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Road Map

• Introduction: A framework for non-classical logics.

� Modal, relevance and other non-classical logics:

deduction systems (Hilbert, ND, sequent) and Kripke semantics.

� A labelled deduction framework: why and how?

• Labelled deduction for modal logics.

• Labelled deduction for non-classical logics.

• Encoding non-classical logics in Isabelle.

• Substructural and complexity analysis of labelled non-classical

logics.

• Conclusions and outlook.
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Motivation

• Problem: find uniform deduction systems for non-classical logics.

• Our solution: a framework based on labelling (labelled deduction).

� Non-classical logics: why?

� A framework: why and how?

• Modal logics.

• Other non-classical logics: extensions and restrictions (but there

are limits).

Labelled Deductive Systems UniLog’05
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Why non-classical logics?
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Modal, temporal, relevance, linear, substructural, non-monotonic, ...

• Reason about:

� State and action.

� Resources.

• Applications in: computer science, artificial intelligence,

knowledge representation, mathematics, philosophy, engineering...

� Programs and circuits.

� Distributed and concurrent systems.

� Security.

� Knowledge and belief.

� Computational linguistics.

� ...
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The problems

• Specialized approach vs. general methodology.

• ‘Explosion’ of logics.

� Each logic demands, at a minimum, a semantics (‘truth’, � A),

a deduction system (` A), and metatheorems relating them

together (� A iff ` A).

� Specialized or uniform deduction systems?

• Efficient proof search.

� Specialized or generic provers?

� Interactive or automated provers?

Labelled Deductive Systems UniLog’05
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The problems: a solution (why a framework?)

• Specialized approach vs. general methodology.

General methodology: how general? ⇒ Analysis of the limits.

• ‘Explosion’ of logics.

� Each logic demands, at a minimum, a semantics (‘truth’, � A),

a deduction system (` A), and metatheorems relating them

together (� A iff ` A).

� Specialized or uniform deduction systems?

� Uniform deduction systems: good’ properties?

⇒ Analysis of structure of deductions and proofs.

• Efficient proof search.

� Specialized or generic provers?

� Interactive or automated provers?

� Interactive generic provers.

⇒ Uniform implementations (add automation).
Labelled Deductive Systems UniLog’05
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A framework: how?

1. Hilbert-style

− difficult to use in practice

2. Natural deduction systems

+ structured reasoning (normal deductions)

− lack uniformity

3. Full semantic translation into predicate logic

+ general and uniform

− lacks structure

Labelled Deductive Systems UniLog’05



Luca Viganò 7

A framework: how? A labelled deduction framework

1. Hilbert-style

− difficult to use in practice

2. Natural deduction systems

+ structured reasoning (normal deductions)

− lack uniformity

3. Full semantic translation into predicate logic

+ general and uniform

− lacks structure

4. Combine 2 and 3: partial (controlled) translation

+ uniform & modular, ‘natural’ deduction systems

+ structured reasoning

− there are limits
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The big picture

structural
properties

decidability
&

complexity

soundness
&

completeness

deduction system
+

implementation

labelling

logic

• Labelling: partial translation:

� Lift minimal information from semantics (or “from somewhere

else”) into syntax.

� Investigate the structure of the deduction systems.
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Main results
• Methodology:

� Presentation: (modal, relevance, ... logics).

∗ Labelled natural deduction (sequent) systems.

∗ Uniform & modular: fixed base system + separate theories.

� Implementation: in Isabelle (generic theorem prover).

• Technical contributions:

� Soundness and completeness: parameterized proofs.

� Proof theory:
∗ Normalization and subformula property.

∗ Structural properties vs. generality.

� Substructural analysis:
∗ Decidability and complexity analysis.

∗ Bounded space requirements (K, T, K4, S4, ...; B+, ...).

∗ Justification (& refinement) of ‘standard sequent systems’.
Labelled Deductive Systems UniLog’05
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What is a deduction system?

• Hilbert system.

� Finitary inductive definitions.

• Natural deduction system.

� Proof under assumption — useful in practice.

• Sequent calculus system.

� Generalized sequent notation — useful for theory.

Labelled Deductive Systems UniLog’05
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Propositional arrow logic: Hilbert system H(⊃)

• Want to capture:

A ⊃ B ≡ if A then B

• Axioms and modus ponens rule.

� K⊃: A ⊃ B ⊃ A

� S⊃: (A ⊃ B) ⊃ (A ⊃ B ⊃ C) ⊃ (A ⊃ C)

� A ⊃ B A
B MP

Labelled Deductive Systems UniLog’05
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Propositional arrow logic: ND system N(⊃)
• Want to capture: proof under assumption.

The ‘meaning’ of A ⊃ B is: If A were to be true, then B would

be true.

• So if, for the sake of argument, I assume that A is true, and show,

from that, that B is true, that means that A ⊃ B is true

irrespective of whether or not A is true.

Formally: if A implies B then A ⊃ B.

[A]....
B

A ⊃ B ⊃ I

• Similarly, if I know that A ⊃ B is true, and I know that A is true,

then I know that B is true.

Formally: if A ⊃ B and A, then B.

....
A ⊃ B

....
A

B ⊃E

Labelled Deductive Systems UniLog’05
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Sufficiency of Hilbert system H(⊃)

• By induction (using MP):

if A ⊃ B, then A implies B

• The deduction theorem (again by induction):

if assuming A then B (if A implies B), then A ⊃ B

∼= proof under assumption

Labelled Deductive Systems UniLog’05
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Equivalence of H(⊃) and N(⊃)

The natural deduction and Hilbert presentations are equivalent

⊃ I + ⊃E ≡ K⊃ + S⊃ + MP

Proof: easy, given deduction theorem.

Labelled Deductive Systems UniLog’05
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Proving A ⊃ A

• In H(⊃):

1. (A ⊃ (A ⊃ A)) ⊃ (A ⊃ (A ⊃ A) ⊃ A) ⊃ (A ⊃ A) S⊃
2. A ⊃ A ⊃ A K⊃
3. A ⊃ (A ⊃ A) ⊃ A K⊃
4. (A ⊃ (A ⊃ A) ⊃ A) ⊃ (A ⊃ A) MP1, 2
5. A ⊃ A MP3, 4

Using the deduction theorem: A follows from A, so A ⊃ A.

• In N(⊃): A implies A, thus A ⊃ A.

Labelled Deductive Systems UniLog’05
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Infeasibility of Hilbert Systems

• Try to prove: A ⊃ B ⊃ C ⊃ (A ⊃ B ⊃ C ⊃ D) ⊃ D

� Natural Deduction proof in N(⊃): trivial (8 steps).

� Hilbert proof in H(⊃): definitely not trivial (∼44 steps).

• The situation is even worse for non-classical logics such as modal

logics!

• But before let us look at:

� Extension to propositional classical logic.

� Sequent systems.

Labelled Deductive Systems UniLog’05
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Proof under assumption
Γ `N(⊃) A, where Γ is a set of formulas, means that in N(⊃) there is

a derivation Π of the formula A from the assumptions Γ, i.e.

Γ
Π
A

Example:
[A ⊃ B ⊃ C ⊃ D]4 [A]1

B ⊃ C ⊃ D ⊃E [B]2
C ⊃ D ⊃E [C]3

D ⊃E
(A ⊃ B ⊃ C ⊃ D) ⊃ D ⊃ I4

C ⊃ (A ⊃ B ⊃ C ⊃ D) ⊃ D ⊃ I3

B ⊃ C ⊃ (A ⊃ B ⊃ C ⊃ D) ⊃ D ⊃ I2

A ⊃ B ⊃ C ⊃ (A ⊃ B ⊃ C ⊃ D) ⊃ D ⊃ I1

This is a proof.

