
Termination Tools in Ordered Completion?

Sarah Winkler and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. Ordered completion is one of the most frequently used calculi
in equational theorem proving. The performance of an ordered comple-
tion run strongly depends on the reduction order supplied as input. This
paper describes how termination tools can replace fixed reduction or-
ders in ordered completion procedures, thus allowing for a novel degree
of automation. Our method can be combined with the multi-completion
approach proposed by Kondo and Kurihara. We present experimental re-
sults obtained with our ordered completion tool omkbTT for both ordered
completion and equational theorem proving.

1 Introduction

Unfailing completion introduced by Bachmair, Dershowitz and Plaisted [2] aims
to transform a set of equations into a ground-confluent and terminating system.
Underlying many completion-based theorem proving systems, it has become a
well-known calculus in automated reasoning. In contrast to standard comple-
tion [7], ordered completion, as it is called nowadays, always succeeds (in theory).
The reduction order supplied as input is nevertheless a critical parameter when
it comes to performance issues.

With multi-completion, Kondo and Kurihara [9] proposed a completion cal-
culus that employs multiple reduction orders in parallel. It is applicable to both
standard and ordered completion, and more efficient than a parallel execution
of the respective processes. Wehrman, Stump and Westbrook [16] introduced a
variant of standard completion that utilizes a termination prover instead of a
fixed reduction order. The tool Slothrop demonstrates the potential of this ap-
proach by completing systems that cannot be handled by traditional completion
procedures. In [11] it was shown how multi-completion and the use of termina-
tion tools can be combined. When implemented in the tool mkbTT, this approach
could cope with input systems that were not completed by Slothrop.

The current paper describes how termination tools can replace reduction
orders in ordered completion procedures. In contrast to standard completion
using termination provers, two challenges have to be faced. First of all, ordered
completion procedures require the termination order to be totalizable for the
theory. When using termination tools, the order which is synthesized during the

? This research is supported by FWF (Austrian Science Fund) project P18763. The
first author is supported by a DOC-fFORTE fellowship of the Austrian Academy of
Sciences.



termination proving process need not have this property. Second, the standard
notion of fairness, which determines which (extended) critical pairs need to be
computed to ensure correctness, depends on the (final) reduction order, which
is not known in advance. We explain how to overcome these challenges, also in
a multi-completion setting. We further show how ordered multi-completion with
termination tools can be used for equational theorem proving.

The remainder of the paper is organized as follows. Section 2 summarizes
definitions, inference systems and main results in the context of (ordered) com-
pletion which will be needed in the sequel. Section 3 describes the calculus oKBtt
for ordered completion with termination tools. The results obtained in Section 3
are extended to oMKBtt, a calculus for ordered multi-completion with termina-
tion tools, in Section 4. More application-specific, we outline in Section 5 how
oMKBtt can be used for refutational theorem proving. In Section 6 we briefly
describe our tool omkbTT that implements the calculus oMKBtt. Experimental
results are given in Section 7 before we add some concluding remarks in Sec-
tion 8. For reasons of space, several proofs are missing. They can be found in
the report version of the paper which can be obtained from the accompanying
website.1

2 Preliminaries

We consider terms T (F ,V) over a finite signature F and a set of variables V.
Terms without variables are ground. Sets of equations between terms will be
denoted by E and are assumed to be symmetric. The associated equational the-
ory is denoted by ≈E . As usual a set of directed equations l → r is called a
rewrite system and denoted by R, and →R is the associated rewrite relation.
We write s l→r−−→p t to express that s →R t was achieved by applying the rule
l→ r ∈ R at position p. The relations →+

R, →∗R and ↔R denote the transitive,
transitive-reflexive and symmetric closure of →R. The smallest equivalence re-
lation containing →R, which coincides with the equational theory ≈R if R is
considered as a set of equations, is denoted by ↔∗R. Subscripts are omitted if
the rewrite system or the set of equations is clear from the context.

A rewrite system R is terminating if it does not admit infinite rewrite se-
quences. It is confluent if for every peak t ∗← s→∗ u there exists a term v such
that t →∗ v ∗← u. R is ground-confluent if this property holds for all ground
terms s. A rewrite system R with the property that for every rewrite rule l→ r
the right-hand side r is in normal form and the left-hand side l is in normal
form with respect to R \ {l → r} is called reduced. A rewrite system which is
both terminating and (ground-)confluent is called (ground-)complete. We call R
complete for a set of equations E if R is complete and ↔∗R coincides with ≈E .

