
Completion for Logically Constrained Rewriting
Sarah Winkler
Department of Computer Science, University of Innsbruck, Austria
sarah.winkler@uibk.ac.at

https://orcid.org/0000-0001-8114-3107

Aart Middeldorp
Department of Computer Science, University of Innsbruck, Austria
aart.middeldorp@uibk.ac.at

https://orcid.org/0000-0001-7366-8464

Abstract
We propose an abstract completion procedure for logically constrained term rewrite systems
(LCTRSs). This procedure can be instantiated to both standard Knuth-Bendix completion and
ordered completion for LCTRSs, and we present a succinct and uniform correctness proof. A
prototype implementation illustrates the viability of the new completion approach.

2012 ACM Subject Classification Theory of computation → Rewrite systems, Theory of com-
putation → Equational logic and rewriting, Theory of computation → Automated reasoning

Keywords and phrases Constrained rewriting, completion, automation, theorem proving

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.30

Funding This work is supported by FWF (Austrian Science Fund) project T789.

Acknowledgements The paper benefitted from the comments of Naoki Nishida, Julian Nagele,
Vincent van Oostrom, and the anonymous reviewers.

1 Introduction

Rewriting in the presence of side constraints captures simplification processes in various
areas, such as expression rewriting in compilers, theorem provers, or SMT solvers [10, 15, 17].
The imposed side constraints can often be expressed as logical formulas. Logically constrained
rewrite systems [13] formalize this rewriting mechanism, admitting side constraints over an
arbitrary first-order logic. Though their application for practical analysis tasks relies on
satisfiability checks in the respective logic, thanks to the advent of powerful SMT solvers in the
last decade LCTRSs are valuable in a wide range of areas, including program verification [7].

Often simplification procedures aim for unique results. Knuth-Bendix completion [11]
thus poses a natural means to obtain a presentation of the rewrite system which is confluent
and terminating, such that unique results are guaranteed. In particular, such a presentation
can be used to decide the validity problem. Standard completion may fail if unorientable
equations are encountered. To address this drawback, ordered completion was proposed by
Bachmair, Dershowitz, and Plaisted [3]. This variant of completion never fails, at the price
of the resulting system being only ground complete.

In this paper we propose an abstract inference system for completion of LCTRSs. This
deduction scheme can be instantiated to both standard and ordered completion procedures,
depending on the success condition satisfied by a run. To this end, we also state and prove a
critical pair lemma for LCTRSs. Correctness proofs of completion procedures traditionally
relied on proof orders. In contrast, we give proofs that exploit the more recent notion of

© Sarah Winkler and Aart Middeldorp;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sarah.winkler@uibk.ac.at
https://orcid.org/0000-0001-8114-3107
mailto:aart.middeldorp@uibk.ac.at
https://orcid.org/0000-0001-7366-8464
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Completion for Logically Constrained Rewriting

peak decreasingness [9] to show (ground) confluence, which is the key part of the proof. This
approach permits a succinct and uniform proof for finite runs of both standard and ordered
completion. It also shows how peak decreasingness does not only apply to ordered completion,
but also extends to the considerably more intricate setting of constrained rewriting.

To ensure termination of the resulting rewrite system, we propose the notion of a
constrained reduction order, which generalizes the recursive path order presented in [13].
Since any terminating LCTRS gives rise to such an order, the proposed completion procedures
can also be implemented using termination tools instead of a fixed reduction order, a known
approach in the unconstrained setting [19]. We outline an implementation within the tool
Ctrl [14] and give examples that illustrate the practicality of our method.

Overview. The remainder of this paper is organized as follows. In Section 2 we summarize
the relevant background. Section 3 is devoted to constrained reduction orders. To analyze
peaks over LCTRSs, we prove a critical pair lemma in Section 4. Our inference system along
with all proofs is presented in Section 5. Section 6 outlines our implementation in Ctrl before
we conclude in Section 7. Due to space limitations, some proofs were moved to an appendix.

2 Preliminaries

We assume familiarity with the basic notions of term rewrite systems (TRSs) and completion [1,
2], but shortly recapitulate terminology and notation that we use in the remainder. In
particular, we recall the notion of logically constrained rewriting as defined in [7, 13].

Terms. We assume a sorted signature F = Fterms ∪ Ftheory. The set T (F ,V) denotes the
terms over this signature. We assume a mapping I which assigns to every sort ι occurring in
Ftheory a carrier set I(ι), and an interpretation J that assigns to every symbol f ∈ Ftheory
of sort ι1 × · · · × ιn → κ a function fJ : I(ι1) × · · · × I(ιn) → I(κ). Moreover, for every
sort ι occurring in Ftheory we assume a set Valι ⊆ Ftheory of value symbols, such that all
c ∈ Valι are constants of sort ι and J constitutes a bijective mapping between Valι and I(ι).
Thus there exists a constant symbol for every value in the carrier set. The interpretation J
naturally extends to an interpretation of ground terms, mapping ground terms to values:

[f(t1, . . . , tn)]J = fI([t1]J , . . . , [tn]J)

Thus every ground term has a unique value. We demand that theory symbols and term
symbols overlap only on values, i.e., Fterms ∩ Ftheory ⊆ Val holds. A term in T (Ftheory,V)
is called a logical term. Moreover we assume existence of a sort bool such that I(bool) =
B = {>,⊥}, Valbool = {true, false}, [true]J = >, and [false]J = ⊥ hold. Logical terms of sort
bool are called constraints. A constraint ϕ is valid if [ϕγ]J = > for all substitutions γ such
that γ(x) ∈ Val for all x ∈ Var(ϕ).

Rewriting with Constraints. A constrained equation is a triple ` ≈ r [ϕ] where `, r ∈ T (F ,V)
are of the same sort and ϕ is a constraint. If ϕ = true then the constraint is often omitted,
and the equation denoted as ` ≈ r. Sometimes s ' t is used to abbreviate “s ≈ t or t ≈ s”. A
constrained rewrite rule is a constrained equation such that root(`) ∈ Fterms \ Ftheory holds
and which is denoted ` → r [ϕ]. For a set of constrained equations E , we write E−1 for
{v ≈ u [ϕ] | u ≈ v [ϕ] ∈ E} and E± to denote E ∪ E−1. A set of constrained rewrite rules is
called a logically constrained rewrite system (LCTRS for short). We now define rewriting
using constrained equations. To this end, a substitution σ is said to respect a constraint ϕ if
ϕσ is valid and σ(x) ∈ Val for all x ∈ Var(ϕ).

S. Winkler and A. Middeldorp 30:3

I Definition 1. Let E be a set of constrained equations.
A calculation step s →calc t satisfies s = C[f(s1, . . . , sn)] for some f ∈ Ftheory \ Val,
t = C[u], si ∈ Val for all 1 6 i 6 n, and u ∈ Val is the value symbol of [f(s1, . . . , sn)]J .
In this case f(x1, . . . , xn)→ y [y = f(x1, . . . , xn)] with y ∈ V is a calculation rule.
A rule step s→`≈r [ϕ] t satisfies s = C[`σ], t = C[rσ], and σ respects ϕ.

We also write →rule, E to refer to the relation {→α}α∈E , and denote →calc ∪→rule, E by →E .

We sometimes write →p,E to indicate that the rewrite step takes place at position p. The
subscript E is dropped if clear from the context. Moreover, the LCTRS Rcalc refers to the
set of all calculation rules. In contrast to [13] we also use equations for rewriting, so we do
not require that a rule step using ` ≈ r [ϕ] with substitution σ satisfies σ(x) ∈ Val for all
logical variables of the rule, i.e., also for x ∈ Var(r) \ (Var(`) ∪ Var(ϕ)).

Note that →calc is terminating since calculation steps strictly reduce the number of
non-value symbols in terms.

