
J Autom Reasoning manuscript No.
(will be inserted by the editor)

Multi-Completion with Termination Tools

Sarah Winkler · Haruhiko Sato ·
Aart Middeldorp · Masahito Kurihara

Received: date / Accepted: date

Abstract Knuth-Bendix completion is a classical calculus in automated deduction for

transforming a set of equations into a confluent and terminating set of directed equa-

tions which can be used to decide the induced equational theory. Multi-completion

with termination tools constitutes an approach that differs from the classical method

in two respects: (1) external termination tools replace the reduction order—a typically

critical parameter—as proposed by Wehrman, Stump and Westbrook (2006), and (2)

multi-completion as introduced by Kurihara and Kondo (1999) is used to keep track

of multiple orientations in parallel while exploiting sharing to boost efficiency. In this

paper we describe the inference system, give the full proof of its correctness and com-

ment on completeness issues. Critical pair criteria and isomorphisms are presented as

refinements together with all proofs. We furthermore describe the implementation of

our approach in the tool mkbTT, present extensive experimental results and report on

new completions.

1 Introduction

In a landmark paper, Knuth and Bendix [?] introduced a completion procedure which

aims to transform a set of input equalities into a terminating and confluent rewrite

system. If successful, the resulting system allows to decide the associated equational

theory. However, success of a completion run critically depends on the reduction order

that is required as additional input.

The first author is supported by a DOC-fFORTE grant of the Austrian Academy of Sciences.

S. Winkler · A. Middeldorp
Institute of Computer Science, University of Innsbruck,
Innsbruck, Austria
E-mail: sarah.winkler@uibk.ac.at, aart.middeldorp@uibk.ac.at

H. Sato · M. Kurihara
Graduate School of Information Science and Technology
Hokkaido University, Japan
E-mail: haru@complex.eng.hokudai.ac.jp, kurihara@ist.hokudai.ac.jp

Kurihara and Kondo [?] introduced the calculus of multi-completion which supports

completion with multiple reduction orders at the same time. Basically, a deduction sim-

ulates parallel completion runs with the orders under consideration but gains efficiency

by sharing inference steps among the parallel deductions. Since multi-completion suc-

ceeds as soon as one of the mimicked runs achieves a result, this approach partially

tackles the problem of choosing an appropriate reduction order. Still, concrete reduc-

tion orders have to be provided as input.

Wehrman, Stump and Westbrook [?] proposed a different approach. Instead of

relying on a reduction order supplied by the user, rewrite rules are oriented by a

termination prover internally. In this way an appropriate reduction order is implicitly

developed along the deduction. Since modern termination provers employ many more

sophisticated techniques than plain reduction orders, this approach allows to construct

convergent systems that cannot be obtained with classical completion procedures. One

such system is the theory of two commuting group endomorphisms CGE2 [?], which

can be completed by the tool Slothrop described in [?] without user interaction.

Multi-completion with termination tools [?,?,?] constitutes a combination of these

two approaches. While the use of termination tools allows for automatic completion

without user interaction, multi-completion enables to keep track of multiple combina-

tions of orientations in parallel, thereby exploiting sharing for efficiency reasons. The

implementation of our technique thus yields a powerful tool for automatic completion

with a high flexibility concerning orientations. In this paper we describe the underlying

inference system, and present simulation and correctness results along with the proofs

that were omitted in [?,?] due to reasons of space. After detecting a flaw in the fairness

definition of [?], we newly contribute a corrected and explicit definition for MKBtt.

We also present a novel completeness result for a variant of the MKBtt calculus that

(to our knowledge) has not been achieved by previous completion approaches. Refine-

ments such as critical pair criteria and isomorphisms that were already outlined in [?]

are described in more detail along with proofs showing their correctness. In a section

on implementation details, besides the basic control loop we present optimizations such

as term indexing techniques and selection strategies and explain how various options

can be controlled by the user. Recent optimizations led to the completion of novel

systems such as CGE5. By conducting thorough benchmark tests on a considerably

extended database we assessed the different enhancements. Extending the experiments

presented in previous papers, we also compare with maximal completion as developed

by Klein and Hirokawa [?]. In short, this article constitutes a comprehensive report of

the MKBtt approach and subsumes earlier contributions.

The paper is structured as follows. We start by summarizing preliminaries in Sec-

tion 2. In Section 3 we present the inference system underlying MKBtt, simulation and

correctness results as well as a completeness result concerning a modified version of

the calculus. As optimizations, critical pair criteria and isomorphisms are presented in

Sections 4 and 5. Section 6 comments on some implementation details of our comple-

tion tool before experimental results are described in Section 7. Finally, Section 8 adds

some concluding remarks and lists issues for future work.

2 Preliminaries

We consider terms T (F ,V) over a finite signature F and a set of variables V. For

some term t we denote by Pos(t) its set of positions, which is partitioned into function

2

symbol positions PosF (t) and variable positions PosV (t). If p ∈ Pos(t) then t|p denotes

the subterm of t at position p and t[s]p is the term obtained from t when replacing

t|p by s. A term t encompasses a term s, denoted by t ·Ds, if t = t[sσ]p holds for some

substitution σ and position p ∈ Pos(t). The strict part ·D\ ·E of this relation is denoted

by ·B . We call two terms s and t variants and write s
.
= t if there exists a variable

renaming σ such that sσ = tσ.

Sets of equations between terms will be denoted by E and are assumed to be sym-

metric. The associated equational theory is denoted by ≈E . As usual a set of directed

equations ` → r is called a rewrite system and denoted by R, where →R is the asso-

ciated rewrite relation. We write s
`→r−−−→p t to express that s →R t was achieved by

applying the rule `→ r ∈ R at position p. The relations→+
R,→∗R and↔R denote the

transitive, transitive-reflexive and symmetric closure of →R. The smallest equivalence

relation containing →R, which coincides with the equational theory ≈R if R is con-

sidered as a set of equations, is denoted by ↔∗R. Subscripts are omitted if the rewrite

system or the set of equations is clear from the context.

A rewrite system R is terminating if it does not admit infinite rewrite sequences. It

is confluent if for every peak t ∗← s→∗ u there exists a term v such that t→∗ v ∗← u.

An overlap is a triple 〈u→ v, p, `→ r〉 where u→ v and `→ r are rewrite rules without

common variables such that p ∈ PosF (u), u|p and ` are unifiable with most general

unifier σ, and if ` → r and u → v are variants then p 6= ε. The term uσ = uσ[`σ]p
can be rewritten in two different ways, resulting in the critical pair vσ ≈ uσ[rσ]p. The

set of critical pairs among rules in R is denoted by CP(R). A rewrite system R which

is both terminating and confluent is called convergent. If R has the property that for

every rewrite rule `→ r the right-hand side r is in normal form and the left-hand side

` is in normal form with respect to R \ {` → r} then R is called reduced. We call R
convergent for a set of equations E if R is convergent and ↔∗R coincides with ≈E . A

convergent and reduced rewrite system is called canonical.

A proper order � on terms is a rewrite order if it is closed under contexts and

substitutions. A well-founded rewrite order is called a reduction order. The relation

→+
R is a reduction order for every terminating rewrite system R.

In the context of completion, we often consider a pair (E ,R) of equations E and

rewrite rules R. An equational proof step s↔p
e t in (E ,R) is an equality step if e is an

equation ` ≈ r in E or a rewrite step if e is a rule ` → r in R, and either s = u[`σ]p
and t = u[rσ]p or s = u[rσ]p and t = u[`σ]p hold for some substitution σ and term u

with position p. We sometimes write s↔ t to express the existence of some proof step,

omitting the position p and equation or rule e. An equational proof P of an equation

t0 ≈ tn is a finite sequence

t0
p0←→
e0

t1
p1←→
e1
· · ·

pn−1←−−→
en−1

tn (1)

of equational proof steps. Note that (E ,R) admits an equational proof of s ≈ t if and

only if s↔∗E∪R t holds. A sequence Q of the form ti ↔ · · · ↔ tj with 0 6 i 6 j 6 n is

a subproof of P . We write P [Q] to express that P contains Q as a subproof. If P is an

equational proof and σ a substitution then Pσ denotes the instantiated proof

t0σ
p0←→
e0

t1σ
p1←→
e1
· · ·

pn−1←−−→
en−1

tnσ

3

deduce
E,R

E ∪ {s ≈ t},R
if s ≈ t ∈ CP(R)

orient
E ∪ {s ≈ t},R
E,R∪ {s→ t}

if s � t

delete
E ∪ {s ≈ s},R

E,R

simplify
E ∪ {s ≈ t},R
E ∪ {s ≈ u},R

if t→R u

compose
E,R∪ {s→ t}
E,R∪ {s→ u}

if t→R u

collapse
E,R∪ {t→ s}
E ∪ {u ≈ s},R

if t→R u using `→ r such that t ·B `

Fig. 1 System KB of standard completion.

For a term u with position q and a proof P of the shape (1) we write u[P]q to denote

the sequence

u[t0]q
qp0←−→
e0

u[t1]q
qp1←−→
e1
· · ·

qpn−1←−−−→
en−1

u[tn]q

which is again an equational proof. Proofs of the shape t0 → · · · → ti ← · · · ← tn are

called rewrite proofs. They play a special role in the context of completion. A proof

order �� is a well-founded order on equational proofs such that

i. P ��Q implies u[Pσ]p �� u[Qσ]p for all terms u, positions p ∈ Pos(u) and substi-

tutions σ,

ii. if P and P ′ prove the same equation then P �� P ′ implies Q[P]�� Q[P ′] for all

proofs Q.

A proof reduction relation ⇒ additionally satisfies

iii. P ⇒ Q holds only if P and Q prove the same equation.

2.1 Standard Completion

The classical completion procedure proposed by Knuth and Bendix [?] was reformulated

as an inference system by Bachmair [?], as depicted in Figure 1. The inference system

(in the sequel referred to as KB) works on pairs (E ,R) consisting of a set of equations

E and a set of rewrite rules R, and is parameterized by a reduction order �. The

inference rules of KB induce a proof transformation relation on the level of equational

proofs. For example, if deduce adds a critical pair between rules `→ r and u→ v that

overlap on a term w, this allows to replace the peak s
`←r←−−− w

u→v−−−→ t by the proof

s
s≈t←−→ t. Similarly, the other inference rules allow to replace patterns in equational

proofs. In the sequel, we denote by ⇒�KB the (transitive) proof transformation relation

induced by KB using reduction order �. This relation terminates and constitutes a

proof reduction relation. [?]

4

A KB inference sequence of the form (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · is

in the sequel referred to as a run with persistent equations Eω =
⋃
i

⋂
j>i Ej and

rules Rω =
⋃
i

⋂
j>iRj . A run fails if Eω is not empty, it succeeds if Eω is empty

and Rω is confluent and terminating. Moreover, a run is called simplifying if Rω
is reduced. Since every inference step is reflected by one or more steps in the proof

reduction relation ⇒�KB and this relation terminates, in non-failing runs every identity

is eventually connected by a rewrite proof, provided that required inference steps are

not indefinitely ignored. This property is captured by the notion of fairness.

Definition 1 A run (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · is fair with respect to a proof

reduction relation⇒ if for every non-rewrite proof P in (Eω,Rω), for which there exists

an inference step (Eω,Rω) ` (E ′ω,R′ω) and a proof P ′ in (E ′ω,R′ω) satisfying P ⇒ P ′,
there also exists a proof Q in (Ei,Ri) for some i > 0 such that P ⇒ Q holds.

A simpler and sufficient condition states that any run satisfying CP(Rω) ⊆
⋃
i Ei

is fair. Finally, we recall the main theorems stating correctness and completeness of

the inference system KB [?].

Theorem 1 Any non-failing KB run using a reduction order � that is fair with respect

to ⇒�KB succeeds. ut

Theorem 2 Assume there exists a finite convergent system R which has the same

equational theory as a set of equations E and is contained in �. Then any non-failing

run from E using � which is fair with respect to ⇒�KB will produce a convergent system

in finitely many steps. ut

With a suitable reduction order a run is thus guaranteed to produce a convergent

system, provided that no persistent unorientable equations are encountered. However, a

different reduction order might induce an infinite run, or even lead to failure. The choice

of the order is thus highly critical for success, but hard to determine in advance. Dif-

ferent approaches have been proposed to tackle this problem. In the following sections

we outline two of them. Multi-completion increases the chance for success by keeping

track of multiple runs using different orders whereas completion with termination tools

attempts to develop a suitable order in the course of the deduction by using modern

termination provers, thereby considerably widening the class of applicable orders.