A derivation would be: {A,B, C, A ⊃ B ⊃ C ⊃ D} ` D.
Labelled Deductive Systems UniLog’05
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Propositional classical logic: Hilbert & ND systems

• H(PCL) = H(⊃) +
A ↔ ∼∼A

⊥ ⊃ A , A ∧B ⊃ A , A ∧B ⊃ B , A B
A ∧B

adjunction

• N(PCL) = N(⊃) +:
[A ⊃ ⊥]....
⊥
A ⊥E

where ∼, ∧, ∨ and other operators (and the corresponding rules) are defined
(derived) using ⊃ and ⊥ (and the corresponding rules), e.g. ∼A =def A ⊃ ⊥,
A ∨B =def (A ⊃ ⊥) ⊃ B, A ∧B =def (A ⊃ B ⊃ ⊥) ⊃ ⊥

....
A ∧ B

A
∧E ,

....
A

....
B

A ∧ B
∧I , A ∨ B

[A]....
C

[B]....
C

C
∨E ,

....
A

A ∨ B ∨I
=def

[A ⊃ ⊥]1
....
A

⊥ ⊃E

B ⊥E

(A ⊃ ⊥) ⊃ B ⊃ I1
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Propositional classical logic: Sequent system S(PCL)

Axioms:

A ` A AX ⊥ ` A ⊥L

Structural rules:

Γ ` Γ′
A,Γ ` Γ′ WL Γ ` Γ′

Γ ` Γ′, A WR

A,A, Γ ` Γ′
A,Γ ` Γ′ CL

Γ ` Γ′, A, A
Γ ` Γ′, A CR

Logical rules:

Γ ` Γ′, A B,Γ ` Γ′
A ⊃ B,Γ ` Γ′ ⊃L

A,Γ ` Γ′, B
Γ ` Γ′, A ⊃ B

⊃R

where Γ and Γ′ are multisets of formulas
and we can derive

Γ ` Γ′, A
∼A,Γ ` Γ′ ∼L

A,Γ ` Γ′
Γ ` Γ′, ∼A

∼R

Labelled Deductive Systems UniLog’05
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Deduction systems for non-classical logics: Problems

• We have ‘assumed’ that ⊃ and ` have the same properties.

• We have essentially that

‘follows from’ (`) ≡ ‘implies’ (⊃)

• There are many logics where this may not hold.

� ‘Substructural’ (e.g. relevance, linear) logics: → has different

properties

0 A → B → A

So ` should have different properties if the two are to be the

same, e.g.

A,B 0 A

� Modal logics: relationship between ⊃ and ` becomes more

complex.

Labelled Deductive Systems UniLog’05
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Propositional modal logics: Hilbert systems

• We extend our language with 2 (and 3A =def ∼2 ∼A).

• H(K), a Hilbert system for the basic modal logic K:

� all axioms schemas of PCL and the rule MP
� the new axiom schema

K: 2(A ⊃ B) ⊃ (2A ⊃ 2B)

� and the new rule
A

2A Nec

Labelled Deductive Systems UniLog’05
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Propositional modal logics: Hilbert systems (cont.)

• Systems for other logics: we add axioms characterizing 2

D: 2A ⊃ 3A

T: 2A ⊃ A

4: 2A ⊃ 22A

B: A ⊃ 23A

5: 3A ⊃ 23A

2: 32A ⊃ 23A

M: 23A ⊃ 32A

Grz: 2(2(A ⊃ 2A) ⊃ A) ⊃ A

S5

S4

B

OO

T

4 <<xxxxxxxxx

K4

TccHHHHHHHHH

K
T

bbFFFFFFFFFF
4

;;vvvvvvvvvv

PCL

OO

2+K+Nec

but ...
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Propositional modal logics: Hilbert systems (cont.)

• Systems for other logics: we add axioms characterizing 2

D: 2A ⊃ 3A

T: 2A ⊃ A

4: 2A ⊃ 22A

B: A ⊃ 23A

5: 3A ⊃ 23A

2: 32A ⊃ 23A

M: 23A ⊃ 32A

Grz: 2(2(A ⊃ 2A) ⊃ A) ⊃ A

S5

S4

B

OO

T

4 <<xxxxxxxxx

K4

TccHHHHHHHHH

K
T

bbFFFFFFFFFF
4

;;vvvvvvvvvv

PCL

OO

2+K+Nec

but ... the deduction theorem fails!

Not thm: If assuming A then 2A, then A ⊃ 2A.
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A problem with proof under assumption in S4

Imagine we have the deduction theorem in S4.

Then
1. from A infer 2A Nec, 1
2. A ⊃ 2A ⊃ I

Thus we have

A ⊃ 2A

but we also have (as an axiom)

2A ⊃ A

and thus that

2A ↔ A

i.e. 2 is meaningless!

What is going wrong?
Labelled Deductive Systems UniLog’05
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An attempted proof of the deduction theorem
We have a proof of B given A, and we want a proof of A ⊃ B.

By induction on the length of the derivation:

Base: B is immediate. Two subcases:

1. B is an axiom. Then B follows without A.
We also have, as an axiom, B ⊃ A ⊃ B, so by MP, we have A ⊃ B.

2. B is A. We can prove A ⊃ A since we have the axioms of PCL and MP.

Step: B is the result of a rule application. Two subcases:

1. B is a result of MP from C and C ⊃ B.
By the induction hypothesis we have A ⊃ C and A ⊃ C ⊃ B, and as an axiom
we have (A ⊃ C) ⊃ (A ⊃ C ⊃ B) ⊃ (A ⊃ B), so by two applications of MP
we have A ⊃ B.

2. B = 2B′ is the result of Nec from B′.
By the induction hypothesis we have A ⊃ B′, and we want to get A ⊃ 2B′.
How should we do this?

We can’t!

Labelled Deductive Systems UniLog’05



Luca Viganò 25

The problem, and solutions

The problem seems to be with the relationship between ` and ⊃.

We have A ` B′ and can get A ` 2B′, but we can’t get A ⊃ B′ to

A ⊃ 2B′.

One way (there are others) to proceed:

assume ` ≡ ⊃ and try to arrange things so that this makes

sense

Labelled Deductive Systems UniLog’05
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How do we get ` ≡ ⊃ to work?

• We have

A ⊃ B

and we want

A ⊃ 2B

• We can argue

1. A ⊃ B

2. 2(A ⊃ B) Nec, 1
3. 2(A ⊃ B) ⊃ 2A ⊃ 2B K
4. 2A ⊃ 2B MP2, 3

• But remember that we also have, as an axiom

2A ⊃ 22A

Labelled Deductive Systems UniLog’05
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How do we get ` ≡ ⊃ to work?

• Thus, if A is boxed, i.e. A is 2A′

1. 2A′ ⊃ B

2. 2(2A′ ⊃ B) Nec , 1
3. 2(2A′ ⊃ B) ⊃ 22A′ ⊃ 2B K
4. 22A′ ⊃ 2B MP2, 3
5. (2A′ ⊃ 22A′) ⊃ (22A′ ⊃ 2B) ⊃ (2A′ ⊃ 2B) prop taut
6. 2A′ ⊃ 22A′ axiom 4
7. (22A′ ⊃ 2B) ⊃ (2A′ ⊃ 2B) MP5, 6
8. 2A′ ⊃ 2B MP7, 4

So, we have A ⊃ 2B from A ⊃ B as desired.

Labelled Deductive Systems UniLog’05
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How do we get ` ≡ ⊃ to work?

• That is, box-introduction works if all the hypotheses

(assumptions) are boxed

[only ‘boxed’ assumptions]....
A

2A 2I
i.e.

[2Γ]....
A

2A 2I
i.e.

(
Γ ` A

Σ,2Γ ` 2A,Σ′
)

• For box-elimination we can use the rule

2A
A 2E

since
1. 2A

2. 2A ⊃ A T
3. A MP1, 2

Labelled Deductive Systems UniLog’05
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A complete natural deduction system for S4

• N(S4) = N(PCL)+

[2Γ]....
A

2A 2I
and 2A

A 2E

• But what about other logics?

• OK for some logics (K, T, K4, S5, ...),

but in general there is no ‘easy’ way of coming up with ‘good’

(uniform and modular) systems!

⇒ Look for ‘better’ systems!

Labelled Deductive Systems UniLog’05
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Standard deduction systems for non-classical logics:
Summary

• Hilbert systems:

� Simple inductive definitions.

� Can be hard to use.

