
Automagically Encoding
Adverse Drug Reactions in MedDRA

Margherita Zorzi, Carlo Combi
Department of Computer Science

University of Verona, Italy

{margherita.zorzi|carlo.combi}@univr.it

Riccardo Lora, Marco Pagliarini, Ugo Moretti
Department of Public Health and Community Medicine

University of Verona, Italy

{riccardo.lora|marco.pagliarini|ugo.moretti}@univr.it

Abstract—Pharmacovigilance is the field of science devoted to
the collection, analysis, and prevention of Adverse Drug Reac-
tions (ADRs). Efficient strategies for the extraction of information
about ADRs from free text sources are essential to support the im-
portant task of detecting and classifying unexpected pathologies,
possibly related to (therapy-related) drug use. Narrative ADR
descriptions may be collected in different ways, e.g., either by
monitoring social networks or through the so called “spontaneous
reporting, the main method pharmacovigilance adopts in order
to identify ADRs. The encoding of free-text ADR descriptions
according to MedDRA standard terminology is central for report
analysis. It is a complex work, which has to be manually
implemented by the pharmacovigilance experts. The manual
encoding is expensive (in terms of time). Moreover, a problem
about the accuracy of the encoding may occur, since the number
of reports is growing up day by day. In this paper, we propose
MagiCoder, an efficient Natural Language Processing algorithm
able to automatically derive MedDRA terminologies from free-
text ADR descriptions. MagiCoder is part of VigiWork, a
web application for online ADR reporting and analysis. From
a practical point of view, MagiCoder reduces the encoding time
of ADR reports. Pharmacologists have simply to review and
validate the MedDRA terms proposed by MagiCoder, instead
of choosing the right terms among the 70K terms of MedDRA.
Such improvement in the efficiency of pharmacologists’ work
has a relevant impact also on the quality of the following data
analysis.

Our proposal is based on a general approach, not depending
on the considered language. Indeed, we developed MagiCoder
for the Italian pharmacovigilance language, but preliminarily
analyses show that it is robust to language and dictionary
changes.

Index Terms—pharmacovigilance; natural language process-
ing; adverse reaction entry.

I. INTRODUCTION

Pharmacovigilance includes all activities aimed to system-

atically study risks and benefits related to the correct use of

marketed drugs. The development of a new drug, which begins

with the production and ends with the commercialization of

a drug, considers both pre-clinical studies (usually tests on

animals) and clinical studies (tests on patients). After these

phases, a pharmaceutical company can require the authorization

for the commercialization of the new drug. Notwithstanding,

whereas at this stage drug benefits are well-know, results about

drug safety are not conclusive [1]. The pre-marketing tasks

cited above have some limitations: they involve a small number

of patients; they exclude relevant subgroups of population

such as children and elders; the experimentation period is

relatively short, less than two years; the experimentation does

not deal with possibly concomitant pathologies, or with the

concurrent use of other drugs. For all these reasons, non-

common Adverse Drug Reactions (ADRs), such as slowly-

developing pathologies (e.g., carcinogenesis) or pathologies

related to specific groups of patients, cannot be discovered

before the commercialization. It may happen that drugs are

withdrawn from the market after the detection of unexpected

collateral effects. Thus, it stands to reason that the control of

ADRs is a necessity, considering the mass production of drugs.

As a consequence, pharmacovigilance plays a crucial role in

human healthcare improvement [1].

Spontaneous reporting is the main method pharmacovigilance

adopts, in order to identify adverse drug reactions. Through

spontaneous reporting, health care professionals, patients, and

pharmaceutical companies can voluntarily send information

about suspected ADRs to the national regulatory authority 1.

The spontaneous reporting is an important activity. It provides

pharmacologists and regulatory authorites with early alerts,

by considering every drug on the market and every patient

category.

The Italian system of pharmacovigilance requires that in each

local health structure there is a qualified person responsible

for pharmacovigilance. Her/his assignment is to collect reports

of suspected ADRs and to send them to the National Network

of Pharmacovigilance (RNF) within seven days2. Once reports

have been notified and sent to RNF, currently through a web

application, they are analysed by both local pharmacovigilance

centres and by the Drug Italian Agency (AIFA). Subsequently,

they are sent to Eudravigilance [2] and to VigiBase [3] (the

european and the worldwide pharmacovigilance network, RNF

is part of, respectively). In general, spontaneous ADR reports

are filled by health care professionals (medical specialists,

general practitioners, nurses, and so on), but also by citizens.

In the last years, Italian ADR reports have grown exponentially,

going from approximately ten thousand in 2006 to around sixty

thousand in 2014, as shown in Figure 1.

Since the post-marketing surveillance of drugs is of

1in Italy, the Drug Italian Agency AIFA –Agenzia Italiana del FArmaco,
http://www.agenziafarmaco.gov.it/

2According to the Italian Law, Art. 132 of Legislative Decree Number 219
of 04/24/2006.

2015 International Conference on Healthcare Informatics

978-1-4673-9548-9/15 $31.00 © 2015 IEEE

DOI 10.1109/ICHI.2015.18

90

2015 International Conference on Healthcare Informatics

978-1-4673-9548-9/15 $31.00 © 2015 IEEE

DOI 10.1109/ICHI.2015.18

90

Fig. 1. The yearly increasing number of reports about suspected adverse reactions induced by drugs in Italy.

paramount importance, such an increase is certainly positive.

At the same time, the manual review of reports became

difficult and often unbearable both by people responsible

for pharmacovigilance and by regional centres. Indeed, each

report must be checked, in order to control its quality; it is

consequently encoded and transferred to RNF via “copy by

hand” (actually, a printed copy).

Recently, to increase the efficiency in collecting and manag-

ing ADR reports, a web application, called VigiWork, has

been designed and implemented for the Italian pharmacovigi-

lance (at https://vigiwork.vigifarmaco.it/). Through VigiWork,

a spontaneous report can be inserted online both by healthcare

professionals and by citizens (through different forms), as

anonymous or registered users. VigiWork is user-friendly.

