
Recording Completion for
Certificates in Equational Reasoning ∗

Thomas Sternagel Sarah Winkler Harald Zankl
Institute of Computer Science, University of Innsbruck, Innsbruck, Austria

{thomas.sternagel,sarah.winkler,harald.zankl}@uibk.ac.at

Abstract
We introduce recording completion, a variant of Knuth-Bendix
completion which facilitates the construction of certificates for var-
ious equational logic proofs (completion proofs, entailment proofs
and dis-proofs). The approach generalizes to more powerful vari-
ants of completion such as ordered completion and AC comple-
tion. We implemented recording completion in the tools KBCV and
MKBTT. Both tools allow to choose among different formats of
proof certificates, namely conversions, proof trees, and conversions
with history. We report on experimental results in which all gener-
ated certificates have been verified by the trustable checker CeTA.

Keywords equational logic, rewriting, completion, certification

1. Introduction
Solving the word problem requires to decide whether an equation
s ≈ t follows from an equational system E . It is well known that the
word problem is undecidable (see, e.g., [1]). Birkhoff’s theorem [3]
in combination with Knuth-Bendix completion [10] (if successful)
gives a decision procedure for the word problem. If an equational
system E can be transformed into an equivalent terminating and
confluent rewrite systemR, then s ≈ t follows from E if and only
if theR-normal forms of s and t coincide.

Example 1. For E consisting of the equations {ff ≈ f, ggf ≈ g}
(where f and g are unary function symbols, for which we find it
convenient to abbreviate f(g(f(x))) to fgf etc.) a possible choice of
R is {ff → f, gf → g, gg → g}. Since fgf →∗R fg ∗

R← fgg, the
equation fgf ≈ fgg follows from E .

An alternative way to show that s ≈ t follows from E is to
find a proof tree using the inference rules of equational logic (see
Figure 1(a)). A proof tree showing that fgf ≈ fgg follows from E is
depicted in Figure 2 on page 4. Note that in the case of completion
such proof trees are not constructed explicitly.

When we want to answer/certify whether s ≈ t follows from E
we are faced with the following situation:

∗ This research is supported by the Austrian Science Fund (FWF) project
I963 and a grant of the Hypo Tirol Bank.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CPP ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3300-9/15/01.
http://dx.doi.org/10.1145/10.1145/2676724.2693171

• It is hard to find a conversion or proof tree showing that s ≈ t
follows from E but easy to check validity of such a certificate.

• Under the assumption that Knuth-Bendix completion is suc-
cessful, it is easy to decide the existence of a conversion or
proof tree for s ≈ t (just rewrite s and t to R-normal forms)
but hard to certify this decision. In particular, it is typically far
from obvious that E andR are equivalent.

In this paper we introduce recording completion, which over-
comes both problems. Recording completion augments Knuth
Bendix completion by a history component that allows to recon-
struct how the rules in R have been derived from the equations
in E . Then, from a join s→∗R · ∗R← t a conversion s↔∗E t can be
reconstructed, which is the basis for building an explicit proof tree.
As a consequence, recording completion can also come up with an
equivalence proof for R and E , and hence facilitates certification
of a completion proof.

We have implemented recording completion into the tools
KBCV [16] (based on standard Knuth-Bendix completion) and
MKBTT [21] (also admitting ordered and AC completion) such
that they can generate certificates for equational logic proofs as
well as completion proofs. These certificates can then be checked
by CeTA [15, 18], an executable and trustable proof checker gen-
erated via the code export functionality of Isabelle, based on the
Isabelle Formalization of Rewriting (IsaFoR).

The remainder of the paper is organized as follows: In the
next section we recall preliminaries before Section 3 introduces
recording completion. We first describe our approach for Knuth-
Bendix completion before outlining extensions to ordered and AC
completion. The various kinds of proof certificates enabled by
recording completion are described in Section 4. The tools and their
features are presented in Section 5 before experimental results are
discussed in Section 6. Section 7 concludes.

2. Preliminaries
We assume familiarity with term rewriting, equational logic, and
completion [1].

A signature F is a set of function symbols (denoted by f , g,
etc.). The set of terms over a signature F and a set of variables V
is denoted by T (F ,V). A term is ground if it does not contain
variables. Let p be a position in a term t. Then t|p denotes the
subterm of t at position p and t[s]p denotes the result of replacing
the subterm of t at position p by the term s. For terms s and t from
T (F ,V) we call s ≈ t an equation. An equational system (ES) E
is a set of equations. Sometimes we orient an equation s ≈ t, write
s → t, and call it a rule. Then for an ES E we denote by→E the
smallest relation that contains E and is closed under contexts and
substitutions. Let→ be a relation. We write (→)−1 (or simply←)

t ≈ t (refl)

t ≈ s
s ≈ t (sym)

s ≈ t t ≈ u
s ≈ u (trans)

s ≈ t ∈ E
sσ ≈ tσ (assm)

s1 ≈ t1 · · · sn ≈ tn
f(s1, . . . , sn) ≈ f(t1, . . . , tn)

(cong)

(a) Inference rules of equational logic.