2.2 Multi-Completion

Completion with multiple reduction orders—referred to as multi-completion in the

sequel—was proposed by Kondo and Kurihara [?]. For a set O = {�1, . . . ,�n} of

orders, it simulates the parallel execution of corresponding completion runs, but shares

common inference steps to gain efficiency. The key idea to sharing is a data structure

called node.

Definition 2 A node is a tuple 〈s : t, R0, R1, E〉 where the data s : t consist of terms

s, t and the labels R0, R1, E are subsets of O. The node condition requires that R0, R1

and E are mutually disjoint, s �i t holds for all �i ∈ R0, and t �i s for all �i ∈ R1.

5

orient
N ∪ {〈s : t, R0, R1, E]R〉}
N ∪ {〈s : t, R0 ∪R,R1, E〉}

if R 6= ∅ and s �i t for all �i ∈ R

Fig. 2 The orient rule in MKB.

orient
E ∪ {s ≈ t},R, C

E,R∪ {s→ t}, C ∪ {s→ t}
if C ∪ {s→ t} terminates

Fig. 3 The orient rule in KBtt.

Intuitively, a node 〈s : t, R0, R1, E〉 captures the state of the term pair s : t in all

simulated completion processes. All orders in the equation label E regard the data as

an equation s ≈ t while orders in the rewrite labels R0 and R1 consider it as rewrite

rules s→ t and t→ s, respectively. Hence the node 〈s : t, R0, R1, E〉 is identified with

〈t : s,R1, R0, E〉.
Multi-completion can be described by an inference system MKB which operates on

sets of nodes and consists of five rules. Figure 2 shows the orient inference rule. An

MKB run γ of the form N0 ` N1 ` N2 ` · · · can be projected to a valid KB run γi
for every order �i ∈ O, and conversely every KB run using �i can be modelled by an

MKB run. Due to these simulation properties also correctness and completeness results

are obtained for MKB. For this purpose, a run γ is called fair if it is either finite and

γi is a fair and nonfailing1 KB run for some i, or if it is infinite and all γi are either

fair or failing.

2.3 Completion with Termination Tools

Standard completion procedures depend critically on the choice of the reduction or-

der supplied as input, thus requiring a careful decision by the user. The evolution

of powerful modern termination provers exploiting a variety of sophisticated methods

thus suggests to guarantee termination by employing respective tools instead of a fixed

order. Such an approach was proposed by Wehrman, Stump and Westbrook [?] and im-

plemented in the tool Slothrop. Some care has to be taken because it is known [?] that

changing the reduction order during a completion run may result in a non-confluent

rewrite system. The inference system KBtt underlying Slothrop thus operates on triples

(E ,R, C) consisting of a set of equations E , a rewrite systemR and an additional rewrite

system C. This extra constraint system ensures that orientations are never reversed

throughout a run, thereby guaranteeing confluence of the derived system.

The system KBtt consists of the orient inference rule depicted in Figure 3 to-

gether with the remaining KB rules where the constraint component is not modified.

Again, ` denotes the inference relation and `= its reflexive closure. An empty step

(E ,R, C) `= (E ,R, C) is also called an equality step. Since constraint rules are only

added if termination is preserved, all constraint systems C0 ⊆ C1 ⊆ C2 ⊆ · · · devel-

oped during a deduction terminate. Thus the relations →+
Ci constitute a sequence of

1 Note that our definition differs from the original definition in [?] in that we require γi to
be nonfailing; otherwise, a finite nonfailing and fair MKB run need not generate a convergent
system if it is only fair for γi.

6

subsequently refined reduction orders with respect to which completion is performed,

naturally exploiting the incrementality of reduction orders defined by a rewrite rela-

tion. In this respect the method resembles the approach adopted by the tool REVE [?]

where the advantages of an incremental order are emphasized. Any KB run using � can

obviously be simulated in KBtt since the required termination checks of the constraint

systems succeed when employing �. Conversely, finite KBtt runs deriving the final

constraint system C are reflected by KB runs that use the reduction order →+
C . Hence

a KBtt run is called fair, successful, failing and simplifying whenever the respective

definition applies to the simulated KB run. This entails finite correctness of KBtt [?],

although this result does not extend to infinite runs as the infinite union of terminating

rewrite systems need not terminate.

Theorem 3 Any finite non-failing and fair KBtt run succeeds. ut

3 Multi-Completion with Termination Tools

In an orient step of KBtt, termination of a new rule s → t together with the set C of

all previously oriented rules is checked. If both orientations s→ t and t→ s terminate

together with C, an implementation encounters the challenge how to deal with this

choice. Slothrop uses a best-first strategy to decide which branch to explore further. In

contrast, MKBtt keeps track of both orientations but avoids an explosion of the search

space by integrating the concept of multi-completion to share common inferences.

Since every simulated KBtt branch corresponds to a sequence of decisions on how

to orient nodes, a process p is modeled by a bit string in (0 + 1)∗. A set of processes P

is called well-encoded if there are no pairs of processes p and p′ in P such that p′ is a

proper prefix of p. The initial process is represented by the empty string ε.

MKBtt is described by an inference system operating on a set of nodes. In contrast

to MKB, labels are now sets of processes instead of reduction orders, and in order

to account for the constraint systems required in KBtt, nodes are extended with two

additional constraint labels.

Definition 3 An MKBtt node 〈s : t, R0, R1, E, C0, C1〉 contains as data two terms

s and t and as labels sets of processes R0, R1, E, C0, C1, where the node condition

requires that R0 ∪ C0, R1 ∪ C1 and E are mutually disjoint.

The process sets R0, R1 are called rewrite labels, E is the equation label and C0, C1

are the constraint labels. As in the case of MKB, the node 〈s : t, R0, R1, E, C0, C1〉 is

identified with 〈t : s,R1, R0, E, C1, C0〉. The sets of all processes occurring in a node

n or a node set N are denoted by P(n) and P(N), respectively. To relate a node set

N to the corresponding states of the simulated KBtt processes, projections are used.

Definition 4 For a node n = 〈s : t, R0, R1, E, C0, C1〉 and a process p, the equation

and rule projection of n to p are defined as

E[n, p] =

{
{s ≈ t} if p ∈ E
∅ otherwise

R[n, p] =

{s→ t} if p ∈ R0

{t→ s} if p ∈ R1

∅ otherwise

The constraint projection C[n, p] is defined analogous to R[n, p]. These projections

are naturally extended to node sets by defining E[N, p] =
⋃
n∈N E[n, p], R[N, p] =⋃

n∈N R[n, p] and C[N, p] =
⋃
n∈N C[n, p].

7

orient
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

splitS(N) ∪ {〈s : t, R0 ∪Rlr, R1 ∪Rrl, E′, C0 ∪Rlr, C1 ∪Rrl〉}

if Elr, Erl ⊆ E, E′ = E \ (Elr ∪ Erl), C[N, p] ∪ {s → t} terminates for all
p ∈ Elr and C[N, p] ∪ {t → s} terminates for all p ∈ Erl, S = Elr ∩ Erl,
Rlr = (Elr \ Erl) ∪ {p0 | p ∈ S} and Rrl = (Erl \ Elr) ∪ {p1 | p ∈ S}, and
Elr ∪ Erl 6= ∅

delete
N ∪ {〈s : s,∅,∅, E,∅,∅〉}

N

if E 6= ∅

deduce
N

N ∪ {〈s : t,∅,∅, R ∩R′,∅,∅〉}

if there exist nodes 〈` : r,R, . . . 〉 and 〈`′ : r′, R′, . . . 〉 in N such that s ≈ t ∈
CP(`→ r, `′ → r′) and R ∩R′ 6= ∅

rewrite1
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

N ∪ {〈s : t, R0 \R,R1, E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, E ∩R,∅,∅〉}

if 〈` : r,R, . . . 〉 ∈ N , t
`→r−−−→ u, t

.
= `, and R ∩ (R0 ∪ E) 6= ∅

rewrite2
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

N ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (R1 ∪ E) ∩R,∅,∅〉}

if 〈` : r,R, . . . 〉 ∈ N , t
`→r−−−→ u, t ·B `, and R ∩ (R0 ∪R1 ∪ E) 6= ∅

gc
N ∪ {〈s : t,∅,∅,∅,∅,∅〉}

N

subsume
N ∪ {〈s : t, R0, R1, E, C0, C1〉} ∪ {〈s′ : t′, R′

0, R
′
1, E

′, C′
0, C

′
1〉}

N ∪ {〈s : t, R0 ∪R′
0, R1 ∪R′

1, E
′′, C0 ∪ C′

0, C1 ∪ C′
1〉}

if s : t and s′ : t′ are variants, and E′′ = (E \ (R′
0 ∪ R′

1 ∪ C′
0 ∪ C′

1)) ∪ (E′ \
(R0 ∪R1 ∪ C0 ∪ C1))

Fig. 4 Inference rules of MKBtt.

The inference rules of MKBtt are depicted in Figure 4. Note that all rules pre-

serve well-encodedness of labels and the disjointness condition on nodes. The following

paragraphs add some clarifying remarks on the inference rules.

– The orient rule applied to a node 〈s : t, R0, R1, E, C0, C1〉 attempts to turn the

equation s ≈ t into a rule for as many processes as possible. This is modelled in

the node structure by moving processes p ∈ E to rewrite labels. More precisely,

the respective inference rule in KBtt is modelled by checking for every process

p ∈ E whether its current constraint system C[N, p] terminates when extended

with s → t or t → s. If C[N, p] ∪ {s → t} terminates then p is added to the set

Elr, and if C[N, p] ∪ {t → s} terminates then p is added to the set Erl. The set

Elr \Erl (Erl \Elr) thus collects processes which can only perform the orientation

s → t (t → s). These processes are added to R0 and C0 (R1 and C1). The set

S = Elr ∩ Erl collects processes that allow both orientations. Thus every p ∈ S is

8

split into two child processes p0 and p1, and pi is added to Ri and Ci, for i ∈ {0, 1}.
Finally, splitS(N) replaces every occurrence of a process in S by its descendants:

the operation splitS(P) = (P \S)∪ {p0, p1 | p ∈ P ∩S} is applied to every process

set P occurring in N .

– If the current node set N contains nodes with data ` : r and `′ : r′ such that the

rules ` → r and `′ → r′ give rise to a critical pair s ≈ t, deduce adds a respective

node for all processes p that have both rules present in their current rewrite system

R[N, p].

– In standard completion, given a term pair s : t and a rewrite step t
`→r−−−→ u, the

rules compose, simplify and collapse create a term pair s : u. If t and ` are variants,

the MKBtt rule rewrite1 allows to combine respective compose and simplify steps. If

t ·B ` holds, rewrite2 simulates all three rules at once.

– To increase efficiency, the optional gc rule deletes nodes with empty labels.

– The rule subsume is optional as well, it merges pairs of nodes which have the same

data up to renaming.

As usual, a sequence of MKBtt inference steps N0 ` N1 ` N2 ` · · · is referred to

as a run. Given a set of equations E , the initial node set N0 = NE consists of all nodes

〈s : t,∅,∅, {ε},∅,∅〉 such that s ≈ t is in E .