The user is guided in compiling the report, since it has to

be filled step-by-step (each phase corresponds to a different

report section, i.e., “Patient”, “Adverse Drug Reaction”, “Drug

Treatments” and “Reporter”, respectively). Inserted data are

then validated, since a report can be successfully sent only

after completing the correct sequence of steps.

VigiWork is also useful for pharmacovigilance supervisors.

Indeed, VigiWork reports are high-quality documents, since

they are automatically validated (the presence, the format,

and the consistency of data are validated at the filling time).

As a consequence, they are easier to review (especially with

respect to printed reports). Moreover, thanks to VigiWork, a

pharmacologist can send reports to RNF by simply pressing a

button, after reviewing it.

Online reports have grown up to become the 30% of the total

number of Italian reports. As expected, it has been possible to

observe that the average time between the dispatch of online

reports and the insertion into RNF is sensibly shorter with re-

spect to the the insertion from printed reports. Notwithstanding,

there is an operation which still requires the manual work of

people responsible for Pharmacovigilance also for online report

revisions: the encoding in MedDRA terminology of the free text,

through which the reporter describes one or more adverse drug

reactions. The description of a suspected ADR through narrative

text could seem redundant/useless. Indeed, one could reasonably

imagine sound solutions based either on an autocompletion

form or on a menu with MedDRA terms. In these solutions, the

description of ADRs would be directly encoded by the reporter

and no expert work for MedDRA terminology extraction would

be required. However, such solutions are not completely suited

for the pharmacovigilance domain and the narrative description

of ADRs remains a desirable feature, for at least two reasons.

First, the description of an ADR by means of one of the seventy

thousand MedDRA terms is a complex task. In most cases, the

reporter which points out the adverse reaction is not an expert in

MedDRA terminology. This holds in particular for citizens, but

it is still valid for several professionals. Thus, describing ADRs

by means of natural language sentences is simpler. Second,

the choice of the suitable term(s) from a given list or from

an autocompletion field can influence the reporter and limit

her/his expressiveness. As a consequence, the quality of the

description would be also in this case undermined. Therefore,

VigiWork offers a free-text form for specifying and ADR

with all the possible details, without any restriction about the

content or limits to the length of the written text. Consequently,

MedDRA encoding has then to be manually implemented by

qualified people responsible for pharmacovigilance, before the

transmission to RNF. As this work is expensive in terms of

time and attention required, a problem about the accuracy of

the encoding may occur given the continuous growing of the

number of reports.

According to the described scenario, in this paper we

propose MagiCoder, a natural language processing (NLP) [4]

algorithm, which automatically assigns one or more MedDRA
term codes to each narrative ADR description in the online

reports collected by VigiWork.

The paper is organized as follows. In Section II we provide

some background notions and we discuss related work. In

Section III we present the algorithm MagiCoder, by providing

both a qualitative description and the pseudocode. In Section IV

we spend some words about the user interface, we explain the

benchmark we developed to test MagiCoder performances and

we discuss first results. Finally, in Section V we discuss the

main features of our work and sketch some future research

lines.

9191

II. BACKGROUND AND RELATED WORK

A. Natural Language Processing and Text Mining in Medicine

Automatic detection of adverse drug reactions from text

recently received an increasing interest in pharmacovigilance

research. Narrative descriptions of ADRs come from hetero-

geneous sources: spontaneous reporting, Electronic Health

Records, Clinical Reports, and social media. In [5]–[9] some

NLP approaches have been proposed for the extraction of

ADRs from text. In [10], the authors collect narrative discharge

summaries from the Clinical Information System at New York

Presbyterian Hospital. MedLEE, an NLP system, is applied to

this collection, to identify medication events and entities, which

could be potential adverse drug events. Co-occurrence statistics

with adjusted volume tests were used to detect associations

between the two types of entities, to calculate the strengths

of the associations, and to determine their cutoff thresholds.

In [11], the authors report on the adaptation of a machine

learning-based system for the identification and extraction of

ADRs in case reports. The role of NLP approaches in optimised

machine learning algorithms is also explored in [12], where the

authors address the problem of automatic detection of ADR

assertive text segments from distinct sources, focusing on data

posted by users on social media (Twitter and DailyStrenght, a

health care oriented social media). Existing methodologies for

NLP are discussed; an experimental comparison between NLP-

based machine learning algorithms over data sets from different

sources has been proposed. Moreover, the authors address the

issue of data imbalance for ADR description task. In [13] the

authors propose to use association mining and Proportional

Reporting Ratios (PRR, a well-know pharmacovigilance statis-

tical index) to mine the associations between drugs and adverse

reactions from the user contributed content in social media.

In order to extract adverse reactions from on line text (from

health care communities), the authors apply the Consumer

Health Vocabulary (at http://www.consumerhealthvocab.org)

to generate ADR lexicon. ADR lexicon is a computerized

collection of health expressions derived from actual consumer

utterances (authored by consumers), linked to professional

concepts and reviewed and validated by professionals and

consumers. Narrative text is preprocessed following standard

NLP techniques (such as stop word removal, see Section III-A).

An experiment using ten drugs and five adverse drug reactions

is proposed. The Food and Drug Administration alerts are used

as the gold standard, to test the performance of the proposed

techniques. The authors developed algorithms to identify ADRs

from threads of drugs, and implemented association mining

to calculate leverage and lift for each possible pair of drugs

and adverse reactions in the dataset. At the same time, PRR is

also calculated.