I Example 2. Consider the sort int (besides bool) and let Ftheory consist of symbols ·, +,
−, 6, and > as well as values n for all n ∈ Z, with the usual interpretations on Z. Let
Fterms = Val ∪ {fact}. The LCTRS R consisting of the rules

fact(x)→ 1 [x 6 0] fact(x)→ fact(x− 1) · x [x− 1 > 0]

admits the following rewrite steps:

fact(2)→rule fact(2− 1) · 2 (as 2− 1 > 0 is valid)
→calc fact(1) · 2 →rule (fact(1− 1) · 1) · 2 (as 1− 1 > 0 is valid)
→calc (fact(0) · 1) · 2 →rule (1 · 1) · 2 (as 0 6 0 is valid)
→+

calc 2

An LCTRS R is terminating if →R is well-founded, and confluent if ∗
R← · →∗R ⊆

→∗R · ∗R←. We use peak decreasingness [9] as confluence criterion. An abstract rewrite
system A = 〈A, {→α}α∈I〉 is peak decreasing if there exists a well-founded order > on I

such that for all α, β ∈ I the inclusion α← · →β ⊆
∗←−−→
∨αβ

holds. Here ∨αβ denotes the set
{γ | α > γ or β > γ}.

I Lemma 3 ([9]). Every peak decreasing ARS is confluent.

Rewriting Constrained Terms. Logically constrained rewriting aims to rewrite uncon-
strained terms with constrained rules. However, for the sake of analysis, rewriting constrained
terms is useful. In particular, our completion procedure will maintain sets of constrained
equations, and rewrite constrained terms. We recall the relevant notions [7, 13].

A constrained term is a pair s [ϕ] of a term s and a constraint ϕ. Two constrained terms
s [ϕ] and t [ψ] are equivalent, denoted by s [ϕ] ∼ t [ψ], if for every substitution γ respecting ϕ
there is some substitution δ that respects ψ such that sγ = tδ, and vice versa. For example,
fact(x) ·x [x = 1∧x < y] ∼ fact(1) ·y [y > 0∧y < 2] holds, but these terms are not equivalent
to fact(x) · y [x = y] or fact(1) [true].

I Definition 4. Let E be a set of constrained equations.
A calculation step s [ϕ] →calc t [ϕ ∧ x = f(s1, . . . , sn)] satisfies s = C[f(s1, . . . , sn)] for
some f ∈ Ftheory \ Fterms and t = C[x] such that s1, . . . , sn ∈ Var(ϕ) ∪ Val and x is a
fresh variable.
A constraint rewrite rule α : `→ r [ψ] admits a rule step s [ϕ]→α t [ϕ] if ϕ is satisfiable,
s = C[`σ], t = C[rσ], σ(x) ∈ Val ∪ Var(ϕ) for all x ∈ Var(ψ), and ϕ⇒ ψσ is valid.

FSCD 2018

30:4 Completion for Logically Constrained Rewriting

Given an LCTRS E , we again write →rule, E for {→α}α∈E . The main rewrite relation →E on
constrained terms is defined as ∼ · (→calc ∪→rule, E) · ∼.

I Example 5. Consider the LCTRS from Example 2, the constraint ϕ = x > 1 ∧ y > 0, and
let z be a fresh variable. Then the following rewrite steps are possible:

fact(x+ y) [ϕ]→rule fact(x+ y − 1) · (x+ y) [ϕ]
fact(x+ y) [ϕ]→calc fact(z) [ϕ ∧ z = x+ y]

The following key results relate rewriting on constrained terms to rewriting on uncon-
strained terms.

I Lemma 6 ([13, Lemma 2]). If s [ϕ]→rule t [ψ] and γ respects ϕ then sγ →rule tγ. The two
steps take place at the same positions.

I Lemma 7 ([7, Theorems 2.19 and 2.20]). Suppose s [ϕ]→p,R t [ψ].
1. If γ respects ϕ then sγ →p,R tδ for some substitution δ respecting ψ.
2. If δ respects ψ then sγ →p,R tδ for some substitution γ respecting ϕ.

Using a fresh binary term symbol 〈·, ·〉, we show a slightly stronger version of Lemma 7.

I Lemma 8. Suppose 〈s, u〉 [ϕ]→R 〈t, v〉 [ψ] at a position of the form 1p.
1. If γ respects ϕ then sγ →R tδ and uγ = vδ for some substitution δ respecting ψ.
2. If δ respects ψ then sγ →R tδ and uγ = vδ for some substitution γ respecting ϕ.

Proof. Note that whenever 〈t1, t2〉 ∼ w for terms t1 and t2 then w must be of the form
〈w1, w2〉, by the definition of ∼ and because respectful substitutions introduce only values.
We can therefore consider a step

〈s, u〉 [ϕ] ∼ 〈s′, u′〉 [ϕ′] −→
1p
〈t′, v′〉 [ψ′] ∼ 〈t, v〉 [ψ] (1)

1. Since γ respects ϕ there is some γ′ respecting ϕ′ such that 〈s, u〉γ = 〈s′, u′〉γ′.
First, if (1) involves a rule step then ϕ′ = ψ′. Hence 〈s′, u′〉γ′ →rule,1p 〈t′, v′〉γ′ by Lemma 6
and we have u′γ′ = v′γ′. Because γ′ respects ψ′ and 〈t′, v′〉 [ψ′] ∼ 〈t, v〉 [ψ] there is some
δ respecting ψ such that 〈t′, v′〉γ′ = 〈t, v〉δ. We thus have sγ = s′γ′ →R t′γ′ = tδ and
uγ = u′γ′ = v′γ′ = vδ.
Second, suppose (1) involves a calculation step. By the definition of →calc we have
ψ′ = (ϕ′ ∧ x = f(s1, . . . , sn)) for some x ∈ V , f ∈ Ftheory, and s1, . . . , sn ∈ Var(ϕ′) ∪ Val.
So f(s1, . . . , sn)γ′ ∈ T (Ftheory) since γ′ respects ϕ′. For w being the value symbol
corresponding to f(s1, . . . , sn)γ′, the substitution β given by β(y) = w if y = x and
β(y) = γ′(y) otherwise, respects ψ′ and satisfies both s′γ′ →calc t

′β and u′γ′ = v′β

because x is fresh. Because 〈t′, v′〉 [ψ′] ∼ 〈t, v〉 [ψ] there is some δ respecting ψ such that
〈t′, v′〉β = 〈t, v〉δ. So sγ = s′γ′ →R t′β = tδ and uγ = u′γ′ = v′β = vδ.

2. Similar, see the appendix. J

We conclude this section with an auxiliary result relating rewrite steps on constrained
term pairs to steps on unconstrained term pairs.

I Lemma 9. Suppose the LCTRS R admits a rewrite step 〈s, u〉 [ϕ]→R 〈t, u〉 [ψ]. For all
substitutions γ and δ and all contexts C,
1. if C[sγ]←−−−−→

s≈u [ϕ]
C[uγ] then C[sγ] −→

R
· ←−−−→
t≈u [ψ]

C[uγ], and

2. if C[tδ]←−−−→
t≈u [ψ]

C[uδ] then C[tδ]←−
R
· ←−−−−→
s≈u [ϕ]

C[uδ].

S. Winkler and A. Middeldorp 30:5

Proof.
1. The substitution γ respects ϕ. By Lemma 8(1) there is some δ respecting ψ such that

sγ →R tδ and uγ = uδ. Hence C[sγ] −→
R

C[tδ]←−−−→
t≈u [ψ]

C[uδ] = C[uγ].

2. The substitution δ respects ψ. By Lemma 8(2) there is some γ respecting ϕ such that
sγ →R tδ and uγ = uδ. Hence C[tδ]←−

R
C[sγ]←−−−→

s≈u [ϕ]
C[uγ] = C[uδ]. J

3 Constrained Reduction Orders

To ensure termination of the resulting system, completion procedures rely on reduction
orders. In [13] the following definition of a recursive path order was given.

I Definition 10. Suppose Ftheory contains a symbol >ι for every sort ι occurring in Ftheory
such that >ι is interpreted as a (partial) well-founded order =ι on Iι. Moreover, let >p be a
precedence on Fterms \ Ftheory. For terms s and t and constraint ϕ
1. s >rpo

[ϕ] t if one of the following alternatives applies:
a. s, t ∈ T (Ftheory,Var(ϕ)) and ϕ⇒ (s = t ∨ s >sort(s) t) is valid,
b. s = f(s1, . . . , sn) and t = f(t1, . . . , tn) with f /∈ Ftheory and si >rpo

[ϕ] ti for all 1 6 i 6 n,
c. s >rpo

[ϕ] t, or s = t and s ∈ V;

2. s >rpo
[ϕ] t if one of the following alternatives applies:

a. s, t ∈ T (Ftheory,Var(ϕ)) and ϕ⇒ s >sort(s) t is valid,
b. s = f(s1, . . . , sn) for some f /∈ Ftheory and one of

i. si >rpo
[ϕ] t for some 1 6 i 6 n,

ii. t = g(t1, . . . , tm), either g ∈ Ftheory or f >p g, and s >rpo
[ϕ] tj for all 1 6 j 6 m,

iii. t = f(t1, . . . , tn), si >rpo
[ϕ] ti for all 1 6 i 6 n and si >rpo

[ϕ] ti for some 1 6 i 6 n,
iv. t ∈ Var(ϕ).