A proper order � on terms is a rewrite order if it is closed under contexts
and substitutions. A well-founded rewrite order is called a reduction order. The
relation →+

R is a reduction order for every terminating rewrite system R. A

1 See http://cl-informatik.uibk.ac.at/users/swinkler/omkbtt.

2



deduce2
E ,R

E ∪ {s ≈ t},R if s
r1←l1←−−−− u

l2→r2−−−−→ t where l1 ≈ r1, l2 ≈ r2 ∈
R ∪ E and ri 6� li

simplify2
E ∪ {s ≈ t},R
E ∪ {s ≈ u},R if t

lσ→rσ−−−−→ u using l ≈ r ∈ E where t ·B la and
lσ � rσ

compose2
E ,R∪ {s→ t}
E ,R∪ {s→ u} if t

lσ→rσ−−−−→ u using l ≈ r ∈ E and lσ � rσ

collapse2
E ,R∪ {t→ s}
E ∪ {u ≈ s},R if t

lσ→rσ−−−−→ u using l ≈ r ∈ E where t ·B l and
lσ � rσ

a ·B denotes the strict encompassment relation

Fig. 1. Additional inference rules for ordered completion (oKB).

reduction order � is complete for a set of equations E if s � t or t � s holds
for all ground terms s and t that satisfy s ≈E t. In the sequel we will consider
lexicographic path orders (LPO [6]), Knuth-Bendix orders (KBO [7]), multiset
path orders (MPO [4]) and orders induced by polynomial interpretations [10].
The first two are total on ground terms if the associated precedence is total.
Orders induced by MPOs and polynomial interpretations can always be extended
to an order with that property. Reduction orders that are total on ground terms
are of course complete for any theory.

2.1 Ordered Completion

We assume that the reader is familiar with standard completion, originally pro-
posed by Knuth and Bendix [7] and later on formulated as an inference system [1].
This inference system will in the sequel be referred to as KB. For ordered com-
pletion (oKB) [2] the inference system of standard completion is extended with
the rules depicted in Fig. 1, where � denotes the reduction order used.

An inference sequence (E0,R0) ` (E1,R1) ` (E2,R2) . . . is called a deduction
with persistent equalities Eω =

⋃
i

⋂
j>i Ej and rules Rω =

⋃
i

⋂
j>iRj .

Definition 1. An equation s ≈ t is an extended critical pair with respect to a
set of equations E and a reduction order � if there are a term u and rewrite steps
u

l1σ→r1σ−−−−−−→ε s and u
l2σ→r2σ−−−−−−→p t such that l1 ≈ r1, l2 ≈ r2 ∈ E and riσ 6� liσ.

The set of extended critical pairs among equations in E is denoted by CP�(E).

An oKB deduction is fair if CP�(Eω ∪Rω) ⊆
⋃
i Ei. The following theorems

from [2] state the correctness and completeness of oKB.

Theorem 2. Let E be a set of equations and � a reduction order that can be
extended to a reduction order > which is complete for E. Any fair oKB run will

3



orient
E ∪ {s ≈ t},R, C

E ,R∪ {s→ t}, C ∪ {s→ t} if C ∪ {s→ t} terminates

Fig. 2. The orient inference rule in KBtt.

on inputs (E ,∅) and � generate a system Eω ∪Rω that is ground-complete with
respect to >.

An oKB completion procedure is simplifying if for all inputs E0 and � the
rewrite systemRω is reduced and all equations u ≈ v in Eω are both unorientable
with respect to � and irreducible in Rω.

Theorem 3. Assume R is a reduced and complete rewrite system for E that is
contained in a reduction order � which can be extended to a complete reduction
order for E. Any fair and simplifying oKB run that starts from (E ,∅) using �
yields Eω = ∅ and Rω = R.

In the requirement for a reduction order that is totalizable for the theory,
ordered completion differs from standard completion. The more recent approach
of Bofill et al. [3] lacks this restriction, but the obtained completion procedure
is only of theoretical interest as it relies on enumerating all ground equational
consequences of the theory E .

2.2 Completion with Termination Tools

The inference system KBtt [16] for standard completion with termination tools
operates on tuples (E ,R, C) consisting of a set of equations E , and rewrite systems
R and C. The latter is called the constraint system. KBtt consists of the orient
rule depicted in Fig. 2 together with the remaining KB rules where the constraint
component is not modified.

Correctness and completeness of KBtt follow from the fact that any run of
standard completion can be simulated by KB and vice versa [16].

2.3 Completion with Multiple Reduction Orders

Multi-completion (MKB), introduced by Kurihara and Kondo [9] considers a set
of reduction orders O = {�1, . . . ,�n}. To share inferences for different orders,
a special data structure is used.

Definition 4. A node is a tuple 〈s : t, R0, R1, E〉 where the data s, t are terms
and the labels R0, R1, E are subsets of O such that R0, R1 and E are mutually
disjoint, s �i t for all �i ∈ R0, and t �i s for all �i ∈ R1.

The intuition is that given a node 〈s : t, R0, R1, E〉, all orders in the equation
label E consider the data as an equation s ≈ t while orders in the rewrite labels

4



orient
N ∪ {〈s : t, R0, R1, E ]R〉}
N ∪ {〈s : t, R0 ∪R,R1, E〉}

if R 6= ∅ and s �i t for all �i ∈ R

Fig. 3. orient in MKB.