(E ,R,H)
(E ∪ {m : s ≈ t},R,H ∪ {m : s

j← u
k→ t})

(deduce) if s R
j← u

k→R t

(E ∪ {i : s ≈ t},R,H)
(E ,R∪ {i : s→ t},H) (orientl) if s > t

(E ∪ {i : s ≈ t},R,H ∪ {i : s
j
◦1 u

k◦2 t})
(E ,R∪ {i : t→ s},H ∪ {i : t (k◦2)−1 u (

j
◦1)−1 s})

(orientr) if t > s

(E ∪ {i : s ≈ t},R,H)
(E ∪ {m : u ≈ t},R,H ∪ {m : u

l← s
i→ t})

(simplifyl) if s l→R u

(E ∪ {i : s ≈ t},R,H)
(E ∪ {m : s ≈ u},R,H ∪ {m : s

i→ t
l→ u})

(simplifyr) if t l→R u

(E ∪ {i : s ≈ s},R,H ∪ {i : s ◦1 v ◦2 s})
(E ,R,H) (delete)

(E ,R∪ {i : s→ t},H)
(E ,R∪ {m : s→ u},H ∪ {m : s

i→ t
j→ u})

(compose) if t
j→R u

(E ,R∪ {i : s→ t},H)
(E ∪ {m : u ≈ t},R,H ∪ {m : u

j← s
i→ t})

(collapse) if s
j→R u

(b) Inference rules of recording completion.

Figure 1: Inference rules.

for the inverse of→,↔ for→ ∪ ←, and→∗ for the reflexive and
transitive closure of→.

An ES E is called a term rewrite system (TRS) if all equa-
tions are rules. A TRS R is terminating if →R is well-founded,
locally confluent if R← · →R ⊆ →∗R · ∗R←, and confluent if
∗
R← · →∗R ⊆ →∗R · ∗R←. A terminating and confluent TRS is
called complete. A TRS is ground confluent if s ∗R← u→∗R t im-
plies s →∗R · ∗R← t for all ground terms u, and ground complete
if it is terminating and ground confluent. A term s is in (R-)normal
form if there is no term t with s →R t. We write s↓R for an R-
normal form of a term s, i.e., some term t such that s→∗R t and t is
in normal form. Terms s and t are (R-)joinable if s →∗R · ∗R← t,
and (E-)convertible if s ↔∗E t. A TRS R and an ES E are equiv-
alent if↔∗E = ↔∗R, i.e., their respective equational theories coin-
cide.

We call (s, t) a critical pair of a TRS R if and only if there
are two (not necessarily distinct) variable renamed rules `i → ri,
i = 1, 2 (without common variables) and a position p in `1 such
that θ is a most general unifier of `1|p and `2, `1|p is not a variable,
s = r1θ, and t = `1θ[r2θ]p. The critical pair theorem [8, 10] states
that a TRS R is locally confluent if and only if all its critical pairs
are joinable.

An F-algebra A consists of a non-empty set A (the carrier)
and an interpretation I : F → A∗ → A. For each F-algebra
A = (A, I), and each variable assignment α : V → A, we define
the term evaluation [·]Aα : T (F ,V) → A as [x]Aα = α(x) and
[f(t1, . . . , tn)]

A
α = I(f)([t1]

A
α , . . . , [tn]

A
α). We drop A whenever

it is clear from the context.
An F-algebra A is a model of an equation s ≈ t if for each

variable assignment α the equality [s]Aα = [t]Aα is satisfied. If every
F-algebra that is a model of all equations in E also is a model of
s ≈ t we write E |= s ≈ t and say that s ≈ t follows from E .
The relation |= is called semantic entailment. Syntactic entailment,

written E ` s ≈ t, means that we can prove s ≈ t with the
inference rules from Figure 1(a) using equations from E .

For any ES E and terms s and t we have E ` s ≈ t if and
only if s ↔∗E t if and only if E |= s ≈ t. The latter follows from
Birkhoff’s theorem [3].

3. Recording Completion
In this section we present the method of recording completion.
In Section 3.1 we consider the case of classical Knuth-Bendix
completion. To this end we extend the well-known inference rules
(see, e.g., [1]) by a history component that allows to infer how the
rules inR have been derived from the equations in E .1 We discuss
extensions to ordered and AC completion in Section 3.2.

3.1 Knuth-Bendix Completion
Recording completion basically aims to construct entailment proofs,
which may be represented by conversions or proof trees. The con-
struction of an entailment proof for E ` s ≈ t (if possible at all)
proceeds in three phases to obtain a conversion, plus an additional
phase to get a proof tree:

record The inference rules of recording completion (see Fig-
ure 1(b)) are applied to the equational system E . Upon success,
a confluent and terminating TRSR (equivalent to E) and a his-
tory H (recording how the rules in R have been derived) are
computed.

compare If the previous phase is successful, the test for s →∗R
· ∗R← t is performed by rewriting s and t toR-normal form.

1 Note that our implementations (see Section 5) are based on the slightly
more involved rules of [20], for which the extension works alike. For
reasons of readability this is not reflected in our presentation.

recall If the previous phase is successful, we construct s ↔∗E t
from s →∗R · ∗R← t, using the information recorded in the
historyH.

plant & grow Based on the conversion s ↔∗E t a proof tree for
E ` s ≈ t is constructed.

In the sequel we discuss the four phases in detail.

3.1.1 Record
The record phase uses the inference rules from Figure 1(b), which
are similar to the standard rules except for the following two dif-
ferences: In the collapse-rule we dropped the condition of strict
encompassment. Since we only consider finite runs, this condition
is no longer required for soundness (cf. [15, Theorem 5.2]). Fur-
thermore, there is a new history component H whose entries are
of the form i : s

j
◦1 u

k◦2 t where i is the index of the history en-
try, j and k are indices of rules in R, s, u and t are terms, and
◦1, ◦2 ∈ {←,→}.