We now generalize this notion.

I Definition 11. A ternary relation >[·] on T (F ,V) × Tbool(Ftheory,V) × T (F ,V) is a
constrained reduction order if there exists a reduction order > such that s >[ϕ] t if and only
if sγ > tγ for all substitutions γ that respect ϕ.

The relation >rpo
[·] is a constrained reduction order according to this definition (Lemma 9

in the full version of [13]).

I Example 12.
1. Any reduction order > gives rise to a constrained reduction order in which the constraints

are simply ignored: setting s >[ϕ] t for all ϕ whenever s > t vacuously satisfies the
definition.

2. Let n =int m if m > 0 and n > m. For the LCTRS from Example 2, rule (1) can be
oriented using the recursive path order by condition 2.b.ii in Definition 10. For rule
(2) and ϕ = x − 1 > 0, we have x >rpo

[ϕ] x − 1 by condition 2.a since the implication
x − 1 > 0 =⇒ x > x − 1 is valid. From this we obtain fact(x) >rpo

[ϕ] fact(x − 1) by
condition 2.b.iii. Moreover, fact(x) >rpo

[ϕ] x by 2.b.i such that fact(x) >rpo
[ϕ] fact(x− 1) · x

follows from 2.b.ii. Note that the rules could not have been oriented by RPO when
ignoring the constraints.

FSCD 2018

30:6 Completion for Logically Constrained Rewriting

3. A well-founded F -algebra A extending I with monotone (wrt =int) interpretations for the
function symbols in Fterms gives rise to a constrained reduction order: s >[ϕ] t if and only
if [α]A(s) > [α]A(t) is satisfied for all substitutions α that respect ϕ. Moreover, if the
carrier of A is Val then compatibility is decidable whenever the language of constraints is.
For instance, consider again Example 2 and let A extend I by the monotone interpretation
factA(x) = (x+ 1)! + 1 if x > 0 and factA(x) = 2 otherwise. We have

factA(x) = 2 > 1 = 1A for all x 6 0
factA(x) = (x+ 1)! + 1 > (x! + 1) · x = factA(x−A 1) ·A x for all x > 1

I Lemma 13. Let >[·] be a constrained reduction order and let ϕ and ψ be constraints.
1. The relation >[ϕ] is transitive.
2. If s >[ϕ] t and σ respects ϕ then sσ >[ϕ] tσ.
3. If s >[ϕ] t then C[s] >[ϕ] C[t].
4. If ψ ⇒ ϕ is valid and Var(ϕ) ⊆ Var(ψ) then s >[ϕ] t implies s >[ψ] t.

I Lemma 14. If s [ψ]→σ
α,p t [ψ] using α : `→ r [ϕ] satisfies ` >[ϕ] r then s >[ψ] t.

Proof. By assumption ψ ⇒ ϕσ is valid and σ(x) ∈ Val ∪ Var(ψ) for all x ∈ Var(ϕ). Now
suppose γ is a substitution which respects ψ, i.e., the constraint ψγ is valid and γ(x) ∈ Val
for all x ∈ Var(ψ). Then ϕσγ is valid and (σγ)(x) ∈ Val for all x ∈ Var(ϕ), so σγ respects
ϕ. From ` >[ϕ] r we thus obtain s|pγ = `σγ > rσγ = t|pγ, and hence sγ > tγ by
Lemma 13(3). J

A reduction pair (>,>) consists of a reduction order > and a reduction preorder > such
that →calc ⊆ > and > · > · > ⊆ >.

I Lemma 15. If there is a reduction pair (>,>) such that ` >[ϕ] r for all ` → r [ϕ] ∈ R
then R is terminating.

Proof. By Lemma 14, the inclusion →calc ⊆ >, and the compatibility of > and >. J

Kop and Nishida (Lemmata 6 and 8 in the full version of [13]) showed that a suitable
reduction preorder exists for the recursive path ordering. Similar to the case of plain term
rewrite systems, any terminating LCTRS induces a constrained reduction order.

I Lemma 16. If R is a terminating LCTRS then the relation defined by s >[ϕ] t if and only
if s [ϕ]→+

rule t [ϕ] is a constrained reduction order.

Proof. Let > be the relation such that s > t if and only if s [true]→+
rule t [true]. Since R is

terminating > is a reduction order. So by Lemma 6 all substitutions γ respecting ϕ satisfy

s >[ϕ] t ⇐⇒ s [ϕ]→+
rule t [ϕ] =⇒ sγ →+

rule tγ ⇐⇒ sγ > tγ J

The following example shows that a constrained reduction order is not necessarily
compatible with the equivalence relation ∼ on constrained terms in the sense that s [ϕ] ∼ s′ [ψ]
and s >[ϕ] t imply s′ >[ψ] t.

I Example 17. For instance, for the constrained reduction order >rpo
[·] we have f(x) >[x=0] x

and f(x) [x = 0] ∼ f(0) [true] but f(0) >[true] x does not hold.

S. Winkler and A. Middeldorp 30:7

We conclude this section by comparing our concept of a constrained reduction pair to
definitions from the literature. Our notion resembles the definition by Falke and Kapur [5,
Definition 23] for the theory of Peano arithmetic (PA). Whereas they demand C[s] (> ∩ 6)
C[t] for all s←→∗PA t, we use the more relaxed condition →calc ⊆ >.

Fuhs et al. [6] define the order pair (�Pol,�Pol) as a reduction pair processor for integer
term rewrite systems. Since the order pair is based on max-polynomial interpretations, which
are not strictly monotone, the resulting order on terms in not a reduction order, and hence
does not produce a constrained reduction order in our sense.

4 Critical Pair Lemma

In this section we establish the Critical Pair Lemma, which is a key result to obtain confluence
of the result of our completion procedure described in the next section.

I Definition 18. An overlap of an LCTRS R is a triple 〈`1 → r1 [ϕ1], p, `2 → r2 [ϕ2]〉
satisfying the following properties:

`1 → r1 [ϕ1] and `2 → r2 [ϕ2] are variable-disjoint variants of rewrite rules in R∪Rcalc,
p ∈ PosF (`2),
`1 and `2|p are unifiable with mgu σ and σ(x) ∈ T (Ftheory,V) for all x ∈ Var(ϕ1)∪Var(ϕ2),
ϕ1σ ∧ ϕ2σ is satisfiable, and
if p = ε then `1 → r1 [ϕ1] and `2 → r2 [ϕ2] are not variants, or Var(r1) * Var(`1).

In this case `2σ[r1σ]p ≈ r2σ [ϕ1σ∧ϕ2σ] is a constrained critical pair. The set of all constrained
critical pairs of R is denoted by CP(R).

Note that in the last condition also Var(r2) 6⊆ Var(`2) since we may assume that the two
rules are variants.

I Example 19. Consider the following rewrite rules:

(1) f(x)→ g(x, x) [x 6 0] (3) g(f(x), y)→ g(x, z) [x > 0 ∧ z > x]
(2) h(f(x))→ h(x) [x > 0] (4) g(x, x+ y)→ f(y) [x > 0 ∧ y > 0]

The constrained critical pair h(g(x, x)) ≈ h(x) [x 6 0 ∧ x > 0] is obtained from the overlap
〈(1), 1, (2)〉. There is also an overlap 〈(3), ε, (3′)〉 between rule (3) and a renamed version
(3′) of itself, which gives rise to the critical pair g(x, z) ≈ g(x,w) [x > 0 ∧ z > x ∧ w > x].
Finally, the constrained critical pair g(x, z) ≈ f(y) [x > 0 ∧ y > 0 ∧ z = x + y] originates
from the overlap 〈Rcalc, 2, (4)〉. There is no constrained critical pair between rules (1) and
(3) since the conjunction x 6 0 ∧ x > 0 ∧ z > x is not satisfiable. There is also no critical
pair between (3) and (4) because any mgu σ of g(f(x), y) and g(x′, x′ + y′) assigns (a variant
of) f(x) to x′, violating the third condition in Definition 18.