� Very general (a framework).

• Natural deduction systems:

� Proof under assumption (consequence).

� Easy to use but lack generality (no ‘real’ framework).

• Sequent systems:

� Special (multiple conclusioned) form of natural deduction with

good proof-theoretical properties.

Labelled Deductive Systems UniLog’05
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Standard deduction systems for non-classical logics:
Summary

• Hilbert systems:

� Simple inductive definitions.

� Can be hard to use.

� Very general (a framework).

• Natural deduction systems:

� Proof under assumption (consequence).

� Easy to use but lack generality (no ‘real’ framework).

• Sequent systems:

� Special (multiple conclusioned) form of natural deduction with

good proof-theoretical properties.

⇒ Looking for a usable framework? Try labelled deduction systems.
Labelled Deductive Systems UniLog’05
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Road Map

• Introduction: A framework for non-classical logics.

• Labelled deduction for modal logics.

� Labelled deduction systems: uniform and modular.

� Properties: soundness, completeness, normalization, ...

� A topography of labelled modal logics.

• Labelled deduction for non-classical logics.

• Encoding non-classical logics in Isabelle.

• Substructural and complexity analysis of labelled non-classical

logics.

• Conclusions and outlook.
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Evolution of state
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• Possible worlds (states) x, y, z, w ∈ W .

� Set of formulas Γ,∆,Θ,Σ.

• Accessibility relation R:

� Binary transition relation.

• Kripke semantics:

� Model M = (W,R, V ).
� Formulas evaluated locally: M � x:A (truth).

⇒ Logics characterized by properties of models.
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Modal logics

R

R

R

R

R

x

y z

w

[]B
~[]C

B
C

B
~C

B

• Possible worlds (states) x, y, z, w ∈ W .

� Set of formulas.

• Accessibility relation R:

� Binary transition relation.

• Kripke semantics:

� Model M = (W,R, V ).
� Formulas evaluated locally (truth �):

�M x:2A ⇔ for all y. xRy ⇒ �M y:A

⇒ Logics characterized by properties of R.
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Modal logics

S5

S4
symmOO

T

trans ;;xxxxxxxxxx

K4

reflddHHHHHHHHH

Krefl

ccFFFFFFFFFFF trans
::vvvvvvvvvv

PCL

OO

2
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Modal logics: partial translation

• W : a set of labels (x, y, . . .) representing possible worlds.

• R ⊆ W ×W .

labelled formula (lwff) x:A A is provable iff ∀x ∈ W (` x:A)
relational formula (rwff) xRy “x accesses y”

⇒ Uniform & modular (& natural) deduction systems.

⇒ ‘Good’ properties (completeness, structure).

⇒ Generalization to relevance and other non-classical logics (but

there are limits).

Labelled Deductive Systems UniLog’05
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Modal logics: partial translation (cont.)

N(L) = fixed base system + varying relational theory
= N(K) + N(T )

• Base system N(K) :

� Natural deduction system formalizing K.

� Reason about x:A.

• Relational theory N(T ):

� Describes the behavior of R.

� Reason about xRy.

• Separation ⇒ structure ⇒ properties.

Labelled Deductive Systems UniLog’05
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Labelled modal logics: definitions

• The language of propositional modal logics consists of a denumerable infinite
set of propositional variables, the brackets ‘(’ and ‘)’, and the primitive logical
operators:

� the classical connectives ⊥ (falsum) and ⊃, and
� the modal operator 2.

• The set of propositional modal formulas is the smallest set that contains the
atomic formulas (propositional variables and ⊥) and is closed under the rules:

1. if A and B are formulas, then so is A ⊃ B;
2. if A is a formula, then so is 2A; and
3. all formulas are given by the above clauses.

Other operators can be defined in the usual manner, e.g. ∼A =def A ⊃ ⊥ and
3A =def ∼2 ∼A.

• Let W be a set of labels and R a binary relation over W . If x and y are labels
and A is a propositional modal formula, then xRy is a relational formula (or
rwff) and x:A is a labelled formula (or lwff).

Labelled Deductive Systems UniLog’05
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Labelled modal logics: the deduction theorem, again
• The deduction theorem

if assuming A true we can show B true, then A ⊃ B is true

fails for implications weaker or substantially different from intuitionistic ⊃.

• Kripke completeness tells us: A is provable if and only if A is true at every
world in every suitable Kripke model M = (W,R, V )

` A iff �M w:A for all w ∈ W .

• Hence, the deduction theorem corresponds to

(∀w ∈ W (�M w:A) ⇒ ∀w ∈ W (�M w:B)) ⇒ ∀w ∈ W (�M w:A ⊃ B) .

but this is false. The semantics of ⊃ in a Kripke model is just the weaker:

∀w ∈ W ((�M w:A ⇒ �M w:B) ⇒ �M w:A ⊃ B) .

• Labelling provides a language in which we can formulate a ‘proper’ deduction
theorem:

if assuming w:A true we can show w:B true, then w:A ⊃ B is true.
Labelled Deductive Systems UniLog’05
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N(PCL) for propositional classical logic

[ A ⊃ ⊥]....
⊥
A⊥E

[ A]....
B

A ⊃ B ⊃ I A ⊃ B A
B ⊃E

Labelled Deductive Systems UniLog’05
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The base modal system N(K)

[x:A ⊃ ⊥]....
y:⊥
x:A⊥E

[x:A]....
x:B

x:A ⊃ B ⊃ I x:A ⊃ B x:A
x:B ⊃E

[xRy]....
y:A

x:2A
2I [y fresh] x:2A xRy

y:A 2E

M � x:2A ⇔ for all y. xRy ⇒ M � y:A
Labelled Deductive Systems UniLog’05
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Extensions of K
Hilbert systems for other (normal) modal logics are obtained by

extending H(K) with axiom schemas formalizing the behavior of 2.

Name Axiom schema Name Axiom schema

K 2(A ⊃ B) ⊃ (2A ⊃ 2B) 3 2(2A ⊃ B) ∨2(2B ⊃ A)
D 2A ⊃ 3A R 32A ⊃ (A ⊃ 2A)
T 2A ⊃ A MV 32A ∨2A
B A ⊃ 23A Löb 2(2A ⊃ A) ⊃ 2A
4 2A ⊃ 22A Grz 2(2(A ⊃ 2A) ⊃ A) ⊃ A
5 3A ⊃ 23A Go 2(2(A ⊃ 2A) ⊃ A) ⊃ 2A
2 32A ⊃ 23A M 23A ⊃ 32A

Cxt 32A ⊃ 22A Z 2(2A ⊃ A) ⊃ (32A ⊃ 2A)
X 22A ⊃ 2A Zem 232A ⊃ (A ⊃ 2A)

Labelled Deductive Systems UniLog’05
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Extensions of N(K)

• We extend N(K) with relational theories (labelling algebras),

which axiomatize properties of R formalizing the accessibility

relation R in Kripke frames.

• Correspondence theory tells us which modal axiom schemas

correspond to which axioms for R.

• Should relational theories be axiomatized in higher-order logic (⇒
all normal propositional modal logics), first-order logic, or some

subset thereof?

• This is an important decision!

� Different choices of interface between N(K) and the relational theory result
in essentially different systems.

� We choose the Horn-fragment: cannot capture all axioms, e.g. 3, M, Löb, but
∗ it captures a large family of logics (including most common ones),
∗ good normalization properties.

Labelled Deductive Systems UniLog’05
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Extensions of N(K) (cont.)

• Horn relational formula: closed formula of the form

∀x1 . . .∀xn((s1Rt1 ∧ . . . ∧ smRtm) ⊃ s0Rt0)

where m ≥ 0, and the si and ti are terms built from the labels

x1, . . . , xn and constant function symbols, i.e. Skolem function

constants.

• Corresponding Horn relational rule:

s1Rt1 . . . smRtm
s0Rt0

Labelled Deductive Systems UniLog’05
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Extensions of N(K) (cont.)
• Generalized Geach axiom schema 3i2mA ⊃ 2j3nA corresponds to

(i, j, m, n) convergency

∀x∀y∀z(xRiy ∧ xRj z ⊃ ∃u(yRmu ∧ zRnu))

yi 99sssssss

m

%%KKK
KKK

K

x u

zj
&&LLL

LLL
L

n

88rrrrrrr

where xR0y means x = y and xRi+1y means ∃v(xRv ∧ vRiy).