Other interesting papers about pharmacovigilance and ma-

chine learning or data mining are, e.g., [14] and [15]. In [16]

a text extraction tool is implemented on the .NET platform

with functionalities for preprocessing text (removal of stop

words, Porter stemming and use of synonyms) and matching

medical terms using permutations of words and spelling

MedDRA Level MedDRA Term

SOC Skin disorders

HLGT Epidermal conditions

HLT Dermatitis and Eczema

PT Asteatotic Eczema

LLT Itch

TABLE I
MEDDRA HIERARCHY - AN EXAMPLE

variations (Soundex, Levenshtein distance and Longest common

subsequence distance [17]). Its performance has been evaluated

on both manually extracted medical terms from summaries of

product characteristics and unstructured adverse effect texts

from Martindale (i.e. a medical reference for information about

drugs and medicines) using the WHO-ART and MedDRA
medical term dictionaries. A lot of linguistic features have

been considered and a careful analysis of performances has

been provided.

B. MedDRA Dictionary

The Medical Dictionary for Regulatory Activities (MedDRA)

is a medical terminology used to classify adverse event infor-

mation associated with the use of biopharmaceuticals and other

medical products (e.g., medical devices and vaccines). Coding

these data to a standard set of MedDRA terms allows health

authorities and the biopharmaceutical industry to exchange and

analyze data related to the safe use of medical products [18].

It has been developed by the International Conference on

Harmonization (ICH); it belongs to the International Federation

of Pharmaceutical Manufacturers and Associations (IFPMA);

it is controlled and periodically revised by the MedDRA
Mainteinance And Service Organization (MSSO). MedDRA
is available for eleven European languages and for Chinese

and Japanese too. It is updated twice a year (in March

and in September), following a collaboration-based approach:

everyone can propose new reasonable updates or changes

(as effects of events as the onset of new pathologies) and

a team of experts eventually decides about the publication of

the updates. MedDRA terms are organised into a hierarchy:

the SOC (System Organ Classes) level includes the most

general terms; the LLT (Low Level Terms) level includes

more specific terminologies; between SOC and LLT there are

three intermediate levels (HLGT, HLT and PT).

Table I shows an example of the hierarchy: the reaction Itch
is described starting from Skin disorders, Epidermal conditions,

Dermatitis and Eczem, and Asteatotic Eczema. Preferred Terms

are Low Level Terms chosen to be the representative of a group

of terms. It should be stressed that the hierarchy is multiaxial:

for example, a PT (Preferred Term) can be grouped in one

or more HLT (High Level Term), but it belongs to only one

primary SOC (System Organ Class) term.

The encoding of ADRs through MedDRA is extremely

important for report analysis as for a prompt detection of

problems related to drug-based treatments. Thanks to MedDRA
it is possible to group similar/analogous cases described in

9292

different ways (e.g. by synonyms) or with different details/levels

of abstraction.

III. MAGICODER: AN ALGORITHM FOR ADR AUTOMATIC

ENCODING

A natural language ADR description is a completely free

text. The user has no limitations, she/he can potentially write

everything: a number of online ADR descriptions actually

contain information not directly related to drug effects. An

NLP software has to face and solve many issues: trivial

orthographical errors; the use of singular versus plural nouns;

the so called “false positives” i.e. syntactically retrieved

inappropriate results, which are closely resembling correct

solutions; the structure of the sentence, i.e. the way an assertion

is built up in a given language. Also the “intelligent” detection

of linguistic connectives is a crucial issue. For example, the

presence of a negation can potentially change the overall

meaning of a description.

In general, a satisfactory automatization of human reasoning

and work is a subtle task, and the uncontrolled extension of

the dictionary with auxiliary synonymous or the naive ad-

hoc management of particular cases can limit the efficiency

of the algorithm. For these reasons, we carefully designed

MagiCoder, even through a side-by-side collaboration between

pharmacologists and computer scientists, in order to yield

an efficient tool, capable to really support pharmacovigilance

activities.

In literature, several NLP algorithms still exists, and several

interesting approaches (such as the so called morpho-analysis

of natural language) have been studied and proposed [4], [19],

[20]. According to the described pharmacovigilance domain,

we considered algorithms for the morpho-analysis and the

part-of-speech extraction techniques [4], [19] too powerful and

general purpose for the first solution to our problem.

Thus, we decided to design and develop an ad-hoc algorithm

for the problem we are facing, namely that of deriving MedDRA
terms from narrative text and mapping segments of text in

effective LLT terms. This task has to be done in a very feasible

time (we want that each interaction user/MagiCoder requires

less than a second) and the solution offered to the expert has

to be readable and useful. Therefore, we decided to ignore the

structure of the narrative description and address the issue in a

simpler way. Main features of MagiCoder can be summarized

as follows:

• it requires a single linear scan of the narrative description:

as a consequence, our solution is particularly efficient in

terms of computational complexity;

• it has been designed and developed for the specific

problem of mapping Italian text to MedDRA dictionary,

but we claim the way MagiCoder has been developed is

sound with respect to Language and Dictionary changes.

• the current version of MagiCoder is only based on the

pure syntactical recognition of the text and it does not

exploit any heuristic or external synonym dictionary; as it

will be discussed in Section IV, experimental results are

encouraging and we empirically observed that the use of

an external dictionary produces a relevant improvement

of performances.

A. MagiCoder: Overview

The main idea of MagiCoder is that a single linear scan of

the free-text is sufficient, in order to recognize MedDRA terms.

From an abstract point of view, we try to recognize, in

the narrative description, single words belonging to LLTterms,

which do not necessarily occupy consecutive positions in the

description. This way, we try to reconstruct MedDRA terms,

taking into account the fact that in a description the reporter can

permute or omit words. As we will show, MagiCoder has not

to deal with computationally expensive tasks, such as taking

into account subroutines for permutations and combinations of

words (as, for example, in [16]).

We can distinguish five phases in the procedure, we will

discuss in detail in the following:

1) Preprocessing of the original text;

2) Definition of ad-hoc data structures;

3) Word-by-word linear scan of the description and “voting

task”;

4) Weight calculation and sorting of voted terms;

5) Winning terms release.