R0 and R1 regard it as rewrite rules s → t and t → s, respectively. Hence
〈s : t, R0, R1, E〉 is identified with 〈t : s,R1, R0, E〉.

MKB is described by an inference system consisting of five rules. Fig. 3 shows
the orient inference rule. As shown in [9], slight modifications to the rewrite
inference rules allow to perform ordered multi-completion (oMKB).

3 Ordered Completion with Termination Tools

This section describes how the ideas of KBtt can be incorporated into ordered
completion procedures. The derived method will in the sequel be referred to as
oKBtt. It is described by an inference system consisting of the rules depicted in
Fig. 4 together with orient, delete, simplify, compose and collapse from KBtt.

deduce2
E ,R, C

E ∪ {s ≈ t},R, C if s←E∪R u→E∪R t

simplify2
E ∪ {s ≈ t},R, C

E ∪ {s ≈ u},R, C ∪ {lσ → rσ} if t
lσ→rσ−−−−→ u using l ≈ r ∈ E where

t ·B l and C ∪ {lσ → rσ} terminates

compose2
E ,R∪ {s→ t}, C

E ,R∪ {s→ u}, C ∪ {lσ → rσ} if t
lσ→rσ−−−−→ u using l ≈ r ∈ E and

C ∪ {lσ → rσ} terminates

collapse2
E ,R∪ {t→ s}, C

E ∪ {u ≈ s},R, C ∪ {lσ → rσ} if t
lσ→rσ−−−−→ u using l ≈ r ∈ E where

t ·B l and C ∪ {lσ → rσ} terminates

Fig. 4. Ordered completion with termination tools (oKBtt).

An inference sequence (E0,R0, C0) ` (E1,R1, C1) ` (E2,R2, C2) ` · · · with
respect to oKBtt is called an oKBtt run and denoted by γ. Persistent equations
Eω and rules Rω are defined as for oKB. The set Cω =

⋃
i Ci collects persistent

constraint rules. We write (E0,R0) `∗ (Eα,Rα) to express that the run has length
α, where α = ω if it is not finite.

Example 5. If oKBtt is run on the input equations g(f(x, b)) ≈ a and f(g(x), y) ≈
f(x, g(y)) and all termination checks are performed with respect to the polyno-
mial interpretation [f](x, y) = x+ 2y + 1, [g](x) = x+ 1 and [a] = [b] = [c] = 0,

5



the following system is derived:

E =

 f(f(x, b), a)≈ f(c, f(y, b))
f(f(x, b), a)≈ f(f(y, b), a)
f(c, f(x, b))≈ f(c, f(y, b))

 R =

 g(f(x, b))→ a
f(x, g(y))→ f(g(x), y)

f(g(x), f(y, b))→ f(x, c)


However, if the second equation would be oriented from left to right, the oKBtt
run diverges. Since f(x, g(y)) → f(g(x), y) cannot be oriented by any KBO or
LPO which compares lists of subterms only from left to right, ordered completion
tools that do not support other termination methods (e.g. Waldmeister) cannot
derive a ground-complete system.

Before showing that oKBtt runs can be simulated by ordered completion
runs, and vice versa, we note that oKBtt is sound in that it does not change the
equational theory.

Lemma 6. For every oKBtt step (E ,R, C) ` (E ′,R′, C′) the relations↔∗E∪R and
↔∗E′∪R′ coincide.

Lemma 7. For every finite oKBtt run (E0,R0, C0) `∗ (En,Rn, Cn) such that
R0 ⊆ →+

C0 , there is a corresponding oKB run (E0,R0) `∗ (En,Rn) using the
reduction order →+

Cn
.

Proof. Let �n denote→+
Cn

. We use induction on n. The claim is trivially true for
n = 0. For a run of the form (E0,R0, C0) `∗ (En,Rn, Cn) ` (En+1,Rn+1, Cn+1),
the induction hypothesis yields a corresponding oKB run (E0,R0) `∗ (En,Rn)
using the reduction order �n. Since constraint rules are never removed we have
Ck ⊆ Cn+1 for all k ≤ n, so the same run can be obtained with �n+1. Case
distinction on the applied oKBtt rule shows that a step (En,Rn) ` (En+1,Rn+1)
using �n+1 is possible.

If orient added the rule s→ t then s �n+1 t holds by definition, so oKB can
apply orient as well. In case simplify2, compose2 or collapse2 was applied using
an instance lσ → rσ of an equation in En, we have lσ �n+1 rσ by definition of
the inference rules, hence the respective oKB step can be applied. Clearly, in the
remaining cases the inference step can be simulated by the corresponding oKB
rule since no conditions on the order are involved. ut

Lemma 7 does not generalize to infinite runs; as also remarked in [16], →+
Cω

is not necessarily a reduction order since an infinite union of terminating rewrite
systems need not be terminating.

Simulating oKB by oKBtt is also complete as stated below. The straightfor-
ward proof can be found in the report version. It uses the fact that the reduction
order supplied to oKB can be used for termination checks.