Let us take a closer look at the extended inference rules. For
deduce the peak s

j← u
k→ t that triggers the new equation s ≈ t

is stored in a history entry (where m is assumed to be a fresh
index that is larger than every earlier index). By orientl we orient
an equation from left to right and the corresponding history entry
remains unchanged, whereas by orientr we orient an equation from
right to left and thus have to “mirror” the corresponding history
entry. Here > is a reduction order, provided as part of the input.
The rules simplifyl and simplifyr are used to R-rewrite a left-
or right-hand side of an equation. With delete we remove trivial
equations from E and the corresponding history entry from H.
Finally, compose rewrites a right-hand side of a rule in R while
collapse does the same for left-hand sides.

We write (Ei,Ri,Hi) (Ei+1,Ri+1,Hi+1) for the applica-
tion of an arbitrary inference rule to the triple (Ei,Ri,Hi) resulting
in (Ei+1,Ri+1,Hi+1).

Definition 1. A run of recording completion for E is a finite se-
quence

(E0,R0,H0)
n (En,Rn,Hn)

of rule applications, where E0 = E ,R0 = ∅, andH0 = ∅. A run
is successful if En = ∅ and all critical pairs of Rn that are not
contained in

⋃
i≤n Ei are joinable byRn.

If (E ,∅,∅) n (∅,R,H) is a successful run for E , thenR is
confluent, terminating, and equivalent to E (cf. Theorem 1). Note
that the requirement on critical pairs for a successful run can be
replaced by local confluence of R, since local confluence implies
that all critical pairs ofR are joinable.

If recording completion was successful Hn contains important
information about the intermediate steps which we will need later
to construct the conversion s↔∗E t from the join s→∗R · ∗R← t.

The record phase is sound, the proof has been formalized in
IsaFoR (see [15]).

Theorem 1. If (E ,∅,∅) n (∅,R,H) is a successful run of
recording completion then R is confluent, terminating, and equiv-
alent to E .

Next we demonstrate the record phase by an example.

Example 2. Recall E from Example 1. We start with the triple de-
picted in Table 1(a) and perform recording completion. Note that
LPO with empty precedence orients all emerging rules in the de-
sired direction. After orienting rules 1 and 2 from left to right we
deduce a critical pair between rules 2 and 1, resulting in the equa-
tion 3: ggf ≈ gf and the history entry 3: ggf

1←ggff
2→gf. Next we

simplify the left-hand side of equation 3 by an application of rule 2
and obtain the equation 4: g ≈ gf with corresponding history en-
try 4: g

2←ggf
3→gf. Orienting rule 4 from right to left causes the

E0 R0 H0

1: ff ≈ f ∅ ∅
2: ggf ≈ g

(a) Initial state.

En Rn Hn

∅ 1: ff → f 3: ggf
1← ggff

2→ gf

4: gf → g 4: gf
3← ggf

2→ g

5: gg→ g 5: gg
4← ggf

2→ g

(b) Final state.

Table 1: Example of recording completion.

history entry to be mirrored, i.e., 4: gf
3←ggf

2→g. Rules 2 and 4
allow to deduce equation 5: gg ≈ g with history 5: gg

4←ggf
2→g,

which we orient from left to right. Collapsing the left-hand side
of rule 2 with rule 5 yields 6: gf ≈ g with 6: gf

5←ggf
2→g. Now

rule 4 simplifies equation 6 into 7: g ≈ g with 7: g
4←gf

6→g, which
is immediately deleted afterwards. Finally, En is empty and as all
remaining critical pairs of Rn are joinable, the procedure can be
stopped. Since there is no rule with index 6 the history entry 6
can be dropped. Hence, we obtain the result depicted in Table 1(b)
whereRn is terminating, confluent, and equivalent to E .

3.1.2 Compare
Let (E ,∅,∅) n (∅,R,H) be a successful run of recording
completion. In the compare phase we test joinability of the terms
in s ≈ t with respect to R. If the two terms are joinable, then
s ≈ t follows from E and the next phase constructs an E-conversion
s↔∗E t. In the other case s ≈ t does not follow from E .

Example 3 (Continued from Example 2). For fgf and fgg we
obtain joinability since fgf

4→R fg R
5← fgg. Hence fgf ≈ fgg

follows from E .

The compare phase is sound since R and E are equivalent (cf.
Theorem 1).

3.1.3 Recall
Let (E ,∅,∅) n (E ′,R,H) be a run of recording completion.
Then the recall phase transforms a join s →∗R · ∗R← t into a
conversion s ↔∗E t as follows. For each step t1

i→t2 where the
index i is not in E the corresponding history entry is inserted.
Let i : ` → r be the rule with index i. Then there must be a
history entry i : `

j
◦1 u

k◦2 r, a position p, and a substitution σ such
that t1|p = `σ and t2|p = rσ. The step t1

i→t2 is replaced by
the conversion t1

j
◦1 t1[uσ]p

k◦2 t2. This process terminates since
i > j, k, i.e., the index of any history entry depends on smaller
indices only and finally we arrive at a conversion using indices
from E .

Example 4 (Continued from Example 3). The recall phase starts
with the join fgf

4→R fg R
5← fgg and replaces the step fgf

4→fg
(at position 1) using history entry 4 by fgf

3←fggf
2→fg, etc. until

we arrive at the following conversion using indices from E only

fgf
2← fggff

1→ fggf
2→ fg

2← fggf
2← fgggff

1→ fgggf
2→ fgg

(1)

The arrows in this conversion indicate if the step is performed via
an equation from E or a symmetric version of an equation from E .