Example: transitivity is given by (0, 2, 1, 0).

• Restricted (i, j, m, n) convergency axioms: class of properties of R that can be
expressed as Horn rules in the theory of one binary predicate R (without =)

m = n = 0 implies i = j = 0

• Proposition: If TG is a theory corresponding to a collection of restricted
(i, j, m, n) convergency axioms, then there is a Horn relational theory N(T )
conservatively extending it.
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Some correspondences

Property (i , j ,m,n) Axiom schema Horn relational rule

Seriality (0, 0, 1, 1) D: 2A ⊃ 3A xRf(x)
ser

Reflexivity (0, 0, 1, 0) T: 2A ⊃ A xRx
refl

Symmetry (0, 1, 0, 1) B: A ⊃ 23A
xRy

yRx
symm

Transitivity (0, 2, 1, 0) 4: 2A ⊃ 22A
xRy yRz

xRz
trans

Euclideaness (1, 1, 0, 1) 5: 3A ⊃ 23A
xRy xRz

zRy
eucl

Convergency (1, 1, 1, 1) 2: 32A ⊃ 23A
xRy xRz

yRg(x, y, z)
conv1

xRy xRz

zRg(x, y, z)
conv2

Contextuality (1, 2, 1, 0) Cxt: 32A ⊃ 22A
xRy xRz zRw

yRw
cxt

Density (0, 1, 2, 0) X: 22A ⊃ 2A
xRy

xRh(x, y)
dens1

xRy

h(x, y)Ry
dens2

f , g and h are (Skolem) function constants.
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Some correspondences (cont.)

Property Axiom schema Horn relational rule

Weak reflexivity 2(2A ⊃ A)
wRx
xRx

wrefl

Weak symmetry 2(A ⊃ 23A)
wRx xRy

yRx
wsymm

Weak transitivity 2(2A ⊃ 22A)
wRx xRy yRz

xRz
wtrans

Weak euclideaness 2(3A ⊃ 23A)
wRx xRy xRz

zRy
weucl
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Relational theory N(T ) (extensions of N(K))

• Various combinations of Horn relational rules define labelled ND

systems for common propositional modal logics.

• The labelled ND system N(L) = N(K) + N(T ) for the

propositional modal logic L is obtained by extending N(K) with a

Horn relational theory N(T ).

N(T ) is a collection of relational rules:

x1Ry1 · · · xmRym

x0Ry0

S5

S4

symm
OO

T

trans 77ppppppppppppppppp

D K4

reflggOOOOOOOOOOOOOOOOO

Krefl

ggNNNNNNNNNNNNNNNNN
ser

OO

trans

77ooooooooooooooooo

Examples:

� N(S4) = N(K) + xRx
refl + xRy yRz

xRz trans
� N(D) = N(K) + xRf(x)

ser
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Derivations

• A derivation of an lwff or rwff ϕ from a set of lwffs Γ and a set of

rwffs ∆ in a ND system N(L) = N(K) + N(T ) is a tree formed

using the rules in N(L), ending with ϕ and depending only on

Γ ∪∆.

• We write Γ,∆ `N(L) ϕ.

• A derivation of ϕ in N(L) depending on the empty set, `N(L) ϕ, is

a proof of ϕ in N(L) (ϕ is a N(L)-theorem).

Fact: When ϕ is an rwff xRy we have:

1. Γ,∆ `N(K) xRy iff xRy ∈ ∆.

2. Γ,∆ `N(K)+N(T ) xRy iff ∆ `N(T ) xRy.
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Examples of derivations

• N(S5) = N(KT5) = N(KTB4) = N(KT45)

Π
xRy
yRx

symm ;
Π

xRy xRx
refl

yRx eucl

Π1
xRy

Π2
yRz

xRz trans
;

Π1
xRy xRx

refl

yRx eucl Π2
yRz

xRz eucl

Labelled Deductive Systems UniLog’05



Luca Viganò 50

Examples of derivations (cont.)

• Derived rules

y:A xRy
x:3A 3I ;

[x:2 ∼A]1 xRy
y: ∼A 2E y:A

y:⊥ ∼E
x:⊥⊥E

x: ∼2 ∼A∼ I1

x:3A

[y:A] [xRy]
Π

z:B
z:B 3E

;

x: ∼2 ∼A

[z:B ⊃ ⊥]3
[y:A]1 [xRy]2

Π
z:B

z:⊥ ⊃E
y:⊥⊥E

y: ∼A∼ I1

x:2 ∼A 2I2

x:⊥ ∼E
z:B ⊥E3
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Properties of N(L) = N(K) + N(T )
• Γ a set of labelled formulas, ∆ a set of relational formulas.

• Parameterized proofs of

� Soundness and completeness with respect to Kripke semantics

Γ,∆ `N(L) ϕ ⇔ Γ,∆ � ϕ

� Faithfulness and adequacy of the implementation

Γ,∆ `N(L) ϕ ⇔ Γ, ∆ ` ϕ in IsabelleN(L)

• Proof search: normalization and subformula property
Γ ∆.... ?
ϕ

Proof is ‘normal’ (well-defined structure) and contains only subformulas.
⇒ Restricted proof search.
⇒ Decidability, complexity? (new proof-theoretical method based on

substructural analysis).
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Kripke semantics

• A (Kripke) frame for N(L) is a pair (W,R), where W is a

non-empty set of worlds and R ⊆ W×W.

• A (Kripke) model for N(L) is a triple M = (W,R,V), where

� (W,R) is a frame for N(L).
� The valuation V maps an element of W and a propositional

variable to a truth value (0 or 1).

• Truth for an rwff or lwff ϕ in a model M, �M ϕ, is the smallest

relation �M satisfying:

�M xRy iff (x, y) ∈ R

�M x:p iff V(x, p) = 1
�M x:A ⊃ B iff �M x:A implies �M x:B
�M x:2A iff for all y, �M xRy implies �M y:A

Labelled Deductive Systems UniLog’05



Luca Viganò 53

Soundness and completeness of
N(L) = N(K) + N(T )

Theorem: N(L) = N(K) + N(T ) is sound and complete.

• For Γ a set of labelled formulas, ∆ a set of relational formulas, we

have

1. ∆ `N(L) xRy iff ∆ � xRy

2. Γ,∆ `N(L) x:A iff Γ,∆ � x:A.

• Proof is parameterized over N(T ).

� Soundness: By induction on the structure of the derivations.

� Completeness: By a modified canonical model construction that

accounts for the explicit formalization of labels and of the

relations between them.
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Translations (full vs. partial)

      Full translation

Labelled ND

• Full translation: Jx:2AK ; ∀y. xRy ⊃ Jy:AK
Transitivity: ∀x.y.z. xRy ∧ yRz ⊃ xRz

+ generality

− structure: relations mingled with formulas

• Labelled natural deduction: partial translation

[xRy]....
y:A

x:2A
2I [y fresh] xRy yRz

xRz trans

− less general (but large and extensible)

+ structure (separation)

rwffs derived from rwffs alone

lwffs derived from lwffs and rwffs
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Extensions and restrictions

Reason about propagation of inconsistency

⇒ vary interface between N(K) and N(T ).

 Full translation

Labelled ND

Paraconsistent logics

[x:A ⊃ ⊥]....
y:⊥
x:A⊥E

y:⊥
xRz

and ¬(xRz) xRz
y:⊥

[x:A ⊃ ⊥]....
x:⊥
x:A

⇒ give up some of the properties, e.g. structure, completeness.
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Proof search: Normalization and subformula property

• Structure:
Γ ∆.... ?
α

• Theorem: Every derivation of x:A from Γ,∆ in N(K) + N(T )
reduces to a derivation in normal form.