1) Preprocessing of the original ADR description: Given

a natural language ADR description, the text has to be

preprocessed in order to perform an efficient computation. We

adopt well-know techniques such as tokenization [21], where a

phrase is reduced to tokens, i.e. syntactical units, which often,

as in our case, correspond to words. A tokenized text can be

easily manipulated as an enumerable object, e.g. an array. A

stop word is a word which can be considered irrelevant for

the text analysis (e.g. an article or an interjection). In this first

release of our software we decided to not take into account

connectives, e.g. conjunctions, disjunctions, negations. Once

one has defined the set of the stop words, the original text is

cleaned from such irrelevant words.

A fruitful preliminary work is the extraction of the corre-

sponding stemmed version from the original tokenized (and

stop-word free) text. Stemming is a linguistic technique that,

given a word, reduces it to a particular kind of root form [21].

It is useful in text analysis, in order to avoid problems such

as bad word recognition due to singular/plural forms (e.g.,

hand/hands). Stemming is also potentially harmful, since it can

generate the so called “false positives” terms. A meaningful

example can be found in Italian language. The plural of the

word mano (in English, hand) is mani (in English, hands), and

their stemmed radix is man, which is also the stemmed version

of mania (in English, mania).

2) Definition of ad hoc data structures: The algorithm

proceeds with a word-by-word comparison. We iterate on the

preprocessed text and we test if a single word w (a token)

occurs into one or many LLT terms.

In order to efficiently test if a token belongs to one or

more LLT terms, we need to create a further level of the

MedDRA dictionary. The LLT level of MedDRA is actually a

set of phrases, i.e. sequences of words. By scanning these

9393

sequences, we built a meta-dictionary of all the words which

compose LLT terms. As we will describe in Section III-B,

in O(mk) time units (where m and k are the cardinality of

the set of LLT terms and the length of the longest LLT term

in MedDRA, respectively) we can build a hash table having

all the words occurring in MedDRA as keys, where the value

associated to key wi contains information about the set of

LLTs containing wi. This way, we can verify the presence in

MedDRA of a word w encountered in the ADR description

in constant time. We call this meta-dictionary DictByWord.

We build a meta dictionary also from a stemmed version of

MedDRA, to verify the presence of stemmed descriptions. We

call it DictByWordStem.
Also the MedDRA dictionary is loaded for the computation

into hash tables and, in general, all our main data structures

are dictionaries. We aim to stress that, to retain efficiency, we

preferred exact string matching with respect to approximate

string matching, when looking for a word into the meta

dictionary. Approximate string matching would allow us to

retrieve terms that would be lost in exact string matching (e.g.,

we could recognize misspelled words in the ADR description),

but it would worsen the performances of the text recognition

tool, since direct access to the dictionary would not be possible.

We discuss the problem of addressing orthographical errors in

Section V.
3) Word-by-word linear scan of the description and voting

task: Algorithm MagiCoder scans the text word-by-word

(remember that each word corresponds to a token) one time and

performs a “voting task”: at the i-th step, it marks (i.e. “votes”),

with index i each LLT term t containing the current (i-th) word

of the ADR description. Moreover, it keeps track of the position

where the i-th word occurs in LLT terms. MagiCoder tries

to find a word match both for the exact and the stemmed

version of the meta dictionary and keeps track of the kind of

match it has eventually found. It updates a flag, initially set to

0, if at least a stemmed matching is found. If a word w has

been exactly recognized in a term t, the match between the

stemmed versions of w and t is not considered. At the end of

the scan, the procedure has built a sub-dictionary containing

only terms “voted” at least by a word. We will call VotedLLT
the sub dictionary of voted terms.

Each selected term t is equipped with two auxiliary data

structures, containing, respectively:

1) the positions of the voting words in the ADR description;

we will call voterst this sequence of indexes;

2) the positions of the voted words in the MedDRA term t;
we will call votedt this sequence of indexes.

Moreover, we endow each selected term with a third structure

that will contain the sorting criteria we define below; we will

call it weightst.
Let us now introduce some notations we will use in the

following. We denote as t.size the function that, given a LLT
term t, returns the number of words contained in t. We denote as

voterst.length (resp. votedt.length) the function that returns

the number of indexes belonging to voterst (resp. votedt).
We denote as voterst.min and voterst.max the functions that

return the maximum and the minimum indexes in voterst,
respectively.

4) Weight calculation and sorting: After the voting task,

selected terms have to be ordered. Notice that a purely

syntactical recognition of words in LLT terms potentially

generates a large number of voted terms. So we have to: i)

filter a subset of highly feasible solutions; ii) choose a good

final selection criteria (this will be discuss in Section III-A5).

To this end, we define five criteria as “weights” to assign to

voted terms. In the following, 1
t.size is a normalization factor

(w.r.t. the length, in terms of words, of the LLT term t). For

the first four criteria the optimum value is 0.

Criterion one: Coverage
First, we consider how many words of each voted

LLT term have been recognized.

C1(t) =
t.size− voterst.length

t.size

Criterion two: Type of Coverage
The algorithm considers whether a perfect matching

has been performed using or not stemmed words.

C2(·) is simply a flag. C2(t) holds if stemming has

been used at least once in the voting procedure.

Criterion three: Coverage Distance
The use of stemming allows one to find a number of

(otherwise lost) matches. As side effects, we often

obtain a quite large set of joint winner candidate

terms. In this phase, we introduce a string distance

comparison between recognized words in the original

text and retrieved LLT terms. Among the possible

string metrics, we use the so called pair distance [22],

which is robust with respect to word permutation. So,

C3(t) = pair(t, t)

where pair(s, r) is the pair distance function (be-

tween strings s and r) and t is the term “rebuilt”

from the words in ADR description corresponding to

indexes in voterst.
Criterion four: Coverage Density

We want to estimate how an LLT term has been

covered.

C4(t) =
(voterst.max− voterst.min) + 1

t.size

The intuitive meaning of the criterion is to quantify

the “quality” of the coverage. If an LLT term has been

covered by nearby words, it will be considered a good

candidate for the solution. This Criterion has to be

carefully implemented, taking into account possible

duplicate words.

