than between configurations. If [Q,QV ,M] →α [R,RV , N],

then we will simply write M →α N. This is sensible, since N only depends on M (and

does not depend on Q or QV).

8.3. Encoding data structures and representing decision problems

In this section, we define how to encode data structures in SQ and how to represent

decision problems. For full details see Zorzi (2009) and Dal Lago et al. (2010).

We start with natural numbers. Unfortunately, we cannot use the same encoding

adopted in Section 5, because now we have to control the duplication of resources.

Instead of using Scott’s encodings (like in Q), we will use here a major variation on

Church-style encoding: in particular, in SQ we will have several different lambda terms

representing the same natural number.

Given a natural number n ∈ N and a term M, the class of n-banged forms of M is

defined by induction on n:

— The only 0-banged form of M is M itself;

— If N is a n-banged form of M, any term !L where L
∗→N N is an n + 1-banged form

of M.

Let !nM denote !(! . . . (!︸ ︷︷ ︸
n times

M) . . .). Notice that !nM is an n-banged form of M for every

n ∈ N and for every term M.

Given natural numbers n, m ∈ N , a term M is said to n-represent the natural number

m iff for every n-banged form L of N

ML →∗
N λz.N(N(N(. . . (N︸ ︷︷ ︸

m times

z) . . .))).

A term M is said to (n, k)-represent a function f : N → N iff for every natural number

m ∈ N , for every term N which 1-represents m, and for every n-banged form L of N

ML
∗→N P

where P k-represents f(m).

For every natural number m ∈ N , let ⌈m⌉ be the term

λ!x.λy. x(x(x(. . . (x︸ ︷︷ ︸
m times

y) . . .))).

For every m, ⌈m⌉ 1-represents the natural number m.
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For every natural number m ∈ N and every positive natural number n ∈ N , let ⌈m⌉n be

the term defined by induction on n:

⌈m⌉0 = ⌈m⌉;
⌈m⌉n+1 = λ!x.⌈m⌉nx.

For every n, m, ⌈m⌉n can be proved to n + 1-represent the natural number m.

SQ can compute any polynomial, in a strong sense.

Proposition 10. For any polynomial with natural coefficients p : N → N of degree n, there

is a term Mp that (2n + 1, 2n + 1)-represents p.

Proof. The proof exploits the fact that any polynomial can be written as a Horner’s

polynomial, which is either:

— The constant polynomial x ,→ k, where k ∈ N does not depend on x.

— Or the polynomial x ,→ k+x ·p(x), where k ∈ N does not depend on x and p : N → N
is itself a Horner’s polynomial.

So, proving that the thesis holds for Horner’s polynomials suffices. The proof is by

induction, following the recursion schema.

We are also interested in representing strings. Given any string s = b1 . . . bn ∈ Σ∗ (where

Σ is a finite alphabet), the term ⌈s⌉Σ is the following:

λ!xa1 . . . . .λ!xam .λ!y.λz.yxb1 (yxb2 (yxb3 (. . . (yxbnz) . . .))),

where Σ = {a1, . . . , am}. Consider the term

strtonatΣ = λx.λ!y.λz.x !!(λw.w) . . .!!(λw.w)︸ ︷︷ ︸
m times

!(λ!w.λr.yr)z.

As can be easily shown, strtonatΣ⌈b1 . . . bn⌉Σ rewrites to a term 1-representing n:

strtonatΣ⌈b1 . . . bn⌉Σ!L
∗→N λz.⌈b1 . . . bn⌉Σ !!(λw.w) . . .!!(λw.w)︸ ︷︷ ︸

m times

!(λ!w.λr.Lr)z

∗→N λz.(λ!w.λr.Lr)!(λw.w)((λ!w.λr.Lr)!(λw.w)((λ!w.λr.Lr)!(λw.w)

(. . . ((λ!w.λr.Lr)!(λw.w)z) . . .)))
∗→N (λz. L(L(L(. . . (L︸ ︷︷ ︸

n times

z) . . .))).

Lists are the obvious generalization of strings where an infinite amount of constructors

are needed. Given a sequence M1, . . . ,Mn of terms (with no free variable in common), we

can build a term [M1, . . . ,Mn] encoding the sequence as follows, by induction on n:

[] = λ!x.λ!y.y;

[M,M1 . . . ,Mn] = λ!x.λ!y.xM[M1, . . . ,Mn].
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This way we can construct and destruct lists in a principled way: the terms cons and sel

can be built as follows:

cons = λz.λw.λ!x.λ!y.xzw;

sel = λx.λy.λz.xyz.

They behave as follows on lists:

consM[M1, . . . ,Mn] →∗
N [M,M1, . . . ,Mn];

sel[]!N!L →∗
N L;

sel[M,M1, . . . ,Mn]!N!L →∗
N NM[M1, . . . ,Mn].

By exploiting cons and sel, we can build more advanced constructors and destructors:

for every natural number n there are the terms appendn and extractn behaving as follows:

appendn[N1, . . . , Nm]M1, . . . ,Mn →∗
N [M1, . . . ,Mn,N1, . . . , Nm];

∀m ! n. extractnM[N1, . . . , Nm] →∗
N M[]NmNm−1 . . . N1;

∀m " n. extractnM[N1, . . . Nm] →∗
N M[Nn+1 . . . Nm]NnNn−1 . . . N1.

appendn terms can be built by induction on n:

append0 = λx.x;

appendn+1 = λx.λy1. . . . .λyn+1.cons yn+1(appendnxy1 . . . yn).

Similarly, extractn terms can be built inductively:

extract0 = λx.λy.xy;

extractn+1 = λx.λy.(sely!(λz.λw.λv.extractnvwz)!(λz.z[]))x.

Indeed

∀m. extract0M[N1, . . . Nm] →∗
N M[N1, . . . , Nm];

∀n. extractn+1M[] →∗
N M[];

∀m < n. extractn+1M[N,N1 . . . Nm] →∗
N extractnM[N1, . . . , Nm]N

→∗
N M[]Nm . . . N1N;

∀m " n.extractn+1M[N,N1 . . . Nm] →∗
N extractnM[N1, . . . , Nm]N

→∗
N M[Nn+1 . . . Nm]Nn . . . N1N.

We now need to understand how to represent subsets of {0, 1}∗ in SQ.

A term M outputs the binary string s ∈ {0, 1}∗ with probability p on input N iff there is

m " |s| such that

[1,!,MN]
∗→ [Q, {q1, . . . , qm}, [q1, . . . , qm]]

and the probability of observing s when projecting Q into the subspace

H({q|s|+1, . . . , qm}) is precisely p.
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Given n ∈ N , two binary strings s, r ∈ {0, 1}k and a probability p ∈ [0, 1], a term M is

said to (n, s, r, p)-decide a language L ⊆ {0, 1}∗ iff the following two conditions hold:

— M outputs the binary string s with probability at least p on input !n⌈t⌉{0,1} whenever

t ∈ L;

— M outputs the binary string r with probability at least p on input !n⌈t⌉{0,1} whenever

t /∈ L.

With the same hypothesis, M is said to be error-free (with respect to (n, s, r)) iff for every

binary string t, the following two conditions hold:

— If M outputs s with positive probability on input !n⌈t⌉{0,1}, then M outputs r with null

probability on the same input;

— Dually, if M outputs r with positive probability on input !n⌈t⌉{0,1}, then M outputs s

with null probability on the same input.