“no detours or irrelevancies”

example:

[xRy]
Π

y:A
x:2A 2I xRz

z:A 2E

reduces to
xRz

Π[z/y]
z:A

• Corollary: Normal derivations in N(K) + N(T ) satisfy a

subformula property.

⇒ Restricted proof search.

⇒ Decidability, complexity?
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Proof search: Tracks

• Thread in a derivation Π in N(K) + N(T ): a sequence of

formulas ϕ1, . . . , ϕn such that (i) ϕ1 is an assumption of Π, (ii)

ϕi stands immediately above ϕi+1, for 1 ≤ i < n, and (iii) ϕn is

the conclusion of Π.

• Lwff-thread: a thread where ϕ1, . . . , ϕn are all lwffs.

• Track: initial part of an lwff-thread in Π
which stops either at the first minor

premise of an elimination rule in the

lwff-thread or at the conclusion of the

lwff-thread.

• Corollary: The form of tracks

in a normal derivation of an lwff

in N(K) + N(T ) is

E

xRy
π

E

I
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A topography of labelled modal logics

separation

first-order

inadequate

‘‘paraconsistent’’

modal  logics

(modal?)

logics
modal  logics

well-known

class  of

large

and 

( K,T,D,B,S4,S5, ... )

equivalent to

semantic

embedding

UNIVERSAL LOCAL GLOBAL

axiomatizable

3 approaches to falsum:

• Up to now we have used global falsum:
[x:A ⊃ ⊥]....

y:⊥
x:A⊥E

≡ x:⊥
y:⊥ gf

• Falsum propagates between worlds.

⇒ unidirectional interface between N(K) and N(T ):
∗ Rwffs derived from rwffs alone.

∗ Lwffs derived from lwffs and rwffs (2E).
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Classes of labelled modal logics

By changing:

• Labelling algebra
– Different Horn relational theories.

√

– First-order relational theories, e.g. ∀x(∼ (R xx )).
– Higher-order relational theories.

• Interface
– Unidirectional.

√

– Bidirectional.

• Base system

– Extension: N(Kuf ) = N(K) with universal falsum.

– Narrowing: N(Klf ) = N(K) with local falsum.

Labelled Deductive Systems UniLog’05



Luca Viganò 60

First-order relational theories N(TF) = NR + CR

• NR: first-order ND system of R

[ρ = ∅]....
∅
ρ
∅E

[ρ1]....
ρ2

ρ1 = ρ2
= I ρ1 = ρ2 ρ1

ρ2
=E

ρd
x(ρ)

d
I

d
x(ρ)

ρ[t/x]
d

E

In
d

I, x must not occur free in any open assumption on which ρ

depends.

• CR: collection of rules for relational properties

d
x(− (xRx)) irrefl

d
x

d
y

d
z((xRiy u xRj z) =

⊔
u(yRmu u zRnu))

rconv
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A problem, the cause, and a solution

• A problem:

� Theorem There are systems N(K) + N(TF) with

N(TF) = NR + CR that are incomplete with respect to the

corresponding Kripke models with accessibility relation defined

by a collection CR of first-order axioms.

� Example: N(TF) = NR +

{
l

x
l

y
l

z((xRy u xRz) = (yRz t zRy)) }

Normalization ⇒ 0N(K)+N(TF) 3, i.e.

0N(K)+N(TF) ∼2(2A ⊃ B) ⊃ 2(2B ⊃ A)
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A problem, the cause, and a solution (cont.)

Normalization ⇒ 0N(K)+N(TF) 3, i.e.

0N(K)+N(TF) ∼2(2A ⊃ B) ⊃ 2(2B ⊃ A)

since

[x: ∼2(2A ⊃ B)]1

[y:2B]3

[xRy]2 [y:A ⊃ ⊥]4 [xRz]5 [z:2A]6

Π1
yRz

z:B 2E

z:2A ⊃ B ⊃ I6

x:2(2A ⊃ B) 2I5

x:⊥ ∼E

y:A ⊥E4

y:2B ⊃ A ⊃ I3

x:2(2B ⊃ A) 2I2

x: ∼2(2A ⊃ B) ⊃ 2(2B ⊃ A) ⊃ I1

but

xRy, xRz 0 yRz in NR + CR
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A problem, the cause, and a solution (cont.)

• A problem:

� Theorem There are systems N(K) + N(TF) with

N(TF) = NR + CR that are incomplete with respect to the

corresponding Kripke models with accessibility relation defined

by a collection CR of first-order axioms.

� Example: N(TF) = NR +

{
l

x
l

y
l

z((xRy u xRz) = (yRz t zRy)) }

Normalization ⇒ 0N(K)+N(TF) 3, i.e.

0N(K)+N(TF) ∼2(2A ⊃ B) ⊃ 2(2B ⊃ A)

� But: property corresponds to axiom 3!
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A problem, the cause, and a solution (cont.)

• The cause: global falsum is not enough!

� Falsum must propagate between base system and labelling

algebra. ⇒ Bidirectional interface:

[y:A ⊃ ⊥]4
[z:2A]6

[xRy]2 [xRz]5 [yRz = ∅]7....
z Ry

y:A 2E

y:⊥ ⊃E

∅ (r)

yRz ∅E7

since xRy, xRz, yRz = ∅ ` zRy in NR + CR.
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A problem, the cause, and a solution (cont.)

• The cause: global falsum is not enough!

� Falsum must propagate between base system and labelling

algebra. ⇒ Bidirectional interface:

[y:A ⊃ ⊥]4
[z:2A]6

[xRy]2 [xRz]5 [yRz = ∅]7....
z Ry

y:A 2E

y:⊥ ⊃E

∅ (r)

yRz ∅E7

since xRy, xRz, yRz = ∅ ` zRy in NR + CR.

• A solution: collapse ⊥ and ∅ (universal falsum)

N(Kuf ) = N(K) + x:⊥
∅ uf1 + ∅

x:⊥ uf2

But: we lose the separation between the 2 parts of the deduction

system.
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Universal falsum ∼= semantic embedding

Theorem: In N(Kuf ) + N(TF) the two parts of the deduction system

are not separated: derivations of lwffs can depend on derivations of

rwffs, and vice versa.
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Universal falsum ∼= semantic embedding (cont.)

• In fact, N(Kuf ) + N(TF), unlike N(K) + N(T ), is essentially

equivalent to the usual semantic embedding of propositional

modal logics in first-order logic.

� Translation J·K of formulas of N(Kuf ) + N(TF) into formulas of

first-order logic:

J∅K ; ⊥ ;
JxRyK ; R(x, y) ;

Jρ1 = ρ2K ; Jρ1K ⊃ Jρ2K ;
J
d

x(ρ)K ; ∀x(JρK) ;
J∆K ; {JρK | ρ ∈ ∆} ;

Jx:⊥K ; ⊥ ;
Jx:pK ; P (x) ;

Jx:A ⊃ BK ; Jx:AK ⊃ Jx:BK ;
Jx:2AK ; ∀y(R(x, y) ⊃ Jy:AK) ;

JΓK ; {Jx:AK | x:A ∈ Γ} .

� The following are then equivalent:

1. Γ,∆ ` ϕ in N(Kuf ) + NR + CR.

2. CR, JΓK, J∆K ` JϕK in (the ND system for) first-order logic.
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Local falsum: Paraconsistent modal logics
N(Klf ) is N(K) with ⊥E restricted so that falsum is local and

cannot move arbitrarily between worlds:

[x:A ⊃ ⊥]....
x:⊥
x:A lf
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Local falsum: Paraconsistent modal logics
N(Klf ) is N(K) with ⊥E restricted so that falsum is local and

cannot move arbitrarily between worlds:

[x:A ⊃ ⊥]....
x:⊥
x:A lf

lf propagates ⊥ forward indirectly (and backward, when R symmetric):
x:⊥

x:2⊥ lf
xRy

y:⊥ 2E

but not to an arbitrary world: x:⊥ 6`
N(Klf )

y:⊥
⇒ 2 and 3 are not interdefinable in N(Klf )!

They are not even ‘intuitionistically’ related (e.g. 2 ∼A does not

imply ∼3A).
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Local falsum: Paraconsistent modal logics (cont.)