3.1 An Example

In this section we illustrate multi-completion with termination tools on the example

system CGE2, which consists of the following equations:

e · x ≈ x f(x · y) ≈ f(x) · f(y)

i(x) · x ≈ e g(x · y) ≈ g(x) · g(y)

x · (y · z) ≈ (x · y) · z f(x) · g(y) ≈ g(y) · f(x)

An MKBtt run starts with the initial node set

〈e · x : x,∅,∅, {ε},∅,∅〉 (1)

〈i(x) · x : e,∅,∅, {ε},∅,∅〉 (2)

〈x · (y · z) : (x · y) · z,∅,∅, {ε},∅,∅〉 (3)

〈f(x · y) : f(x) · f(y),∅,∅, {ε},∅,∅〉 (4)

〈g(x · y) : g(x) · g(y),∅,∅, {ε},∅,∅〉 (5)

〈f(x) · g(y) : g(y) · f(x),∅,∅, {ε},∅,∅〉 (6)

When applying orient to nodes (1) and (2), only the direction from left to right yields

valid and terminating rewrite rules. For node (3), both orientations are possible such

that process ε is split into 0 and 1. These three nodes are thus modified as follows:

〈e · x : x, {0, 1},∅,∅, {0, 1},∅〉 (1)

〈i(x) · x : e, {0, 1},∅,∅, {0, 1},∅〉 (2)

〈x · (y · z) : (x · y) · z, {0}, {1},∅, {0}, {1}〉 (3)

Nodes (4) and (5) can be oriented in both directions, independent of the orientation

of associativity. Now the current node set contains eight processes (constraint labels

9

are omitted for the sake of readability; at this point they coincide with the respective

rewrite labels):

〈e · x : x, {000, . . . , 111},∅,∅, . . . 〉 (1)

〈i(x) · x : e, {000, . . . , 111},∅,∅, . . . 〉 (2)

〈x · (y · z) : (x · y) · z, {000, 001, 010, 011}, {100, 101, 110, 111},∅, . . . 〉 (3)

〈f(x · y) : f(x) · f(y), {000, 001, 100, 101}, {010, 011, 110, 111},∅, . . . 〉 (4)

〈g(x · y) : g(x) · g(y), {000, 010, 100, 110}, {001, 011, 101, 111},∅, . . . 〉 (5)

〈f(x) · g(y) : g(y) · f(x),∅,∅, {000, . . . , 111}, . . . 〉 (6)

We abbreviate {000, 001, 010, 011} to P0 and {100, 101, 110, 111} to P1. The overlap

i(x) · (x · y) ← (i(x) · x) · y → e · y between nodes (3) and (2) allows to deduce the

additional node

〈i(x) · (x · y) : e · y,∅,∅, P1,∅,∅〉 (7)

A rewrite1 step with node (1) simplifies this node to

〈i(x) · (x · y) : e · y,∅,∅,∅,∅,∅〉 (7)

and adds

〈i(x) · (x · y) : y,∅,∅, P1,∅,∅〉 (8)

The former is removed by gc and the latter is oriented to

〈i(x) · (x · y) : y, P1,∅,∅, P1,∅〉 (8)

In a similar way, for processes in P0 the overlap (x · i(y)) · y ← x · (i(y) · y) → x · e
between (3) and (2) yields a node

〈(x · i(y)) · y : x · e, P0,∅,∅, P0,∅〉 (9)

Additionally, there are critical peaks (x · e) · y ← x · (e · y) → x · y between nodes

(3) and (1), i(i(x)) · e ← (i(i(x)) · i(x)) · x → e · x between nodes (9) and (2), and

x ← i(i(x)) · (i(x) · x) → i(i(x)) · e between nodes (8) and (2). Orienting the ensuing

nodes yields

〈(x · e) · y : x · y, P0,∅,∅, P0,∅〉 (10)

〈i(i(x)) · e : e · x, P0,∅,∅, P0,∅〉 (11)

〈i(i(x)) · e : x, P1,∅,∅, P1,∅〉 (12)

Applying rewrite1 with (1) to node (11) creates a node with the same data as (12) also

for processes in P0, such that a subsume step results in the updated node

〈i(i(x)) · e : x, P1 ∪ P0,∅,∅, P1,∅〉 (12)

Now the peak i(i(x)) · y ← (i(i(x)) · e) · y → x · y between (10) and (12) adds

〈i(i(x)) · y : x · y, P0,∅,∅, P0,∅〉 (13)

10

after a subsequent orient step. At this point overlaps between (13) and (12) and (13)

and (2) trigger the creation of nodes that are oriented as

〈x · e : x, P0,∅,∅, P0,∅〉 (14)

〈x · i(x) : e, P0,∅,∅, P0,∅〉 (15)

We obtain the modified node

〈(x · i(y)) · y : x · e,∅,∅,∅, P0,∅〉 (9)

when using node (14) in a rewrite1 step, together with a new node with data (x·i(y))·y :

x, which is oriented as

〈(x · i(y)) · y : x, P0,∅,∅, P0,∅〉 (16)

Node (14) can also be used in rewrite2 steps to modify (10) and (12) to

〈(x · e) · y : x · y,∅,∅,∅, P0,∅〉 (10)

and

〈i(i(x)) · e : x, P1,∅,∅, P0,∅〉 (12)

while adding

〈x · y : x · y,∅,∅, P0,∅,∅〉 (17)

and

〈i(i(x)) : x,∅,∅, P0,∅,∅〉 (18)

to the current node set. The latter is oriented into

〈i(i(x)) : x, P0,∅,∅, P0,∅〉 (18)

while node (17) is subject to a delete inference. The overlaps i(e)← i(e) ·e→ e between

(14) and (2) and (x · y) · i(y)← x · (y · i(y))→ x · e between (3) and (15) add

〈i(e) : e, P0,∅,∅, P0,∅〉 (19)

and

〈(x · y) · i(y) : x, P0,∅,∅, P0,∅〉 (20)

to the node set (in the latter case, after rewrite1 using (14) simplifies x · e to x).

To make a long story short, we will only sketch the remainder of the run. After

some additional deduce steps, the last node concerning plain group theory

〈i(x · y) : i(y) · i(x),∅,∅, P1 ∪ P0,∅,∅〉

is derived, and can again be oriented in both directions, resulting in a split of all current

processes. To complete the theory of homomorphisms, nodes with data f(x) · (f(y) · z) :

f(x · y) · z, f(e) : e, and f(i(x)) : i(f(x)) and similar ones for g are derived. The last kind

of nodes gives again rise to process splits. It remains to orient node (6) and consider

11

e · x ≈ x

i(x) · x ≈ e

(x · y) · z ≈ x · (y · z)

f(x) · f(y) ≈ f(x · y)

g(x) · g(y) ≈ g(x · y)

000

←
001

→

←
g(x) · g(y) ≈ g(x · y)

010

←
(x · i(y)) · y) ≈ x

i(x · y) ≈ i(y) · i(x)

0110
←

i(f(x)) ≈ f(i(x))

01110
←

f(x) · g(y) ≈ g(x) · f(y)

011110
←

011111
→

→

→

→

→

→

←
f(x) · f(y) ≈ f(x · y)

g(x) · g(y) ≈ g(x · y)

100

←
101

→

←
g(x) · g(y) ≈ g(x · y)

110

←
i(x) · (x · y) ≈ y

111
→

→

→

→

→

→

Fig. 5 Part of a CGE2 process tree with all branching points leading to process 011110.

the critical pair f(x) · (g(y) · z) : g(y) · (f(x) · z) before e.g. process 011110 succeeds with

a convergent system after joining all remaining critical pairs:

e · x→ x f(x) · f(y)→ f(x · y) x · (y · z)→ (x · y) · z
x · e→ x f(e)→ e (x · y) · i(y)→ x

i(x) · x→ e i(f(x))→ f(i(x)) (x · i(y)) · y → x

x · i(x)→ e g(x) · g(y)→ g(x · y) f(x) · (f(y) · z)→ f(x · y) · z
i(e)→ e g(e)→ e g(x) · (g(y) · z)→ g(x · y) · z

i(i(x))→ x i(g(x))→ g(i(x)) g(x) · (f(y) · z)→ f(x) · (g(y) · z)
i(x · y)→ i(y) · i(x) g(x) · f(y)→ f(y) · g(x)

The sequence of orientations gives rise to a process tree, where every branching point

corresponds to a process split in an orient step. Part of the process tree developed

during the described completion run is sketched in Figure 5.

3.2 Correctness

Before we can state properties of MKBtt runs, notions to track process splits in the

course of a deduction are required.

Definition 5 Consider an MKBtt inference step N ` N ′. If orient was applied the set

of processes S which was split into two child processes is called the step’s split set.

For all other inference rules the split set is empty. For a step with split set S and

12

p′ ∈ P(N ′), we define the predecessor of p′ as

predS(p′) =

{
p if p′ = p0 or p′ = p1 for some p ∈ S
p′ otherwise

In Lemmata 1 and 2 we prove that an MKBtt step corresponds to a (possibly non-

proper) KBtt step for every process occurring in some node, and every KBtt step can

be modelled by MKBtt. Here, `= denotes the reflexive closure of the KBtt inference

relation `.

Lemma 1 For an MKBtt step N ` N ′ with split set S the KBtt step

(E[N, p], R[N, p], C[N, p]) `= (E[N ′, p′], R[N ′, p′], C[N ′, p′]) (1)

is valid for all p′ ∈ P(N ′) such that p = predS(p′). Moreover, there exists at least

one process p′ ∈ P(N ′) for which the step is not an equality step if the rule applied in

N ` N ′ is not gc or subsume.

Proof By case analysis on the applied MKBtt rule in (1).

– Assume orient with split set S replaced the node n = 〈s : t, R0, R1, E, C0, C1〉 by

n′ = 〈s : t, R0 ∪Rlr, R1 ∪Rrl, E′, C0 ∪Rlr, C1 ∪Rrl〉. Let p′ be a process in P(N ′)
and p = predS(p′) be its predecessor with respect to S. We have E[N \ {n}, p] =

E[N ′ \{n′}, p′], R[N \{n}, p] = R[N ′ \{n′}, p′] and C[N \{n}, p] = C[N ′ \{n′}, p′].
These sets will in the sequel be denoted by Ei, Ri and Ci, respectively. A further

case distinction reveals three possibilities:

i. If p′ ∈ Rlr, by definition of orient R[n′, p′] = C[n′, p′] = {s→ t} and E[n′, p′] =

∅. Inference (1) is thus a valid orient step in KBtt if p happens to be in E.

Since p′ occurs in Rlr, either p′ ∈ Elr \ Erl or p′ = p0 for some p ∈ S. If

p′ ∈ Elr \ Erl then p ∈ E follows from p = predS(p′) = p′ and Elr ⊆ E.

Otherwise p = predS(p′) entails p′ = p0 such that p ∈ S and because of S ⊆ E
also p ∈ E holds. As p occurs in E one has E[n, p] = {s ≈ t} and—because of

the node condition—R[n, p] = C[n, p] = ∅. Hence the KBtt inference step

(Ei ∪ {s ≈ t}, Ri, Ci) `KBtt (Ei, Ri ∪ {s→ t}, Ci ∪ {s→ t})

is valid since Ci ∪{s→ t} = C[N, p]∪{s→ t} terminates according to the side

condition of orient in MKBtt.

ii. If p′ ∈ Rrl, similar reasoning as in the previous case shows that the simulated

inference step is

(Ei ∪ {s ≈ t}, Ri, Ci) `KBtt (Ei, Ri ∪ {t→ s}, Ci ∪ {t→ s})

iii. Finally, if p′ /∈ Rlr ∪Rrl then process p′ was not affected in this inference step,

so p = p′ and we have E[n, p] = E[n′, p′], R[n, p] = R[n′, p′] and C[n, p] =

C[n′, p′]. The projection of the considered MKBtt inference to process p′ is thus

an identity step.

In all remaining cases p = p′ holds as no process splitting occurs.

– Whenever delete removes some node 〈s : s,∅,∅, E,∅,∅〉 then s ≈ s ∈ E[N, p] for

all p ∈ E, and hence delete also applies in KBtt. For all p /∈ E an identity step is

obtained.

13

– If deduce adds a node 〈s : t,∅,∅, R ∩R′,∅,∅〉 then for all p ∈ R ∩R′ both `→ r

and `′ → r′ occur in R[N, p]. Hence deduce can also be applied in KBtt, yielding

s ≈ t which is also contained in E[N ′, p].
– Next, assume rewrite1 was used. For every process p /∈ (R0 ∪ E) ∩R an identity

step is obtained. Otherwise, two cases can be distinguished which are distinct due

to the node condition.

i. If p ∈ R0 ∩R then R[N, p] contains rules s→ t and `→ r such that t
`→r−−−→ u.

Hence compose can be applied to replace s→ t by s→ u, which is modelled in

MKBtt by moving p from the rewrite label of a node with data s : t to a node

with data s : u.

ii. If p ∈ E ∩ R there is an equation s ≈ t in E[N, p] and a rule ` → r in R[N, p]

such that t
`→r−−−→ u. Thus simplify can turn s ≈ t into s ≈ u, and indeed s ≈ u

instead of s ≈ t occurs in E[N ′, p].
– In the case where rewrite2 was applied, the inference is an identity step for every

process p /∈ (R0 ∪R1 ∪ E) ∩R. Otherwise, three distinct possibilities can be dis-

tinguished. If p ∈ R0 ∩R or p ∈ E ∩R then compose or simplify can be applied, as

argued in the case for rewrite1.

iii. If p ∈ R1 ∩ R then there are rules ` → r and t → s in R[N, p] such that the

latter can be collapsed into an equation s ≈ u because t ·B `. Hence s ≈ u

belongs to E[N ′, p] and t→ s is not in R[N ′, p].
– If gc was applied the step obviously corresponds to an identity step on the level of

KBtt for every process p ∈ P(N ′), and the same holds for subsume.