We are now able to define some classes of languages decided by terms in SQ:

Definition 25 (classes ESQ, BSQ and ZSQ). Three classes of languages in the alphabet

{0, 1} are defined below:

1. ESQ is the class of languages which can be (n, s, r, 1)-decided by a term M of SQ;

2. BSQ is the class of languages which can be (n, s, r, p)-decided by a term M of SQ,

where p > 1
2 ;

3. ZSQ is the class of languages which can be (n, s, r, p)-decided by an error-free (w.r.t.

(n, s, r)) term M of SQ, where p > 1
2 ;

The purpose of the following two sections is precisely proving that ESQ, BSQ and ZSQ

coincide with the quantum polytime complexity classes EQP, BQP ad ZQP (defined in

Appendix A.4), respectively.

8.4. Polytime soundness

In this section and in the following one we will show that SQ is sound and complete with

respect to polynomial time quantum Turing machines as defined by Bernstein and Vazirani

(1997). In particular, we want to prove the ‘perfect’ equivalence of SQ with polynomial

quantum Turing machines (Appendices A.3 and A.4).

To prove the soundness theorem is equivalent to showing that all decision problems

which can be represented in SQ belong to one of the three classes of quantum polytime.

We will only give a sketch of the proof, which is long but quite standard for ICC calculi,

with the exception that the proof of the main theorem (Theorem 14) exploits a quantum

property of SQ computations, i.e. standardization.

Note 8.2. In the following we assume that all the involved terms are well formed.

Some definitions are in order now. It will be useful to deal with the number of free

occurrences of classical variables in a term. For each term M and for each classical
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variable x, we define the number of free occurrences NFO(x,M) of x in M by induction

on M:

NFO(x, x) = 1

NFO(x, y) = NFO(x, r) = NFO(x, C) = NFO(x, λx.M) = NFO(λ!x.M) = 0

NFO(x, !M) = NFO(x, new(M)) = NFO(x,M)

NFO(x, λy.M) = NFO(x, λ!y.M) = NFO(x,M)

NFO(x, λ⟨x1, . . . , xn⟩.M) = NFO(x,M)

NFO(x,MN) = NFO(x,M) + NFO(x,N)

NFO(x, ⟨M1, . . . ,Mn⟩) =
n∑

1

NFO(x,Mi).

The size of a term is defined in a standard way:

Definition 26 (size).

|x| = |r| = |C| = 1

|!N| = |N| + 1

|new(P )| = |P | + 1

|PQ| = |P | + |Q| + 1

|⟨M1, . . . ,Mk⟩| = |M1| + . . . + |Mk| + 1

|λx.N| = |λ!x.N| = |λ⟨x1, . . . , xk⟩.N| = |N| + 1

It is possible to prove that, for each term M and for each free variable x, the size |M| is

an upper bound for NFO(x,M). Moreover, the following results hold:

Lemma 5. If M
n→K N, then (i) |M| = |N|; (ii) n ! |M|2.

Proof. See Dal Lago et al. (2010).

We also need to define some weights on lambda terms, and successively we need to prove

that these weights are ‘controllable’ during reductions.

Definition 27 (box-depth, duplicability-factor, weights).

1. the box-depth B(M) of M (the maximum number of nested !–terms in M) is defined

as

B(x) = B(r) = B(C) = 0

B(!N) = B(N) + 1

B(new(N)) = B(N)

B(PQ) = max{B(P ),B(Q)}
B(⟨M1, . . . ,Mk⟩) = max{B(M1), . . . ,B(Mk)}

B(λx.N) = B(λ!x.N) = B(λ⟨x1, . . . , xk⟩.N) = B(N);
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2. the duplicability-factor D(M) of M (an upper bound on number of occurrences of any

variable bound by a λ) is defined as

D(x) = D(r) = D(C) = 1

D(!N) = D(N)

D(new(N)) = D(N)

D(PQ) = max{D(P ),D(Q)}
D(⟨M1, . . . ,Mk⟩) = max{D(M1), . . . ,D(Mk)}

D(λx.N) = D(λ!x.N) = max{D(N),NFO(x,N)}
D(λ⟨x1, . . . , xk⟩.N) = max{D(N),NFO(x1, N), . . . ,NFO(xk,N)};

3. the n-weight Wn(M) of M (the weight of a term with respect to n) is defined as

Wn(x) = Wn(r) = Wn(C) = 1

Wn(!N) = n · Wn(N) + 1

Wn(newN) = Wn(N) + 1

Wn(PQ) = Wn(P ) + Wn(Q) + 1

Wn(⟨M1, . . . ,Mk⟩) = Wn(M1) + . . . + Wn(Mk) + 1

Wn(λx.N) = Wn(λ!x.N) = Wn(λ⟨x1, . . . , xk⟩.N) = Wn(N) + 1;

4. the weight of a term M is defined as W(M) = WD(M)(M).

Let us spend some words about the (sketch of the) proof of soundness. Soundness is

essentially based on three facts we will prove on W(·):
— W(M) is an upper bound for |M| (Lemma 8);

— W(M) is monotone nonincreasing with respect to reduction steps (Lemma 9);

— W(M) is bounded by a certain polynomial (Lemma 10).

To prove W(·) bounds, we need some results on duplicability factor, size and free

variables.

It is possible to prove, by induction, that the duplicability factor D(·) is nonincreasing

with respect to reduction. Moreover, given a term M, the size of M is an upper bound

for the duplicability factor:

Lemma 6. For every term M, D(M) ! |M|.

Proof. By induction on M. See Dal Lago et al. (2010).

Another essential step towards polytime soundness is the controlled growth of free

variables during the reduction.

Lemma 7. If P →L Q then max{NFO(x, P ),D(P )} " NFO(x, Q).

Proof. The proof proceeds by induction on the derivation of P →L Q.
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We are now able to prove W(M) is an upper bound of |M|.

Lemma 8. For every term M, |M| ! W(M).

Proof. By induction on the term M.

W(M) is strictly decreasing at any non-commutative reduction step and it is nonin-

creasing at any commutative reduction step:

Lemma 9.

1. If M →K N, then W(M) " W(N);

2. if M →N N, then W(M) > W(N).

Proof. (i) The result follows by definition. Inductive steps are performed by means of

context closures by induction on the derivation of →L . (ii) the proof is by cases on the

last rule of the derivation →L and by means of ad hoc substitution lemmata.

Finally, we have to prove that W(M) is bounded by a polynomial p(|M|), where the

exponent of p depends on B(M) (but not on |M|). This implies, by Lemma 5, that the

number of reduction steps from M to its normal form is polynomially related to W(M).

Lemma 10. For every term M, W(M) ! |M|B(M)+1.

Proof. It is possible to prove by induction on M that for every term M and for

all positive n ∈ N , Wn(M) ! |M| · nB(M). From this fact and by Lemma 6: W(M) =

WD(M)(M) ! |M| · D(M)B(M) ! |M| · |M|B(M) = |M|B(M)+1.

We have all the technical tools to prove another crucial lemma, which tells us that the

size is guaranteed to be polynomially bounded during the reduction.