⇒ N(Klf ) in general not suitable for formalizing modal logics.

• Only certain logics (e.g. if R universal as for S5 — where xRy

for all x, y).

• But: resulting formalization is unsatisfactory, since it lacks

important metatheoretical properties that we get in N(K).

• Proposition: Derivations in N(Klf ) do not have normal forms

satisfying the subformula property.

For example:
x:⊥

x:2⊥ lf
xRy

y:⊥ 2E

• Can be fixed, but ...
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Summary

• A labelled deduction framework for (propositional) modal logics.

� Labelled (natural) deduction systems: uniform and modular.

� Structural properties vs. generality.

� Structure ⇒ implementation, decidability, complexity.

Falsum Base system Interface Labelling algebra Presentation

local N(Klf ) unidirectional (only 2E) separate N(T ) inadequate

global N(K) unidirectional (2E + ⊥E) separate N(T ) complete

separate N(TF) incomplete

universal N(Kuf ) bidirectional N(TF), NOT separate complete

BUT

equivalent to

semantic

embedding

• Other non-classical logics: extensions and restrictions (but there

are limits).
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Extension to quantified modal logics

• Two degrees of freedom:

� Properties of the accessibility relation (as in propositional case).

� How the domains of individuals change between worlds: varying,

increasing, decreasing, or constant domains.

• Hence: extend fixed base ND system N(QK) with relational

theory (as before) and with domain theory formalizing the

behavior of the domains of quantification.

� Introduce labelled terms w:t expressing the existence of the

term t at world w.

� Adopt quantifier rules similar to those of free logic

[w:t]....
w:A[t/x]
w:∀x(A) ∀ I

and w:∀x(A) w:t
w:A[t/x] ∀E

where, in ∀ I, t does
not occur in any
assumption on which
w:A[t/x] depends other
than w:t.
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Generalization to non-classical logics

• Modal logics ; non-classical logics.
Unary 2 with binary R ; n-ary modality M with n + 1-ary relation R

[xRy]....
y:A

x:2A
2I [y fresh]

;

[x1:A1] . . . [xn−1:An−1] [R xx1 . . . xn]....
xn:An

x:MA1 . . . An
MI [x1, . . . , xn fresh]

x:2A xRy
y:A 2E ;

x:MA1 . . . An x1:A1 · · · xn−1:An−1 R xx1 . . . xn

xn:An
ME

• Example: relevance logics, binary → with ternary R

[y:A] [R xy z]....
z:B

x:A → B
→ I [y, z fresh] x:A → B y:A R xy z

z:B →E
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Road Map

• Introduction: A framework for non-classical logics.

• Labelled deduction for modal logics.

• Labelled deduction for non-classical logics.

� Propositional relevance logics and quantified modal logics.

∗ Labelled deduction systems: uniform and modular.

∗ Properties: soundness, completeness, normalization, ...

∗ A first step towards the combination of non-classical logics.

• Encoding non-classical logics in Isabelle.

• Substructural and complexity analysis of labelled non-classical

logics.

• Conclusions and outlook.

Labelled Deductive Systems UniLog’05



Luca Viganò 73

A labelling recipe for non-classical logics

• We have seen labelled presentations of propositional modal logics:

� The deduction machinery is minimal (a minimal fragment of

first-order logic).

� Derivations are strictly separated.

� Derivations normalize and satisfy a subformula property.

• We will now see a recipe to present non-classical logics in an

analogous way:

� Introduce labelling.

� Give ND rules for the operators, distinguishing ‘local’ and

‘non-local’ ones.

� Introduce quantifiers.

⇒ labelled ND presentations with ‘good’ properties.
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Labelled deduction for propositional non-classical
logics

We distinguish local and non-local logical operators.

• The truth of a:OA1 . . . An, where O is a local operator, depends

only on the local truth of a:A1, . . . , a:An.

• Examples: ⊃, ∧, ∨, ∼ , ...

�M a:A ∧B iff �M a:A and �M a:B;
�M a:A ∨B iff �M a:A or �M a:B;
�M a:A ⊃ B iff �M a:A implies �M a:B;
�M a: ∼A iff 2M a:A.
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Non-local operators

• A non-local operator M is associated with an n+1–ary relation R

on worlds

⇒ truth of a:MA1 . . . An is evaluated non-locally at worlds

R-accessible from a

i.e. in terms of the truth of a1:A1, . . . , an:An where R aa1 . . . an.

• Examples:

� unary 2 (and 3) and binary R,

� binary relevant → and ternary compossibility relation R,

� (binary intuitionistic → and binary partial order R =v),

� ...

• We extend �M so that: �M R aa1 . . . an iff (a, a1, . . . , an) ∈ R

and distinguish ‘universal’ and ‘existential’ non-local operators.
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Non-local operators (cont.)
• M is a universal non-local operator when the metalevel quantification in the

evaluation clause is universal (and the body is an implication):

�M a:MA1 . . . An iff for all a1, . . . , an

((�M R aa1 . . . an and �M a1:A1 and . . . and �M an−1:An−1)
imply �M an:An)

Examples:

�M a:2A1 iff for all a1 (�M R aa1 implies �M a1:A1)
�M a:A1 → A2 iff for all a1, a2 ((�M R aa1 a2 and �M a1:A1) imply �M a2:A2)

• M is an existential non-local operator when the metalevel quantification in the
evaluation clause is existential (and the body is a conjunction):

�M a:MA1 . . . An iff there exist a1, . . . , an

(�M R aa1 . . . an and �M a1:A1 and . . . and �M an−1:An−1

and �M an:An)

Example: �M a:3A1 iff there exists a1 (�M R aa1 and �M a1:A1).
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Non-local negation
• In relevance (and other) logics, both a formula and its ‘negation’

may be true at a world.

• This cannot be the case with ∼.

⇒ Introduce a new operator: non-local negation ¬ is formalized

by a unary function ∗ on worlds

�M a:¬A iff 2M a∗:A

Informally: a∗ is the world that does not deny what a asserts,

i.e. a and a∗ are compatible worlds.

• We generalize this to

�M a:¬A iff for all b (�M a∗:A implies �M b:⊥⊥)

where the constant ⊥⊥ expresses incoherence of compatible worlds,

i.e. 2M b:⊥⊥ for every world b.
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On negation and incoherence

• Equivalent to approaches based on incompatibility relation N between worlds:

�M a:¬A iff for all b(�M b:A implies b N a)

⇒ a∗ is the ‘strongest’ world b for which b N a does not hold

• Given relevant implication, we can define

a:¬A as a:A → ⊥⊥

and postulate that for every b
R a a∗ b

That a and a∗ are ‘compossible’ according to every b is justified by the meaning
of ∗.

• When a = a∗:
⊥⊥ reduces to ⊥
¬ reduces to ∼
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Language of a non-classical logic L (and of N(L))
(W, ∗, S,O, F )

• W is a set of labels closed under ∗ of type W ⊃ W .

(We assume that 0 ∈ W is a label denoting the actual world 0.)

• S a denumerably infinite set of propositional variables.

• O is the set whose members are

� the constant ⊥⊥ (and/or ⊥);

� local and/or non-local negation (or neither for positive logics);

� a set of local operators C1, C2, . . .; and

� a set of non-local operators M1,M2, . . . with associated

relations R1, R2, . . . of the appropriate arities.

• F is the set of rwffs Ri a a1 . . . an and lwffs a:A.

Remark: NO assumptions on interrelationships between Ri and Rj!
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Characterization of a non-classical logic L
• By language.

• By models M = (W, 0,R1,R2, . . . , ∗,V).

� Independent conditions on ∗ and each Ri.

� Moreover: truth is monotonic in some logics.

⇒ Define a partial order v on worlds

relevance logics: x v y iff R 0 x y

intuitionistic logic: x v y iff xR y

(modal logics: x v y iff x ≡ y)
and add conditions
∗ if �M ai:A and �M ai v aj, then �M aj:A,

∗ for all j < n, if �M Ri a0 . . . aj−1 aj aj+1 . . . an and �M a v aj,
then �M Ri a0 . . . aj−1 a aj+1 . . . an

∗ if �M Ri a0 . . . an−1 an and �M an v a, then �M Ri a0 . . . an−1 a.
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Monotony and persistency

• There are logics for which

if �M ai:A and �M ai v aj , then �M aj:A

does not hold.