Lemma 8. For every oKB run (E0,R0) `∗ (Eα,Rα) of length α ≤ ω using a
reduction order �, there exists an oKBtt run (E0,R0, C0) `∗ (Eα,Rα, Cα) such
that Cα ⊆ � holds.

6



Totalizability

Lemma 7 shows that an oKBtt run resulting in the final constraint system C can
be simulated by ordered completion using the reduction order →+

C . If this order
should play the role of � in Theorem 2 then it has to be contained in a reduction
order > which is complete for the theory. Unfortunately, such an order does not
always exist. In the proof of the extended critical pair lemma [2], totalizability of
the reduction order is needed to guarantee joinability of variable overlaps. Thus,
if an oKBtt procedure outputs E , R and C such that →+

C cannot be extended to
a complete order for the theory, ground-confluence of (E ,R) is not guaranteed.

Example 9. A fair oKBtt run starting from

E0 =
{

f(a + c)≈ f(c + a) a≈ b
g(c + b)≈ g(b + c) x+ y ≈ y + x

}
might produce the following result:

E = {x+ y ≈ y + x} R =

 a→ b
f(b + c)→ f(c + b)
g(c + b)→ g(b + c)


with C = R ∪ {f(a + c) → f(c + a)}. No reduction order > extending →+

C can
orient the ground instance c + a ≈ a + c from left to right. So a + c > c + a must
hold. This gives rise to the variable overlap b + c ← a + c → c + a → c + b. As
b + c and c + b have to be incomparable in > the overlap is not joinable.

To solve this problem we restrict the termination checks in oKBtt inferences.

Definition 10. An oKBttP procedure refers to any program which implements
the inference rules of oKBtt and employs the termination strategy P for termina-
tion checks in orient, simplify2, compose2 and collapse2 inferences. An oKBtttotal

procedure is an oKBttP procedure where P ensures total termination [15, Section
6.3.2] of the checked system.

Examples of such termination strategies are LPO, KBO and MPO with total
precedences as well as polynomial interpretations over N.

Thus, for any constraint system Cn derived by an oKBtttotal procedure in
finitely many steps, there is a reduction order > extending →+

Cn
which is total

on ground terms.

Fairness

Theorem 2 requires a run to be fair, meaning that all extended critical pairs
among persistent equations and rules are considered. In the context of oKBtt,
the set of extended critical pairs cannot be computed during a run since the final
reduction order →+

C is not known in advance.
We solve this problem by observing that any reduction order > which is

total on ground terms contains the embedding relation Bemb [18, Proposition 2].
Since CP>(E) ⊆ CP�(E) whenever � ⊆ >, the idea is now to over-approximate
CP>(Eω ∪Rω) by CPBemb

(Eω ∪Rω). This motivates the following definition.

7



Definition 11. A run γ is sufficiently fair if CPBemb
(Eω ∪Rω) ⊆

⋃
i Ei.

It follows that a sufficiently fair run of oKBtttotal is fair with respect to (any
total extension of) the final reduction order →+

C .

3.1 Correctness and Completeness

With the above considerations, we can carry over the correctness result of ordered
completion to the oKBtttotal setting.

Theorem 12. If (E ,R, C) `∗ (En,Rn, Cn) is a sufficiently fair, finite oKBtttotal

run with R ⊆ →+
C then En ∪ Rn is ground-complete for E with respect to any

reduction order > total on ground terms that extends →+
Cn

.

Proof. By Lemma 7, there exists a corresponding oKB run γ′ using the reduction
order →+

Cn
. Any reduction order > which is total on ground terms contains the

embedding relation. Hence CP>(En ∪ Rn) ⊆ CPBemb
(En ∪ Rn) and as a conse-

quence the sufficiently fair run γ′ is also fair with respect to >. By correctness
of ordered completion, En ∪Rn is ground-complete for E with respect to >. ut

Lemma 8 states that oKBtt is complete in that any oKB run γ can be simu-
lated by an oKBtt run γ′. If γ is fair then also γ′ is fair, although it need not be
sufficiently fair. Nevertheless, sufficiently fair oKBtttotal procedures are complete
for deriving complete systems if additional equations are considered.

Theorem 13. Assume R is a complete system for E and � is a reduction order
containing R which can be extended to a reduction order that is total on ground
terms. There exists a sufficiently fair oKBtttotal run starting from (E ,∅,∅) which
produces the result Rω = R and Eω = ∅.

Proof. According to Theorem 3, there exists an oKB run γ producing Rω = R
and Eω = ∅. By Lemma 8 there is a corresponding oKBtt run (E ,∅,∅) `∗
(∅,R, C). This run can be extended to (E ,∅,∅) `∗ (∅,R, C) `∗ (E ′,R, C) by
deducing the remaining equations in E ′ = CPBemb

(Eω ∪Rω) \ CP�(Eω ∪Rω) in
order to make it sufficiently fair. Since R is complete for E , all equations in E ′
can be simplified to trivial ones which allows to derive the result (∅,R, C). ut

4 Ordered Multi-Completion with Termination Tools

Ordered multi-completion with termination tools (oMKBtt) simulates multiple
oKBtt processes. Similar as in MKBtt, inference steps among these processes are
shared. For this purpose, a process p is modeled as a bit string in L((0 + 1)∗). A
set of processes P is called well-encoded if there are no processes p, p′ ∈ P such
that p is a proper prefix of p′.