I Lemma 20 (Constrained Critical Pair Lemma). Let R be an LCTRS. If t R← s→R u then
t ↓R u or t←→CP(R) u.

Proof. We abbreviate `1 → r1 [ϕ1] by α1 and `2 → r2 [ϕ2] by α2, and consider a peak

t
p1,σ1←−−−
α1

s
p2,σ2−−−→
α2

u

where σ1 and σ2 denote the employed substitutions. We distinguish three cases.
(1) If p1 ‖ p2 then t

p2,σ2−−−→
α2

s
p1,σ1←−−−
α1

u since the same substitutions can be used for the
respective steps such that constraints are still respected.

FSCD 2018

30:8 Completion for Logically Constrained Rewriting

Otherwise one position must be above the other one. Without loss of generality we assume
that p1 6 p2, so there must be a position p such that p2 = p1p. We further assume that the
rewrite rules α1 and α2 have no variables in common. Hence Dom(σ1) ∩ Dom(σ2) = ∅ and
the substitution σ = σ1 ∪ σ2 is well-defined. We distinguish two further cases depending on
whether the peak is an instance of an overlap.
(2) Suppose 〈α1, p, α2〉 is an overlap. Let γ be a most general unifier of `2|p and `1. We

have `2γ[r1γ]p ≈ r2γ [ϕ1γ ∧ ϕ2γ] ∈ CP(R). The substitution σ is a unifier of `2|p and
`1 because (`2|p)σ = (`2σ2)|p = `1σ1 = `1σ. Consequently there exists a substitution
τ such that σ = γτ . Since validity of ϕ1σ = ϕ1γτ and ϕ2σ = ϕ2γτ implies validity of
(ϕ1γ ∧ ϕ2γ)τ we have

`2σ2[r1σ1]p = (`2γ[r1γ]p)τ ←→CP(R) (r2γ)τ = r2σ2

and hence also t←→CP(R) u.
(3) Since ϕ1σ1 ∧ ϕ2σ2 = ϕ1σ ∧ ϕ2σ = (ϕ1γ ∧ ϕ2γ)τ is valid, the constraint ϕ1γ ∧ ϕ2γ is

satisfiable. So if 〈α1, p, α2〉 is not an overlap then either p = ε and α1 and α2 are variants
with Var(r1) ⊆ Var(`1), or p /∈ PosF (`2). In the first case also Var(r2) ⊆ Var(`2) must
hold, which implies r1σ1 = r2σ2 and t = u. In the second case, there must be positions
q1 and q2 such that p = q1q2 and q1 is a variable position in `2. Let x be the variable at
`2|q1 , so σ2(x)|q2 = `1σ1. We define the substitution σ′2 as

σ′2(y) =
{
σ2(y)[r1σ1]q2 if y = x

σ2(y) if y 6= x

Clearly the step σ2(x)→q2,α1,σ1 σ
′
2(x) is valid. Hence r2σ2 →∗ r2σ

′
2 and `2σ2[r1σ1]p =

`2σ2[σ′2(x)]q1 →∗ `2σ
′
2. The substitution σ′2 also respects ϕ2. This can be seen as follows.

Since σ2 respects ϕ2 we have σ2(y) ∈ Val for all y ∈ Var(ϕ2). So x /∈ Var(ϕ2) as xσ2 ·� `1
and left-hand sides of rules cannot be values. Therefore σ2(y) = σ′2(y) holds for all
y ∈ Var(α2), and we have ϕ2σ2 = ϕ2σ

′
2. In summary, there exists a joining sequence

`2σ2[r1σ1]p
σ1−−−−−−−→

`1→r1 [ϕ1]
∗ `2σ

′
2

ε,σ′2−−−−−−−→
`2→r2 [ϕ2]

r2σ
′
2
∗ σ1←−−−−−−−
`1→r1 [ϕ1]

r2σ2 J

Extended Critical Pairs. For ordered rewriting in a constrained setting, we consider a
reduction pair (>,>) that gives rise to a constrained reduction order >[·] and define

E> = {uγ → vγ [ϕγ] | u ≈ v [ϕ] ∈ E± and uγ >[ϕγ] vγ}

for any set of constrained equations E . Moreover, CP>(E) denotes all constrained critical
pairs originating from an overlap 〈`1 ≈ r1 [ϕ1], p, `2 ≈ r2 [ϕ2]〉 with most general unifier σ
such that `1 → r1 [ϕ1], `2 → r2 [ϕ2] ∈ E± and neither r1σ >[ϕ1σ] `1σ nor r2σ >[ϕ2σ] `2σ. A
reduction order is called complete for a set of constrained equations E if s←→∗E t implies s > t,
s < t, or s = t for all ground terms s and t. The proof of the next result is in the appendix.

I Lemma 21. If > is complete for R ∪ E and R ⊆ >[·] then the inclusion ←−−−−−→
CP(R∪E>)

⊆
←−−−−−→
CP>(R∪E)

∪ ↓R∪E> holds on ground terms.

5 Abstract Completion

In this section we define an abstract inference system that can be instantiated to both
standard and ordered completion. We consider a fixed reduction pair (>,>) that gives rise
to a constrained reduction order >[·].

S. Winkler and A. Middeldorp 30:9

Table 1 The inference rules of CKB.

deduce E ,R
E ∪ {s ≈ t [ϕ]},R if 〈s, u〉 [ϕ] R∪E±← 〈u, u〉 [ϕ]→R∪E± 〈u, t〉 [ϕ]

compose E ,R] {s→ t [ϕ]}
E ,R∪ {s→ u [ψ]} if 〈s, t〉 [ϕ]→R∪E> 〈s, u〉 [ψ] and s >[ϕ] u

orient E] {s ' t [ϕ]},R
E ,R∪ {s→ t [ϕ]} if s >[ϕ] t and root(s) ∈ Fterms \ Ftheory

simplify E] {s ' t [ϕ]},R
E ∪ {u ≈ t [ψ]},R if 〈s, t〉 [ϕ]→R∪E> 〈u, t〉 [ψ]

delete E] {s ≈ t [ϕ]},R
E ,R if sγ = tγ for all γ respecting ϕ

collapse E ,R] {t→ s [ϕ]}
E ∪ {u ≈ s [ψ]},R if 〈t, s〉 [ϕ]→R∪E> 〈u, s〉 [ψ]

splitE
E] {s ' t [ϕ]},R

E ∪ {s ≈ t [ϕ ∧ ¬ψ], s ≈ t [ϕ ∧ ψ]},R if Var(ψ) ⊆ Var(ϕ)

splitR
E ,R] {s→ t [ϕ]}

E ,R∪ {s→ t [ϕ ∧ ¬ψ], s→ t [ϕ ∧ ψ]} if Var(ψ) ⊆ Var(ϕ)

I Definition 22. The inference system CKB of constrained (Knuth-Bendix) completion
operates on pairs (E ,R) consisting of constrained equations E and constrained rules R, and
consists of the inference rules of Table 1.

Below we provide some comments on the inference rules. The rewrite steps in e.g. simplify
rewrite a pair 〈s, t〉 rather than a single term s. As observed in [7] it does not suffice to
assume a rewrite step s [ϕ]→R u [ψ]. For example, we have

f(x+ 0) [x > y] ∼ f(x+ 0) [true]→calc f(z) [z = x+ 0] ∼ f(x) [true] ∼ f(x) [x < y]

but it is not desirable to replace y ≈ f(x + 0) [x > y] by y ≈ f(x) [x < y]. The same
holds for compose, collapse, and deduce. The deduce rule is quite general in that it allows
to add arbitrary equations that emerge from a peak between two R ∪ E steps. Below we
will show that only (extended) critical pairs are necessary; hence as usual with completion
procedures, an implementation will likely limit the application of deduce to these equations.
Moreover, ordered rewriting is permitted in all rules that perform rewrite steps. Though this is
uncommon in (unconstrained) standard completion, it gives more freedom to implementations
and allows us to present only one set of inference rules for both settings. Furthermore, it is
uncommon to perform a term comparison in compose. However, since additional variables
may be introduced by →calc steps and ∼, s >[ψ] u need not hold. For instance, consider >[·]
defined as s >[·] t if s >lpo t holds, for some fixed reduction order >lpo with precedence f > g.
Given a rule f(x+ y)→ g(x+ y) [true], we have f(x+ y) >[true] g(x+ y). We further have
g(x+ y)→calc g(z) [z = x+ y] but f(x+ y) >[z=x+y] g(z) does not hold.1 Finally, the split
rules are inspired by [8], they allow for a case distinction.