• Example: intuitionistic logic (with →) plus classical implication ⊃.

� Monotony holds for A → B, but not for A ⊃ B.

� Solution: restrict rule monl to persistent formulas, e.g. A is

persistent if

∗ it is atomic,

∗ it is B → C or ¬B, where ¬ is intuitionistic (and thus

non-local) negation,

∗ it is B ∧ C or B ∨ C, and B,C are persistent.
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The base system N(B)
As for modal logics: Kripke semantics ‘suggests’ ND rules.

• Rules for local operators are trivial, e.g.

[a:A]....
a:B

a:A ⊃ B
⊃ I

a:A ⊃ B a:A
a:B ⊃E ...
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The base system N(B) (cont.)

• For the non-local operators Mu and Me we give the rules

[a1:A1] · · · [au−1:Au−1] [R
u a a1 . . . au]....

au:Au

a:MuA1 . . . Au
MuI

a:MuA1 . . . Au a1:A1 · · · au−1:Au−1 Ru a a1 . . . au

au:Au
MuE

a1:A1 · · · ae:Ae Re a a1 . . . ae

a:MeA1 . . . Ae
MeI

a:MeA1 . . . Ae

[a1:A1] · · · [ae:Ae] [R
e a a1 . . . ae]....

b:B
b:B MeE

In MuI and MeE, each ak and each al, for 1 ≤ k ≤ u and 1 ≤ l ≤ e, is fresh.

Note that the rules are independent of the properties of Ru and Re!
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The base system N(B) (cont.)

• Negation rules:
[a∗:A]....
b:⊥⊥
a:¬A ¬I

a:¬A a∗:A
b:⊥⊥ ¬E

reflect the semantics and capture only a minimal non-local negation.

For intuitionistic or classical non-local negation we must also add

b:⊥⊥
a:A ⊥⊥Ei

[a:¬A]....
b:⊥⊥
a∗:A ⊥⊥Ec

• Monotony at the level of lwffs:

ai:A ai v aj

aj:A monl

where A is a persistent.
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Relational theories (Labelling algebras)

• Relational theories axiomatize the properties of ∗ and of the

relations Ri.

(We can again exploit correspondence theory.)

• We restrict again our attention to Horn relational rules

Ri t
1
0 . . . t1n · · · Ri t

m
0 . . . tmn

Ri t
0
0 . . . t0n

where the tjk are terms built from labels and (Skolem) function

symbols, e.g.

R 0 a a iden R a b x R x c d
R b c f (a, b, c, d, x) assoc1 R a b x R x c d

R a f (a, b, c, d, x) d
assoc2
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Relational theories (Labelling algebras; cont.)

• For negation, we give Horn rules that impose different behaviors

on ∗, e.g.

a v a∗∗ ∗∗i a∗∗ v a
∗∗c

a v a∗ ortho1 a∗ v a ortho2

encode intuitionistic (∗∗i), classical (∗∗i and ∗∗c), or ortho

(ortho i) negation.

• For monotony at the level of rwffs (0 ≤ j < n):

Ri a0 . . . aj−1 aj aj+1 . . . an a v aj

Ri a0 . . . aj−1 a aj+1 . . . an
monRi(j)

Ri a0 . . . an−1 an an v a
Ri a0 . . . an−1 a

monRi(n)
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Labelled ND systems for prop. non-classical logics
• Our framework presents large families of (fragments of and full) non-classical

logics.

• The labelled ND system N(L) = N(B) + N(T ) for the propositional
non-classical logic L is the extension of an appropriate base system N(B) with
a given Horn relational theory N(T ).

By considering the rules for ⊥⊥, we distinguish 3 families of systems according
to their treatment of non-local negation: minimal, intuitionistic, or classical.

N(L) N(B) N(T ) (includes at least)

N(ML) rules for ∧,∨,⊃,Mu,Me, ¬
monl monRi rules (for Ru and Re)

N(JL) rules for ∧,∨,⊃,Mu,Me, ¬
monl monRi rules (for Ru and Re)
⊥⊥Ei ∗∗i

N(CL) rules for ∧,∨,⊃,Mu,Me, ¬
monl monRi rules (for Ru and Re)
⊥⊥Ec ∗∗i, ∗∗c
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Examples of propositional non-classical logics

• Not all non-classical logics expressible in our framework.

(Not all relational theories expressible as Horn theories.)

• But: large and well-known families of non-classical logics:

� Modal logics in the Geach hierarchy: K, D, T, B, S4, S4.2,

KD45, S5, ...

and their (simple) multimodal versions.

� Many relevance logics: B, N, T, R, ...

� ‘Independent’ combinations of the above.

� Fragments and full logics.
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H(B+), a Hilbert system for B+

• Axiom schemas:

A1: A → A.

A2: A ∧B → A.

A3: A ∧B → B.

A4: A → A ∨B.

A5: B → A ∨B.

A6: A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C).

A7: (A → B) ∧ (A → C) → (A → B ∧ C).

A8: (A → C) ∧ (B → C) → (A ∨B → C).

• Inference rules:

R1: A → B A
B

modus ponens ,

R2: A B
A ∧B

adjunction ,

R3:
A → B C → D

(B → C) → (A → D) affixing ,

along with their disjunctive forms, where if A1 · · · An

B
is a rule, then its

disjunctive form is the rule C ∨A1 · · · C ∨An

C ∨B
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N(B+), a labelled ND system for B+

a:A a:B
a:A ∧B ∧I a:A ∧B

a:A ∧E1 a:A ∧B
a:B ∧E2

a:A
a:A ∨B ∨I1 a:B

a:A ∨B ∨I2 a:A ∨B

[a:A]....
c:C

[a:B]....
c:C

c:C ∨E

[b:A] [R a b c]....
c:B

a:A → B
→ I (b, c fresh) a:A → B b:A R a b c

c:B →E

R a b c R 0 x a
R x b c

monR(1) R a b c R 0 x b
R ax c

monR(2) R a b c R 0 c x
R a b x

monR(3)

a:A R 0 a b
b:A monl R 0 a a iden
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Some correspondences
Name Axiom schema/Inference rule Property Horn relational rules

A9 A ∧ (A → B) → B R a a a or R 0 a b ⊃ R a a b R a a a
idem

(idempotence) or R 0 a b
R a a b

idem

A11 (A → B) → ((B → C) → (A → C)) R2 a b c d ⊃ R2 b (ac) d
R a b x R x c d

R a c f2(a, b, c, d, x)
suff1

(suffixing)
R a b x R x c d

R b f2(a, b, c, d, x) d
suff2

A12 (A → B) → ((C → A) → (C → B)) R2 a b c d ⊃ R2 a (bc) d
R a b x R x c d

R b c f3(a, b, c, d, x)
assoc1

(associativity or prefixing)
R a b x R x c d

R a f3(a, b, c, d, x) d
assoc2

A13 (A → (A → B)) → (A → B) R a b c ⊃ R2 a b b c
R a b c

R a b f4(a, b, c)
cont1

(contraction)
R a b c

R f4(a, b, c) b c
cont2

A14 ((A → A) → B) → B R a 0 a R a 0 a
specassert

(specialized assertion)

A15 A → ((A → B) → B) R a b c ⊃ R b a c R a b c
R b a c

comm

(commutativity or assertion)

• R2 a b c d =def ∃x(R a b x ∧ R x c d) and R2 a (bc) d =def ∃x(R b c x ∧ R a x d).

• All the properties of R are outermost universally quantified.

• Using the definition of the partial order we could write a v b for R 0 a b.
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Some correspondences (cont.)