(assm)
ggff

2→ gf
(cong)

fggff
2→ fgf

(sym)
fgf

2← fggff

(assm)
ff

1→ f (cong)
gff

1→ gf
(cong)

ggff
1→ ggf

(cong)
fggff

1→ fggf
(trans)

fgf ≈ fggf

(assm)
ggf

2→ g
(cong)

fggf
2→ fg

(trans)
fgf ≈ fg

(assm)
ggf

2→ g
(cong)

fggf
2→ fg

(sym)
fg

2← fggf
(trans)

fgf ≈ fggf

(assm)
ggff

2→ gf
(cong)

gggff
2→ ggf

(cong)
fgggff

2→ fggf
(sym)

fggf
2← fgggff

(trans)
fgf ≈ fgggff

(assm)
ff

1→ f (cong)
gff

1→ gf
(cong)

ggff
1→ ggf

(cong)
gggff

1→ gggf
(cong)

fgggff
1→ fgggf

(trans)
fgf ≈ fgggf

(assm)
ggf

2→ g
(cong)

gggf
2→ gg

(cong)
fgggf

2→ fgg
(trans)

fgf ≈ fgg

Figure 2: Result of the plant & grow phase.

The next lemma states the desired property of the recall phase.
Note that we do not need a successful run of recording completion
but any join s→∗R · ∗R← t can be transformed into s↔∗E t.

Lemma 1. Let (E ,∅,∅) n (En,Rn,Hn) be a run of recording
completion. Then the recall phase transforms any join using rules
fromRn into a conversion using rules from E .

Proof. Let I0 be the set of all indices of E and I be the set of all
indices of all Ei and Ri with 0 6 i 6 n. We show the slightly
stronger claim that any conversion over I is transformed into a
conversion over I0.

To this end, consider a conversion t1
i1↔ t2

i2↔ · · ·
im−1↔ tm

where indices i1, . . . , im−1 are in I , i.e., i↔ if and only if i→ or
i← is in Rj or s

i
≈ t or t

i
≈ s is in Ej for some 0 6 j 6 n.

Let S be the multiset of indices occurring in this conversion, S0

the submultiset of S with indices from E0, and S′ = S \ S0. We
show the claim by induction on the multiset S′ where multisets
are ordered by the multiset extension of >N. In the base case S′ is
empty and hence t1

I0↔∗ tm which shows the result. In the step case
there exists an index l ∈ S′ such that t1

I0↔∗ tj
I0↔ tj+1

I0↔∗ tm for
some 1 6 j < m. Now assume that l does not appear inHn. Then
it must have been deleted by the rule delete and hence tj = tj+1.
This case is finished by applying the induction hypothesis to t1

I0↔∗
tj
I0↔∗tm. In the other case let l : s

p
◦1 u

k◦2 t ∈ Hn. Since l >N p, k
(by construction of the inference rules of recording completion)
the induction hypothesis applies to t1

I0↔∗ tj
p
◦1 ·

k◦2 tj+1
I0↔∗ tm

which concludes the proof.

3.1.4 Plant and Grow
The plant and grow phase constructs a proof tree for E ` s ≈ t
from a conversion s ↔E · ↔E · · · ↔E t as follows: The tree
is planted by applications of trans (downwards) while it grows
(upwards) using rules cong (to chop off common contexts), sym
(to optionally change the direction of an equation), and assm to
finish the branch of the proof.

Example 5. For the conversion (1) from Example 4 the corre-
sponding proof tree is shown in Figure 2 (note how the left assump-
tion of the first trans-rule together with the right assumptions of all
trans-rules directly correspond to conversion (1)).

3.2 Ordered and Normalized Completion
Ordered completion was dubbed unfailing completion when intro-
duced by Bachmair et al. [2]. Though it will in general only pro-
duce a ground complete system, this turns out to be sufficient for
many applications including theorem proving. Consequently, var-
ious refutational theorem proving tools are based on variants of
ordered completion [6, 7].

Ordered completion can be described by an inference system [2]
which differs from the one for standard completion by only two fea-
tures: (1) deduce steps allow to compute critical pairs involving not
only rewrite rules but also equations, and (2) orientable instances
of equations are admitted instead of rules in the rewrite steps of
simplifyl, simplifyr, compose, and collapse inferences.

In an ordered recording completion procedure the history com-
ponent H thus contains entries i : s

j
◦1 u

k◦2 t where ◦1, ◦2 ∈
{←,→,≈}. We then extend the inference rules of Figure 1(b)
with an additional deduceo rule as well as simplifyo

l , simplifyo
r ,

composeo, and collapseo rules that apply orientable instances of
equations in rewrite steps. The rules deduceo and composeo are
displayed in Figure 3(a). All remaining rules are obtained by mod-
ifying their counterpart in Figure 1(b) in a similar way as done for
composeo. In deduceo the relation

j
◦1 denotes

j← if j is an index of
a rule inR, and

j
≈ otherwise. Similarly,

k◦2 denotes k→ if k is an in-
dex of a rule in R, and

k
≈ otherwise. Inferences using the deduceo

rule can in practice be restricted to extended critical pairs [2].