Finally, for every inference rule the non-emptiness requirement for the set of affected

labels ensures that the strict part ` holds for at least one p′ ∈ P(N ′). ut

Lemma 2 Assume for a KBtt inference step (E ,R, C) ` (E ′,R′, C′) there exist a node

set N and a process p such that E = E[N, p], R = R[N, p] and C = C[N, p]. Then there

is some inference step N ` N ′ with split set S and a process p′ ∈ P(N ′) such that

p = predS(p′), E ′ = E[N ′, p′], R′ = R[N ′, p′] and C′ = C[N ′, p′].

Proof In the following case analysis on the applied KBtt rule, (∗) refers to the proof

obligations

E ′ = E[N ′, p′], R′ = R[N ′, p′], C′ = C[N ′, p′]

– Assume orient was applied to replace some equation s ≈ t ∈ E by the rule s →
t ∈ R′. Then there must be an node n = 〈s : t, R0, R1, E, C0, C1〉 in N such that

p ∈ E and C ∪ {s→ t} terminates. We distinguish two further cases. If C ∪ {t→ s}
terminates as well, we set S = {p}. For Rlr = {p0} and Rrl = {p1} an application

of orient yields

N ′ = split{p}(N \{n})∪{〈s : t, R0∪{p0}, R1∪{p1}, E \{p}, C0∪{p0}, C1∪{p1}〉}

For p′ = p0 we have p = predS(p′), and (∗) is satisfied. If C[N, p] ∪ {t → s} does

not terminate, we apply orient with S = ∅ and Rlr = {p}, which yields

N ′ = (N \ {n}) ∪ {〈s : t, R0 ∪ {p}, R1, E \ {p}, C0 ∪ {p}, C1〉}

Thus we have p′ = p which trivially satisfies p = predS(p′), and again (∗) holds.

In all remaining cases we can set p′ = p since no splitting occurs.

14

– If compose rewrites s → t to s → u using a rule ` → r, N contains nodes n =

〈s : t, R0, R1, E, C0, C1〉 and 〈` : r,R, . . . 〉 such that p ∈ R0 ∩ R. Thus rewrite1 or

rewrite2 applies, depending on whether t
.
= ` or t ·B `. We obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R′1, E \R,C0, C1〉, 〈s : u,R0 ∩R,∅, E′,∅,∅〉}

where R′1 is R1 or R1 \R, and E′ is E ∩R or (E ∪R1)∩R, determined by whether

rewrite1 or rewrite2 is applied, respectively. Note that (∗) is satisfied.

– If simplify reduces an equation s ≈ t to s ≈ u using a rule ` → r, there are nodes

n = 〈s : t, R0, R1, E, C0, C1〉 and 〈` : r,R, . . . 〉 in N such that p ∈ E ∩ R. If t is a

variant of ` we can therefore use rewrite1 and otherwise rewrite2 to infer

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R′1, E \R,C0, C1〉}

∪ {〈s : u,R0 ∩R,∅, E′,∅,∅〉}

where R′1 and E′ depend on which inference rule applies. Since p ∈ E ∩ R, (∗)
holds.

– Assume collapse is applied to turn a rule t→ s into an equation u ≈ s using `→ r.

Then t ·B ` must hold, and N contains nodes n = 〈s : t, R0, R1, E, C0, C1〉 and

〈` : r,R, . . . 〉 such that p occurs in R1∩R. To satisfy (∗) we can thus apply rewrite2
to obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}

– If delete removes some equation s ≈ s from E then N must contain a node n =

〈s : s,R0, R1, E] {p}, C0, C1〉. Since the equation s ≈ s cannot be oriented into

a terminating rule, the sets R0, R1, C0 and C1 must be empty. Thus n can be

removed by delete in MKBtt.

– Finally, in the case where deduce generates s ≈ t from an overlap involving rules

`→ r and `′ → r′, there are nodes 〈` : r,R, . . . 〉 and 〈`′ : r′, R′, . . . 〉 in N such that

p ∈ R ∩R′. Applying deduce in MKBtt thus yields

N ′ = N ∪ {〈s : t,∅,∅, R ∩R′,∅,∅〉}

such that (∗) is satisfied. ut

Since MKBtt steps are reflected in KBtt, an MKBtt run γ of the form N0 `∗ N
corresponds to a valid KBtt run γp for every process p ∈ P(N).

Definition 6 Consider an MKBtt run γ of the form N0 ` N1 ` · · · ` Nk and some

process p ∈ P(Nk). We inductively define the sequence p0, . . . , pk of ancestors of p by

setting pk = p and pi = predSi
(pi+1) for 0 6 i < k, where Si is the split set of the step

Ni ` Ni+1. Let Ei, Ri and Ci denote E[Ni, pi], R[Ni, pi] and C[Ni, pi], respectively.

Then the projected run γp is the sequence

(E0,R0, C0) `= (E1,R1, C1) `= · · · `= (Ek,Rk, Ck)

According to Lemma 1, γp is a valid KBtt run for every process p.

Using projections, the definitions of success, failure and fairness given for KBtt can

be naturally extended to MKBtt.

15

Definition 7 A finite MKBtt run γ of the form N0 `∗ N

– is fair if γp is fair and nonfailing for some process p ∈ P(N),

– succeeds if E[N, p] = ∅ for some process p ∈ P(N), and

– fails if γp fails for all processes p ∈ P(N).

It is easy to see that MKBtt is sound in the sense that the equational theory is

preserved.

Lemma 3 Consider an MKBtt step N ` N ′ with split set S and a process q ∈ P(N ′)
with p = predS(q). The relations ↔∗E[N,p]∪R[N,p] and ↔∗E[N ′,q]∪R[N ′,q] coincide. ut

As the simulation of KBtt with MKBtt is sound (Lemma 1) and complete (Lemma 2),

it is straightforward to establish correctness and completeness using the corresponding

results for KBtt. We call an MKBtt run γ : N0 `∗ N simplifying if the resulting system

R[N, p] is reduced whenever γ succeeds for some process p.

Theorem 4 Let NE be the initial node set for a set of equations E and let γ be a finite

non-failing MKBtt run of the form NE `∗ N which is fair for some p ∈ P(N). Then

R[N, p] is convergent.

Proof According to Lemma 1 there is a corresponding KBtt run γp which is non-failing

and fair. Since finite runs of KBtt are correct (Theorem 3), R[N, p] is convergent. ut

3.3 Completeness

Theorem 2 states the completeness of KB in the following sense: If a set of equations E
admits an equivalent finite convergent rewrite system R, any fair KB run will produce

an equivalent finite convergent system if a reduction order compatible with R is used,

provided the run does not fail. The following example shows that MKBtt might even

fail if one uses a termination tool T that can prove the termination of R.

Example 1 The convergent rewrite system R consisting of the rules

f(h(x, y))→ f(i(x, x)) h(a, a)→ c

g(i(x, y))→ g(h(x, x)) i(a, a)→ c

is derived from the input equalities E

f(h(x, y)) ≈ f(i(x, x)) h(a, a) ≈ c h(a, a) ≈ i(a, a)

g(i(x, y)) ≈ g(h(x, x)) i(a, a) ≈ c

in any fair run of standard completion that uses the reduction order →+
R. The system

R is easily shown to be terminating with a matrix interpretation of dimension 2; e.g.

the termination tool TTT2 using the strategy matrix -ib 2 -d 2 -direct immediately

outputs a termination proof. However, if a KBtt run uses TTT2 with this strategy and

starts by orienting h(a, a) ≈ i(a, a) then no matter which orientation is chosen, one

of the equations in the leftmost column remains unorientable. Similarly, if MKBtt

starts by applying orient to h(a, a) ≈ i(a, a) then process ε gets split into 0 and 1. But

in subsequent steps neither process can orient both of the equations in the leftmost

column, so the run fails.

16

orient
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

split ′(Elr, Erl, N) ∪ {〈s : t, R0 ∪Rlr, R1 ∪Rrl, E′, C0 ∪Rlr, C1 ∪Rrl〉}

if Elr, Erl ⊆ E, E′ = E \ (Elr ∪ Erl) ∪ {p− | p ∈ Elr ∪ Erl}, Elr is the
set of all processes p ∈ E such that T � Cp(N) ∪ {s → t}, Erl is the set of
all processes p such that T � Cp(N) ∪ {t → s}, Rlr = {p0 | p ∈ Elr} and
Rrl = {p1 | p ∈ Erl}, and Elr ∪ Erl 6= ∅

Fig. 6 The orient rule in MKBttc.

This example shows that the order in which nodes are processed has considerable

influence: orienting nodes too early can prevent KBtt and MKBtt from producing a

convergent system even if a successful run exists. Nevertheless, completeness in this

sense can be partially obtained in a slightly modified version of MKBtt which we will

refer to as MKBttc. In contrast to the previous version, a process can now also keep an

equation unoriented. For this purpose, processes are now viewed as strings in (0 + 1 +

−)∗. We write T � R if the termination tool T can verify termination of the rewrite

system R. The orient rule in MKBttc is given in Figure 6. Here, split ′(Elr, Erl, N)

replaces every occurrence of a process p ∈ Elr ∩ Erl in a node of N by {p−, p0, p1},
every occurrence of p ∈ Elr \Erl by {p−, p0} and every occurrence of p ∈ Erl \Elr by

{p−, p1}. The notion of a split set in MKBtt is replaced by split tuple, which refers to

the pair of process sets (Elr, Erl). For all inference steps that use a different rule than

orient, the split tuple is (∅,∅).

Example 2 If an MKBttc run on the input equalities from Example 1 starts by orient-

ing h(a, a) ≈ i(a, a), the resulting node is 〈h(a, a) : i(a, a), {0}, {1}, {−}, {0}, {1}〉. In

contrast to MKBtt, a descendant of process − can deliver a convergent system.

To obtain a completeness result for MKBttc, we require a stronger notion of fairness

which requires to equally advance all processes at some point.

Definition 8 Consider an equational proof P , a run N0 ` N1 ` N2 ` · · · with

p ∈ P(Nk), and let � denote →+
C[Nk,p]

. Then p eventually simplifies P starting from

Nk if

– there is a proof Q in (E[Nk, p], R[Nk, p]) such that P ⇒�KB Q, or

– all direct successors q ∈ P(Nk+1) of p eventually simplify P starting from Nk+1.

Thus a run γ with process p ∈ P(Nk) eventually simplifies a proof P if all successors

of p in γ allow for a smaller proof at some point.

Definition 9 (Strong Fairness) A run γ : N0 ` N1 ` N2 ` · · · is strongly fair if for

every k > 0, p ∈ Nk, and equational proof P in (E[Nk, p], R[Nk, p]) which is not in

normal form, the following conditions hold:

– If Nk admits a step Nk ` N such that p ∈ P(N) and there is an equational proof

Q in (E[N, p], R[N, p]) satisfying P ⇒�KB Q, then p eventually simplifies P starting

from Nk.

– If there exists an orient step Nk ` N applied to node n such that N contains a

successor p′ of p and there is an equational proof Q in (E[N, p′], R[N, p′]) satisfying

P ⇒�KB Q, then every successor q of p either performed an orient step on n and got

extended by − in this step, or eventually simplifies P from Nk.

17

Here � denotes the reduction order →+
C[Nk,p]

.

Intuitively, a strongly fair run requires all processes to simplify an equational proof

if this simplification can be done without process splits (case i). Moreover, if an orient

step on, say, a node with data s : t allows for a simplification then all processes

except the one that does not orient s : t are required to perform this step (case ii). A

sufficient condition for a run to be strongly fair is that all processes are advanced using

a breadth-first strategy.

A termination tool T covers some reduction order � if for any rewrite system R
that is compatible with �, T � R holds.

Lemma 4 Consider an MKBttc run γ : N0 ` N1 ` N2 ` · · · which employs a termi-

nation tool T covering some reduction order �.

i. For every node set Nk there exists a process pk such that C[Nk, pk] ⊆ � and the

sequence (E[Nk, pk], R[Nk, pk])k>0 is a valid KB run γp using �.

ii. If γ is strongly fair then γp is fair.

Proof

i. We construct the process sequence (pk)k>0 inductively such that

(E[Nk, pk], R[Nk, pk], C[Nk, pk])

`= (E[Nk+1, pk+1], R[Nk+1, pk+1], C[Nk+1, pk+1])
(∗)

is a valid KBtt inference step and C[Nk, pk] ⊆ �.

We start by setting p0 = ε. Now consider an inference step Nk ` Nk+1 with split

tuple (S0, S1). If pk /∈ S0 ∪ S1 then we take pk+1 = pk. By a straightforward

adaptation of Lemma 1 to MKBttc a corresponding KBtt (or empty) step (∗) is

possible, and C[Nk, pk] ⊆ � follows from the induction hypothesis. Otherwise, we

must have pk ∈ E for an inference step orienting a term pair s : t (adopting the

notation used in Figure 6). If s � t then T � C[Nk, pk] ∪ {s → t} as T covers �.