Lemma 11. If M
∗→ N, then |N| ! |M|B(M)+1.

Proof. By means of Lemmas 8–10: |N| ! W(N) ! W(M) ! |M|B(M)+1.

The last step towards soundness is the following theorem, which states that each

reduction in SQ is polystep.

Theorem 13 (bounds). There is a family of unary polynomials {pn}n∈N such that for any

term M, for any m ∈ N , if M
m→ N (M reduces to N in m steps) then m ! pB(M)(|M|) and

|N| ! pB(M)(|M|).

Proof. The suitable polynomials are pn(x) = x3(n+1)+2x2(n+1). We need some definitions.

Let K be a finite sequence M0, . . . ,Mν such that ∀i ∈ [1, ν]. Mi−1 →c Mi. f(K) = M0,

l(K) = Mν and #K denote respectively the first element, the last element and the length of

the reduction sequence K. Let us define the weight of a sequence K as W(K) = W(f(K)).

We write a computation in the form M = M0, . . . ,Mm = N as a sequence of blocks

of commutative steps K0, . . . ,Kα where M0 = f(K0) and l(Ki−1) →N f(Ki) for every

1 ! i ! α. Note that α ! |M|B(M)+1; indeed, W(K0) > · · · > W(Kα) and

W(K0) = W(f(K0)) = W(M0) ! |M|B(M)+1.
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For every i ∈ [0, ν]

#Ki ! |f(Ki)|2 ! (W(f(Ki)))
2 ! (W(M0))

2 ! |M|2(B(M)+1).

Finally

m ! #K0 + · · · + #Kα + α

! |M|2(B(M)+1) + · · · + |M|2(B(M)+1)

︸ ︷︷ ︸
α+1

+|M|B(M)+1

! (|M|2(B(M)+1) + · · · · · · + |M|2(B(M)+1))︸ ︷︷ ︸
|M|B(M)+1+2

= |M|2(B(M)+1) · (|M|B(M)+1 + 2) = |M|3(B(M)+1) + 2|M|2(B(M)+1)

= pB(M)(|M|).

Moreover,

|N| = |f(Kα)| ! W(f(Kα)) ! W(M0) ! |M|B(M)+1

! pB(M)(|M|).

This concludes the proof.

Note that the strong normalization property of SQ configurations follows as an easy

corollary from Theorem 13.

The following is our soundness theorem. In the proof, we will essentially use three

ingredients: the standardization theorem, which permits to decompose computations in

distinct phases; Theorem 13, which gives our polynomial bounds; and ‘perfect’ equivalence

between the quantum Turing machine and finitely generated uniform quantum circuit

families (Nishimura and Ozawa 2009) (see Appendix A.5).

Theorem 14 (polytime soundness). The following inclusions hold: ESQ ⊆ EQP, BSQ ⊆
BQP and ZSQ ⊆ ZQP.

Proof. Let us consider the first inclusion. Suppose a language L is in ESQ. This implies

that L can be (n, s, r, 1)-decided by a term M. By the standardization theorem, for every

t ∈ {0, 1}∗, there is a CNQ computation {Ct
i }1!i!nt starting at [1,!,M!n⌈t⌉{0,1}]. By

Theorem 13, nt is bounded by a polynomial on the length |t| of t. Moreover, the size of

any Ct
i (that is to say, the sum of the term in Ct

i and the number of quantum variables

in the second component of Ct
i ) is itself bounded by a polynomial on |t|. Since {Ct

i }1!i!nt

is CNQ, any classical reduction step comes before any new-reduction step, which itself

comes before any quantum reduction step. As a consequence, there is a polynomial time

deterministic Turing machine which, for every t, computes one configuration in {Ct
i }i!nt

which only contains non-classical redexes (if any). But notice that a configuration only

containing non-classical redexes is nothing but a concise abstract representation of a

quantum circuit, fed with boolean inputs. Moreover, all the quantum circuits produced

in this way are finitely generated, i.e. they can only contain the quantum gates (i.e.

unitary operators) which appears in M, since !n⌈t⌉{0,1} does not contain any unitary

operators and reduction does not introduce new unitary operators in the underlying term.
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Summing up, the first component Q of Ct
nt

is simply an element of a Hilbert space

H({q1, . . . , qm}) (where [q1, . . . , qm] is the third component of Ct
nt
) obtained by evaluating a

finitely generated quantum circuit whose size is polynomially bounded on |t| and whose

code can be effectively computed from t in polynomial time. By the results in Nishimura

and Ozawa (2009), L ∈ EQP. The other two inclusions can be handled in the same way.

8.5. Polytime completeness

We prove here the converse of Theorem 14, i.e. that all problems which are computable

in polynomial time by some quantum devices can be decided by an SQ term.

The proof of the completeness theorem will essentially be an encoding of polytime

quantum Turing machines, although not in a direct way: we will exploit Yao’s encoding

of quantum Turing machines with finitely generated quantum circuit families (a sketch

of the encoding can be found in Appendix A.5) and we will show that SQ is able to

simulate Yao’s construction. This way, we avoid dealing directly with both quantum

Turing machines and classical Turing machines (the latter being an essential ingredient of

the definition of a quantum circuit family).

We will recall the principal ‘ingredients’ of Yao’s encoding. A computation of a polytime

quantum Turing machine computing in m = t(n) steps (where n is the length of the input)

can be simulated by a quantum circuit Lt(n). For each m, the circuit Lm is composed by m

copies of a circuit Km: each sub-circuit Km encodes an instantaneous description of the

state, a particular configuration assumed by the Turing machine during the computation.

The sub-circuit Km is built by composing further sub-circuits of kind Gm (a ‘switch’ circuit)

and Jm, decomposable in some single-qubit circuit H . See Figure 8 in Appendix A.5.

The simulation must be uniform, i.e. there must be a single term M generating all the

possible Lm where m varies over the natural numbers.

The following two propositions show how sub-circuits Gm and Jm can be generated

uniformly by an SQ term.

Proposition 11. For every n, there is a term Mn
G which uniformly generates Gm, i.e. such

that whenever L n-encodes the natural number m, Mn
GL →c R

m
G where Rm

G encodes Gm.

Proof. Consider the following terms:

Mn
G = λx.λy.extractη(λz.λw1. . . . .λwη .appendηw1 . . . wη(N

n
Gxz))y

Nn
G = λx.x!n(λy.λz.extractλ+2((LGy)z))(λy.y)

LG = λx.λy.λz1. . . . .λzλ+2.(λ⟨w, q⟩.appendλ+2(xy)z1 . . . zλwq)(cnot⟨zλ+1, zλ+2⟩)

In order to prove the correctness of the encoding, let us define Pm
G for every m ∈ N by

induction on m as follows:

P 0
G = λx.x

Pm+1
G = (λy.λz.(extractλ+2((LGy)z)))P

m
G
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Observe that if L n-encodes the natural number m, then

Nn
GL →c L!n(λy.λz.extractλ+2((LGy)z))(λy.y) →c P (P (P (. . . (P︸ ︷︷ ︸

m times

(λx.x)) . . .))) = Pm
G

where P = (λy.λz.(extractλ+2((LGy)z))).