Example 6. Consider the system GRP466-1 in TPTP:2

x2 ≈ (x0/x0)/(x1/((x2/(x3/x1))/i(x3)))

x0/i(x1) ≈ x0 · x1
Using ordered recording completion, the tool MKBTT can produce
a proof of the equation i(a) · a ≈ i(b) · b which is certified by CeTA.
Note that standard completion does not succeed in this case.

In the tool MKBTT we also support recording completion in the
setting of normalized completion [11], which covers AC comple-
tion [13] as a subcase. These methods extend standard completion
by reasoning modulo built-in theories, and are useful in presence of,
e.g., associative and commutative operators where standard com-
pletion fails. Though the implementation of MKBTT is actually
based on normalized completion, we restrict to AC completion in
the sequel in order to simplify the presentation. Figure 3(b) shows
two example rules.

Here the signature F is supposed to include a subset of bi-
nary AC operators FAC, and the ES AC consists of all equations
f(x, y) ≈ f(y, x) and f(x, f(y, z)) ≈ f(f(x, y), z) such that
f ∈ FAC. The reduction order > has to satisfy AC compatibil-
ity, i.e., ↔∗AC · > · ↔∗AC ⊆ >. We write s

j→R/AC t whenever
s↔∗AC ·

j→R · ↔∗AC t.

Example 7. When given Abelian group theory as specified by E =
{x·(y ·z) ≈ (x·y)·z, x·y ≈ y ·x, x·1 ≈ x, x·i(x) ≈ 1} as input,
MKBTT can produce a proof of the equation i(x) · i(y) ≈ i(x · y)
which is certified by CeTA. As CeTA does currently not support
rewriting modulo AC, all AC steps must be specified explicitly.

2 http://www.cs.miami.edu/~tptp/

http://www.cs.miami.edu/~tptp/

(E ,R,H)
(E ∪ {m : s ≈ t},R,H ∪ {m : s

j
◦1 u

k◦2 t})
(deduceo) if s S

j← u
k→S t for S = R∪ E ∪ E−1

(E ,R∪ {i : s→ t},H)

(E ,R∪ {m : s→ u},H ∪ {m : s
i→ t

j
≈ u})

(composeo) if v
j
≈ w ∈ E ∪ E−1, vσ > wσ and t→vσ→wσ u

(a) Ordered completion.

(E ,R,H)
(E ∪ {m : s ≈ t},R,H ∪ {m : s R/AC

j← u
k→R/AC t})

(deduceAC) if s R/AC

j← u
k→R/AC t

(E ,R∪ {i : s→ t},H)
(E ,R∪ {m : s→ u},H ∪ {m : s

i→ t
j→R/AC u})

(composeAC) if t
j→R/AC u

(b) AC completion.

Figure 3: Some additional inference rules for variants of completion.

4. Certificates for Equational Proofs
Recording completion enables the generation of various kinds of
proof certificates, which can all be checked by CeTA 2.18. CeTA ac-
cepts certificates in the certification proof format (CPF),3 which
is a common format for rewrite proofs in XML. Clearly the equa-
tional system must always be part of the certificate. We discuss the
additional content for different kinds of certificates below.

Entailment Proofs Any certificate for a proof of E ` s ≈ t
requires the equational system E and the goal equation s ≈ t.
The construction of such a proof has been outlined in the previous
section. Concerning the representation of the single proof steps in
the certificate, one can think of different levels of verbosity.

• Conversion: In the simplest case recording completion omits
the plant and grow phase and simply describes a conversion
for the goal equation s ≈ t using equations in E , such as in
Example 4.

• Proof trees: In this case the certificate contains a proof tree
for s ≈ t using equations in E , as exemplified in Figure 2
(Example 5).

• History: One can ensure E ` s ≈ t by showing that (i) the
TRS Ri associated with the current completion state admits a
join s →∗Ri

· ∗
Ri
← t, and (ii) all history entries m : s′

j
◦1u

k◦2t′
are consequences of E (i.e., s′ ↔∗E t′) and can thus be used
as auxiliary equations. For our running example the data of a
dedicated certificate is shown in Table 2. To avoid cyclic ref-
erences, history entries are processed in order of their indices.
This approach requires the certifier to support such auxiliary
equations. In return, proofs become much shorter as the history
itself is the proof of ↔∗Ri

⊆ ↔∗E which obviously has lin-
ear size. In contrast, the recall phase might produce certificates
where the conversion s ↔∗E t is exponentially larger than the
join s→∗Ri

· ∗Ri
← t.

Note that in order to establish a proof tree for E ` s ≈ t it is
not necessarily required to perform a successful run of completion.
Interleaving the record and compare phase the procedure can be
stopped once s→∗Ri

· ∗Ri
← t can be established. Still, a proof tree

(or conversion) can be constructed (cf. Lemma 1), which can be
checked by CeTA. This is different for entailment dis-proofs, which
are discussed next.

3 http://cl-informatik.uibk.ac.at/software/cpf/

E : ff ≈ f
ggf ≈ g

goal equation: fgf ≈ fgg

H: ggf ← ggff → gf
gf ← ggf → g
gg← ggf → g

join: fgf → fg← fgg

Table 2: Entailment proof using history.

Entailment Dis-Proofs If the record phase is successful in deriv-
ing a complete TRS R but in the compare phase s and t cannot be
joined then it follows that E 6` s ≈ t. The certificates for entailment
dis-proofs E 6` s ≈ t thus require a certificate for a completion
proof (see below), besides the goal equation s ≈ t and the ES E .
In this case CeTA verifies that s and t have different normal forms
with respect toR automatically.