Criterion Five: Coverage Distribution
After the evaluation and the sorting by the criteria

described above, good solutions are sorted in the

first positions. We add a further criterion, the only

one based on the assumptions we made about the

9494

structure of (Italian) sentences. The following formula

simply sums the index of the covered words for t ∈
VotedLLT:

C5(t) =

votedt.length−1∑

i=0

votedt[i]

If C5(t) is small, it means that words in the first posi-

tions of term t have been covered. We introduce this

criterion to discriminate between possibly joint win-

ning terms. Indeed, an Italian medical description of

a pathology has frequently the following shape: name
of the pathology+“location” or adjective. Intuitively,

we privilege terms, for which the recognized word(s)

are probably the one(s) describing the pathology.

After computing (and storing) the weights

related to the above criteria, for each

voted term t we have the structure

weightst = [C1(t),C2(t),C3(t),C4(t),C5(t)],
containing the weights corresponding to the five

criteria.

We finally proceed by ordering voted terms by

multiple value sorting (on elements in weightst,
t ∈ VotedLLT) and call SortedVotedLLT the sorted

dictionary.

5) Release of winning terms: In order to provide an effective

support to pharmacovigilance experts’ work, it is important

to offer, among the “good” solutions of the algorithm (well

positioned LLT terms in sorted output), a small subset of

candidate solutions, typically from one to six terms recognized

as the best match of the ADR description. We will call

SelectedLLT such a set. This is a subtle task. As previously

said, the pure syntactical recognition of MedDRA terms into a

free-text generates a possibly large set of syntactically good

results. Therefore, the releasing strategy has to be carefully

designed. The main idea is to select and return a subset of

voted terms which “covers” the ADR description. We iterate

on the ordered dictionary and for each t ∈ SortedVotedLLT we

iterate on voterst and we select t if the following conditions

hold: 1) t does not belong to SelectedLLT; 2) t is not a prefix of

another selected term t′ ∈ VotedLLT; 3) for any wi ∈ voterst,
wi has not been covered or wi has not been exactly covered

(only the stemmed version has been eventually recognized)

or t has been “voted” without stemming. 3. We keep track of

the words of the ADR description covered by the selection.

We consider all the sorted dictionary SortedVotedLLT, but the

selection actually ends when all the words of the description

have been covered. The user interface (UI) of VigiWork
(described in Section IV) further filters winning terms, by

releasing from zero up to six solutions.

In MagiCoder we do not need to consider ad hoc subroutines

to address permutations and combinations of words (as it is

3In the implementation we add also the following thresholds: we choose
only terms t such that C3(t) < 0.5 and C5(t) < 3. We extracted these
threshold by means of some empirical tests. We plain to eventually adjust
them after some further performance tests

done, for example, in [16]). In Natural Language Processing,

permutations and combinations of words are important, since

in spoken language the order of words can change w.r.t. the

formal structure of the sentences. Moreover, some words can

be omitted, while the sentence still retains the same meaning.

These aspects come for free from our voting procedure: after

the scan, we retrieve the information that a set of words covers
a term t ∈ VotedLLT, but the order between words does not
matter.

B. MagiCoder: the Algorithm

Figure 2 depicts the pseudocode of MagiCoder. Here

we provide a high-level description of the procedure. We

represent dictionaries either as sets of words or as sets of

functions. As usually, the formula w ∈ LLTDict means

“word w belongs to dictionary DictByWord (similarly for

DictByWordStem, VotedLLT, SortedVotedLLT, SelectedLLT).

Procedure Preprocessing takes the narrative description,

puts it into an array of words and performs tokenization

and stop-word removal. Procedures CreateMetaDict and

CreateMetaDictStem get the dictionary of LLT terms

and create a dictionary of words and of their stemmed

versions, respectively, which belong to LLT terms, retain-

ing the information about the set of terms containing each

word. By the functional notation DictByWord(j) (similarly,

DictByWordStem(j)), we refer to the set of LLT terms

containing the word j (or its stemmed version). Function

stem(i) returns the stemmed version of word i. Function

indxt(j) returns the position of word j in term t. stem usaget
is a flag, initially set to 0, which holds 1 if at least a stemmed

matching with the MedDRA term t is found. adr clear, voterst,
votedt are arrays and add[A, l] denotes the insertion of l in

array A, where l is an element or a sequence of elements.

Ci (i = 1, . . . , 5) are criteria defined in Section III-A4 and

procedure sortby(v1, . . . , vk) performs the multi-value sorting

of values v1, . . . , vk. Procedure prefix(S, t), where S is a

set of terms and t is a term, tests whether t (considered

as a string) is prefix of a term in S. Dually, procedure

remove prefix(S, t) tests if in S there are one or more

prefixes of t, and eventually remove them from S. Function

mark(j) specifies whether a word j has been already covered

in the (partial) solution during the term release: mark(j) holds

1 if j has been covered (with or without stemming) and it holds

0 otherwise. We assume that before starting the final phase

of building the solution (i.e., the returned set of LLT terms),

mark(j) = 0 for any word j belonging to the description.

Let us now conclude this section by sketching the analysis

of computational complexity of MagiCoder. Let n be the input

size (the length, in terms of words, of the ADR description).