By induction, it is possible to prove that for every m ∈ N:

[Q,QV , P m
G [q1, . . . , qm(λ+2), . . . , qh]]

∗→ [R,QV , [q1, . . . , qm(λ+2), . . . , qh]]

where R = cnot⟨⟨qλ+1 ,qλ+2⟩⟩(cnot⟨⟨q2λ+3 ,q2λ+4⟩⟩(. . . (cnot⟨⟨qm(λ+2)−1 ,qm(λ+2)⟩⟩(Q)) . . .)).

Now, if L n-encodes the natural number m, then

Mn
GL →c λy.extractη(λz.λw1. . . . .λwη .appendηw1 . . . wη(N

n
GLz))y

→c λy.extractη(λz.λw1. . . . .λwη .appendηw1 . . . wη(P
m
G z))y

which has all the properties we require for Rm
G . This concludes the proof.

Proposition 12. For every n, there is a term Mn
J which uniformly generates Jm, i.e. such

that Mn
JL →c R

m
J where Rm

J encodes Jm whenever L n-encodes the natural number m.

Proof. The encoding is

Mn
J = λx.x!n(NJ)(λy.y)

NJ = λx.λy.extractη+λ+2(LJx)y

LJ = λx.λy.λz1. . . . .λzη .λw1. . . . .λwλ+2.

extractη+2(λ+2)(PJw1 . . . wλ+2)(x(appendηyz1 . . . zη))

PJ = λx1. . . . λxλ+2.λw.λy1. . . . .λyη .λz1. . . . λz2(λ+2).(λ⟨q1. . . . .λqη+3(λ+2)⟩.
appendη+3(λ+2)wq1 . . . qη+3(λ+2))(H⟨y1, . . . , yη , x1, . . . , xλ+2, z1, . . . z2(λ+2)⟩)

The proof of correctness is similar to the one for Proposition 11.

We now need a formal definition of what is a faithful simulation of a quantum Turing

machine by an SQ term.

Given a Hilbert’s space H, an element Q of H and a condition E defining a subspace of

Q, the probability of observing E when globally measuring Q is denoted as PQ(E). For

example, if H = H(Q × Σ# × Z) is the configuration space of a quantum Turing machine,

E could be state = q, which means that the current state is q ∈ Q. As another example,

if H is H(QV), E could be q1, . . . , qn = s, which means that the value of the variables

q1, . . . , qn is s ∈ {0, 1}n.
Given a quantum Turing machine M = (Q,Σ, δ), we say that a term M simulates the

machine M iff there is a natural number n and an injection ρ : Q → {0, 1}⌈log2 |Q|⌉ such

that for every string s ∈ Σ∗ it holds that if C is the final configuration of M on input s,

then

[1,!,M!n⌈s⌉Σ]
∗→ [Q, {q1, . . . , qm}, [q1, . . . , qm]].

where for every q ∈ Q

PC(state = q) = PQ(q1, . . . , q⌈log2 |Q|⌉ = ρ(q)).

Finally, we can state and prove the main result of this section:
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Theorem 15. For every polynomial time quantum Turing machine M = (Q,Σ, δ) there is

a term MM such that MM simulates the machine M.

Proof. The theorem follows from Propositions 11, 12 and 10. More precisely, the term

MM has the form λ!x.(Mcirc
M x)(M init

Mx) where

— Mcirc
M builds the Yao’s circuit, given a string representing the input;

— M init
M builds a list of quantum variables to be fed to the Yao’s circuit, given a string

representing the input.

Now, suppose M works in time p : N → N , where p is a polynomial of degree k. For

every term M and for every natural number n ∈ N , we define {M}n by induction on n:

{M}0 = M

{M}n+1 = λ!x.!({M}nx).

It is easy to prove that for every M, for every N, for every n ∈ N and for every n-banged

form L of N, {M}nL
∗→N P where P is an n-banged form of MN. Now, Mcirc

M has the

following form

λ!x.(Ncirc
M x)(Lcirc

M x)

where

Ncirc
M = λx.M2p+1({strtonatΣ}2k+1(M

2k+2
id x))

Lcirc
M = λx.({P circ

M }2k+1x)

P circ
M = λ!z.λy.(M2k+1

J (M2p+1({strtonatΣ}2k+1z)))(M
2k+1
G (M2p+1({strtonatΣ}2k+1z)))y

M2k+1
G comes from Proposition 11, M2k+1

J comes from Proposition 12 and M2p+1 comes

from Proposition 10. Now, consider any string s = b1 . . . bn ∈ Σ∗. First of all:

Ncirc
M !4k+3⌈s⌉Σ ∗→N M2p+1({strtonatΣ}2k+1(M

2k+2
id !4k+3⌈s⌉Σ))

∗→N M2p+1({strtonatΣ}2k+1!
2k+1⌈s⌉Σ)

∗→N M2p+1N

where N is a 2k + 1-banged form of strtonatΣ⌈s⌉Σ, itself a term which 1-represents the

natural number n. As a consequence:

M2p+1N
∗→N L

where L 2k + 1-represents the natural number 2p(n) + 1. Now:

Lcirc
M !4k+2⌈s⌉Σ ∗→N {P circ

M }2k+1!
4k+3⌈s⌉Σ

∗→N P

where P is a 2k+1-banged form of P circ
M !2k+2⌈s⌉Σ. So, we can conclude that Mcirc

M !4k+4⌈s⌉Σ

rewrites to a term representing the circuit Ln. M init
M can be built with similar techniques.

Corollary 3 (polytime completeness). The following inclusions hold:

EQP ⊆ ESQ, BQP ⊆ BSQ and ZQP ⊆ ZSQ.
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From Theorem 14 and Corollary 3, EQP = ESQ, BQP = BSQ and ZQP = ZSQ. In other

words, there is a perfect correspondence between (polynomial time) quantum complexity

classes and the classes of languages decidable by SQ terms.

9. Conclusions

In this paper, we introduced an approach to quantum functional calculi. In particular,

we studied a family of untyped quantum lambda calculi with classical control and we

addressed some foundational questions such as the expressive power (the equivalence with

other computational models), the theoretical studies of infinite computations in presence

of an explicit measurement operator and the characterization of quantum polynomial

time complexity classes.

Other approaches are possible. In particular, when the full expressiveness of the language

is not required, one may perform different choices moving, for example, to a typed calculus

as Selinger and Valiron (2006) and Grattage (2006). Some examples of (typed) calculi

without explicit separation of the quantum register can be found in Delbeque (2011) or in

Dal Lago and Zorzi (2014). These calculi represent a good basis for semantical studies. In

the former, a game-style semantics is given, lifting the notion of game to the quantum case.

In the latter, an operational account in terms of wave style token-machine (Abramsky

et al. 2002) is proposed. The study of the role of geometry of interaction in quantum

computing appears a promising direction of investigation, and it represents for us an

ongoing research project.

As a further task, we aim to define the calculus SQ∗, i.e. an intrinsically polytime

quantum calculus with explicit measurement operator. We plan to start from a calculus

in the style of Delbeque (2011) and Dal Lago and Zorzi (2013).
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Appendix A. Quantum Computational Models and Quantum Complexity Classes

In this section, we will give some basic notions about computational models for quantum

computing and some related complexity classes. The main quantum models are quantum

Turing machine (QTM) (Bernstein and Vazirani 1997; Nishimura and Ozawa 2009)

and quantum circuit families (QCF) (Nishimura and Ozawa 2002, 2009; Yao 1993).