Definition 14. An oMKBtt node 〈s : t, R0, R1, E, C0, C1〉 consists of a pair of
terms s : t (the data) and well-encoded sets of processes R0, R1, E, C0, C1 (the
labels) such that R0 ∪ C0, R1 ∪ C1 and E are mutually disjoint.

8



orewrite1
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

N ∪ { 〈s : t, R0 \ (R ∪ S), R1, E \R,C0, C1〉
〈s : u,R0 ∩ (R ∪ S),∅, E ∩R,∅,∅〉
〈lσ : rσ,∅,∅,∅, S,∅〉 }

if – 〈l : r,R, . . . , E′′, . . . 〉 ∈ N and t
lσ→rσ−−−−→ u where t and l are variants

– S ⊆ E′′ ∩R0 such that Cp(N ) ∪ {lσ → rσ} terminates for all p ∈ S
– ((R0 ∪ E) ∩R) ∪ S 6= ∅

orewrite2
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

N ∪ { 〈s : t, R0 \ (R ∪ S), R1 \ (R ∪ S), E \ (R ∪ S), C0, C1〉
〈s : u,R0 ∩ (R ∪ S),∅, (E ∪R1) ∩ (R ∪ S),∅,∅〉
〈lσ : rσ,∅,∅,∅, S,∅〉 }

if – 〈l : r,R, . . . , E′′, . . . 〉 ∈ N and t
lσ→rσ−−−−→ u where t ·B l

– S ⊆ E′′ ∩ (R0 ∪R1 ∪ E) such that Cp(N ) ∪ {lσ → rσ} terminates for
all p ∈ S

– (R0 ∪R1 ∪ E) ∩ (R ∪ S) 6= ∅

odeduce
N

N ∪ { 〈s : t,∅,∅, (R ∪ E) ∩ (R′ ∪ E′),∅,∅〉 }
if – 〈l : r,R, . . . , E, . . . 〉, 〈l′ : r′, R′, . . . , E′, . . . 〉 ∈ N

– s
l→r←−− u l′→r′−−−−→ t and (R ∪ E) ∩ (R′ ∪ E′) 6= ∅

Fig. 5. The orewrite and odeduce inference rules in oMKBtt.

The set of processes occurring in a node n and a node set N are denoted by
P(n) and P(N ). The projection of a node set N to a process p is defined below.

Definition 15. Given a node n = 〈s : t, R0, R1, E, C0, C1〉 and a process p, let
Pp denote the set of prefixes of p, and set

Ep(n) =

{
{s ≈ t} if Pp ∩ E 6= ∅
∅ otherwise

Rp(n) =


{s→ t} if Pp ∩R0 6= ∅
{t→ s} if Pp ∩R1 6= ∅
∅ otherwise

The set Cp(n) is defined analogous to Rp(n). Furthermore, we define Ep(N ) =⋃
n∈N Ep(n), Rp(N ) =

⋃
n∈N Rp(n) and Cp(N ) =

⋃
n∈N Cp(n).

Note that the above projections are well-defined if all process sets in N
are well-encoded. The inference system oMKBtt works on sets of nodes N and
consists of the rules given in Fig. 5 together with orient, delete and (optionally)
subsume and gc as defined for MKBtt [12]. Note that all inference rules preserve
well-encodedness and the disjointness condition on labels. Given an oMKBtt run

9



N0 ` N1 ` N2 ` . . . , the set Nω =
⋃
i

⋂
j>iNj collects persisting nodes. For a set

of equations E , the initial node set NE consists of all nodes 〈s : t,∅,∅, {ε},∅,∅〉
such that s ≈ t belongs to E .

Example 16. We illustrate oMKBtt on the equations of Example 5. We start
with the initial node set

N0 =
{
〈g(f(x, b)) : a,∅,∅, {ε},∅,∅〉 (1)
〈f(g(x), y) : f(x, g(y)),∅,∅, {ε},∅,∅〉 (2)

}
In the first step one may orient node (1), where only the direction from left to
right is possible. Concerning the second node, both constraint systems

C0 = { g(f(x, b))→ a, f(g(x), y)→ f(x, g(y)) }
C1 = { g(f(x, b))→ a, f(x, g(y))→ f(g(x), y) }

terminate, the first using LPO with precedence f > g > a and the second with
the polynomial interpretation from Example 5. Hence the process ε is split:

g(f(x, b)) : a, {0, 1},∅,∅, {0, 1},∅〉 (1)
〈f(g(x), y) : f(x, g(y)), {0}, {1},∅, {0}, {1}〉 (2)