Completion Proofs For completion proofs CeTA does not certify
that each application of an inference rule is correct but rather that
the output is correct, i.e., the rewrite system R is (i) terminating,
(ii) confluent, and (iii) equivalent to the input ES E .

For (i) the termination proof generated in the course of (record-
ing) completion is added to the certificate while (ii) can be checked
by Newman’s lemma, stating that in the presence of termination lo-
cal confluence and confluence coincide. For checking local conflu-
ence CeTA does not require any information but supports checking
given joining sequences for the critical pairs if they are provided
in the certificate. CeTA certifies (iii) by establishing ↔∗E ⊆ ↔∗R
and↔∗R ⊆ ↔∗E . It automatically verifies the former by checking
that s →∗R · ∗R← t holds for all s ≈ t in E , because due to com-
pleteness ofR all such terms s and t must have a common normal
form. To establish the latter, CeTA needs additional input, thereby
supporting similar possibilities as for entailment proofs:

• Proof trees: In this case the certificate contains a proof tree for
each rule l → r ∈ R showing E ` l ≈ r. This establishes
→R ⊆ ↔∗E and hence↔∗R ⊆ ↔∗E .

• History: Alternatively, one can guarantee↔∗R ⊆ ↔∗E by show-
ing that all history entries i : s′

j
◦1u

k◦2t′ are consequences of E
(i.e., s′ ↔∗E t′) and can thus be used as auxiliary equations.

http://cl-informatik.uibk.ac.at/software/cpf/

The disadvantage of the first approach is that the recall phase
gives rise to an exponential blowup in the proof size. That this is
problematic in practice is highlighted in Section 6.

5. Tools and Features
We implemented recording completion in KBCV, a tool designed
for interactive completion proofs based on Knuth-Bendix com-
pletion and MKBTT, an automatic completion tool employing
multi-completion based on either standard, ordered or normalized
completion. Both tools offer a command-line and a web-interface,
KBCV additionally offers a graphical user interface. The sources
and web-interfaces are available from

http://cl-informatik.uibk.ac.at/research/software

First we present KBCV, which admits user interaction. The tool
displays the current sets of equations and rules and the user can
select the desired inference rule from Figure 1(b) to be applied
(in addition the tool features a fully automatic mode). Internally
KBCV uses a combination of the inference system of Figure 1(b)
for recording completion and the inference system of [20, Figure 2]
for completion using termination tools. Hence, it performs the nec-
essary termination checks automatically. However, the constraints
needed for the termination checks (component C in [20, Figure 2])
and the history (component H in Figure 1(b)) are hidden from the
user and not displayed by default.

At any stage of the process the user can try to construct an
equivalence proof for two terms s and t using the current set of
rules Ri since s →∗Ri

· ∗
Ri
← t implies s ↔∗E t by Lemma 1.

Note that any Ri is terminating but need not be confluent. Hence,
disproving s and t equivalent is only possible after a successful run
of (recording) completion.

To certify its output, KBCV can extract equivalence (dis-)proofs
and completion proofs in CPF format, which we have suitably ex-
tended. Next we discuss how this can be done via the applet version
of KBCV. By default the axioms of group theory (f(f(x, y), z) ≈
f(x, f(y, z)), f(x, c) ≈ x, f(x, g(x)) ≈ c) are loaded and an
automatic completion attempt (button Completion) is successful
within a few seconds on a modern computer. The tool then can
construct a proof (having several hundred lines) that g(f(x, y)) ≈
f(g(y), g(x)) follows from the axioms of group theory (File →
Equational Proof) also within a few seconds. Because these proofs
are typically fairly large they are not depicted as trees but in a lin-
ear shape. After exporting and saving this proof (button Export or
File→ Export Equational Proof) it can be certified by CeTA within
a fraction of a second. The workflow for equational disproofs, e.g.,
that g(f(x, y)) ≈ f(g(y), g(x)) does not follow from the axioms
of group theory, is similar.

In addition to the export of equational proofs also the comple-
tion proof itself can be exported by KBCV (File → Export Com-
pletion Proof). Again CeTA can certify it within one second.

To run KBCV in automatic completion mode the flag -a is used
while -e runs the automatic equational logic proof mode. The -p
flag triggers certifiable output. In equational logic proof mode the
default is to output a conversion proof using the history. To output
a proof tree and a full conversion the flags -pt and -cv are used,
respectively.

The tool MKBTT runs standard multi-completion by default,
using termination tools as backend. Alternatively, it can be set to or-
dered completion (option -o) or normalized completion mode (op-
tion -n). Note that the latter is a generalization of AC completion.
The option -cert triggers certifiable output. In case of standard
completion this means that MKBTT outputs a completion proof
upon success. If the tool is run in ordered completion mode and the
input contains a goal which MKBTT can prove, it outputs an entail-

ment proof. The format of this proof can be controlled by the option
-p followed by one of cpfconv, cpftree, and cpfsub for conver-
sions, proof trees, and history proofs, respectively. In each of these
settings an entailment disproof is output if a complete system was
derived and the goal equation is not joinable. When MKBTT is run
in normalized completion mode with an input containing a goal,
the option -p cpfsub triggers the output of an entailment proof if
the goal could be proved. Note that CeTA certifies neither ground
completeness nor AC convergence. Thus, when run in ordered or
normalized completion mode with the certification flag, MKBTT
only produces entailment proofs but no (ground, AC) completeness
proofs and consequently also no dis-proofs.