Equivalence results between the two models have been proved (Nishimura and Ozawa

2009).

A.1. On computable operators

After the introduction of quantum computational models, it is mandatory to spend some

words about the following tricky point.
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If we want to define calculi for quantum computational functions and we want to

formalize expressiveness equivalence between different quantum models, we need to restrict

the class of unitary operators we consider.

The following definitions on computability are therefore important.

Definition 28 ((polytime) computable real numbers).

1. A real number x ∈ R is computable iff there is a deterministic Turing machine

which on input 1n computes a binary representation of an integer m ∈ Z such that

|m/2n − x| ! 1
2n . Let R̃ be the set of computable real numbers.

2. A real number x ∈ R is polynomial time computable iff there is a deterministic polytime

Turing machine which on input 1n computes a binary representation of an integer

m ∈ Z such that |m/2n − x| ! 1
2n . Let PR̃ be the set of polynomial time real numbers.

Definition 29 ((polytime) computable complex numbers and vectors).

1. A complex number z = x + iy is computable iff x, y ∈ R̃. Let C̃ be the set of

computable complex numbers.

2. A complex number z = x + iy is polynomial time computable iff x, y ∈ PR̃. Let PC̃ be

the set of polynomial time computable complex numbers.

3. A normalized vector φ in any Hilbert space ℓ2(S) is computable (polynomial time

computable) if the range of φ (a function from S to complex numbers) is C̃ (PC̃).

Now we can define the computable unitary operators:

Definition 30 ((polytime) computable operators). A unitary operator U : ℓ2(S) → ℓ2(S) is

computable (polynomial time computable) if for every computable (polynomial time comput-

able) normalized vector φ of ℓ2(S), U(φ) is computable (polynomial time computable).

It is significant to remark that the restriction to a smaller class of quantum gates is

also forced by computability problems, as remarked in Kitaev et al. (2002). The authors

say (remark 9.2, p. 90): ‘the use of an arbitrary complete basis could lead to pathologies’.

In fact they prove that the gate

X ≡
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)

where θ is a non-computable number, ‘enables us to solve the halting problem!’.

In the following section, we introduce QCF, the model we mostly deal with in this

paper.

A.2. Quantum circuit families

Recall that an n-qubit quantum gate is a unitary operator U : ℓ2({0, 1}n) → ℓ2({0, 1}n)
(Sections 2, 3). Given two unit vectors |φ⟩, |ψ⟩ ∈ ℓ2({0, 1}n), if U|φ⟩ = |ψ⟩, we call |ψ⟩ the

output state for the input state |φ⟩.
A V-qubit gate (where V is a set of names) is a unitary operator G : H(V) → H(V) (see

again Section 2.3 for the definition of the Hilbert space H(V)).
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If G is a set of qubit gates, a V-circuit K based on G is a sequence

U1, r
1
1 , . . . , r

1
n1
, . . . ,Um, r

m
1 , . . . , r

m
nm

where, for every 1 ! i ! m:

— Ui is an ni-qubit gate in G;
— ri1, . . . , r

i
ni

are distinct quantum variables (names of qubits) in V .

The V-gate determined by a V-circuit

K = U1, r
1
1 , . . . , r

1
n1
, . . . ,Um, r

m
1 , . . . , r

m
nm

is the unitary operator

UK = (Um)⟨⟨rm1 ,...,rmnm ⟩⟩ ◦ . . . ◦ (U1)⟨⟨r11 ,...,r1n1 ⟩⟩

(the notation U⟨⟨r1 ,...,rk⟩⟩ has been introduced in Section 2.2).

Once we have fixed a class of operators, it is possible to have effective encoding of

circuits as natural numbers and, as a consequence, effective enumeration of quantum

circuits.

Definition 31 (quantum circuit family). Let G be a denumerable set of quantum gates and

let {Ki}i∈N be an effective enumeration of quantum circuits. A family of circuits generated

by G is a triple (f, g, h) where:

— f : N → N;

— g : N × N → N is such that 0 ! g(n, m) ! n + 1 whenever 1 ! m ! f(n);

— h : N → N is such that for every n ∈ N , Kh(n) is a {r1, . . . , rf(n)}-circuit based on G.

Any family of circuits (f, g, h) induces a function Φf,g,h (the function induced by (f, g, h))

which, given any finite sequence c1, . . . , cn in {0, 1}∗, returns an element of

H({r1, . . . , rf(n)}):

Φf,g,h(c1, . . . , cn) = UKh(n) (|r1 ,→ cg(n,1), . . . , rf(n) ,→ cg(n,f(n))⟩).

where c0, cn+1 are assumed to be 0 and 1, respectively.

Notice that gave our definition taking into account an arbitrary set G of quantum gates

and arbitrary functions f, g and h. The choice of such a set and functions is instead

crucial, and it induces the definition of particular subclasses of QCF:

Definition 32 (subclasses of quantum circuit families).

i. Uniform QCF

Given a quantum circuit family K = (f, g, h), we say that K is uniform if the functions

f, g, h are computable.

ii. Polynomial-size uniform QCF

Given a quantum circuit family K = (f, g, h), we say that K is polynomial-size uniform

if the functions f, g, h are polytime.

iii. Finitely generated QCF

Given a set G of quantum gates, we say that a family of circuits (f, g, h) generated by

G is finitely generated if G is a finite set.
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By definition, any polytime uniformly generated QCF is finitely generated. Finitely

generated uniform QCFs enjoy two main properties: a finitely generated uniform QCF is

based on finite sets of elementary gates (differently from the uniform QCFs); the definition

of a finitely generated uniform QCF is independent of the choice of the set G (differently

from the polynomial time uniformly generated QCF). The class of finitely generated

QCF is the computational model that we proved to be equivalent to the calculus Q in

Section 5.

A.3. Quantum Turing machines

This is a brief introduction to QTMs. For an exhaustive treatment see Bernstein and

Vazirani (1997), Hirvensalo (2004) and Nishimura and Ozawa (2009).

Let Σ be is a finite alphabet with a blank symbol " and let Q be a finite set of states.

We distinguish in the set Q an initial state q0 and a final state qf (with q0 ̸= qf). As for

the classical case, the QTM is based on the reading/writing of the tape by a head.

Let us start with the definitions of tape configuration and configuration:

Definition 33 (tape configurations and configurations).

— The set of tape configurations is the set of functions Σ# = {t : Z → Σ|t(m) ̸=
" only for a finite m ∈ Z}. Given t ∈ Σ#, a symbol σ ∈ Σ and an integer k ∈ Z, a new

tape configuration tσk will be

tσk (m) =

{
σ if m = k

t(m) if m ̸= k.

— We will call a frame the pair (Q,Σ). To each frame, we can associate the configurations

space C (Q,Σ) = Q × Σ# × Z.

Each element C = (q, t, k) ∈ C (Q,Σ), where k ∈ Σ is the head position, is called a

configuration. Moreover, we define a final configuration as any configuration such that

q = qf .

It is possible to build a Hilbert space generated by the configurations space:

Definition 34 (quantum state space). The quantum state space is the Hilbert space

ℓ2(C (Q,Σ)) (see Section 2.1). In the following, we will denote it as H(Q,Σ).