Let m be the cardinality of the medical dictionary (i.e., the

number of terms). Moreover, let m′ be the number of words

occurring in the dictionary and let k be the length of the

longest t ∈ LLT. For MedDRA, we have around 70K terms

and 20K words. Notice that k is a very small constant. We

assume that all update operations on auxiliary data structures

require constant time. Building meta-dictionaries DictByWord

9595

Procedure MagiCoder(D description, LLTDict dictionary)
Input: D: the narrative description; LLTDict: a data structure containing the LLT terms of MedDRA dictionary
Output: a set of LLT ordered terms
DictByWord = CreateMetaDict(LLTDict);
DictByWordStem = CreateStemMetaDict(LLTDict);
adr clear = Preprocessing(D);
adr length = adr clear.length;
foreach (i ∈ [0, adr length− 1] do

/* test whether the current word belongs to MedDRA */
if adr clear[i] ∈ DictByWord then

/* for each term containing the word */
foreach (t ∈ DictByWord(adr clear[i]) do

/* keep track of the index of the voting word */
add[voterst,i];
/* keep track of the index of the recognized word in t */
add[votedt, indxt(adr clear[i])];
VotedLLT = VotedLLT ∪t;

/* test if the current (stemmed) word belongs the stemmed MedDRA */
if stem(adr clear[i]) ∈ DictByWordStem then

foreach t ∈ DictByWordStem(stem(adr clear[i])) do
/* test if the current term has not been exactly voted by the same word */
if i /∈ voterst then

add[voterst, i];
add[votedt, indxt(adr clear[i])];
/* keep track that t has been covered by a stemmed word */
stem usaget = true;

VotedLLT = VotedLLT ∪ t

/* for each voted term, calculate the five weights of the corresponding criteria */
foreach t ∈ VotedLLT do

add[weightst,C1(t),C2(t),C3(t),C4(t),C5(t)]

/* multiple value sorting of the voted terms */
SortedVotedLLT = VotedLLT.sortby(C1,C2,C3,C4,C5);
foreach t ∈ SortedVotedLLT do

foreach index ∈ voterst do
/* select a term t if its i-th voting word has not been covered or if its i-th voting word has been perfectly recognized in t

and if t is not prefix of another already selected terms */
if ((stem usaget = false OR (mark(adr clear(index))=0)) AND t /∈ SelectedLLT AND prefix(SelectedLLT,t)=false) then

mark(adr clear(index))=1;
/* remove from the selected term set all terms which are prefix of t */
SelectedLLT = remove prefix(SelectedLLT,t);
SelectedLLT = SelectedLLT∪ t

return SelectedLLT

Fig. 2. Pseudocode of MagiCoder

and DictByWordstems requires O(mk) time units. In fact, the

simplest procedure to build the hash table is to scan the LLT
dictionary and, for each term t, to verify for each word w
belonging to t whether w is a key in the hash table (this can

be done in constant time). If w is a key, then we have to

update the values associated to w, i.e., we add t to the set

of terms containing w. Otherwise, we add the new key w
and the associated term t to the hash table. Therefore, it can

be easily verified that the voting procedure requires in the

worst case O(nm) steps, when a word belongs to all the LLT
terms. The computation of criteria-related weights requires

O(n) time units; the complexity of multi-value sorting can be

approximated to O(nlogn) time units (since the number of the

criteria-related weights involved in the multi-sorting is fixed

to be 5). Finally, deriving the best solutions actually requires

O(nl) steps.

The computational complexity of MagiCoder is likely to

be lower than that of the tool proposed in [16]. Indeed, in

[16] the author describes a sophisticated procedure which

considers also approximate string matching. This feature does

not allow constant time search for text-dictionary matches

(i.e., it is not always possible to exploit direct data access

through optimal data structures, such as hash tables). Moreover,

explicitly considering word permutation and combination is a

computationally expensive task. We claim that the efficiency

of MagiCoder can be preserved also extending it with more

advanced features, such as recognition of words in presence

of orthographical errors. As a future work, we plan to provide

9696

formal and experimental comparisons of performances of

MagiCoder with respect to the software proposed in [16].

IV. SOFTWARE IMPLEMENTATION AND TESTING

A. The User Interface

MagiCoder has been implemented as a VigiWork plug-

in: people responsible for pharmacovigilance can extract the

auto-encoding of the narrative description and then revise and

validate it. Figure 3 shows a screenshot of VigiWork for

the part supporting back-end tasks (done by responsibles for

pharmacovigilance revision activities). In the high part of the

screen it is possible to observe the five sections composing a

report. The screenshot actually shows the result of a human-

MagiCoder interaction: by pressing the button “Autocodifica

in MedDRA” (in English, “MedDRA autoencoding”), the re-

sponsible for pharmacovigilance obtains a MedDRA encoding

for the natural language ADR in the field “Descrizione” (in

English, “Description”). Six solutions are proposed as the best

MedDRA term candidates: the responsible can refuse a term

(through the trash icon), change one or more terms (by an option

menu), or simply validate the automatic encoding and switch

to the next section “Farmaci” (in English, “Drugs”). We are

testing MagiCoder performance in the daily pharmacovigilance

activities. Preliminary qualitative results show that MagiCoder
drastically reduces the amount of work required for the revision

of a report, allowing the pharmacovigilance stakeholders to

provide high quality data about suspected ADRs.

B. Testing

As a preliminary step in evaluating MagiCoder perfor-

mances, we developed a benchmark, which automatically

compares MagiCoder behavior with human encoding on

already manually revised and validated ADR reports.

To this end, we exploited VigiSegn, a data warehouse

and OLAP system for the italian pharmacovigilance activities

developed for the Italian Pharmacovigilance National Center

[23]. This system is based on the open source business

intelligence suite Pentaho. VigiSegn offers a large number of

encoded ADRs. The encoding has been manually performed

and validated by experts working at pharmacovigilance centres.

Encoding results have then been sent to the national regulatory

authority AIFA.

We performed a test, composed by the following steps.

1) We launch an ETL procedure through Penthao Data

Integrator. The procedure transfers reports from VigiSegn
to an ad-hoc database TestDB. The dataset covers all the

6780 reports received, revised, and validated during the

year 2014 for the Italian region Veneto.

2) We launch an ETL procedure which extracts from re-

ports stored in TestDB the narrative descriptions. For

each description, the procedure calls MagiCoder from

VigiWork; the output, i.e., a list of MedDRA terms, is

stored in a table of TestDB.