Starting from the overlap g(f(x, g(b))) ← g(f(g(x), b)) → a between nodes (1)
and (2), if process 0 is advanced further then infinitely many nodes of the form
〈g(f(x, gn(b))) : a, {0},∅,∅, {0},∅〉 are generated. On the other hand, similarly
as in Example 5, one can deduce f(g(x), f(y, b)) ≈ f(x, c), orient the correspond-
ing new node (3) and add the critical pair (4) between nodes (2) and (3). It
remains to consider the overlaps between node (4) and itself to obtain

〈f(g(x), f(y, b)) : f(x, c), {1},∅,∅, {1},∅〉 (3)
〈f(f(x, b), a) : f(a, f(y, b)),∅,∅, {1},∅,∅〉 (4)
〈f(f(x, b), a) : f(f(y, b), a),∅,∅, {1},∅,∅〉 (5)
〈f(a, f(x, b)) : f(a, f(y, b)),∅,∅, {1},∅,∅〉 (6)

at which point process 1 is saturated. Applying the projections E1(N ) and
R1(N ) to the current node setN = {(1), . . . , (6), . . . } yields the ground-complete
system (E ,R) derived in Example 5.

Intuitively, orewrite1 simulates the oKBtt inferences compose, simplify and
compose2 whenever t and l are variants while orewrite2 models these inference
steps together with collapse, simplify2 and collapse2 if t ·B l. To express this re-
lationship formally in Lemmata 18 and 19 below, we need notation to refer to
process splitting.

Definition 17. If an oMKBtt inference step N ` N ′ applies orient, then the
set of processes S which were divided into two child processes is called the step’s
split set. In the other cases, the split set is empty. For a step with split set S
and p′ ∈ P(N ′), the predecessor of p′ is defined as

predS(p′) =

{
p if p′ = p0 or p′ = p1 for some p ∈ S
p′ otherwise

10



The longish but straightforward proofs of the following lemmata can be found
in the report version. In Lemma 18, `= denotes the reflexive closure of the oKBtt
inference relation `.

Lemma 18. If N ` N ′ is an oMKBtt step with split set S then

(Ep(N ), Rp(N ), Cp(N )) `= (Ep′(N ′), Rp′(N ′), Cp′(N ′))

is a valid oKBtt inference for all p′ ∈ P(N ′), where p = predS(p′). Moreover,
the strict part ` holds for at least one p′ ∈ P(N ′).

Lemma 19. Consider an oKBtt inference step (E ,R, C) ` (E ′,R′, C′). Assume
there exist a node set N and a process p such that E = Ep(N ), R = Rp(N )
and C = Cp(N ). Then there are a node set N ′, an inference step N ` N ′ with
split set S, and a process p′ ∈ P(N ′) such that p = predS(p′), E ′ = Ep′(N ′),
R′ = Rp′(N ′) and C′ = Cp′(N ′).

Projecting an oMKBtt run γ of length α to a process p ∈ P(Nα) thus yields a
valid oKBtt run, which is denoted by γp in the sequel. Before correctness can be
addressed, we adapt the definition of (sufficient) fairness and note that oMKBtt
is sound.

Definition 20. A run γ of length α is sufficiently fair if either α < ω and
γp is sufficiently fair for at least one process p ∈ P(Nα), or α = ω and γp is
sufficiently fair for all p ∈ P(Nα).

Lemma 21. Consider an oMKBtt step N ` N ′ with split set S and a process
q ∈ P(N ′) with predecessor p = predS(q). For E = Ep(N ), R = Rp(N ) and
E ′ = Eq(N ′), R′ = Rq(N ′) the relations ↔∗E∪R and ↔∗E′∪R′ coincide.

Similar to the oKBtt case, an oMKBttP procedure refers to a program that
takes a set of equations E as input and uses the inference rules of oMKBtt
to generate a derivation starting from NE , where termination checks are per-
formed with respect to a termination strategy P. An oMKBtttotal procedure is
any oMKBttP procedure where P guarantees total termination of the checked
systems.

Using the simulation properties expressed in Lemmata 18 and 19, correctness
and completeness easily follow from the corresponding results for oKBtt.

Theorem 22. Let N0 = NE be the initial node set for E and let N0 `∗ Nn be
a finite oMKBtttotal run. If N0 `∗ Nn is sufficiently fair for p ∈ P(Nn) then
Ep(Nn) ∪ Rp(Nn) is ground-complete for a reduction order > that is total on
ground terms and extends →+

C , where C = Cp(Nn).

Theorem 23. Assume R is a complete rewrite system for E and � is a reduc-
tion order containing R which can be extended to a total reduction order. Then
there exists a sufficiently fair and simplifying oMKBtttotal run NE `∗ Nα such
that some process p ∈ P(Nα) satisfies Rp(Nα) = R and Ep(Nα) = ∅.

