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Abstract

MædMax is an equational theorem prover based on maximal ordered completion. Like
in many automated deduction tools, the selection of equations and inequalities constitutes
a critical choice point in the search for a proof. Here we describe the use of random forests
to guide selection in two ways: (a) to learn which equations are useful, and (b) to learn a
measure for proof progress, which in turn triggers the selection of additional equations.

1 Introduction

The tool MædMax performs equational reasoning by implementing maximal ordered comple-
tion [8]. As in the given-clause algorithm, selection of facts to process next is a crucial choice
point. Here we outline two experiments exploiting machine learning techniques to improve
MædMax’ selection heuristic. First, random forests were used to learn a measure for the useful-
ness of equations and inequalities. Second, an estimate of proof progress was learned. Before
giving details about these experiments we summarize the main control loop of MædMax.

Maximal completion maintains a pool of equations and inequalities E , split into active
and passive items EA and EP . A reduction order giving rise to a terminating rewrite system
R is determined from EA by employing a maxSMT call (for instance, by orienting as many
equations as possible). If thereby a goal becomes joinable or the system gets ground confluent
the procedure succeeds. Otherwise the extended critical pairs of R and EA are added to EP ,
a small subset of EP is selected into EA, and the procedure gets reiterated. In MædMax, this
selection was so far guided by a straightforward size-age ratio. In addition, a heuristic is used to
estimate proof progress turned out to be useful: if progress is assumed to be small, additional
old nodes are fed into the active set. For further details the reader is referred to [8].

2 Selection of Equations

We instrumented MædMax to keep track of selections. When a proof is found, it outputs for
all selected items a feature vector and a classification as positive or negative, depending on
whether it contributed to the proof or not. This vector comprises hand-crafted properties of
both the current proof state and the equation itself along with features describing the term
structure. For an equation e and a current set of active (in)equalities EA, the former include
the size of EA, the iteration count, the size, size balance, and age of e, properties of e related to
linearity and orientability, plus the number of matches and critical pairs of e on EA. To capture
the term structure pq-grams [1] get computed (where p = 1 and q = 2). Function symbols were
renamed uniformly according to their arity, and we counted occurrences for all 12-grams up to
arity 3 (105 features per term).
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In a first experiment, MædMax was run in random selection mode, recording selections as
described above. This set was balanced and classified with a random forest of maximum depth
14 and 100 trees, using scikit-learn.1 Using 5-fold cross-validation, this resulted in a precision of
0.86 and a recall of 0.94 (especially the latter is relevant, since it gives the ratio of useful facts
that get positively classified). Term and hand-crafted features contributed 60% and 40% of
importance, respectively. Among the latter, fact and state size, number of matches and critical
pairs turned out to be most relevant.2

We continued this experiment using a reinforcement loop to emulate the way a human might
optimize a selection heuristic: we used the obtained classifier as a filter, picking randomly
selected facts only if they are positively classified with probability > 0.4. After adding the new
proofs’ selections to the data set, the classification was repeated and the procedure reiterated.
In that way, after four iterations 433 problems get solved within 60s, opposed to 206 beforehand,
applying classification to 352000 selections.

Finally, when combining the previously used size-age ratio with the obtained classifier,
MædMax solves 613 instead of 606 problems within 60s, with the maximal number of equalities
dropping from over 440 to 220 and the maximal number of goals from 1800 to 800. The time
spent on selection rises by 1-2% of the overall proof time.

3 Estimating Proof Progress

In MædMax an estimate of the proof progress is used to select additional old facts. The heuristic
used so far simply checks whether the cost of the maxSMT call remained unchanged for some
iterations. To gain data on proof progress, we implemented a proof track mode: Taking a
TSTP proof P as additional input, the tool keeps track of its progress with respect to P , by
recording in every iteration features of the prover’s current state along with the ratio of facts
in P that are already present in EA and/or EP . As features we used 10 properties including
iteration count, the size of E , memory used, number of SMT checks, cost of the last maxSMT
check, the numbers of facts in EA reducible by the last rewrite system R, and critical pairs
between R and EA.

We ran the tool in proof track mode on all proofs obtained with E and Vampire. This
resulted in about 20000 data records of MædMax iterations. We computed the differences of
consecutive iterations to learn about changes in the proof state. Random forest classification
with 100 trees of a maximum depth 10 resulted in a cross-validated precision and recall of
both 0.72. Despite this moderate accuracy, incorporating a decision tree based on the most
influential features into MædMax increased the number of solved problems by about 1.5%.

4 Related Work

Although the first efforts in this direction date more than 20 years back, learning from previous
proof experience in ATPs is still a field offering many challenges [7]. Here we focus on work
about guiding fact selection in ATPs by learning from earlier proofs.

Fuchs [3] employs learning heuristics in the CoDe system to select the clauses. To that end,
preference is given to focus facts which contributed to earlier proofs, as well as their descendants.
He also already aggregated similarity based on some syntactic features to assess new clauses.

1See scikit-learn.org.
2All experiments use the 897 unsatisfiable TPTP 6.4.0 UEQ problems and were run on Starexec with a

timeout of 60s, see http://cl-informatik.uibk.ac.at/users/swinkler/maedmax_at_school for details.
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Specifically for the case of purely equational theorem proving, Denzinger and Schulz evalu-
ated two learning-based heuristics to improve selection of equations in the Discount system [2].
First, equations were compiled into patterns to abstract from the signature, and their usefulness
recorded for later proof attempts. Second, the recorded equation patterns were arranged in a
tree from which based on similarity a measure for the usefulness of all terms could be derived.
However, similarity was based on a single string representation.

This approach was carried over for the superposition prover E [6]. Clauses (also abstracted
to signature-independent patterns) were recorded with the number of proofs they participates
in and their distance to the proof. Problems were classified, by some simple features, and given
an input problem the relevant pattern set to guide selection was retrieved based on similarity.
In this approach only exactly matching patterns were taken into account.

More recently, Jakub̊uv and Urban proposed feature-based classification of clauses to im-
prove the selection heuristics in saturation-based theorem proving [4]. As features the occur-
rence counts of term walks are used. Term walks resemble pq-grams, though the former do not
abstract from the signature. The classification model is built with LIBLINEAR. An evaluation
on E showed a large increase of performance.

Also a line of experiments with the tableau prover leanCoP investigated guidance of inference
algorithms by machine learning techniques; it turned out to significantly improve the relevance
heuristics. For instance, in [5] the selection of a clause for the tableau extension is guided by a
naive Bayes classification based on features of the current proof state. To this end, the proof
state is characterized by the frequency of terms on the active path.

5 Conclusion

In summary, the conducted experiments helped to improve the heuristics of MædMax such that
about 2.5% additional problems can be solved, and delivered insights about relevant features.
In the future, we plan more thorough reinforcement learning experiments to obtain further
data, and will investigate alternative features such as term walks [4].
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