In this case we set pk+1 = pk0. Due to the side condition of orient, pk ∈ S0 and

hence pk+1 ∈ P(Nk+1). Again (∗) is a KBtt step and by the choice of pk+1 also

C[Nk+1, pk+1] ⊆ � holds. The argument for the case t � s is symmetric. If s and

t are incomparable in �, we may choose pk+1 = pk−. Then (∗) is an equality step

and C[Nk+1, pk+1] ⊆ � follows from the induction hypothesis.

As the constructed sequence (E[Nk, pk], R[Nk, pk], C[Nk, pk])k>0 constitutes a KBtt

run which satisfies C[Nk, pk] ⊆ � for all k > 0, there is also a valid KB run

(E[Nk, pk], R[Nk, pk])k>0 which uses � as reduction order.

ii. Let Eω and Rω denote the persistent sets of γp. Suppose P is a proof in (Eω,Rω)

which is not a rewrite proof and there exists an inference (Eω,Rω) ` (E ,R) such

that (E ,R) admits a proof Q satisfying P ⇒�KB Q. Then there must be a node

set Nj in γ such that (E[Nj , pj], R[Nj , pj]) contains all equations and rules that

are used in P together with those used when simplifying P to Q. By adapting

Lemma 2 to MKBttc, it follows that there is an inference step Nj ` N such that

E ′ = E[N, p′], R′ = R[N, p′], and C[N, p′] ⊆ � holds for some successor p′ of pj ,

and (E ′,R′) admits proof Q.

We distinguish two cases. If (E[Nj , pj], R[Nj , pj]) ` (E ′,R′) and thus Nj ` N does

not apply orient then no process splitting occurs and pj ∈ P(N). By strong fairness,

pj eventually simplifies P . In particular, some successor pm in the process sequence

18

(pk)k>0 with m > j has to provide a proof Q′ in (E[Nm, pm], R[Nm, pm]) such that

P ⇒�KB Q
′. Therefore also γp allows for this simplified proof.

Now suppose (E[Nj , pj], R[Nj , pj]) ` (E ′,R′) applied orient to some equation s ≈ t
and s � t holds. By construction of the sequence (pk)k>0 no successor of pj can

have obtained − as part of its label when orienting a node with data s : t. Hence, ac-

cording to strong fairness all successors of pj have to eventually simplify P . So some

pm in (pk)k>0 with m > j has to provide a proof Q′ in (E[Nm, pm], R[Nm, pm])

with P ⇒�KB Q′. Again this proof is reflected in γp, which proves fairness of this

KB run. ut

The following completeness result shows that an MKBttc run employing a suffi-

ciently powerful termination prover can produce any convergent system which is deriv-

able in a KB run.

Theorem 5 Consider a finite canonical rewrite system R which can be constructed

from E in a fair KB run using �. If T covers � then any strongly fair and simplifying

MKBttc run N0 ` N1 ` N2 ` · · · which uses T and does not have a failing process

develops some process p ∈ P(Nn) which satisfies E[Nn, p] = ∅ and R[Nn, p] = R (up

to renaming variables).

Proof According to Lemma 4 there is a sequence of processes (pk)k>0 such that

(E[Nk, pk], R[Nk, pk])k>0 is a fair KB run using �. By repeating the following ar-

gument of [?, Theorem 3.9], we will see that this run succeeds with system R. Each

rule ` → r in R is a theorem in E and therefore will have a persisting rewrite proof

after a finite number of steps in every fair and unfailing run. Let R′ ⊆
⋃
iR[Ni, pi] be

the set of rules required for proofs of all rules in R. Both R and R′ are contained in

�. Hence all these proofs must be of the form ` →∗R′ r: Suppose r was reducible in

R′ to a term r′ such that r � r′. Then there must also be a proof r ↔∗R r′ as R is

a convergent presentation of the theory. But r � r′ implies that r is reducible in R,

contradicting the assumption that R is canonical.

Thus →R ⊆ →+
R′ holds. As R and R′ have the same equational theory, R′ must

be convergent and hence canonical since it was constructed by a simplifying run. Thus

R and R′ have to be equal, because the canonical rewrite system compatible with a

given reduction order is unique (up to variable renaming) [?]. ut

Note that even if T covers �, an MKBttc run might still fail if the wrong strategy

is chosen. For example, a run on the equations E

a ≈ b a ≈ c f(b) ≈ b f(a) ≈ d

where T covers the lexicographic path order (LPO) with a precedence satisfying a > b,

a > c, b > d and c > d may succeed with the convergent rewrite system R

a→ d b→ d c→ d f(d)→ d

if a suitable strategy is adopted, but fail with the unorientable equation b ≈ c if

the equations are processed in an unfortunate order [?]. This example also illustrates

that for completeness it is not sufficient to require that T can prove termination of

R, or covers →+
R; any run on E where T only supports the reduction order →+

R fails

immediately.

19

4 Critical Pair Criteria

In order to limit the number of deduced equations during a completion run, several

critical pair criteria were proposed as a means to filter out critical pairs that can be

ignored without compromising completeness [?,?,?,?]. In a later work, Bachmair and

Dershowitz [?] showed that these criteria match the more general pattern of composite-

ness. Before describing the use of critical pair criteria in MKBtt, the relevant definitions

and some concrete criteria are recalled. We consider a fixed reduction order �, a proof

order �� and a proof reduction relation ⇒. For details the reader is referred to [?].

4.1 Critical Pair Criteria in Standard Completion

A critical pair criterion CPC is a mapping from sets of equations to sets of equations

such that CPC (E) is a subset of CP(E). Intuitively, CPC (E) contains those critical

pairs that are considered redundant. A run (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · using

reduction order � is fair with respect to CPC if for every peak P associated with a

critical pair in CP(Rω) \
⋃
i CPC (Ri ∪ Ei) there exists a proof Q in (Ri, Ei) for some

i > 0 such that P ⇒ Q. A critical pair criterion CPC is correct if a nonfailing run

is fair in the general sense whenever it is fair with respect to CPC . Clearly, correct

critical pair criteria allow to filter out unnecessary critical pairs without compromising

completeness.

An equational proof P that has the form of a peak s← u→ t is composite if there

exist terms u0, . . . , un+1 where s = u0 and t = un+1 and proofs P0, . . . , Pn such that

Pi proves ui ≈ ui+1 and P �� Pi holds for all 1 6 i 6 n. The compositeness criterion

returns all critical pairs among equations in E for which the associated overlaps are

composite, which was proven to be correct [?]. This very general criterion is hard to

apply in practice. However, some of the earlier proposals to filter out superfluous critical

pairs in completion procedures actually capture special cases of compositeness.

Kapur et al. [?] introduced the notion of primality for critical pairs. An overlap

tσ ← sσ = sσ[uσ]p → sσ[vσ]p between rules s → t and u → v in R is prime if sσ

is not reducible at some position strictly below p. The primality criterion PCP(R)

returns all critical pairs among rules in R for which the associated overlaps are not

prime. A special case of PCP is captured by the unblockedness criterion BCP [?]. A

critical pair originating from an overlap tσ ← sσ = sσ[uσ]p → sσ[vσ]p is blocked if xσ

is irreducible in R for all variables x ∈ Var(s) ∪ Var(u). The set BCP(R) contains all

unblocked critical pairs among rules in R.

Küchlin [?] introduced the notion of connectedness to limit equational consequences

deduced in a completion procedure. A critical pair s ≈ t originating from an overlap

s← u→ t is connected below u if there exists an equational proof s = u0 ↔ u1 ↔ · · · ↔
un = t such that u � ui for all 1 6 i < n. Clearly, if a critical pair s ≈ t is connected

below u such that n > 1 then it is also composite. For a practical criterion, Küchlin

assumes → ⊆ � and concentrates on finding connecting sequences u1, . . . , un−1 such

that u →+ ui. As a special case the following weak connectivity test is proposed.

Given an overlap tσ ← sσ = sσ[uσ]p → sσ[vσ]p between rules s → t and u → v, the

associated critical pair is connected if there exists a reduction step sσ → w using a

rule ` → r at position q fulfilling the (non-exclusive) properties: (i) if q ∈ PosF (s)

then the critical overlap 〈s → t, q, ` → r〉 is already considered, (ii) if q = pq′ and

q′ ∈ PosF (u) then 〈` → r, q′, u → v〉 is already considered, and (iii) if p = qp′ and

20

deduce
N

N ∪ {〈s : t,∅,∅, E,∅,∅〉}

if there exist nodes 〈` : r,R, . . . 〉, 〈`′ : r′, R′, . . . 〉 ∈ N and an overlap o
involving rules ` → r and `′ → r′ that gives rise to a critical pair s ≈ t such
that E = CPCm(o,R ∩R′, N) 6= ∅

Fig. 7 The deduce inference rule using a critical pair criterion.

p′ ∈ PosF (l) then 〈u→ v, p′, `→ r〉 is already considered. This criterion is generalized

to a full connectivity test where the critical pair is connected via an arbitrary sequence

w0, . . . , wn instead of a single intermediate term w. In the sequel the connectedness

criterion returning connected critical pairs among rules in R will be referred to as

CCP(R).

Since both CCP and PCP are special cases of compositeness, these criteria can

also be combined. This mixed criterion that filters out critical pairs that are redundant

according to one of the criteria will in the sequel be referred to as MCP.

4.2 Critical Pair Criteria in MKBtt

In the following paragraphs we describe how critical pair criteria can be integrated into

MKBtt.

Definition 10 Given a KB critical pair criterion CPC , the corresponding MKBtt crit-

ical pair criterion CPCm maps an overlap o with associated critical pair s ≈ t, a set of

processes E and a node set N to a process set CPCm(o,E,N) = E′ such that E′ ⊆ E
and s ≈ t ∈ E[N, p] \ CPC (E[N, p]) for all p ∈ E′.

Intuitively, the set E′ contains all processes in E for which the critical pair derived

from o is not superfluous. Thus, in the deduce rule for MKBtt the equation label of the

new node is filtered by the criterion as shown in Figure 7.

Consider a finite MKBtt run γ of the form N0 `∗ Nk and a process p ∈ Nk. Let pi
denote the ancestor of p in Ni and let � denote the reduction order →+

C[Nk,p]
. Then

we call γ fair with respect to CPCm and p if the following condition holds: Whenever

a node set Ni gives rise to an overlap o with critical pair s ≈ t as described in Figure 7

and pi ∈ E \CPCm(o,E,Ni) then there exists a proof Q in some (E[Nj , pj], R[Nj , pj])

for j > 0 such that s ≈ t ⇒�KB Q holds. The run γ is fair with respect to CPCm if

it is fair with respect to CPCm and some process p ∈ P(Nk). An MKBtt critical pair

criterion CPCm is correct if every finite non-failing run γ that is fair with respect to

CPCm is also fair in the sense of Definition 7.

Lemma 5 Every MKBtt critical pair criterion CPCm obtained from a correct criterion

CPC is correct.

Proof Let γ be a finite non-failing run of the formN0 `∗ Nk which is fair with respect to

CPCm and some process p ∈ P(Nk), and let pi denote the ancestor of p in Ni. Assume

a critical overlap o where pi ∈ E \ CPCm(o,E,Ni) for some ancestor pi of p. By

definition there exists a proof Q in some (E[Nj , pj], R[Nj , pj]) such that s ≈ t⇒�KB Q.

Hence the projected run γp is fair with respect to CPC and by correctness of CPC it

is also fair. Thus γ is fair as well. ut

21

Thus the use of MKBtt criteria obtained from correct standard criteria does not

compromise completeness, and the chance of a run to succeed is not influenced. The

following example illustrates the use of critical pair criteria in MKBtt.

Example 3 An MKBtt run on CGE2 encounters the nodes

〈e · x : x, P0 ∪ P1, . . . 〉 (1)

〈i(x) · x : e, P0 ∪ P1, . . . 〉 (2)

〈x · e : x, P0, . . . 〉 (14)

〈i(e) : e, P0, . . . 〉 (19)

〈y · i(x · y) : i(x), P0 ∪ P1, . . . 〉 (21)

The overlap 〈y · i(x · y)→ i(x), ε, e · x→ x〉 produces the critical pair i(x) ≈ i(x · e) for

the set of processes P0 ∪P1. When PCPm is applied, it is checked whether there exists

a node which allows to reduce the term u = e · i(x · e) at some position below the root.