3) Manual and automatic solutions, i.e., LLT term sets, are

finally compared through an SQL query. We compute how

much manual solutions are “covered” by MagiCoder. In

other words, we perform a similarity test between the

two output sets. In order to have two uniform data sets,

we map each LLT term, both from the manual and the

automatic solutions, to its corresponding preferred term.

Table II shows the results of this first performance test.

It is worth noting that this test simply estimates how much

MagiCoder behavior is similar to the manual work on the

whole set of solutions, without considering the quality of the

manual encoding. We may observe that for short descriptions

MagiCoder results are very close to those from manual

encoding. The percentage of similarity decreases with the

growing of the number of characters, but it is stable beyond a

certain threshold. It could suggest that MagiCoder will behave

very well on very long (intractable) descriptions: as a human

reviewer, the procedure does not encode redundant text. Since

we did not evaluate the quality of the human solutions we take

into account, we are working on a further quantitative analysis

of MagiCoder performances. We are developing an experi-

mental test, involving three experts in report revision. Two

experts (and a third one, in case a reconciliation of diverging

encoding is needed) are manually encoding a representative

sample of ADR descriptions (about 200), in order to build

a ground truth data set. These “certified” manual solutions

will be compared, report by report, with MagiCoder’s outputs.

The test has been designed to effectively measure soundness

and completeness of MagiCoder. Informally, soundness can

be estimated with respect to false positive terms provided

by MagiCoder; completeness can be estimated according to

LLT terms omitted by MagiCoder. We will precisely quantify

the difference between the human and the automatic encoding

(taking into account also syntactically different but semantically

equivalent solutions) and, thus, we will be able to compute the

standard deviation of the behavior of the procedure w.r.t. the

expected performance.

C. Examples

Table III provides some examples of the behavior of

MagiCoder. We propose some free-text ADR descriptions from

TestDB and we provide both the manual and the automatic

encodings into LLT terms. We also provide the English

translation of the natural language text (we actually provide a

quite straightforward literal translation).

D1– anaphylactic shock (hypotension + cutaneous rash) 1 hour

after taking the drug.

D2– swelling in vaccination location left from 11/5;

temperature less than 39,5 from 11/21; vesicles, blisters

around the cheek from 11/10.

D3– extended local reaction, local pain, headache, fever for

two days.

In Table III we use the following notations: t1
n and t2

n

are two identical LLT terms retrieved both by the human

and the automatic encoding; t1
n

and t2
n

are two semantically
equivalent or similar LLT terms retrieved by the human and the

automatic encoding, respectively; we use bold type to denote

terms that are recognized by MagiCoder and that have not

9797

Fig. 3. A partial screenshot of VigiWork User Interface

Length of the Description (# chars) Percentage of global identical solutions at the PT level
Short descriptions (up to 20 chars) 81%

Short/medium descriptions (from 20 up to 40 chars) 62%

Medium descriptions (from 40 up to 100 chars) 62%

Long descriptions (from 100 up to 250 chars) 61%

TABLE II
FIRST RESULTS OF MAGICODER PERFORMANCES

Narrative Description LLT Human Encoding LLT MagiCoder Encoding
D1 Shock anafilattico (ipotensione + rash cutaneo) Shock anafilattico1 Ipotensione, Shock anafilattico1

1 h dopo assunzione x os del farmaco

D2 gonfiore in sede di vaccinazione sx dal 5/11, Gonfiore in sede di vaccinazione1, Bolle, Febbre
2

, Gonfiore in sede di vaccinazione1,

febbre meno di 39,5 dal 21/11, Piressia
2

, Vescicole
3

Vescicole in sede di vaccinazione
3

vescicole, bolle presso la guancia dal 10/11

D3 Reazione locale estesa, dolore locale; Cefalea1, Febbre2, Cefalea1, Dolore, Febbre2,

cefalea e febbre per due giorni Reazione in sede di vaccinazione
3

Reazione locale
3

TABLE III
EXAMPLES OF MAGICODER BEHAVIOR

been encoded by the reviewer; we use italic type in D1, D2, D3,

to denote text recognized only by MagiCoder. For example, in

description D3, “cefalea” (in English, “headache”) is retrieved

and codified both by the human reviewer and MagiCoder; in

description D2, ADR “febbre” (in English, “fever’) has been

codified with the term itself by the algorithm, whereas the

reviewer codified it with its synonym “piressia”; in D1, ADR

“ipotensione” (in English, “hypotension”), has been retrieved

only by MagiCoder.

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose MagiCoder, a simple and efficient

NLP software, able to provide a concrete support to pharma-

covigilance task, in the revision of ADR spontaneous reports.

MagiCoder takes in input a narrative description of a suspected

ADR and produces as outcome a list of MedDRA terms that

“cover” the medical meaning of the free-text description. We

presented and implemented the first version of the algorithm,

and preliminary results about its performances are encouraging.

Finally, let us sketch here some ongoing and future work.

9898

First, we aim to prove that MagiCoder is robust with respect

to language (and dictionary) changes. The way the algorithm

has been developed suggests that MagiCoder can be a valid

tool also for narrative descriptions written in English. Indeed,

the algorithm retrieves a set of words, which covers an LLT
term t, from a free-text description, without considering the

order between words or the structure of the sentence. This

way, we avoid the problem of “specializing” MagiCoder for

any given language. Furthermore, MagiCoder performances

can be strengthened, still maintaining the simple “skeleton”

we proposed, eventually embedding new features inspired to

advanced NLP techniques. Even though negative sentences

seem to be uncommon in ADR descriptions (at least in the

data set we analyzed), the detection of negative forms is

a short-term issue we aim to address. As a first step, we

plan to recognize words that may represent negations and

to signal them to the reviewer through the graphical UI. In

this way, the software sends to the report reviewer an alert

about the (possible) failure of the syntactical word-by-word

recognition. Moreover, we plan to address the management

of orthographical errors possibly contained in narrative ADR

descriptions. We did not take into account this issue in the

current version of MagiCoder. A solution could be including an

ad-hoc (medical term-oriented) spell checker in VigiWork, to

point out to the user that she/he is doing some error in writing

the current word in the free description field. This should

drastically reduce users’ orthographical errors without heavy

side effects in MagiCoder development and performances.