An inference step from equations and rules (E ,R) to (E ′,R′) using one of the inference
rules of Definition 22 is denoted by (E ,R) ` (E ′,R′). We illustrate CKB on a concrete
example, before presenting some basic properties related to inference steps.

1 Note that if a pure →rule step is performed then s >[ψ] u is guaranteed by Lemma 14.

FSCD 2018

30:10 Completion for Logically Constrained Rewriting

I Example 23. Consider the theory of integer arithmetic, RPO > with precedence h > f > g,
and the following set of input equations:

(1) f(x, y) ≈ f(z, y) + 1 [x > 1 ∧ z = x− 1] (3) f(x, 0) ≈ g(1, x) [x 6 1]
(2) g(0, y) ≈ y [y 6 0] (4) h(x) ≈ f(x, 0) + 1

We apply orient to equations (1) and (2) to obtain rewrite rules

(1) f(x, y)→ f(z, y) + 1 [x > 1 ∧ z = x− 1] (2) g(0, y)→ y [y 6 0]

In rule (1) the variable z occurs on the right but not on the left-hand side, hence we deduce
the critical pair

f(w, y) + 1 ≈ f(z, y) + 1 [x > 1 ∧ z = x− 1 ∧ w = x− 1]

which can, however, be dropped using delete. (Note that a syntactic equality check of the
equated terms would not suffice at this point.) Next we orient equation (3) from left to right.
At this point the critical pair

g(1, x) ≈ f(z, 0) + 1 [x > 1 ∧ z = x− 1 ∧ x 6 1]

results from the overlap 〈(3), ε, (1)〉. But we can instead deduce the simpler, unconstrained
equation (5) g(1, 1) ≈ f(0, 0) + 1 as follows:

g(1, 1) [true] ∼ g(1, x) [x = 1] (3)←−−
rule

f(x, 0) [x = 1] ∼ f(1, 0) [true] ∼ f(x, 0) [x = 1 ∧ z = 0]

(1)−−→
rule

f(z, 0) + 1 [x = 1 ∧ z = 0] ∼ f(0, 0) + 1 [true]

When applying simplify with rule (3), equation (5) gets replaced by (6) g(1, 1) ≈ g(1, 0) + 1.
An application of orient produces the corresponding rule (6) g(1, 1)→ g(1, 0) + 1. A case
split on [x 6 1] using splitE followed by orientations replaces equation (4) by the rules
(7) h(x) → f(x, 0) + 1 [x 6 1] and (8) h(x) → f(x, 0) + 1 [¬(x 6 1)]. Now compose using
rule (3) can replace rule (7) by (9) h(x)→ g(1, x) + 1 [x 6 1]. Since this is a pure rule step,
h(x) >[x61] g(1, x) + 1 holds by Lemma 14. Another application of compose applying rule (1)
to rule (8) results in (10) h(x)→ f(z, 0) + 1 + 1 [x > 1 ∧ z = x− 1]. We can apply compose
again to (10), performing a calculation step to obtain (11) h(x) → f(x − 1, 0) + 2 [x > 1]
(using f(z, y) + 2 [x > 1 ∧ z = x− 1] ∼ f(x− 1, y) + 2 [x > 1]). Note that in both compose
steps the orientation using >[·] is preserved. At this point no equations are left, and all
constrained critical pairs among the current set of rules

(1) f(x, y)→ f(z, y) + 1 [x > 1 ∧ z = x− 1] (6) g(1, 1)→ g(1, 0) + 1
(2) g(0, y)→ y [x 6 0] (9) h(x)→ g(1, x) + 1 [x 6 1]
(3) f(x, 0)→ g(1, x) [x 6 1] (11) h(x)→ f(x− 1, 0) + 2 [x > 1]

have been considered. Thus the system is complete according to Theorem 33 below.

I Lemma 24. If (E ,R) ` (E ′,R′) and the LCTRS R satisfies R ⊆ >[·] then also R′ is an
LCTRS such that R′ ⊆ >[·].

Proof. We show that any step (E ,R) ` (E ′,R′) satisfies R′ \ R ⊆ >[·]. If (E ,R) ` (E ′,R′)
applies orient or compose then this holds by definition. If splitR was applied then s >[ϕ∧¬ψ] t

and s >[ϕ∧ψ] t follow from s >[ϕ] t by Lemma 13(4). The side condition root(s) ∈ Fterms \
Ftheory in the orient rule ensures that R′ is an LCTRS whenever R is. J

S. Winkler and A. Middeldorp 30:11

We next show that the conversion relation associated with (E ,R) is not changed by
inference steps. Note that from now on we consider conversions between unconstrained terms,
as opposed to the rewrite steps that are performed when applying inference rules.

I Lemma 25. If (E ,R) ` (E ′,R′) then −−−→
E∪R

\←−−−→
E′∪R′

⊆ =−−−−−→
R′∪E′>

· =←→
E′
· =←−−−−−
R′∪E′>

.

Proof. We perform a case distinction on the applied inference rule.
If compose was applied then 〈s, t〉 [ϕ]→R∪E> 〈s, u〉 [ψ] implies 〈t, s〉 [ϕ]→R∪E> 〈u, s〉 [ψ].
If there is a step C[sσ]→ C[tσ] using s→ t [ϕ] then σ respects ϕ. Applying Lemma 9(1)
to C[tσ]← C[sσ] yields C[tσ]→R · ↔u≈s [ψ] C[sσ] and thus C[sσ]↔s≈u [ψ] · R← C[tσ].
As s→ u [ψ] ∈ R′ and R ⊆ R′ we have C[sσ]→R′ · R′← C[tσ].
In the case orient was applied to s ' t [ϕ] ∈ E then for a step C[sσ] ↔ C[tσ] we have
C[sσ]→s→t [ϕ] C[tσ] or C[tσ] s→t [ϕ]← C[sσ]. The claim holds because s→ t [ϕ] ∈ R′.
Suppose simplify was applied with 〈s, t〉 [ϕ]→R∪E> 〈u, t〉 [ψ]. Given a step C[sσ]↔ C[tσ]
using s ≈ t [ϕ], σ respects ϕ. By Lemma 9(1) we have C[sσ]→R · ↔u≈t [ψ] C[tσ]. The
claim holds because u ≈ t [ψ] ∈ E ′.
If delete was applied and there is a step C[sσ] ↔ C[tσ] using the deleted equation
s ≈ t [ϕ], then ϕσ is valid, so sσ = tσ must hold.
Suppose collapse was applied with 〈t, s〉 [ϕ] →R∪E> 〈u, s〉 [ψ]. If C[tσ] ↔ C[sσ] then
C[tσ]→R · ↔u≈t [ψ] C[sσ] by Lemma 9(1). As u ≈ s [ψ] ∈ E ′ and R \ {t→ s [ϕ]} ⊆ R′
we have C[sσ]←→E′ · R′← C[tσ].
In the case of splitE and a step C[sσ]↔ C[tσ] using s ≈ t [ϕ], the substitution σ respects
ϕ. Since Var(ψ) ⊆ Var(ϕ), σ must respect either ψ or ¬ψ.
Similarly, in the case of splitR and a step C[sσ]→ C[tσ] using s→ t [ϕ], the substitution
σ respects ϕ. Since Var(ψ) ⊆ Var(ϕ), σ must respect either ψ or ¬ψ such that one of the
two new rules can be applied. J

I Lemma 26. If (E ,R) ` (E ′,R′) then ←−−−→
E′ ∪R′

⊆ ∗←−−→
E ∪R

.

The proof of Lemma 26 is similar to that of Lemma 25 and can be found in the appendix.
In combination the last two lemmata show the invariance of the conversion relation.

I Corollary 27. If (E ,R) `∗ (E ′,R′) then the relations ∗←−−→
E∪R

and ∗←−−−→
E′∪R′

coincide.