6. Experiments
The experiments described in this section were conducted with
help of the StarExec4 project. Each tool plus problem instance was
given to a single 64 bit GNU/Linux machine with an Intel R© Xeon R©

E5-2609 processor with four cores clocked at 2.40 GHz and 256 GB
of memory. The timeout for each problem was set to 10 minutes.

First we performed experiments for completion proofs involv-
ing the tools KBCV as well as MKBTT based on 115 problems
from the literature (see the website). The following flags were set
for the two tools

./kbcv -a -p -s 600 -m "./ttt2 -cpf -ext xml - 1" file

./mkbtt -cert -yesno -t 600 file

The detailed results are available at

http://cl-informatik.uibk.ac.at/experiments/2015/cpp

Both tools were using internal termination methods together with
calls to TTT2 1.16 running the certified strategy. KBCV could com-
plete 89 systems while MKBTT obtained a score of 86 systems,
both tools together succeeded on 99 systems. All proofs could be
certified by CeTA 2.18.

In our first tests we considered two possibilities to ensure
↔∗R ⊆ ↔∗E : While KBCV 1.6 performs the recall phase to ex-
plicitly construct ` ↔∗E r for each ` → r ∈ R, from version 1.7
onward KBCV just exports the relevant history entries, which are
used as auxiliary equations. Hence it is not surprising that not all
systems completed by KBCV 1.6 could be certified. For two sys-
tems (TPTP_GRP487-1_theory and TPTP_GRP_490-1_theory)
the recall phase did not terminate within the time limit and for
other systems (LS94_P1, TPTP_GRP_481-1_theory, TPTP_GRP_
486-1_theory, TPTP_GRP_490-1_theory) the certificate was
too large (365 MB, 230 MB, 406 MB, 581 MB) for CeTA. However,
when using auxiliary equations all proofs could be computed and
certified (typically within a second) for KBCV as well as MKBTT.
Hence further optimization of the proof format seems dispensable.

For experiments on entailment (dis-)proofs we considered the
195 systems from the UEQ category of CASC.5 In our experiments
we also interpret negated conjectures as goal equations. We set the
following flags for KBCV and MKBTT:

./kbcv -e -p -s 600 -m "./ttt2 -cpf -ext xml - 1" file

./mkbtt -o -p cpfsub -cert -yesno -t 600 file

In MKBTT we chose ordered completion for these experiments
since this mode is best suited to entailment proofs. The detailed
results are available online. KBCV was able to find 106 entail-
ment proofs and 3 entailment dis-proofs while MKBTT found
117 entailment proofs and one entailment dis-proof. Both tools to-
gether could solve 142 instances out of the 195 problems. Because
unabridged proof trees and conversion proofs turned out to easily

4 http://www.starexec.org
5 http://www.cs.miami.edu/~tptp/CASC/

http://cl-informatik.uibk.ac.at/research/software
http://cl-informatik.uibk.ac.at/experiments/2015/cpp
http://www.starexec.org
http://www.cs.miami.edu/~tptp/CASC/

reach sizes of several hundred MB resulting in more timeouts and
hence less answers both tools use the history (as described in Sec-
tion 4) to keep the proofs as small as possible. Again all of the
found proofs have been certified by CeTA.

7. Conclusion
In this paper we have introduced recording completion facilitat-
ing the construction of entailment (dis-)proofs and the certifica-
tion of Knuth-Bendix completion. We have implemented record-
ing completion in KBCV and MKBTT to generate proof certifi-
cates which can be checked with CeTA. The need for certified
proofs in this context is demonstrated by the following example:
The TRS reported in [19] for proof transformation axioms (ES
WS06_proofreduction in our problem set) was claimed to be
complete for this theory but is actually not confluent. We have ob-
tained a (certified) completion proof for this system, making its
practical use for algebraic proof mining more reliable.

We are not aware of other completion based provers (be-
sides CiME3 [6]) that yield sufficient details for the certification
of their output. CiME3 implements an annotated version of or-
dered completion [5] similar to the ordered completion method
used in MKBTT. The critical difference to our approach is that
the history is not saved as a stand-alone component but directly
integrated into terms, equations, and rules during the process of
completion. Hence a term t comes with an original version t0, a
current version t∗, and a reduction sequence from t0 to t∗. Simi-
larly an equation s ≈ t also contains all intermediate (rewrite) steps
that show that both terms are equal. While the approach presented
in [5] also supports auxiliary equations to facilitate shorter proofs,
this is not the case for the approach from [6]. As illustrated by our
experiments, this feature is indeed crucial to success in many cases.
On the other hand, [6] can output a proof before a complete rewrite
system was derived, which is not the case for [5]. Hence, to the
best of our knowledge our approach is the only one to produce cer-
tifiable equational proofs from completion runs which combines
these two key properties. Moreover, the approaches from [5, 6]
are restricted to entailment proofs and cannot certify the results of
completion runs, and are not applicable in AC completion runs.

We also mention that resolution based ATPs (automated the-
orem provers) are already used for finding and certifying proofs.
Closest to our approach is Ivy [12], which checks the detailed proof
steps reported by Prover9 in ACL2/HOL light. A slightly different
strategy is persued by the hammer approach [4, 9], which employs
the axioms or proof steps used in a refutation proof (found by an
external ATP) and then tries to find a certified proof using a variant
of the Metis ATP whose inferences go through Isabelle’s kernel.
While in our setting a (correct) proof can always be certified, the
proof replay in the hammer approach may fail (if incomplete trans-
formations are used). Finally, we mention the GDV verifier [17],
which can check TPTP proofs independent of the employed prover.
But rather than being based on a trusted proof assistant, it employs
cross-verification in that the proof steps are checked by other ATPs.