Since node (14) can reduce u at position 21, the critical pair is recognized as redundant

for all processes in P0 such that the deduced node is 〈i(x) : i(x · e),∅,∅, P1,∅,∅〉.
Furthermore, the overlap 〈i(x) ·x→ e, 1, i(e)→ e〉 between nodes (2) and (19) gives

rise to the critical pair e ≈ e · e for the process set P0. To reduce the term i(e) · e also

node (14) can be applied at the root position. While PCPm is not applicable since the

overlap position is below ε, CCPm requires to check the critical pairs involved in the

decomposition. Indeed, the critical pair e← i(e) · e→ i(e) between nodes (2) and (14)

is already covered by node (19) and the peak involving nodes (14) and (19) can be

ignored since it is just a variable overlap. Hence the deduce step is superfluous.

The critical pair criteria PCP, BCP, and CCP require to check whether an over-

lapped term can be reduced in a certain way other than indicated by the overlap

itself. Since MKBtt allows to check reducibility for multiple processes at once, the re-

dundancy checks required for the respective multi-completion criteria can be shared

among multiple processes.

5 Isomorphisms

The performance of our tool mkbTT is significantly affected by the number of simulated

processes. On some input problems, runs exhibit similar process pairs which have the

same probability of success.

Example 4 A run on CGE2 may generate a node set N with process p where E[N, p]

consists of the equations

(x · y) · z ≈ x · (y · z) f(e) ≈ e

g(x) · f(y) ≈ f(y) · g(x) g(e) ≈ e

and R[N, p] = C[N, p] consists of the rewrite rules

e · x→ x f(x · y)→ f(x) · f(y)

i(x) · x→ e g(x · y)→ g(x) · g(y)

22

If an inference step N ` N ′ applies orient to the equation g(x) · f(y) ≈ f(y) · g(x), the

process p is split as both orientations are possible. But the states of the emerging child

processes p0 and p1 are the same up to interchanging f and g. Hence further deductions

of these processes will be symmetric.

Such similarities between processes are generally captured by isomorphisms.

Definition 11 A bijection θ : T (F ,V)→ T (F ,V) extends to an isomorphism between

rewrite systems R and R′ if R′ = {θ(`) → θ(r) | ` → r ∈ R} such that s →R t if

and only if θ(s) →R′ θ(t) for all terms s and t. Two sets of equations E and E ′ are

isomorphic with respect to θ if E ′ = {θ(u) ≈ θ(v) | u ≈ v ∈ E} and for all terms s and

t, s ≈E t if and only if θ(s) ≈E′ θ(t). These concepts are expressed by writing R ∼=θ R′
and E ∼=θ E ′, respectively. Two MKBtt processes p and q are isomorphic in a node set

N if there exists some isomorphism θ such that E[N, p] ∼=θ E[N, q], R[N, p] ∼=θ R[N, q]

and C[N, p] ∼=θ C[N, q].

Lemma 6 Let Np and Nq be node sets containing processes p and q such that

(E[Np, p], R[Np, p], C[Np, p]) ∼=θ (E[Nq, q], R[Nq, q], C[Nq, q])

If there is a step Np ` N ′p such that p is the predecessor of p′ ∈ P(N ′p) then there is also

an inference step Nq `= N ′q and a process q′ ∈ P(N ′q) such that q is the predecessor of

q′ and

(E[N ′p, p
′], R[N ′p, p

′], C[N ′p, p
′]) ∼=θ (E[N ′q, q

′], R[N ′q, q
′], C[N ′q, q

′])

Proof If p was not affected by the step Np ` N ′p, that is (E[Np, p], R[Np, p], C[Np, p])

coincides with (E[N ′p, p], R[N ′p, p], C[N ′p, p]) and p ∈ P(N ′p), then we can set N ′q = Nq.

Otherwise a mirror step Nq ` N ′q using the same inference rule can model the step for

q. More precisely, the mirror step is defined by case distinction on the rule applied in

Np ` N ′p.

– Assume orient turned a node n = 〈s : t, R0, R1, E, C0, C1〉 into 〈s : t, R0∪Rlr, R1∪
Rrl, E

′, C0 ∪Rlr, C1 ∪Rrl〉 using split set S. Then a node n′ with data θ(s) : θ(t)

has to occur in Nq since E[Nq, q] ∼= E[Np, p] holds by assumption. Three further

possibilities can be distinguished:

Assume p = p′ and p ∈ Elr \ S because C[Np, p] ∪ {s → t} terminates, but

C[Np, p] ∪ {t → s} does not. Thus also C[Nq, q] ∪ {θ(s) → θ(t)} terminates, but

C[Nq, q] ∪ {θ(t) → θ(s)} does not. So the mirror step Nq ` N ′q can apply orient

to node n′ with Elr = Rrl = {q} and Erl = Rrl = ∅. In the second case where

p = p′ and p ∈ Erl \ S, we reason symmetrically to the preceding case. For the

final case, let p ∈ S. We orient n′ to obtain the mirror step Nq ` N ′q. Because

C[Np, p] ∼= C[Nq, q] holds, both orientations terminate, so q gets split into q0 and

q1 which are then isomorphic to p0 and p1, respectively.

All remaining inference rules do not split processes so p = p′ and thus q = q′.

– Assume delete was applied to a node 〈s : s,∅,∅, E,∅,∅〉 where p ∈ E. Then there

must be a node n′ of the form 〈θ(s) : θ(s),∅,∅, E′,∅,∅〉 in Nq such that q ∈ E′,
and Nq ` N ′q will be a delete step removing n′.

23

– If deduce created a node with data 〈s : t,∅,∅, R ∩ R′,∅,∅〉 originating from a

critical pair involving nodes with terms ` : r and `′ : r′, due to R[Np, p] ∼= R[Nq, q],

there must be nodes with data 〈θ(`) : θ(r), R, . . .〉 and 〈θ(`′) : θ(r′), R′, . . .〉 in Nq
which allow in a mirror step Nq ` N ′q to deduce a node 〈θ(s) : θ(t),∅,∅, R ∩
R′,∅,∅〉.

– If rewrite1 or rewrite2 was applied to a node 〈s : t, R0, R1, E, C0, C1〉 using a rule

node 〈` : r,R, . . .〉 to create 〈s : u,R′0,∅, E′,∅,∅〉, then the mirror step Nq ` N ′q
can apply the same rule to nodes with data θ(s) : θ(t) and θ(`) : θ(r), which exist

by assumption. Then q is removed from the rewrite or equation label of the node

with data θ(s) : θ(t), and occurs now in a node with data θ(s) : θ(u). ut

Theorem 6 Let Ni be a set of nodes containing isomorphic processes pi, qi ∈ P(Ni).

Assume there exists an MKBtt completion run γ of the form Ni `∗ Nk and a process

pk ∈ P(Nk) such that pi is the ancestor of pk in Ni, and the projected run γpk is fair

and successful. Then there is also a fair deduction γ′ of the form Ni `∗ N ′k producing a

process qk ∈ P(N ′k) such that qi is an ancestor of qk, and also γ′qk is fair and successful.

Proof We show by induction on the length of γ : Ni `∗ Nk that there exists a sequence

γ′ : Ni = N ′i `
∗ N ′k with processes qj ∈ N ′j such that (E[Nk, pk], R[Nk, pk], C[Nk, pk])

is isomorphic to (E[N ′k, qk], R[N ′k, qk], C[N ′k, qk]). For the case where k = i the pro-

cesses pk and qk are by assumption isomorphic via some mapping θ. If k > i we

consider a sequence Ni `∗ Nk−1 ` Nk where pi is the ancestor of pk in Ni. By the in-

duction hypothesis there is a sequence Ni = N ′i `
∗ N ′k−1 with processes qk−1 ∈ N ′k−1

such that (E[Nk−1, pk−1], R[Nk−1, pk−1], C[Nk−1, pk−1]) is isomorphic with respect

to θ to (E[N ′k−1, qk−1], R[N ′k−1, qk−1], C[N ′k−1, qk−1]). By Lemma 6, the last step

Nk−1 ` Nk can be mirrored by N ′k−1 `
= N ′k such that N ′k contains a process qk for

which (E[Nk, pk], R[Nk, pk], C[Nk, pk]) and (E[N ′k, qk], R[N ′k, qk], C[N ′k, qk]) are again

isomorphic via θ. Note that N ′k−1 = N ′k if Nk−1 ` Nk did not affect pk−1.

Hence given γ : Ni ` Ni+1 ` · · · ` Nk with pk ∈ P(Nk) there is a run γ′ : Ni `=
N ′i+1 `

= · · · `= N ′k with qk ∈ P(N ′k) such that (E[Nk, pk], R[Nk, pk], C[Nk, pk]) is

isomorphic to (E[N ′k, qk], R[N ′k, qk], C[N ′k, qk]). As pk succeeds in Nk we must have

E[Nk, pk] = ∅ and thus also E[N ′k, qk] = ∅. Since all intermediate states of pk and qk
are isomorphic, γ′ is fair for qk. ut

If our tool mkbTT detects two isomorphic processes in the current node set N

then one process is deleted from all nodes in N . We exploit two concrete shapes of

symmetries. Renaming isomorphisms swap function symbols as in Example 4, where

p0 and p1 are isomorphic under the mapping θ that exchanges f and g. Argument

permutations associate with every function symbol f of arity n a permutation πf of the

set {1, . . . , n}. Then the mapping on terms defined by θ(x) = x and θ(f(t1, . . . , tn)) =

f(θ(tπf (1)), . . . , θ(tπf (n))) also induces an isomorphism. For example, when completing

SK90-3.02 [?] a process with state

(x+ y) + z ≈ x+ (y + z)
f(f(x)) → x

f(x+ y) → f(x) + f(y)

has to orient the associativity axiom. Both orientations preserve termination, but the

two child processes emerging from a process split are isomorphic under the argument

permutation π+ = (1 2).

24

procedure mkbTT(No,Nc)

if ∃ successful process p then return p

else if No = ∅ then fail

else n := choose(No) ;

No := (No \ {n})] rewrite({n},Nc) ;

if n 6= 〈. . . ,∅,∅,∅,∅,∅〉 then

(n,No,Nc) := orient(n,No,Nc) ;

if n 6= 〈. . . ,∅,∅, . . . , . . . , . . .〉 then

No := No] delete(rewrite(Nc, {n})) ;

Nc := gc(Nc) ;

Nd := deduce(n,Nc) ;

No := No] gc(delete(Nd] rewrite(Nd ,Nc))) ;

Nc := Nc] {n} ;

mkbTT(No,Nc) ;

Fig. 8 Procedure implementing MKBtt.

6 Implementation

The inference system described in the previous sections is implemented in our tool

mkbTT. The tool is written in the programming language OCaml. Binaries and sources

are available from the tool’s website

http://cl-informatik.uibk.ac.at/mkbtt/

where also a web interface can be found. In the following sections we provide imple-

mentation details which were found to be of special importance.

6.1 Control

The basic control of mkbTT is a multi-completion variant of a discount loop, very

similar to the one originally proposed for completion with multiple reduction orders [?].

Pseudo-code describing the control loop is given in Figure 8. The procedure advances

two node sets containing open nodes No and closed nodes Nc, corresponding to passive

and active facts. Intuitively, closed nodes have been fully exploited with respect to the

orient and rewrite1,2 inference rules, and to every pair of closed nodes deduce has been

applied exhaustively. Therefore, at the beginning of a run Nc is empty whereas No

contains the set of initial nodes.

We briefly describe the components occurring in the main control loop. At the

beginning of each recursive call it is checked whether some process succeeded. For this

purpose, a process p is considered successful if it does not occur in an open node or

in a closed equation label, i.e., all of E[Nc, p], R[No, p] and E[No, p] are empty. If no

successful process exists but there are open nodes left, choose selects a node n from

the set of open nodes. Different selection strategies are considered for this purpose

(see Section 6.4). The function rewrite(N,N ′) applies rewrite1,2 to nodes in N by

employing nodes in N ′ as rules. Nodes are implemented as mutable structures, so the

original objects are modified and only newly created nodes are returned. The function

call orient(n,No,Nc) is used to apply the orient inference to node n. It returns the

modified node along with the node sets No and Nc adapted by the split operation.

Immediately after rewrite and deduce calls, delete is invoked to filter out nodes with

25

http://cl-informatik.uibk.ac.at/mkbtt/

equal terms. After having been subjected to rewrite, all labels in a node might become

empty. The purpose of gc is to filter out such nodes. The call deduce(n,Nc) returns

all equational consequences originating from deduce inference steps involving node n

together with some node from Nc. To avoid redundant nodes, the union operation]
exploits the subsume inference.

6.2 Termination Checking

Our tool supports two possibilities for termination checks in orient inference steps. They

can either be performed internally by interfacing TTT2 [?] with the user’s favourite

termination strategy supplied in TTT2’s strategy language. Alternatively, any external

termination checker can be used which complies to a minimal interface: It must take

as argument the name of a file specifying the termination problem in TPDB format2

and print YES on the first line of the output if termination could be established.