We now follow the proof approach in [9] by showing that whenever a term multiset
dominates a conversion in (E ,R) then this property is preserved by CKB steps. To this end,
we compare terms with the (well-founded) relation � defined as the lexicographic combination
of > and →+

calc, using > as preorder. The relation � denotes its reflexive closure. We label
rewrite steps by multisets of terms and write s S−→

R
t if s→R t and there exist terms s′, t′ ∈ S

such that s′ � s and t′ � t.

I Lemma 28. If R ⊆ >[·] then →R ⊆ �.

Proof. For a rule step s →rule,R t we have s > t by Lemma 14 and hence s � t. A step
s→calc t satisfies s > t by assumption and s � t by the definition of �. J

I Lemma 29. If (E ,R) ` (E ′,R′) and R ⊆ >[·] then
S←−−→
E∪R

∗ ⊆ S←−−−→
E′∪R′

∗.

Proof. We consider a single step

C[tσ] S←−−−→
t≈u [ϕ]

C[uσ]

FSCD 2018

30:12 Completion for Logically Constrained Rewriting

such that t ≈ u [ϕ] ∈ E ∪R and σ respects ϕ, and show C[tσ] S←−−−→
E′∪R′

∗ C[uσ]. The statement
of the lemma follows then by induction on the length of the conversion. According to
Lemma 25 there exist terms v and w that satisfy

C[tσ] =−−→
R′

v
=−−−−→

E′∪R′
w

=←−−
R′

C[uσ]

There must be terms t′ and u′ in S such that t′ � C[tσ] and u′ � C[uσ]. From the assumption
R ⊆ >[·] we obtain C[tσ] � v and C[uσ] � w by Lemmata 24 and 28 and thus t′ � v and
u′ � w. Hence all (non-empty) steps between C[tσ] and C[uσ] can be labeled by S such that
C[tσ] S←−−−→

E′∪R′
∗ C[uσ]. J

We now consider a run, that is, a finite sequence of the form

Γ: (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · ` (En,Rn)

where R0 ⊆ >[·] is assumed.2 Simple induction proofs using Lemma 24, Corollary 27, and
Lemma 29 extend the respective results to the final system En ∪Rn of the run.

I Corollary 30. The inclusion Rn ⊆ >[·] holds.

I Corollary 31. The relations ∗←−−−→
E0∪R0

and ∗←−−−→
En∪Rn

coincide.

I Corollary 32. The inclusion S←−−−→
Ei∪Ri

∗ ⊆ S←−−−→
En∪Rn

∗ holds.

5.1 Standard Completion

The run Γ is successful if En = ∅ and the inclusion CP(Rn) ⊆
n⋃
i=0
←→
Ei

holds.

I Theorem 33. If Γ is successful then Rn is a complete presentation of E0 ∪R0.

Proof. From Corollary 30 we obtain Rn ⊆ >[·] and thus Rn is terminating by Lemma 15.
In order to establish confluence, consider a peak

t
S1←−−
Rn

s
S2−−→
Rn

u

From Rn ⊆ >[·] and Lemma 28 we obtain s � t and s � u. Using Lemma 20 and the
definition of success, two cases are distinguished.

If t ↓Rn
u then all steps in this joining sequence can be labeled with {t, u}, again using

Lemma 28.
Suppose t ←→Ei

u for some i > 0. We can label this step with {t, u} and thus obtain
t
{t,u}←−−→∗Rn

u from Corollary 32 since En is empty.

In both cases there is a conversion t {t,u}←−−→∗Rn
u. Since s � t and s � u imply S1 �mul {t, u}

and S2 �mul {t, u}, Rn is peak decreasing and hence confluent by Lemma 3. J

2 Rather than requiring the usual R0 = ∅, the more general condition R0 ⊆ >[·] is useful when the
orientation of the input equations needs to be preserved.

S. Winkler and A. Middeldorp 30:13

5.2 Ordered Completion

In this section we assume that the reduction order > is complete for E0∪R0, so by Corollary 31
complete for En ∪Rn. We use the following modified notion of success: Γ is successful if

CP>(Rn ∪ En) ⊆
n⋃
i=0
←→
Ei

holds. We write Sn for the LCTRS Rn ∪ E>n .

I Theorem 34. If Γ is successful then Sn is a ground complete presentation of E0 ∪R0.

Proof. The LCTRS Sn is contained in >[·] by Corollary 30 and the definition of E>n , hence
Sn is terminating by Lemma 15. For showing ground confluence we consider a ground peak

t
S1←−−
Sn

s
S2−−→
Sn

u

From the inclusion Sn ⊆ >[·] and Lemma 28 we obtain both s � t and s � u. By Lemma 20
t ↓Sn

u or t ←→CP(Sn) u hold. The latter in turn implies t ↓Sn
u or t ←→CP>(Rn∪En) u by

Lemma 21. Taking the definition of success into account there are two possibilities.
If t ↓Sn

u then all steps in this joining sequence can be labeled by {t, u}, using Lemma 28.
If t ←→Ei

u for some i > 0 then this step can be labeled with {t, u} and therefore
t
{t,u}←−−→∗Rn∪En

u is obtained from Corollary 32. Then there also exists such a conversion
between t and u where all intermediate terms are ground. Since the reduction order > is
assumed to be complete, v →Sn w or w Sn← v for every step v ←→En w in this conversion.
Hence t {t,u}←−−→∗Sn

u follows.

So in both cases we obtain a conversion t
{t,u}←−−→∗Sn

u. From s � t and s � u we obtain
S1 �mul {t, u} and S2 �mul {t, u}. Hence Sn is peak decreasing on ground terms with respect
to �mul and therefore ground confluent by Lemma 3. J

6 Implementation and Applications

We implemented the inference system CKB presented in Section 5 on top of the Ctrl tool [14]
which now supports both standard Knuth-Bendix completion and ordered completion for
LCTRSs. To establish termination of the resulting system, either RPO (Definition 10) with
a user-specified precedence or the termination proving facilities already present in Ctrl can
be used (which are rather powerful due to a DP framework for LCTRSs [12]). For the latter
mode, we adapted the approach of [19] to the LCTRS setting. If desirable, the orientation of
the input equations can be preserved (provided that the termination proving capabilities
of Ctrl suffice, obviously). In the Ctrl infrastructure, the underlying theory can be specified
by the user in a theory specification file. For common theories such as integers, bit vectors,
strings, and matrices these specification files are already present. As SMT solvers we used
Ctrl’s internal solver and Z3 [4].

I Example 35. As one of many optimizations on the intermediate representation, LLVM
provides the Instcombine pass to simplify expressions, comprising over 1000 simplification
rules. In [15,16] about 500 of these rules were expressed in the domain-specific Alive language,
which closely resembles constrained rewrite systems. We transformed this rule set into an

FSCD 2018

30:14 Completion for Logically Constrained Rewriting

LCTRS, resulting in rules of the following shape:3

add(x, x)→ shift_left(x,#x01) (1)
add(add(xor(or(x, c1), y),#x01), w)→ sub(w, and(x, c2)) [c1 =∼ c2] (2)

add(xor(x, c), z)→ sub(c+ z, x) [isPowerOf2(c+ #x01) ∧ . . .] (3)

Here the set of values comprises all bit vectors of a fixed length (e.g., 8). The set of function
symbols Ftheory adds logical, arithmetic, and shift operations on bit vectors, which allow to
express auxiliary predicates like isPowerOf2. On the other hand Fterms consists of symbols
such as add, sub, and xor which refer to the bit vector operations in programs that get replaced
in the Instcombine pass. For example, rule (1) replaces addition of two equal numbers by a
left-shift by one bit. Rule (2) simplifies two consecutive additions with bitwise operations
in their arguments to a subtraction, but is only applicable if the constant c1 is the bitwise
negation of the constant c2. Also rule (3) implements some bit twiddling, checking whether a
constant is a power of 2 (among other constraints). Since the optimization set is community
maintained and constantly in flux, unintended interaction and overlapping patterns are not
uncommon, despite the expectation of the community that there be a “canonical” form for
every expression. For example rule (2) admits a critical pair with rule (1).

Completing the entire system is beyond the reach for our tool, but Ctrl completes for
instance 11 optimizations for expressions rooted by an addition to a system of 15 rules,
thereby eliminating some sources of nonconfluence. We maintained the orientation of the
input rules, and could use the termination prover present in Ctrl.