As a further extension of MagiCoder, we will enrich the

algorithm with heuristics and synonyms dictionaries. Moving

towards the use of ad-hoc thesaurus dictionaries, our idea

is to progressively (through everyday learning and feedback

coming from experience) extend MedDRA with synonyms of

LLT terms. Finally, we aim to apply MagiCoder (and its

refinements) to several different sources for ADR detection,

such as, for example, drug information leaflets.

REFERENCES

[1] N. Arthur, A. Bentsi-Enchill, and R. Couper et al., The Importance of
Pharmacovigilance - Safety Monitoring of Medicinal Products. World
Health Organization, 2002.

[2] J. Borg, G. Aislaitner, M. Pirozynski, and S. Mifsud, “Strengthening and
rationalizing pharmacovigilance in the EU: where is europe heading to?
a review of the new EU legislation on pharmacovigilance,” Data Safety,
vol. 34, no. 3, pp. 187–197, 2011.

[3] L. Aagaard, J. Strandell, L. Melskens, P. Petersen, and E. Holme Hansen,
“Global patterns of adverse drug reactions over a decade: analyses of
spontaneous reports to vigibase,” Drug Safety, vol. 35, pp. 1171–1182,
2012.

[4] D. Jurafsky and J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 1st ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2000.

[5] A. Bate and S. Evans, “Quantitative signal detection using spontaneous
ADR reporting,” Pharmacoepidemiology and Drug Safety, vol. 18, no. 6,
pp. 427–436, 2009.

[6] X. Wang, G. Hripcsak, M. Markatou, and C.Friedman, “Active comput-
erized pharmacovigilance using natural language processing, statistics,
and electronic health records: A feasibility study,” JAMIA, vol. 16, no. 3,
pp. 328–337, 2009.

[7] C. Friedman, “Discovering novel adverse drug events using natural
language processing and mining of the electronic health record,” in
Artificial Intelligence in Medicine, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, vol. 5651, pp. 1–5.

[8] E. Aramaki, Y. Miura, M. Tonoike, T. Ohkuma, H. Masuichi, and K. Waki,
“Extraction of adverse drug effects from clinical records,” Stud Health
Technol Inform, vol. 160, no. Pt1, pp. 739–43, 2012.

[9] M. G. R. Reichley, P. Kilbridge, L. Noirot, R. N. R, W. Dunagan, and
T. Bailey, “Natural language processing to identify adverse drug events,”
in AMIA Annu Symp Proc., 2008.

[10] P. M. Kilbridge, L. A. Noirot, R. M. Reichley, and T. C. Bailey,
“Computerized surveillance for adverse drug events in a pediatric hospital,”
J Am Med Inform Assoc., vol. 16, no. 5, pp. 607–612, 09.

[11] H. Gurulingappa, A. Mateen-Rajput, and L. Toldo, “Extraction of
potential adverse drug events from medical case reports,” Journal of
Biomedical Semantics, vol. 3, no. 15, pp. 1–10, 2012.

[12] A. Sarker and G. Gonzalez, “Portable automatic text classification for
adverse drug reaction detection via multi-corpus training,” Journal of
Biomedical Informatics, vol. 53, pp. 196–207, 2015.

[13] C. C. Yang, H. Yang, L. Jiang, and M. Zhang, “Social media mining
for drug safety signal detection,” in Proc. of the 2012 Int. Workshop on
Smart Health and Wellbeing, SHB 2012, 2012, pp. 33–40.

[14] R. Harpaz, H. S. Chase, and C. Friedman, “Mining multi-item drug
adverse effect associations in spontaneous reporting systems,” BMC
Bioinformatics, vol. 11, no. S-9, p. S7, 2010.

[15] N. Nissim, M. Boland, R. Moskovitch, N. Tatonetti, Y. Elovici, Y. Shahar,
and G. Hripcsak, “An active learning framework for efficient condition
severity classification,” in Artificial Intelligence in Medicine (AIME’15),
ser. Lecture Notes in Computer Science. Springer, 2015, vol. 9105, pp.
13–24.

[16] G. Dalhberg, “Implementation and evaluation of a text extraction tool
for adverse drug reaction information,” 2010, master Thesis, Uppsala
University School of Engineering.

[17] M. Collins, “Tutorial: Machine learning methods in natural language
processing,” in Computational Learning Theory and Kernel Machines,
16th Annual Conference on Computational Learning Theory, 2003, p.
655.

[18] P. Radhakrishna, “Upversioning MedDRA dictionary - insights from a
seasoned coder,” Data Basics, vol. 20, no. 3, pp. 1171–1182, 2014.

[19] L. Bauer, “Introducing linguistic morphology,” 2003.
[20] K. Kishida, “Technical issues of cross-language information retrieval: A

review,” Inf. Process. Manage., vol. 41, no. 3, pp. 433–455, May 2005.
[21] A. Clark, C. Fox, and S. Lappin, Eds., The Handbook of Computational

Linguistics and Natural Language Processing, ser. Blackwell Handbooks
in Linguistics. John Wiley & Sons, 2010.

[22] J. Piskorski and M. M. Sydow, “String distance metrics for reference
matching and search query correction,” in Business Information Systems,
ser. Lecture Notes in Computer Science, W. Abramowicz, Ed. Springer
Berlin Heidelberg, 2007, vol. 4439, pp. 353–365.

[23] A. Sabaini, “Temporal data analysis and mining: A multidimensional
approach and its application in a medical domain,” Ph.D. dissertation,
Department of Computer Science, University of Verona - Italy, 2015.

9999