6.3 Term Indexing

Automated deduction tools typically spend a major part of computation time on de-

ducing equational consequences and rewriting. A variety of sophisticated term index-

ing techniques [?] have been developed in order to speed up filtering out matching and

unifiable terms. Also mkbTT relies on indexing techniques to quickly sift through nodes

that are applicable for inferences. For instance, for deduce inferences the retrieval of

unifiable (sub)terms is needed. For rewrite1 steps, variants have to be retrieved and

rewrite2 requires encompassment retrieval, where the latter can be achieved by repeat-

edly retrieving subsumptions (also referred to as generalizations in the literature). To

select unifiable terms, mkbTT implements path indexing and discrimination trees [?,?],

for variant and subsumption retrieval also code trees [?] are supported.

6.4 Selection Strategies

An iteration of mkbTT’s main control loop starts by selecting a node to process next.

For this purpose a choice function picks the node where a given cost heuristic evaluates

to a minimal value. The measure applied in this selection has significant impact on

performance. To allow for a variety of possibilities, a strategy language is defined that

is general enough to cover selection strategies that proved to be useful, but also captures

some concepts used in choice strategies of other tools. A strategy is specified by the

grammar rule

strategy ::= ? | (node,strategy) | float(strategy : strategy)

2 http://www.lri.fr/~marche/tpdb/

26

http://www.lri.fr/~marche/tpdb/

Here node refers to a node property, which is in turn defined via properties of process

sets, processes, sets of equations, rewrite systems and term pairs:

node ::= data(term pair) | el(process set) | -node | node + node | *
process set ::= min(process) | sum(process) | #

process ::= process + process | e(eqs) | r(trs) | c(trs)

eqs ::= sum(term pair) | #
trs ::= sum(term pair) | cp(eqs) | #

term pair ::= smax | ssum

The properties forming the basic elements of strategies are captured by integer values.

The following paragraphs explain the different components.

– A node property of a node n = 〈s : t, . . . , E, . . .〉 can be its creation time (denoted

by *), a property of the node’s data s : t, or a process set property pp of its equation

labels E, which is written as el(pp). Node properties can also be added or inverted.

– A process set property takes either the sum or the minimum over a property of the

involved processes, or may simply be the number of processes it contains, which is

denoted by #.

– Given a current node set N , a process property of a process p may be an equation

set property ep of its equation projection E[N, p] or a rewrite system property tp

of either its rule projection R[N, p] or its constraint projection C[N, p], which is

expressed by writing e(ep), r(tp) and c(tp), respectively. Process properties can

also be added.

– An equation set property of a set of equations E can be its cardinality (#) or the sum

over a term pair property of the contained equations. A rewrite system property of

a rewrite system R can additionally be a property of its set of critical pairs CP(R).

– A term pair property of s : t can be the sum |s| + |t| or maximum max{|s|, |t|} of

the sizes of the involved terms, which is specified by writing ssum and smax.

– Finally, properties are combined to obtain selection strategies. The simplest pos-

sible strategy is ?, which is implemented by picking a node randomly. Alterna-

tively, a strategy may combine a node property np with another strategy s to

a tuple (np,s). By using this rule multiple times, a node property list of the

form (np1, . . . (npk,?) . . .) can be constructed. To mix strategies, a strategy can

also be of the shape r(s1:s2), where r is assumed to be a rational value in the

closed interval [0, 1]. Node property lists are evaluated by mapping each node to

the corresponding tuple of integer values, its cost, and choosing the (lexicographic)

minimum. In case of a mixed strategy r(s1:s2), the strategy s1 is applied with

probability r, and s2 is used in the remaining cases.

As selection measures have considerable impact, many different strategies for au-

tomated reasoning tools have been reported in the literature. For instance, Vampire [?]

employs a size/age ratio when deciding on a fact to be processed next. If this ratio is

(e.g.) 2 : 3 then out of 5 selections 2 will pick the oldest and 3 the smallest node, i.e.,

the node where the sum of its term sizes |s|+ |t| is minimal. In mkbTT this approach

can be achieved with the strategy

ssize/age(r) = r((data(ssum),?):(*,?))

where the parameter r ∈ [0, 1] controls the ratio of size-determined selections, e.g., a

size/age ratio of 2 : 3 corresponds to r = 0.6.

27

The “best-first” selection approach applied in Slothrop [?] corresponds to advancing

a process for which |E[N, p]| + |CP(R[N, p])| + |C[N, p]| is minimal. When combined

with, for example, a size/age ratio, this is expressed as follows:

sslothrop(r) = (el(min(e(#)+r(cp(#))+c(#))),ssize/age(r))

In mkbTT, the strategies smax and ssum turned out to be beneficial. These strategies

first restrict attention to processes where the number of symbols in E[N, p] and C[N, p]

is minimal, then select nodes with minimal data and finally go for a node which has

the greatest number of processes in its equation label:

ssum = (el(min(e(sum(ssum))+c(sum(ssum)))),(data(ssum),(-el(#),?))))

The strategy smax differs from ssum only in that ssum is replaced by smax. To use mkbTT

with other heuristics than those just described, a user-defined strategy can be specified

via a command line option.

6.5 Command Line Interface

The tool mkbTT is equipped with a simple command line interface. It expects an input

problem in TPTP3 [?] or TPDB format, where in the latter case both the old textual

and the newer XML format3 are supported.

A number of options allow to configure the tool. Both a global and a local timeout in

seconds can be specified using -t and -T. The termination prover is given as argument

to the -tp option. Alternatively, if TTT2 is used internally a termination strategy can

be supplied with the -s option. A selection strategy can be given with the option -ss,

using the grammar described in Section 6.4.

The critical pair criteria BCP, PCP, CCP and MCP can be applied by supplying

-cp with arguments blocked, prime, connected, and all, respectively. Isomorphism

checks are to be specified via the option -is with optional arguments rename, rename+,

perm, or perm+. With the suffix + we compare processes pairs in every iteration, other-

wise checks are only performed when a process is split.

By default mkbTT applies a heuristic to determine which isomorphism is potentially

applicable. Term indexing techniques used for rewriting and unification may be selected

with the options -ix and -ui together with one of nv, pi, dt, or—in the case of

rewriting—ct, referring to naive search, path indexing, discrimination trees, and code

trees respectively.

The option -kp expects a floating point value larger than 1 and allows to give a

process filtering rate. For example, mkbtt -kp 1.2 deletes all processes that exceed

the cost of the best process by 20%.

To control output, the flags -ct, -st and -p require mkbTT to print the completed

system, statistics and a proof in case of success. Furthermore, the tool offers a checking

mode where a file containing a rewrite system supplied via the option -ch is tested for

termination, confluence and for allowing rewrite proofs for the the input equalities.

As an example, the call

mkbtt -t 600 -T 5 -tp aprove -cp prime WSW06_CGE2.trs

runs the tool on CGE2 for at most 600 seconds using a script calling AProVE [?] for

termination checks with a timeout of 5 seconds, and employs the critical pair criterion

PCP.

3 http://www.termination-portal.org/

28

http://www.termination-portal.org/

6.6 Web Interface

Besides a command line interface, mkbTT can also be executed via a web interface. The

screenshot in Figure 9 provides an impression. Various options may be configured by

the user. A global timeout and a timeout for each termination check can be specified.

Termination may be either checked inside mkbTT using TTT2 functions or by applying

an external tool. If TTT2 is used internally, different predefined termination strategies

can be selected. This includes basic reduction orders as well as predefined strategies

combining dependency pairs, a dependency graph approximation, the subterm crite-

rion, and reduction pairs, which proved to be powerful and fast. In addition, also a

user-defined strategy may be supplied in the strategy language of TTT2. Alternatively,

termination checks can be performed externally with AProVE or MuTerm [?]. For the

retrieval of encompassments and variants, one of the implemented term indexing tech-

niques can be selected (path indexing, discrimination trees, code trees or naive search

in the node set). To restrict the deduced equational consequences, one of the imple-

mented critical pair criteria PCP, BCP, CCP or MCP can be selected. In case of CCP,

the weak connectivity test as described in Section 2 is performed. Users can control

isomorphism checks by selecting symbol renamings or term permutations, and specify

whether these checks are performed repeatedly or only when processes are split.

7 Experimental Results

We ran experiments on a server equipped with eight dual-core AMD Opteron R© pro-

cessors 885 running at a clock rate of 2.6GHz with 64GB of main memory. Our test set

comprises 101 problems collected from various papers. In the following paragraphs we

summarize results obtained for the whole test set, and illustrate our conclusions with

selected examples from that database. For this purpose, systems with prefix TPTP re-

fer to theories underlying unit equality problems in TPTP 3.6.0 [?], prefix SK90 refers

to [?, Section 3], WSW06 refers to the Slothrop [?] distribution, and BGK94 and C89 in-

dicate systems stemming from [?] and [?], respectively. The whole testbench as well as

the full experimental data can be obtained from the website. All experiments described

in the following tables featured a timeout of 600 seconds. If a successful completion

could not be achieved within that period this is marked by ∞, whereas ⊥ indicates

failure. If not stated otherwise, in all of the following experiments the following default

settings of mkbTT were used: We interface TTT2 internally with termination strategy

dp-lpo-kbo and a termination timeout of two seconds, apply selection strategy smax,

and use the critical pair criterion MCP. We use only renaming isomorphisms, controlled

by the auto heuristic. As term indexing techniques code trees and discrimination trees

allow to retrieve encompassments and unifiable terms, respectively.

Table 1 compares mkbTT with Slothrop, listing the time required for a success-

ful completion in seconds. The last two lines give the number of successes and the

average time required to compute a convergent system, respectively. Overall, mkbTT

solves about 15% more problems than Slothrop, and achieves completion on average

about three times faster. Nevertheless, due to different selection strategies which are

favourable for different problems there are also examples where Slothrop can produce a

convergent system but our tool (with its default strategy) cannot, such as the system

BGK94-M8.

29

Fig. 9 Web interface of mkbTT.

Termination

Table 2 shows results obtained with different termination strategies when interfacing

TTT2 internally. The strategies dp-kbo, dp-lpo, and dp-lpo-kbo combine dependency

pairs, a dependency graph approximation, the subterm criterion and some simple count-

ing techniques with reduction pair processors using KBO, LPO, and both, respectively.

The first three strategies apply plain LPO, KBO (with weights of two bits) and linear

polynomial interpretations (with coefficients of two bits). Columns (1) show the time

required for completion and columns (2) the percentage of time spent on termination.

30

mkbTT Slothrop

BGK94-D8 75.9 ∞
BGK94-M8 ∞ 12.1

SK90-3.27 30.4 446.2

TPTP-GRP496-1 63.6 281.1

WS06-proofreduct 183.4 ∞
WSW06-CGE2 6.7 460.4

WSW06-CGE3 45.2 ∞
successes 80 67

average time 18.3 65.8

Table 1 Comparing mkbTT with Slothrop.

lpo kbo poly dp-lpo dp-kbo dp-lpo-kbo

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

C89-A3 ∞ 234.0 17 ∞ 65.0 48 71.8 50 74.8 51

SK90-3.04 0.7 52 ∞ ∞ 2.6 53 ∞ 2.7 54

SK90-3.27 5.6 21 23.4 7 446.8 31 34.8 29 27.9 21 29.7 27

TPTP-GRP493-1 ∞ 37.5 15 ∞ ∞ 92.4 29 93.1 32

TPTP-GRP496-1 66.0 15 60.0 19 ∞ ∞ 60.0 32 63.4 37

WS06-proofreduct ∞ ∞ ∞ 174.9 93 179.5 92 182.4 92

WSW06-CGE3 ∞ ∞ ∞ 43.7 80 42.5 80 44.3 81

successes 69 67 41 76 78 80

average time 13.8 19.1 20.7 13.2 17.5 18.1

termination % 18 23 60 55 49 51

Table 2 Different termination strategies.

The use of plain reduction orders such as LPO or KBO often results in compara-

tively fast completions (as e.g. in the cases of SK90-3.04 and SK90-3.27 for LPO and

TPTP-GRP493-1 for KBO) because little time is spent on termination checks as can

be seen from the bottom line. On the other hand, plain reduction orders have compar-

atively limited power when it comes to orienting equations, which can prevent success

as in case of WS06-proofreduct or the CGE systems. Overall, this results in fewer com-

pletions than obtained with more complex strategies that offer a higher flexibility. We

could not find a system where polynomial interpretations are beneficial, and the over-

all success rate is considerably worse. The overall success rate turned out to be best

with dp-lpo-kbo, supposedly since a combined strategy can cope best with problems

where LPO is beneficial and problems where KBO is preferable. There are systems that

can be completed with a plain reduction order but not with a strictly more powerful

termination strategy employing dependency pairs, like TPTP-GRP496-1 using KBO.