We now define the pre-QTM, the QTM, and some related properties. In the following

we will use the notation [a, b]Z (a, b ∈ Z) in order to represent the integers between a and

b (with a and b included).

Definition 35 (prequantum Turing machine). A pre-QTM is a triple (Q,Σ, δ) where (Q,Σ)

is a frame and δ is the quantum transition function δ : Q × Σ × Q × Σ × [−1, 1]Z → C̃.

The transition function δ induces the so-called time evolution operator.
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Definition 36 (time evolution operator). Uδ
M : H(Q,Σ) → H(Q,Σ), a linear operator

defined as

Uδ
M |C⟩ = Uδ

M |q, t, k⟩ =
∑

(p,σ,d)∈Q×Σ×[−1,1]Z

δ(q, t(k), p, σ, d) · |p, tσk , k + d⟩.

The definition of QTMs requires computable amplitudes and a unitary time evolution

operator:

Definition 37 (quantum Turing machine). QTM is a pre-QTM M = (Q,Σ, δ) such that

the time evolution operator Uδ
M is unitary (i.e. Uδ

M
†
Uδ

M = I = Uδ
MUδ

M
†
).

We can strengthen the definition above by limiting the transition amplitudes to the

polynomial computable complex numbers PC̃ (Definition 29): this does not reduce the

computational power of the QTM (Bernstein and Vazirani 1997; Nishimura and Ozawa

2002, 2009).

The following conditions for the unitarity of a time evolution operator are stated

in Nishimura and Ozawa (2009):

Theorem 16. Given a pre-QTM, M = (Q,Σ, δ), the time evolution operator Uδ
M is unitary

if and only if the function δ satisfies the following conditions:

— for each (q, τ) ∈ Q × Σ,
∑

(p,σ,d)∈Q×Σ×[−1,1]Z

|δ(q, τ, p, σ, d)|2 = 1

— for each (q, τ), (q′, τ′) ∈ Q × Σ with (q, τ) ̸= (q′, τ′)
∑

(p,σ,d)∈Q×Σ×[−1,1]Z

δ(q′, τ′, p, σ, d)∗δ(q, τ, p, σ, d) = 0

— for each (q, τ, σ), (q′, τ′, σ′) ∈ Q × Σ × Σ
∑

(p,d)∈Q×[−1,1]Z

δ(q′, τ′, p, σ′, d − 1)∗δ(q, τ, p, σ, d) = 0

— for each (q, τ, σ), (q′, τ′, σ′) ∈ Q × Σ × Σ
∑

p∈Q
δ(q′, τ′, p, σ′,−1)∗δ(q, τ, p, σ, 1) = 0.

Note A.1. In addition to the unitary property, we also require that the time evolution

operator Uδ
M must be (efficiently) computable.

This is not all about QTMs. A QTM needs some input/output conventions and

moreover some careful definitions about the final result, since a QTM halts as a
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superposition of the tapes’ final contents. At the end of the computation, the superposition

of configurations can be observed, obtaining final results or another superposition of

configurations (this is the case of a partial measurement). For the sake of completeness

we recall the following definition (Bernstein and Vazirani 1997):

Definition 38 (observation of a QTM). When QTM M in superposition φ =
∑

i αici is

observed or measured, each configuration ci is seen with probability |αi|2. We may also

perform a partial measurement, say only on the first cell of the tape. In this case, suppose

that the first cell may contain the values 0 or 1, and suppose the superposition was

φ =
∑

i α0ic0i +
∑

i α1c1i, where the c0i are those configurations that have a 0 in the first

cell, and c1i are those configurations that have a 1 in the first cell. If a value b, b = 0, 1 is

observed, the new superposition is 1
Pr[b]

∑
i αbicbi, where Pr[b] =

∑
i |αbi|2.

For further details about these crucial discussions see the original paper (Bernstein and

Vazirani 1997).

In the following section, we will introduce quantum polytime complexity classes and the

notions of polytime QTM and acceptance of a language by a QTM (for decision problems).

A.4. Quantum polynomial time complexity classes

Quantum complexity theory is a big field of investigation. A number of important results

about quantum complexity classes and quantum computational problems have been

proved, contributing to shed light also on the relationships with the classical theory. Some

significative examples can be found in Watrous et al. (2009) and Watrous et al. (2011)

(in the latter, the equality between QIP, the quantum analogue of the classical complexity

class IP and PSPACE has been proved).

In this section and in this paper, we will focus our attention only on (the definition of)

quantum polytime complexity classes, extensively used in Section 8.

As for the classical case, quantum complexity classes are defined on a computational

model, but in this setting the definitions are more delicate.

Let us consider the class of QTMs à la Bernstein and Vazirani (1997): each computation

evolves as a superposition in a space of configurations (Definition 34), and each classical

computation in the superposition can evolve independently. So, the result of a quantum

computation is obtained, at the end, with a measurement of the several superpositional

results: as a consequence, it is irremediably probabilistic. This induces the definition of

three distinct quantum polytime classes (EQP, BQP, ZQP), since different constraints can

be imposed on success or error.

Firstly, we need to introduce the polynomial time QTM:

Definition 39 (polynomial time QTM). We say that a QTM M halts with running time T

on input x if when M is run with input x, at time T the superposition contains only final

configurations, and at any time Ti < T the superposition contains no final configurations.

A polynomial time QTM M is a QTM which for every input x halts in time T with T

polynomial in the length of x.
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Note A.2. In this article, we refer to the complexity of the so-called decision problems.

A decision problem is a function Q : {0, 1}∗ → {0, 1} and, very informally, it performs a

question on which the QTM has to give an answer of kind yes/no.

The following is the notion of acceptance for QTMs:

Definition 40 (acceptance of languages by a QTM). We say that a QTM M accepts a

language L with probability p, if M accepts with probability at least p every string x ∈ L,

and rejects with probability at least p every string x /∈ L.

EQP is the error-free (or exact) quantum polynomial time complexity class. This means

that the success probability is 1 on all input instances.

Definition 41 (quantum complexity class EQP). The class EQP is the set of the languages

L accepted by polynomial QTM M with probability 1.

BQP is the bounded-error quantum polynomial time complexity class where the success

probability is imposed to be strictly greater that 2/3 on all input instances.

Definition 42 (quantum complexity class BQP). The class BQP is the set of the languages

L accepted by polynomial QTM M with probability 2/3.

The class ZQP is the zero-error extension of the class BQP. In fact the QTM never

gives a wrong answer, but in each case with probability 1/3 gives a ‘don’t-know’ answer.

Definition 43 (quantum complexity class ZQP). The class ZQP is the set of the languages

L accepted by polynomial QTM M such that, for every string x:

— if x ∈ L, then M accepts x with probability p > 2/3 and rejects with probability

p = 0;

— if x /∈ L, then M rejects x with probability p > 2/3 and accepts with probability p = 0.

The inclusions EQP ⊆ ZQP ⊆ BQP obviously hold. Moreover, P ⊆ BPP ⊆ BQP ⊆
PSPACE, where BPP is the class of the (bounded error) probabilistic polynomial time

(Arora and Barak 2009).