The next example illustrates that LCTRS completion can prevail over completion of
standard rewrite systems even in the absence of constraints: using a “background theory”
such as integer arithmetic may admit a much more succinct presentation.

I Example 36. The tool AQL4 performs data integration, i.e., the transformation of data
from one database scheme to another, by means of a category-theoretic approach which
takes advantage of (ordered) completion [18]. More precisely, it attempts to get a complete
presentation for a set of ground equations describing data in the first database, plus non-
ground equations describing the transformation to the second schema. A (ground) complete
system can then be used to build the initial term model describing the data in the second
schema, by enumerating terms and rewriting them to normal form until a fixed point is
reached. The following example is taken from AQL’s problem suite:

workAt(mng(e)) ≈ workAt(e) workAt(sec(x)) ≈ dep(x) agec(e) ≈ age(e) + age(mng(e))
first(a) ≈ “Alice” first(b) ≈ “Bob” first(c) ≈ “Carl”

mng(a) ≈ b mng(b) ≈ b sec(b) ≈ a
workAt(a) ≈ m dname(s) ≈ “CS” dname(m) ≈ “Math”

Here the set of values consists of integers and strings, and Ftheory contains integer arithmetic.
The signature Fterms contains symbols dep, workAt, mng, and sec to represent a database
schema that describes departments and employees working therein, with relations to designate
managers and secretaries. There are equations defining general relations between relations
as in the first row, and many ground equations describing the actual data (the constants a,

3 Full details can be found at http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_completion/.
4 http://categoricaldata.net/aql.html

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_completion/
http://categoricaldata.net/aql.html

S. Winkler and A. Middeldorp 30:15

b, c refer to entries in a database table). Not all equations of the latter type are shown due
to reasons of space. Ctrl can easily complete this system of 22 equations to an LCTRS of
25 rules within less than a second. Input problems for AQL often relate to standard data
types like integers and strings, thus it is a key advantage if, e.g., numbers and arithmetic are
already present in the theory and do not need to be axiomatized explicitly.

We conclude this section with an example on ordered completion.

I Example 37. In its ordered completion mode, Ctrl can verify ground completeness of the
following system describing sorting the elements in an unordered tree:

[] @ xs→ xs (x : xs) @ ys→ x : (xs @ ys)
add(x, [])→ [x] add(x, y : ys)→ x : (y : ys) [x < y]

add(x, y : ys)→ y : add(x, ys)) [x > y] sort([])→ []
sort(x : xs)→ add(x, sort(xs)) flatten(L(x))→ [x]

flatten(N(x, y))→ flatten(x) @ flatten(y)
tsort(t)→ sort(flatten(t)) N(x, y) = N(y, x)

where the logical constraints are expressed over the theory of integer arithmetic. Obviously,
standard completion fails on this example because of the commutativity equation. For this
example we used constrained RPO such that the resulting system is complete with respect
to a ground-total reduction order.

7 Conclusion

In this paper we presented an abstract completion inference system for both standard and
ordered completion of LCTRSs. We provide a new and succinct correctness proof. Our
prototype implementation shows the potential of completion for this powerful rewriting
concept also on practical examples.

A completion procedure for a different kind of constrained rewrite systems was already
proposed in [8]. However, the work presented in this paper differs from this older approach in
several crucial aspects. It is known [13] that LCTRSs can express systems where the version
of constrained systems from [8] admits no finite presentation. Moreover, our inference system
covers not only standard but also ordered completion, and we give full and novel proofs which
are very concise due to the use of peak decreasingness. We also employ constrained instead
of standard reduction orders, which gives a lot more flexibility to implementations and allows
in particular to perform completion with termination tools. Finally, the implementation
mentioned in [8] was restricted to integers and is no longer available.

For future research a variety of directions is conceivable. There are several opportunities
to enhance efficiency and effectiveness of the tool, such as stronger termination techniques and
critical pair criteria [2]. Theoretical results on infinite runs can shed light on the interesting
case of systems generated in the limit. Finally, formalization of LCTRSs and respective
completion procedures in a proof assistant would enhance reliability.

FSCD 2018

30:16 Completion for Logically Constrained Rewriting

References

1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. doi:10.1017/CBO9781139172752.

2 L. Bachmair. Canonical Equational Proofs. Birkhäuser, 1991.
3 L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion without failure. In H. Aït

Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2:
Rewriting Techniques of Progress in Theoretical Computer Science, pages 1–30. Academic
Press, 1989.

4 L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. 14th TACAS, volume
4963 of LNCS, pages 337–340, 2008. doi:10.1007/978-3-540-78800-3_24.

5 S. Falke and D. Kapur. Dependency pairs for rewriting with built-in numbers and semantic
data structures. In Proc. 19th RTA, volume 5117 of LNCS, pages 94–109, 2008. doi:
10.1007/978-3-540-70590-1_7.

6 C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination
of integer term rewriting. In Proc. 20th RTA, volume 5595 of LNCS, pages 32–47, 2009.
doi:10.1007/978-3-642-02348-4_3.

7 C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting
induction. ACM TOCL, 18(2):14:1–14:50, 2017. doi:10.1145/3060143.

8 Y. Furuichi, N. Nishida, M. Sakai, K. Kusakari, and T. Sakabe. Approach to procedural-
program verification based on implicit induction of constrained term rewriting systems.
IPSJ Transactions on Programming, 1(2):100–121, 2008. In Japanese.

9 N. Hirokawa, A. Middeldorp, and C. Sternagel. A new and formalized proof of abstract
completion. In Proc. 5th ITP, volume 8558 of LNCS, pages 292–307, 2014. doi:10.1007/
978-3-319-08970-6_19.

10 K. Hoder, Z. Khasidashvili, K. Korovin, and A. Voronkov. Preprocessing techniques for
first-order clausification. In Proc. 12th FMCAD, pages 44–51, 2012.

11 D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.
doi:10.1016/B978-0-08-012975-4.

12 C. Kop. Termination of LCTRSs. In Proc. 13th WST, pages 59–63, 2013.
13 C. Kop and N. Nishida. Term rewriting with logical constraints. In Proc. 9th FroCoS,

volume 8152 of LNAI, pages 343–358, 2013. Full version available at https://www.cs.ru.
nl/~cynthiakop/frocos13.pdf. doi:10.1007/978-3-642-40885-4_24.

14 C. Kop and N. Nishida. Constrained Term Rewriting tooL. In Proc. 20th LPAR, volume
9450 of LNAI, pages 549–557, 2015. doi:10.1007/978-3-662-48899-7_38.

15 N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably correct peephole optimiz-
ations with Alive. In Proc. 36th PLDI, pages 22–32, 2015. doi:10.1145/2737924.2737965.

16 N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Practical verification of peephole
optimizations with Alive. Communications of the ACM, 61(2):84–91, 2018. doi:10.1145/
3166064.

17 A. Nadel. Bit-vector rewriting with automatic rule generation. In Proc. 16th CAV, pages
663–679, 2014. doi:10.1007/978-3-319-08867-9_44.

18 P. Schultz and R. Wisnesky. Algebraic data integration. JFP, 27(e24):51 pages, 2017.
doi:10.1017/S0956796817000168.

19 I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion with
a modern termination checker. In Proc. 17th RTA, volume 4098 of LNCS, pages 287–296,
2006. doi:10.1007/11805618_22.

http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-70590-1_7
http://dx.doi.org/10.1007/978-3-540-70590-1_7
http://dx.doi.org/10.1007/978-3-642-02348-4_3
http://dx.doi.org/10.1145/3060143
http://dx.doi.org/10.1007/978-3-319-08970-6_19
http://dx.doi.org/10.1007/978-3-319-08970-6_19
http://dx.doi.org/10.1016/B978-0-08-012975-4
https://www.cs.ru.nl/~cynthiakop/frocos13.pdf
https://www.cs.ru.nl/~cynthiakop/frocos13.pdf
http://dx.doi.org/10.1007/978-3-642-40885-4_24
http://dx.doi.org/10.1007/978-3-662-48899-7_38
http://dx.doi.org/10.1145/2737924.2737965
http://dx.doi.org/10.1145/3166064
http://dx.doi.org/10.1145/3166064
http://dx.doi.org/10.1007/978-3-319-08867-9_44
http://dx.doi.org/10.1017/S0956796817000168
http://dx.doi.org/10.1007/11805618_22

S. Winkler and A. Middeldorp 30:17

A Proofs

The following fact becomes useful in the sequel.