This illustrates that more termination power does not necessarily result in a higher

chance for success because many possibilities for orienting equations also induce many

processes, which can deteriorate performance significantly.

Selection Strategies

Table 3 demonstrates the crucial impact of selection strategies in mkbTT. Columns

(1) give the time required for completion and columns (2) the number of control loop

31

smax ssum sslothrop ssize/age sold

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

BGK94-D8 195.0 112 ∞ 370.4 161 352.2 352 158.8 149

BGK94-D16 45.2 102 117.8 132 ∞ ∞ 152.1 151

BGK94-M8 ∞ 14.6 22 ∞ ∞ ∞
C89-A2 28.1 108 165.6 270 ∞ ∞ 138.8 109

SK90-3.07 86.2 161 ∞ ∞ ∞ ∞
SK90-3.22 ∞ ∞ ∞ 25.0 99 ∞
TPTP-GRP490-1 130.9 218 ∞ 564.0 182 ∞ ∞
WSW06-CGE3 46.8 49 439.1 325 232.0 87 138.2 136 132.0 85

successes 79 68 68 71 68

average time 22.6 31.2 61.8 52.8 35.7

Table 3 Different selection strategies.

iterations (i.e., selected nodes). In line with previous observations from the theorem

proving literature, we found that the selection strategy is critical for the success of a

run. While for some systems such as SK90-3.07, TPTP-GRP490-1 or the CGE examples

it is beneficial to use smax, there are also systems like BGK94-M8 which can only be

solved using ssum, and problems like SK90-3.22 for which a mere size/age ratio works

best. It thus seems impossible to determine a single best strategy. Since overall smax
could complete most systems and is fastest on average, it is used by default in a

specialized and faster implementation.

Critical Pair Criteria

Table 4 compares results obtained with mkbTT using the primality criterion PCP, the

connectedness criterion CCP and the mixed criterion MCP. Columns (1) list the time

required for completion, columns (2) the number of redundant critical pairs for the

successful process and columns (3) the total number of created nodes.

We found a single system, TPTP-GRP490-1, which could only be completed when

using PCP, CCP or MCP. For a number of systems the use of critical pair criteria

results in a considerably smaller number of nodes and consequently some speedup,

as in the cases of C89-A3, TPTP-GRP457-1 or TPTP-GRP496-1. This is also reflected

in the reduced average time for completion with CCP and MCP. However, there are

also examples such as BGK94-D12 which can no longer be completed when using PCP

(although CCP and MCP work), and examples such as TPTP-GRP484-1 where a less

powerful criterion results in less control loop iterations and thus a shorter completion

time. In these cases the selection strategy smax seems to be influenced by the critical

pair criterion in an unfortunate way: the effect of critical pair criteria for a certain

system was generally found to depend on the selection strategy. When comparing the

three criteria, it turns out that PCP detects the least number of critical pairs, but

performs redundancy checks very fast (see the bottom line). When summing up all

critical pairs filtered out for successful processes, CCP is twice as effective as PCP.

The criterion BCP is a little less effective than PCP, relevant results can be obtained

from the website. Overall MCP turned out to be most beneficial.

32

none PCP CCP MCP

(1) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

BGK94-D12 78.4 4884 ∞ 23.6 24 1946 23.1 38 1877

C89-A3 96.3 2168 73.7 24 2098 93.5 24 2045 76.4 54 2009

TPTP-GRP457-1 7.9 777 2.8 17 460 4.8 29 590 4.0 33 512

TPTP-GRP484-1 343.6 15874 53.0 35 4225 111.2 76 5815 105.1 80 5571

TPTP-GRP490-1 ∞ 130.8 67 5371 80.0 155 3683 90.4 174 3600

TPTP-GRP496-1 80.3 5444 77.4 60 4702 65.3 100 3998 64.8 104 3927

WSW06-CGE3 44.0 2240 45.2 14 2217 44.8 29 2141 44.8 29 2129

successes 79 78 80 80

average time 21.6 23.5 18.7 18.4

redundant CPs 834 1529 1605

time to check 5.1 32.7 28.4

Table 4 Different critical pair criteria.

Term Indexing

Table 5 compares the term indexing techniques implemented in mkbTT to retrieve

variants and encompassments. Here nv abbreviates naive filtering of the node database,

pi refers to path indexing, dt refers to discrimination trees and ct to code trees.

Columns (1) list the time required for completion while columns (2) and (3) give the

percentage of time spent on retrieval and rewrite operations, respectively. While all

indexing techniques allow to complete the same number of systems, the time consumed

by retrieval operations can be reduced significantly when using discrimination trees or

code trees. Table 5 singles out some examples where the gain is especially significant.

When comparing the time required for rewrite steps, discrimination trees fall back

behind code trees since the retrieved candidate nodes still have to be checked for

subsuming the query term. This is not required when using a technique achieving

perfect filtering such as code trees.

The bottom lines sum up retrieval times over the whole database and show that al-

though there is little difference concerning variant retrieval (which is negligible anyway)

the time for encompassment retrieval can be reduced by more than 90% using discrim-

ination trees or code trees. As expected, maintenance operations such as insertion and

removal consume hardly any time.

Concerning the retrieval of unifiable terms in deduce operations, the use of term

indexing techniques turned out to be less influential. Compared to naive filtering, dis-

crimination trees decrease the average share of time spent on retrieval from 1% to

0.3%.

Isomorphisms

Isomorphism checks can be performed either only on process splits, or repeatedly for

every process pair. Table 6 compares both possibilities for renamings (ren) and argu-

ment permutations (ap) with the setting where no isomorphism checks are used (a +

indicates repeated checks). The setting auto refers to mkbTT’s default strategy, which

determines at the beginning of a completion run whether the initial equations allow for

a nontrivial renaming or argument permutation. In this case repeated checks are per-

33

nv pi dt ct

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

BGK94-D8 173.9 6 19 180.8 3 21 160.1 1 15 151.8 <1 13

C89-A2 29.3 6 17 29.6 4 16 27.5 1 12 25.5 <1 11

SK90-3.07 48.6 13 33 50.8 6 33 44.4 2 26 40.8 1 24

TPTP-GRP481-1 40.7 12 36 42.0 7 42 34.8 2 33 32.9 1 28

successes 79 79 79 79

average time 21.1 21.1 19.0 17.9

time/variants 4.2 3.9 3.8 4.1

time/encompassment 104.8 51.5 11.5 6.8

time/maintenance 0.8 1.2 0.8 0.5

Table 5 Different term indexing techniques.

none ren ren+ ap ap+ auto

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

C89-A3 64.8 174 65.6 174 77.1 161 65.4 174 86.4 174 77.4 161

SK90-3.02 0.1 7 0.1 7 0.1 7 0.1 3 0.1 3 0.1 7

SK90-3.28 101.7 499 102.8 499 157.6 385 102.4 499 116.2 499 156.3 385

SK90-3.29 3.5 128 2.6 97 3.0 73 3.5 128 4.5 128 3.0 73

TPTP-GRP011-4 3.0 13 1.8 6 1.8 6 3.0 13 3.1 13 1.8 6

WSW06-CGE2 37.7 50 37.6 50 7.0 11 37.5 50 48.7 50 7.0 11

WSW06-CGE3 175.1 163 176.6 163 46.0 35 176.8 163 204.9 163 46.0 35

successes 80 80 80 80 80 80

average time 18.3 18.3 23.1 18.3 27.3 17.8

Table 6 Different isomorphisms.

formed throughout the deduction. Columns (1) give the time required for completion

in seconds, and columns (2) the number of processes emerging in the course of a run.

Renaming checks, especially when performed repeatedly, turned out to be useful

for a number of problems, in particular the CGE systems. Also for some string systems

like SK90-3.28 and SK90-3.29, and TPTP-GRP011-4 the number of processes could be

reduced, although this does not always result in faster completions due to the time

required for checking. Argument permutations were useful for just two small systems

in the benchmark set, one of which is SK90-3.02 where the number of processes could

be halved.

On the other hand, especially repeated checks for isomorphisms can be costly if

no isomorphic process pairs appear. This is for example the case for SK90-3.28 and

the CGE systems when used with argument permutations. Overall the auto setting

prevails concerning number of successes and average time, although the heuristic does

not always go for the best choice.

Novel Completions

While Slothrop was the first completion tool to handle CGE2 (in more than 200 seconds),

mkbTT can also complete the systems CGE3, CGE4 and CGE5 describing the theory

of 3, 4 and 5 commuting group endomorphisms within 18, 145 and 35796 seconds,

34

mkbTT Maxcomp

standard LPO KBO LPO KBO

BGK94-D8 76.0 24.3 238.8 0.5 ∞
C89-A3 74.8 ∞ 234.0 2.3 407.6

OKW95-dt1 2.1 1.5 2.7 40.8 ∞
SK90-3.22 ∞ ∞ ∞ 3.2 5.7

WS06-proofreduct 182.4 ⊥ ∞ ⊥ ∞
WSW06-CGE2 6.7 ∞ ∞ ∞ ∞
WSW06-equiv-proofs 5.5 ∞ ∞ ∞ ∞
successes 80 69 67 77 61

average time 18.1 13.8 19.1 3.6 8.6

Table 7 Comparison of mkbTT and Maxcomp.

respectively. Our tool also produced the first convergent TRS for the proof reduction

system presented in [?].

8 Conclusion

The present paper reports on multi-completion with termination tools, a completion

approach that combines the use of automatic termination provers with completion

using multiple reduction orders. The resulting method offers a novel degree of automa-

tion as users do not have to supply a suitable order, and provides increased flexibility

concerning the orientation of rules. We described the inference system, illustrated the

approach by means of an example run, and formally proved its correctness. We also

commented on new insights into the method’s completeness. Critical pair criteria, a

classical means to filter equational consequences in standard completion procedures,

were carried over to the present setting. As further improvement isomorphisms were

described, and shown to not compromise completeness. We gave a detailed account

of the implementation of our approach in the tool mkbTT, reporting on its control

flow and implementation issues such as term indexing techniques and selection strate-

gies. An outline of both the web and command line interface provides insight into the

tool’s usage. We concluded with detailed experimental results which prove the power of

multi-completion when comparing to Slothrop and show how the improvements allowed

mkbTT to achieve new completions of challenging problems such as systems of the CGE

family.

Very recently, the tool Maxcomp took a novel approach to completion by encod-

ing the whole process as a satisfiability problem [?]. Although currently restricted to

reduction orders like LPO, KBO and MPO where orientability can be encoded as a

satisfaction problem, the resulting tool is fully automatic in that users do not need

to supply a concrete order. Moreover, Maxcomp circumvents the choice of a concrete

selection strategy, which is a critical parameter for both mkbTT and Slothrop. It can

thus also never fail due to premature orientation, in contrast to mkbTT as illustrated

by Example 1. This is reflected in the results presented in Table 7, where Maxcomp

solves more problems than our tool when restricting the termination strategy to LPO.

35

mkbTT Maxcomp with LPO Maxcomp with KBO

successes 1109 821 812

Table 8 Comparison of mkbTT and Maxcomp on a subset of TPDB.

Even with its more complex standard termination strategy, mkbTT can complete

only a few more problems, although Maxcomp of course fails on challenging prob-

lems like WSW06-CGE2 and WS06-proofreduct which cannot be completed using plain

LPO or KBO. However, the difference grows when a benchmark set requiring more

sophisticated termination techniques is considered, as shown in Table 8. Here the 3061

problems in TPDB version 7 were considered which are not already confluent and could

be completed by at least one of the tools within 600 seconds.

The approach underlying mkbTT has been extended to ordered completion [?]

although a ground-confluent system is in this setting only obtained when restricting to

termination techniques that entail total termination. Completion modulo theories also

benefits from a multi-completion approach. Termination tools that support termination

analysis modulo theories can be used here. For the important AC case, this approach is

implemented in the tool mascott [?]. It is to be investigated whether termination tools

can be used in other variants of completion, such as normalized completion [?]. The

extension to other calculi of automated reasoning which classically depend on reduction

orders, for example paramodulation [?], is subject to future work, too.

Acknowledgments.

We thank the anonymous reviewers for helpful comments.

36

	Introduction
	Preliminaries
	Multi-Completion with Termination Tools
	Critical Pair Criteria
	Isomorphisms
	Implementation
	Experimental Results
	Conclusion