11



5 Theorem Proving with oMKBtt

The use of ordered completion for refutational theorem proving proposed in [2]
can easily be adapted to the oMKBtt setting. For a term s, we write ŝ to denote
the term where each variable is replaced by its corresponding Skolem constant.
In the sequel, given equations E and a goal s ≈ t, let N s≈t

E denote the set

NE ∪ { 〈equal(x, x) : true,∅,∅, {ε},∅,∅〉, 〈equal(ŝ, t̂) : false,∅,∅, {ε},∅,∅〉 }

As the following results show, theorem proving with oMKBtt is sound, indepen-
dent of the applied termination techniques. To obtain completeness we restrict
to oMKBtttotal procedures.

Lemma 24. If an oMKBtt run starting from N0 = N s≈t
E generates a node

〈true : false, . . . , E, . . . 〉 in some set Ni and E 6= ∅ then s ≈ t is valid in E.

Lemma 25. If s ≈ t is valid in E then any sufficiently fair oMKBtttotal run N0 `
N1 ` · · · ` Nα starting from N0 = N s≈t

E generates a node 〈true : false, . . . , E, . . .〉
in some set Ni such that E 6= ∅.

Proof. Since the run is sufficiently fair it is sufficiently fair for some process p.
By Lemma 18 there is a sufficiently fair oKBtt run

(Ep(N0), Rp(N0), Cp(N0)) `∗ (Ep(Nα), Rp(Nα), Cp(Nα))

According to Lemma 7, there is a corresponding fair oKB run using the reduction
order →+

C , where C = Cp(Nα). Moreover, →+
C can be extended to a reduction

order > that is total on ground terms. By [2, Theorem 3], such a fair ordered
completion run starting from E0 = E ∪ {equal(x, x) ≈ true, equal(ŝ, t̂) ≈ false}
will have the contradictory statement true ≈ false in some set Ei ∪ Ri, so there
is a node 〈true : false, . . . 〉 in some Ni. ut

6 Implementation

This section briefly outlines our tool omkbTT. Extending the existing mkbTT im-
plementation [11, 17], it is implemented in OCaml in about 10.000 lines of code.
To check constraint systems for termination, omkbTT either uses an external tool
which is compatible with a minimal interface or interfaces TTT2 [8] internally.

Our tool omkbTT is equipped with a simple command-line interface. The
input system is expected in the TPTP-3 [14] format. Among other options, users
can fix the global time limit and the time limit for a termination call, specify
either an external executable for termination checks or configure how TTT2 should
be used internally, and control which indexing technique, node selection strategy
or goal representation to use. For further details we refer to the website and [17].

In the original presentation of completion-based theorem proving [2], given
a goal s ≈ t the equations equal(x, x) ≈ true and equal(ŝ, t̂) ≈ false are added.
Waldmeister uses a different representation of the goal [5]. The reducts of ŝ and

12



ttt2total kbo lpo poly mpo E
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

et 37 22.8 38 23.5 23 22.1 35 34.1 37 29.0 10 0.04
dt 45 24.5 55 17.4 24 156.5 44 11.5 45 10.5 35 0.06

Table 1. Completing theories associated with TPTP UEQ systems.

t̂ are kept in two sets Rs and Rt. Whenever a term in Rs or Rt can be reduced,
the new reducts are added to Rs or Rt, respectively. The goal is proven as soon
as Rs ∩Rt is non-empty. This approach is supported in omkbTT as well. Sets Rs
and Rt of pairs (u, P ) where u is a term and P the set of processes for which
this reduct was derived are maintained. The goal is proven if there exists a term
u such that (u, P ) ∈ Rs, (u, P ′) ∈ Rt and P ∩ P ′ is non-empty.

7 Experimental Results

This section summarizes experimental results obtained with omkbTT. All tests
were run on a single core of a server equipped with eight dual-core AMD Opteron R©
processors 885 running at a clock rate of 2.6GHz and 64GB of main memory.

In all of the following tests omkbTT internally interfaces TTT2 for termina-
tion checks. To compare the applicability of different termination techniques,
different TTT2 strategies were used: kbo, lpo and mpo denote the well-known
reduction orders and poly refers to linear polynomial interpretations with coeffi-
cients in {0, . . . , 7}. The strategy where all these techniques performed in parallel
are applied iteratively is denoted by ttt2total. The strategy ttt2fast involves de-
pendency pairs so total termination is not ensured. It is therefore only used for
theorem proving, which is sound according to Lemma 24, although incomplete
because completeness of refutational theorem proving holds only for totalizable
reduction orders [2].

Examples stem from the unit equality division of TPTP 3.6.0 [14]. The test
set e consists of 215 problems rated easy, d contains 565 problems classified as
difficult. The sets et and dt consist of the 204 and 563 different theories associated
with these problems. Table 1 shows ordered completion results obtained with
omkbTT. The columns list (1) the number of successes, (2) the average time
for a successful run in seconds (given a timeout of 600 seconds), and (3) the
percentage of time spent on termination checks. In order to compare with other
ordered completion tools, we ran E [13] on the same test set in auto mode,
such that it heuristically determines the reduction order to use.2 As an example,
omkbTT using ttt2total completes the theory underlying problem GRP447-1 from
TPTP within 3 seconds, while neither E nor mkbTT produce a solution within 1
hour.
2 We did not use Waldmeister here since, according to personal communication with

the developers, its auto mode should not be used for ordered completion.