I Lemma 38. If ϕ⇒ ψ is valid, Var(ψ) ⊆ Var(ϕ), and γ respects ϕ then γ respects ψ.

Proof of Lemma 8(2). Since δ respects ψ there is some δ′ respecting ψ′ such that 〈t, v〉δ =
〈t′, v′〉δ′.

First, (1) involves a rule step then ϕ′ = ψ′, 〈s′, u′〉δ′ →rule, 1p 〈t′, v′〉δ′, and u′δ′ = v′δ′ by
Lemma 6. Because 〈s, u〉 [ϕ] ∼ 〈s′, u′〉 [ϕ′] there is some γ such that 〈s, u〉γ = 〈s′, u′〉δ′. We
thus have sγ = s′δ′ →R t′δ′ = tδ and uγ = u′δ′ = v′δ′ = vδ.

Next suppose (1) involves a calculation step. By the definition of →calc we have ψ′ =
(ϕ′ ∧ x = f(s1, . . . , sn)) for some x ∈ V, f ∈ Ftheory, and s1, . . . , sn ∈ Var(ϕ′) ∪ Val. Since
x is fresh we have s′δ′ →calc t

′δ′ and u′δ′ = v′δ′. From 〈s, u〉 [ϕ] ∼ 〈s′, u′〉 [ϕ′] we obtain a
substitution γ respecting ϕ such that 〈s, u〉γ = 〈s′, u′〉δ′. Therefore sγ = s′δ′ →R t′δ′ = tδ

and uγ = u′δ′ = v′δ′ = vδ. J

Proof of Lemma 13.
1. For any γ that respects ϕ we have sγ > tγ and tγ > uγ, hence sγ > uγ follows from

transitivity of >.
2. Suppose γ satisfies ϕ. We have to show that (sσ)γ > (tσ)γ holds. By assumption σ

respects ϕ, hence so does σγ. From s >[ϕ] t we therefore obtain s(σγ) > t(σγ), so also
(sσ)γ > (tσ)γ holds.

3. This follows from closure under contexts of >.
4. Any substitution γ that respects ψ also respects ϕ by Lemma 38, hence sγ > tγ because

of s >[ϕ] t. J

Proof of Lemma 21. Suppose a step C[sτ]←→CP(R∪E>) C[tτ] between ground terms C[sτ]
and C[tτ] uses a critical pair s ≈ t [χ] in CP(R ∪ E>) originating from an overlap 〈`1 →
r1 [ϕ1], p, `2 → r2 [ϕ2]〉 with most general unifier σ. Hence we have `1 → r1 [ϕ1], `2 →
r2 [ϕ2] ∈ R ∪ E> ∪ Rcalc, s = `2σ[r1σ]p, t = r2σ, and χ = ϕ1σ ∧ ϕ2σ. Then there are
u1 ≈ v1 [ψ1] and u2 ≈ v2 [ψ2] in R∪E ∪Rcalc and a substitution γ such that `1 → r1 [ϕ1] =
(u1 ≈ v1 [ψ1])γ and `2 → r2 [ϕ2] = (u2 ≈ v2 [ψ2])γ (assuming that equations and rules in
R∪ E ∪Rcalc are renamed apart).

We distinguish two cases. First, suppose p ∈ PosF (u2). We have u2γσ = u2γσ[u1γσ],
so u2|p and u1 must be unifiable. Let ρ be their most general unifier, so there is some
substitution δ such that γσ = ρδ. Since χτ = (ϕ1∧ϕ2)στ = (ψ1∧ψ2)γστ is valid, (ψ1∧ψ2)γ
is satisfiable. So there is an overlap 〈u1 ≈ v1 [ψ1], p, u2 ≈ v2 [ψ2]〉. Moreover, since τ
respects χ, the substitution στ respects ϕ1 = ψ1γ. If u1 ≈ v1 [ψ1] ∈ R ∪ E> then we have
u1γ >[ψ1γ] v1γ and hence u1γστ > v1γστ ; if u1 ≈ v1 [ψ1] ∈ Rcalc then u1γστ > v1γστ

by the properties of a reduction pair. In either case v1γ >[ψ1γ] u1γ cannot hold because
> is well-founded. Similarly, v2γ >[ψ2γ] u2γ cannot hold. So the overlap gives rise to a
constrained extended critical pair u2ρ[v1ρ]p ≈ v2ρ [ψ1γ ∧ ψ2γ], and we have a step

C[sτ] = C[u2[v1]pγστ] = C[u2ρ[v1ρ]pδτ]←−−−−−→
CP>(R∪E)

C[v2ρδτ] = C[v2γστ] = C[tτ]

Second, if p /∈ PosF (u2) then the peak u2γ[v1γ]p ← u2γ[u1γ]p = u2γ → v2γ forms a variable
overlap between u1 ≈ v1 [ψ1] and u2 ≈ v2 [ψ2]. There are positions p′ and q such that u2|p′
is some variable x and γ(x)|q = u1γ. Note that u2 ≈ v2 [ψ2] cannot be a calculation rule
since γ(x) /∈ Val. Let γ′ be the substitution defined by γ′(x) = γ(x)[v1γ]q and γ′(y) = γ(y)

FSCD 2018

30:18 Completion for Logically Constrained Rewriting

for all y 6= x. Then x cannot occur in ψ2 since γ(y) ∈ Val for all y ∈ Var(ψ2), but left-hand
sides are headed by non-theory symbols. Therefore γ′ respects ψ2 and thus we obtain

u2γ[v1γ]p
∗−−−−−−−→

`1→r1 [ϕ1]
u2γ
′ ←−−−−−−→
u2≈v2 [ψ2]

v2γ
′ ∗←−−−−−−−
`1→r1 [ϕ1]

v2γ

Since u2γ and v2γ are ground, u2 ≈ v2 [ψ2] ∈ R ∪ E± and > is complete for R ∪ E , either
u2γ
′ →R∪E> v2γ

′ or v2γ
′ →R∪E> u2γ

′ must hold. J

Proof of Lemma 26. We perform a case distinction on the applied inference rule.
Suppose deduce was applied and there is a step C[sσ]↔ C[tσ] using s ≈ t [ϕ] ∈ E ′. The
substitution σ must respect ϕ. From 〈u, u〉 [ϕ]→R∪E± 〈s, u〉 [ϕ] and Lemma 8(2) we ob-
tain a substitution γ1 such that uγ1 →R∪E± sσ and uγ1 = uσ, and from 〈u, u〉 [ϕ]→R∪E±
〈u, t〉 [ϕ] a substitution γ2 such that uγ2 →R∪E± tσ and uγ2 = uσ. We have

C[sσ] R∪E±← C[uγ1] = C[uσ] = C[uγ2]→R∪E± C[tσ]

and thus C[sσ]←→∗E∪R C[tσ].
If compose was applied then 〈s, t〉 [ϕ] →R∪E> 〈s, u〉 [ψ] and hence 〈t, s〉 [ϕ] →R∪E>

〈u, s〉 [ψ]. If there is a step C[uσ]← C[sσ] then C[sσ]←→2
E∪R C[uσ] by Lemma 9(2).

Next, suppose simplify was applied so we have 〈s, t〉 [ϕ] →R∪E> 〈u, t〉 [ψ]. For a step
C[sσ]←→ C[uσ] using s ≈ u [ψ] we thus have C[sσ]←→2

E∪R C[uσ] by Lemma 9(2).
If collapse was applied we have 〈t, s〉 [ϕ]→R∪E> 〈u, s〉 [ψ]. If there is a step C[uσ]↔ C[sσ]
using u ≈ s [ψ] then C[sσ]←→2

E∪R C[uσ] follows again from Lemma 9(2).
The case of orient is trivial, and in the case of delete there is nothing to show. Also the
split cases are easy since substitutions respecting ϕ ∧ ψ (or ϕ ∧ ¬ψ) also respect ϕ. J

	Introduction
	Preliminaries
	Constrained Reduction Orders
	Critical Pair Lemma
	Abstract Completion
	Standard Completion
	Ordered Completion

	Implementation and Applications
	Conclusion
	Proofs