The separation between BPP and BQP is still an open problem. In Bernstein and

Vazirani (1997), the authors exhibit a problem, relative to an oracle, which requires

polynomial time on a QTM, but requires superpolynomial time on a bounded-error

probabilistic Turing machine. A similar, stronger result is given in Simon (1994), where

the author gives the construction of an oracle problem that requires polynomial time on

a QTM and exponential time on a classical Turing machine. Unfortunately, nowadays

we have not got any strong separation theorem between BPP and BQP. This absence

of strict separation is not an exception in computational complexity and it does not

impair the convincing difference between the two models. A ‘flavour’ of separation comes

from algorithms: quantum algorithms can exploit phenomena such as superposition and

interference that a probabilistic model cannot emulate (see Section 4).

Notice that if we are able to prove the separation between the classes of probabilistic

and quantum polytime we obtain the separation between P and PSPACE as a by-product.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Sep 2015 IP address: 157.27.161.132

On quantum lambda calculi 81

A.5. Equivalence between quantum Turing machines and quantum circuit families

The equivalence between (a subclass of) QCF and polytime QTMs has been shown

in Nishimura and Ozawa (2009).

This equivalence is called ‘perfect’, since it means a full correspondence between all the

three polytime quantum complexity classes BQP, EQP, ZQP (Definitions 41–43) and their

counterparts defined on QCF (Nishimura and Ozawa 2002).

The equivalence is stated and proved taking into account the class of finitely generated

QCF (Definition 32): more precisely, the families have to be based on a finite subset of

the set Gu = {Λ1(N), R(θ), P (θ′)|θ, θ′ ∈ PC̃∩ [0, 2π]} (where Λ1(N) is a controlled-not gate,

R(θ) is a rotation gate by angle θ and P (θ′) is a phase shift gate by angle θ′).

Notice that all definitions must be based on the notions of computable numbers and

computable operators. In other words, the entries of the matrices representing the quantum

gates in the universal set are required to be polynomial time computable numbers (as

pointed out in Shor (1997)) and the amplitudes of the polynomial time QTMs have to be

in the set PC̃ (Definitions 29 and 30).

We state the main results as in Nishimura and Ozawa (2009).

Theorem 17. Polynomial time QTM with amplitudes from PC̃ and finitely generated

uniform QCF are perfectly equivalent: any polynomial time QTM with amplitudes from

PC̃ can be exactly simulated by a finitely generated QCF, and vice-versa.

The following corollary comes as an immediate consequence of the previous theorem:

Corollary 4. The class of languages recognized with certainty (respectively with zero-

error and bounded-error) by finitely generated QCFs coincide with the corresponding

complexity class EQP (respectively ZQP and BQP) for polynomial time QTMs.

Nishimura and Ozawa’s proof is largely based in the encoding of QTM into QCF

proposed in Yao (1993).

We recall here a sketch of Yao’s encoding, since it is used in Section 8.5.

Suppose we work with finite alphabets including a special symbol, called blank and

denoted with $. Moreover, each alphabet comes equipped with a function σ : Σ →
{0, 1}⌈lg2(|Σ|)⌉. Σω is the set of infinite strings on the alphabet Σ, i.e. elements of Σω are

functions from Z to Σ. Σ# is a subset of Σω containing strings which are different from

$ in finitely many positions.

Consider a polytime QTM (Definition 39) M = (Q,Σ, δ) working in time bounded by

a polynomial t : N → N . The computation of M on input of length n can be simulated

by a quantum circuit Lt(n) built as follows:

— for each m, Lm has η+ k(λ+ 2) inputs (and outputs), where η = ⌈log2 |Q|⌉, k = 2m+ 1

and λ = ⌈log2 |Σ|⌉. The first η qubits correspond to a binary encoding q of a state in

Q. The other inputs correspond to a sequence σ1s1, . . . , σksk of binary strings, where

each σi (with |σi| = λ) corresponds to the value of a cell of M, while each si (with

|si| = 2) encodes a value from {0, 1, 2, 3} controlling the simulation.

— Lm is built up by composing m copies of a circuit Km, which is depicted in Figure 8

and has η + k(λ+ 2) inputs (and outputs) itself.
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... ...
...

...
...

...
...

...
...· · ·

· · ·

Gm

H

H

H

H

Jm

Km

q σ1s1 σ2s2 σk−1sk−1 σksk

Fig. 8. The quantum circuit computing one step of the simulation.

— Km is built up by composing Gm with Jm. Gm does nothing but switching the inputs

corresponding to each si from 1 to 2 and vice-versa.
— Jm can be decomposed into k − 3 instances of a single circuit H with η + 3(λ + 2)

inputs, acting on different qubits as shown in Figure 8. Notice that H can be assumed

to be computable (in the sense of Definition 28), because M can be assumed to have

amplitudes in PC̃ (Nishimura and Ozawa 2009).

Theorem 18 (Yao 1993). The circuit family {Lm}m∈N simulates the QTM M.

See the original articles Yao (1993) and Nishimura and Ozawa (2009) for a full explanation

of the correspondence results.

Appendix B. On Measurement Operators

We give here the detailed proofs of some properties of the destructive measurement maps

defined in Section 2.4.

Destructive measurements (Definition 4) have to satisfy a completeness condition:

Proposition 13 (completeness condition). Let r ∈ QV and Q ∈ H(QV). Then, m†
r,0mr,0 +

m†
r,1mr,1 = IdH(QV).

Proof. In order to prove the proposition we will use the following general property of

inner product spaces: let H be an inner product space and let A : H → H be a linear

map. If for each x, y ∈ H, ⟨Ax, y⟩ = ⟨x, y⟩ then A is the identity map (such a property is

an immediate consequence of the Riesz representation theorem, see e.g. Roman (2008)).

Let Q,R ∈ H(QV). If {bi}i∈[1,2n] is the computational basis of H(QV − {r}), then:

Q =
2n∑

i=1

αi|r ,→ 0⟩ ⊗ bi +
2n∑

i=1

βi|r ,→ 1⟩ ⊗ bi

R =
2n∑

i=1

γi|r ,→ 0⟩ ⊗ bi +
2n∑

i=1

δi|r ,→ 1⟩ ⊗ bi.
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We have

⟨(m†
r,0mr,0 + m†

r,1mr,1)(Q),R⟩ = ⟨m†
r,0mr,0(Q),R⟩ + ⟨m†

r,1mr,1(Q),R⟩
= ⟨mr,0(Q),mr,0(R)⟩ + ⟨mr,1(Q),mr,1(R)⟩

= ⟨
2n∑

i=1

αibi,
2n∑

i=1

γibi⟩ + ⟨
2n∑

i=1

βibi,
2n∑

i=1

δibi⟩

=
2n∑

i=0

αiγi +
2n∑

i=0

βiδi

= ⟨Q,R⟩.

This concludes the proof.

For c ∈ {0, 1}, the measurement operators mr,c also enjoy the following properties:

Proposition 14. Let Q ∈ H(QV). Then:

1. mr,c(Q ⊗ |q ,→ d⟩) = (mr,c(Q)) ⊗ |q ,→ d⟩ if r ∈ QV and q /∈ QV;

2. ⟨Q ⊗ |s ,→ d⟩|m†
r,cmr,c|Q ⊗ |s ,→ d⟩⟩ = ⟨Q,m†

r,cmr,c|Q⟩; if r ∈ QV and r ̸= s;

3. mq,e(mr,d(Q)) = mr,d(mq,e(Q)); if r, q ∈ QV .