13



ttt2total kbo lpo poly ttt2fast
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

e 149 43.9 82 163 16.6 8 164 24.3 14 143 59.1 90 138 49.9 80
d 116 66.0 64 148 64.8 4 152 50.6 6 109 95.7 79 121 55.0 17

Table 2. Performance of oMKBtt on TPTP UEQ problems.

The over-approximation of extended critical pairs with the embedding rela-
tion, i.e., the use of CPBemb

instead of CP∅ allows for a performance gain of
about 28%.

Table 2 shows theorem proving results obtained with omkbTT. Both Wald-
meister and E solve about 200 problems in e and more than 400 of the d set.3

Although the considered termination strategies are incomparable in power, kbo
handles the most problems, both for ordered completion and theorem proving.
The reason for that is that little time is spent on termination checks, as can be
seen from Table 2. Although the combination of multiple techniques in ttt2total
is theoretically more powerful than each technique separately, the larger number
of processes (25% more than kbo and twice as much as in lpo or poly) decreases
performance and causes more timeouts. The evaluation of different combinations
of termination strategies, such as the incremental use of polynomial interpreta-
tions, is subject to future work.

We compared the simple approach where the goal is represented as two nodes
with the Waldmeister-like approach described in Section 6. According to our
results, the latter is faster and therefore able to prove about 3% more examples.
However, in some cases the simple approach succeeds whereas the Waldmeister-
like approach fails due to a “combinatorial explosion”.

8 Conclusion

We outlined how termination tools can replace a fixed term order in ordered
completion and completion-based theorem proving. This approach can also be
combined with multi-completion. Besides the advantage that no reduction order
has to be provided as input, this novel approach allows to derive ground-complete
systems for problems that are not compatible with standard orders such as LPO
and KBO. Hence our tool omkbTT can deal with input systems that cannot be
solved with other tools, to the best of our knowledge.

In contrast to standard completion, in the case of ordered completion the
reduction order implicitly developed in the inference sequence needs to be ex-
tensible to a reduction order which is complete for the theory. Hence omkbTT

restricts to termination techniques which entail total termination. It is subject to
further research whether the existence of a suitable order > can be guaranteed
by other means such that applicable termination techniques are less restricted.
3 It should be noted that omkbTT cannot (yet) cope with existentially quantified goals.

There are 16 such problems in e and 61 in d.

14



Acknowledgements. The comments of the anonymous referees helped to im-
prove the paper.

References

1. L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof
orderings. Journal of the ACM, 41(2):236–276, 1994.

2. L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In
H. Aı̈t Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
volume 2: Rewriting Techniques of Progress in Theoretical Computer Science, pages
1–30. Academic Press, 1989.

3. M. Bofill, G. Godoy, R. Nieuwenhuis, and A. Rubio. Paramodulation and Knuth–
Bendix completion with nontotal and nonmonotonic orderings. Journal of Auto-
mated Reasoning, 30(1):99–120, 2003.

4. N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Sci-
ence, 17(3):279–301, 1982.

5. T. Hillenbrand and B. Löchner. The next Waldmeister loop. In Proc. 18th CADE,
volume 2392 of LNAI, pages 486–500, 2002.

6. S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering. Un-
published manuscript, University of Illinois, 1980.

7. D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon
Press, 1970.

8. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool
2. In Proc. 20th RTA, volume 5595 of LNCS, pages 295–304, 2009.

9. M. Kurihara and H. Kondo. Completion for multiple reduction orderings. Journal
of Automated Reasoning, 23(1):25–42, 1999.

10. D. Lankford. On proving term rewrite systems are noetherian. Technical Report
MTP-3, Louisiana Technical University, 1979.

11. H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Multi-completion with
termination tools (system description). In Proc. 4th IJCAR, volume 5195 of LNAI,
pages 306–312, 2008.

12. H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Constraint-based multi-
completion procedures for term rewriting systems. IEICE Transactions on Elec-
tronics, Information and Communication Engineers, E92-D(2):220–234, 2009.

13. S. Schulz. The E Equational Theorem Prover, 2009. Available from http://
www.eprover.org.

14. G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of
Automated Reasoning, 43(4):337–362, 2009.

15. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

16. I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion
with a modern termination checker. In Proc. 17th RTA, volume 4098 of LNCS,
pages 287–296, 2006.

17. S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Optimizing mkbTT (system
description). In Proc. 21st RTA, LIPIcs, 2010. To appear.

18. H. Zantema. Total termination of term rewriting is undecidable. Journal of Sym-
bolic Computation, 20(1):43–60, 1995.

15