As future work we want to study the length of (equational)
proofs generated by recording completion. Earlier work [14] might
be helpful, although it only considers the length of the rewrite
proof. Another possible direction is the integration of our findings
into the hammer approach.

Acknowledgments We thank Cezary Kaliszyk and René Thie-
mann for helpful comments and the latter also for the formalization
in Isabelle.

References
[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That.

Cambridge University Press, New York, USA, August 1999.

[2] Leo Bachmair, Nachum Dershowitz, and David Plaisted. Completion
without failure. In Resolution of Equations in Algebraic Structures,
Vol. 2: Rewriting Techniques, pages 1–30, 1989.

[3] Garrett Birkhoff. On the structure of abstract algebras. Mathematical
Proceedings of the Cambridge Philosophical Society, 31(4):433–454,
1935.

[4] Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day.
In Jürgen Giesl and Reiner Hähnle, editors, IJCAR, volume 6173
of Lecture Notes in Artificial Intelligence, pages 107–121. Springer,
2010.

[5] Evelyne Contejean and Pierre Corbineau. Reflecting proofs in first-
order logic with equality. In Robert Nieuwenhuis, editor, CADE,
volume 3632 of Lecture Notes in Artificial Intelligence, pages 7–22.
Springer, 2005.

[6] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and
Xavier Urbain. Automated certified proofs with CiME3. In Man-
fred Schmidt-Schauß, editor, RTA, volume 10 of Leibniz International
Proceedings in Informatics, pages 21–30. Schloss Dagstuhl, 2011.

[7] Jean-Marie Gaillourdet, Thomas Hillenbrand, Bernd Löchner, and
Hendrik Spies. The new WALDMEISTER loop at work. In CADE,
volume 2741 of Lecture Notes in Artificial Intelligence, pages 317–
321, 2003.

[8] Gérard Huet. Confluent reductions: Abstract properties and applica-
tions to term rewriting systems. Journal of the ACM, 27(4):797–821,
1980.

[9] Cezary Kaliszyk and Josef Urban. PRocH: Proof reconstruction for
HOL light. In Maria Paola Bonacina, editor, CADE, volume 7898
of Lecture Notes in Artificial Intelligence, pages 267–274. Springer,
2013.

[10] Donald E. Knuth and Peter P. Bendix. Simple word problems in
universal algebras. In J. Leech, editor, Computational Problems in
Abstract Algebra, pages 263–297. Pergamon Press, New York, 1970.

[11] Claude Marché. Normalized rewriting: An alternative to rewriting
modulo a set of equations. J. Symb. Comp., 21(3):253–288, 1996.

[12] William McCune and Olga Shumsky. Ivy: A preprocessor and proof
checker for first-order logic. In Computer-Aided Reasoning: ACL2
Case Studies, chapter 16. Kluwer Academic Publishers, 2000.

[13] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions
for some equational theories. Journal of the ACM, 28(2):233–264,
1981.

[14] David Plaisted and Andrea Sattler-Klein. Proof lengths for equational
completion. Information and Computation, 125(2):154–170, 1996.

[15] Christian Sternagel and René Thiemann. Formalizing Knuth-Bendix
orders and Knuth-Bendix completion. In Femke van Raamsdonk, edi-
tor, RTA, volume 21 of Leibniz International Proceedings in Informat-
ics, pages 287–302. Schloss Dagstuhl, 2013.

[16] Thomas Sternagel and Harald Zankl. KBCV – Knuth-Bendix com-
pletion visualizer. In Bernhard Gramlich, Dale Miller, and Ulrike Sat-
tler, editors, IJCAR, volume 7364 of Lecture Notes in Artificial Intel-
ligence, pages 530–536, 2012.

[17] Geoff Sutcliffe. Semantic derivation verification. Int. J. Artif. Intell.
Tools, 15(6):1053–1070, 2006.

[18] René Thiemann and Christian Sternagel. Certification of termination
proofs using CeTA. In Stefan Berghofer, Tobias Nipkow, Christian Ur-
ban, and Makarius Wenzel, editors, TPHOLs, volume 5674 of Lecture
Notes in Computer Science, pages 452–468. Springer, 2009.

[19] Ian Wehrman and Aaron Stump. Mining propositional simplification
proofs for small validating clauses. In Proc. 3rd PDPAR, volume 144
of ENTCS, pages 79–91, 2005.

[20] Ian Wehrman, Aaron Stump, and Edwin M. Westbrook. Slothrop:
Knuth-Bendix completion with a modern termination checker. In
Frank Pfenning, editor, RTA, volume 4098 of Lecture Notes in Com-
puter Science, pages 287–296. Springer, 2006.

[21] Sarah Winkler, Haruhiko Sato, Aart Middeldorp, and Masahito Kuri-
hara. Multi-completion with termination tools. J. Autom. Reasoning,
50(3):317–354, 2013.

	Introduction
	Preliminaries
	Recording Completion
	Knuth-Bendix Completion
	Record
	Compare
	Recall
	Plant and Grow

	Ordered and Normalized Completion

	Certificates for Equational Proofs
	 Tools and Features
	Experiments
	Conclusion