Proof.

1. Given the computational basis {bi}i∈[1,2n] of H(QV − {r}), we have that

Q ⊗ |q ,→ d⟩ =
2n∑

i=1

αi|r ,→ 0⟩ ⊗ bi ⊗ |q ,→ d⟩ +
2n∑

i=1

βi|r ,→ 1⟩ ⊗ bi|r ,→ d⟩

and therefore

mr,0(Q ⊗ |q ,→ d⟩) =
2n∑

i=1

αi(bi ⊗ |r ,→ d⟩)

=

(
2n∑

i=1

αibi

)
⊗ |q ,→ d⟩

= (mr,c(Q)) ⊗ |q ,→ d⟩.

In the same way we prove the equality for mr,1.

2. Just observe that

⟨Q ⊗ |s ,→ d⟩|m†
r,cmr,c|Q ⊗ |s ,→ d⟩⟩ = ⟨Q ⊗ |s ,→ d⟩,m†

r,c(mr,c(Q ⊗ |s ,→ d⟩))⟩
= ⟨mr,c(Q ⊗ |s ,→ d⟩),mr,c(Q ⊗ |s ,→ d⟩)⟩
= ⟨mr,c(Q),mr,c(Q)⟩
= ⟨Q,m†

r,cmr,cQ⟩ = ⟨Q|m†
r,cmr,c|Q⟩.
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3. Given the computational basis {bi}i∈[1,2n] of H(QV − {r, q}), we have that

Q =
2n∑

i=1

αi|r ,→ 0⟩ ⊗ |q ,→ 0⟩ ⊗ bi +
2n∑

i=1

βi|r ,→ 0⟩ ⊗ |q ,→ 1⟩ ⊗ bi+

2n∑

i=1

γi|r ,→ 1⟩ ⊗ |q ,→ 0⟩ ⊗ bi +
2n∑

i=1

δi|r ,→ 1⟩ ⊗ |q ,→ 1⟩ ⊗ bi.

Let us show that mq,0(mr,0(Q)) = mr,0(mq,0(Q)), the proof of other cases follow the

same pattern.

mr,0(mq,0(Q)) = mr,0

(
2n∑

i=1

αi|r ,→ 0⟩ ⊗ bi +
2n∑

i=1

γi|r ,→ 1⟩ ⊗ bi

)

=
2n∑

i=1

αibi = mq,0

(
2n∑

i=1

αi|q ,→ 0⟩ ⊗ bi +
2n∑

i=1

βi|q ,→ 1⟩ ⊗ bi

)

= mq,0(mr,0(Q)).

This concludes the proof.

The following proposition holds for the normalized maps Mr,0 and Mr,1 (Definition 5):

Proposition 15. Let Q ∈ H(QV) be a quantum register. Then

1. Mr,c(Q) is a quantum register;

2. Mq,e(Q ⊗ |r ,→ d⟩) = (Mq,e(Q)) ⊗ |r ,→ d⟩, with q ∈ QV and q ̸= r;

3. Mq,e(Mr,d(Q)) = Mr,d(Mq,e(Q)), with q, r ∈ QV;

4. if q, r ∈ QV , pr,c = ⟨Q|m†
r,cmr,c|Q⟩, pq,d = ⟨Q|m†

q,dmq,d|Q⟩, Qr,c = Mr,c(Q), Qq,d =

Mq,d(Q), sr,c = ⟨Qq,d|m†
r,cmr,c|Qq,d⟩, sq,d = ⟨Qr,c|m†

q,dmq,d|Qr,c⟩ then pr,c · sq,d = pq,d · sr,c;
5. (U⟨q1 ,...,qk⟩ ⊗ IQV−{q1 ,...,qk})(Mr,c(Q)) = Mr,c((U⟨q1 ,...,qk⟩ ⊗ IQV−{q1 ,...,qk})(Q)) with

{q1, . . . , qk} ⊆ QV and r ̸= qj for all j = 1, . . . , k.

Proof. The proofs of 1, 2 and 5 are immediate consequences of Proposition 14 and of

general basic properties of Hilbert spaces. About 3 and 4: if Q = 0QV then the proof

is trivial; if either pr,c = 0 or pq,d = 0 (possibly both), observe that sr,c = sq,d = 0 and

Mq,e(Mr,d(Q)) = Mr,d(Mq,e(Q)) = 0QV−{q,r} and conclude. Suppose now that Q ̸= 0QV ,

pr,c ̸= 0 and pq,d ̸= 0. Given the computational basis {bi}i∈[1,2n] of H(QV − {r, q}), we have

that:

Q =
2n∑

i=1

αi|r ,→ 0⟩ ⊗ |q ,→ 0⟩ ⊗ bi +
2n∑

i=1

βi|r ,→ 0⟩ ⊗ |q ,→ 1⟩ ⊗ bi+

2n∑

i=1

γi|r ,→ 1⟩ ⊗ |q ,→ 0⟩ ⊗ bi +
2n∑

i=1

δi|r ,→ 1⟩ ⊗ |q ,→ 1⟩ ⊗ bi.
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Let us examine the case c = 0 and d = 0 (the other cases can be handled in the same

way).

pr,0 =
2n∑

i=1

|αi|2 +
2n∑

i=1

|βi|2; pq,0 =
2n∑

i=1

|αi|2 +
2n∑

i=1

|γi|2;

Qr,0 = Mr,0(Q) =

∑2n

i=1 αi|q ,→ 0⟩ ⊗ bi +
∑2n

i=1 βi|q ,→ 1⟩ ⊗ bi√
pr,0

Qq,0 = Mq,0(Q) =

∑2n

i=1 αi|r ,→ 0⟩ ⊗ bi +
∑2n

i=1 γi|r ,→ 1⟩ ⊗ bi√
pq,0

Now let us consider the two states:

Qq,0
r,0 = mq,0(Qr,0) =

∑2n

i=1 αibi√
pr,0

Qr,0
q,0 = mr,0(Qq,0) =

∑2n

i=1 αibi√
pq,0

By definition

sq,0 =

∑2n

i=1 |αi|2
pr,0

sr,0 =

∑2n

i=1 |αi|2
pq,0

and therefore pr,0 · sq,d = pq,0 · sr,0. Moreover, if QV = ! then Mq,0(Qr,0) = Mr,0(Qq,0) = 1,

otherwise

Mq,0(Qr,0) =
Qq,0

r,0√
p̄q,0

=

∑2n

i=1 αibi√
pr,0 · √

p̄q,0
=

∑2n

i=1 αibi

√
pr,0 ·

√
∑ 2n

i=1 |αi|2
pr,0

=

∑2n

i=1 αibi√∑2n

i=1 |αi|2

Mr,0(Qs,0) =
Qr,0

q,0√
p̄r,0

=

∑2n

i=1 αibi√
pq,0 · √

p̄r,0
=

∑2n

i=1 αibi

√
pq,0 ·

√
∑ 2n

i=1 |αi|2
pq,0

=

∑2n

i=1 αibi√∑2n

i=1 |αi|2

and therefore, Mq,0(Qr,0) = Mr,0(Qs,0).

This concludes the proof.
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