Name Axiom schema/Inference rule Property Horn relational rules

A16 A → (A → A) R a b c ⊃ (R 0 a c ∨ R 0 b c) no Horn relational rules!

or R 0 0 a ∨ R 0 0 a∗ (mingle) (requires universal ⊥⊥)

A17 A → (B → B) R 0 0 a or R a b c ⊃ R 0 b c R 0 0 a
thin

(thinning) or R a b c
R 0 b c

thin

A18 A → (B → A) R a b c ⊃ R 0 a c (positive paradox) R a b c
R 0 a c

pospar

R4 A → ¬B
B → ¬A

contraposition R 0 a b ⊃ R 0 b∗ a∗ (antitonicity)
R 0 a b

R 0 b∗ a∗
anti

A19 (A → ¬B) → (B → ¬A) R a b c ⊃ R a c∗ b∗ (inversion)
R a b c

R a c∗ b∗
inv

A20 ¬¬A → A a∗∗ = a (period two) R 0 a a∗∗
∗∗i

R 0 a∗∗ a
∗∗c

A21 A ∨ ¬A R 0 0∗0 (excluded middle) R 0 0∗0
exmid
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Extensions of B+: Hilbert and labelled ND systems

Logic L Hilbert system H(L) Labelled ND system N(L)
N+ H(B+) + {A11,A12} N(B+) + {suff1, suff2, assoc1, assoc2}
T+ H(N+) + {A13} N(N+) + {cont1, cont2}
E+ H(T+) + {A14} N(T+) + {specassert}
R+ H(E+) + {A15} N(E+) + {comm}
S4+ H(E+) + {A17} N(E+) + {thin}
J+ H(R+) + {A17} = H(S4+) + {A15} N(R+) + {thin} = N(S4+) + {comm}
B H(B+) + {A20,R4} N(B+) + {¬I,¬E,⊥⊥Ec, ∗∗i, ∗∗c, anti}
R H(B) + {A11,A13,A15,A19} N(B) + {suff1, suff2, cont1, cont2, comm, inv}

= H(B+) + {A11,A13, = N(B+) + {¬I,¬E,⊥⊥Ec, ∗∗i, ∗∗c,
A15,A19,A20} suff1, suff2, cont1, cont2, comm, inv}

G H(B) + {A21} N(B) + {exmid}
C H(R) + {A17} N(R) + {thin}

J+ is positive intuitionistic logic, G is ‘basic’ classical logic and C is

‘full’ classical logic.
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Extensions of B+: Hilbert and labelled ND systems

Note that we have chosen the ‘economical’ system H(R), where,

e.g., R4 is redundant as it can be derived using A19 and R1;

similarly, in N(R) we can trivially derive the rule anti using inv, and

the rule idem using identity and contraction:

R 0 a a iden
R f4(0 , a , a) a a

cont2 R 0 a a iden
R 0 a f4(0 , a , a) cont1

R aaa
monR(1)

Alternative, equivalent, axiomatizations are possible, for R and other

logics.
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An advantage of our approach

• Routley and Meyer have shown that

� H(R+) is a subsystem of the system H(J+) for positive intuitionistic logic J+,
� but H(R) is a subsystem only of the system H(C) for ‘full’ classical logic C.
� That is: H(J) for ‘full’ intuitionistic logic J cannot be modularly obtained by

simply adding new axioms to H(R).

• This is not the case with our systems!

� Extending N(R) with the rule R 0 0 a thin yields N(C),
� but we have N(R) = N(CR)
� and we can restore the modularity, we just need to consider the system

N(JR), i.e. N(R) with an intuitionistic treatment of negation.
� Indeed: N(R+) ⊂ N(JR) ⊂ N(R) and N(JR) + thin = N(J).
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Extending N(R) with thin yields N(C)
We show that we are then able to prove R 0 a 0, so that, essentially,

all the worlds collapse; i.e. a = a∗ = a∗∗, → reduces to ⊃, and ¬ to

∼ .

Π
R 0 a 0∗

R 0∗ 0∗ 0∗ idem
R 0∗ 0∗∗ 0∗∗ inv R 0 0∗∗ 0 ∗∗c

R 0∗ 0∗∗ 0 monR(3)
R 0 0 0∗∗ ∗∗i

R 0∗ 0 0 monR(2)
R 0 0∗ 0 comm

R 0 a 0 monR(3)

where Π is
R 0 0 a∗ thin

R 0 a∗∗ 0∗ anti R 0 a a∗∗ ∗∗i
R 0 a 0∗ monR(2)

Note that we have:

Fact: Γ,∆ `N(B)+N(T ) Ri a a1 . . . an iff ∆ `N(T ) Ri a a1 . . . an.
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Example derivations

[a:A → ¬B]3 [d∗:A]1

[R b c d]2 [R 0 a b]3
R a c d

monR(1)
R ad∗ c∗ inv

c∗:¬B →E
[c:B]2 R 0 c c∗∗ ∗∗i

c∗∗:B monl
e:⊥⊥ ¬E
d:¬A ¬I1

b:B → ¬A→ I2

0:(A → ¬B) → (B → ¬A)→ I3

[a:¬¬A]2 [R 0 a b]2
b:¬¬A monl [b∗:¬A]1

c:⊥⊥ ¬E
b∗∗:A ⊥⊥Ec1

R 0 b∗∗ b
∗∗c

b:A monl
0:¬¬A → A→ I2
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Soundness and completeness of N(L) = N(B) + N(T )

• Theorem N(L) = N(B) + N(T ) is sound and complete.

• For Γ a set of labelled formulas, ∆ a set of relational formulas, we

have

1. ∆ `N(L) Ri a a1 . . . an iff ∆ � Ri a a1 . . . an

2. Γ,∆ `N(L) a:A iff Γ,∆ � a:A.

• Proof is parameterized over N(T ).

� Soundness: By induction on the structure of the derivations.

� Completeness: By a modified canonical model construction that

accounts for the explicit formalization of labels and of the

relations between them.

∗ To account for positive (negation-less) fragments, we build the

canonical model by extending disjoint theory – counter-theory.

∗ That is: we do not define maximality in terms of consistency.
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Normalization and subformula property
• Theorem: Every derivation of x:A from Γ,∆ in N(L) = N(B) + N(T ) reduces

to a derivation in normal form.

• Normal form of a derivation ≡ “no detours or irrelevancies”.
Two forms of detour

� proper reductions for Mu, Me and ¬E, like for modal logics

[xRy]
Π

y:A
x:2A 2I xRz

z:A 2E

reduces to
xRz

Π[z/y]
z:A

� and permutative reductions for MeE, ∨E, ⊥⊥Ei and monl
(for lwffs that potentially interact in a proper reduction but are too far apart
in a derivation).

• Corollary: Normal derivations in N(B) + N(T ) satisfy a subformula property.

⇒ Restricted proof search.

⇒ Decidability, complexity?
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Proof search: Tracks

Corollary: The form of tracks in a normal derivation of an lwff in

N(B) + N(T ) is

EiEc or

π
R a a1 ... an E

I
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Positive fragments and interrelated relations

• Consider the positive modal logic K with 2 and R2, 3 and R3.

• Theorem: If our restriction is withdrawn, and R2 and R3 are

related, then incompleteness may arise:

x:2(A ∨B) ⊃ (3A ∨2B)

corresponds to but is not provable in systems containing

xR2y
xR3y

(R2 ⊆ R3)

� By exploiting normalization results.

� Hilbert-style presentations suffer from the same problem.

� Solution: give up fixed base system and add rule

x:2(A ∨B) ⊃ (3A ∨2B)
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Quantified modal logics

• Two, independent, degrees of freedom (two-dimensional space of

possible logics):

� properties of the accessibility relation (as in propositional case),

� how the domains of individuals change between worlds: varying,

increasing, decreasing, or constant domains.

Other dimensions are possible, e.g. non-rigid designators.

• Standard approaches: piecemeal fashion or lack uniformity.

Problems:

� Hilbert systems: standard quantifier rules automatically require

domains to be increasing (because of Converse Barcan formula).

� Incompleteness with respect to Kripke semantics is common.

� Meta-results (e.g. completeness) are not proved in uniform way.

• Labelled deduction systems: no problems.
Labelled Deductive Systems UniLog’05



Luca Viganò 103

Labelled quantified modal logics

N(QL) = base system + relational theory + domain theory
= fixed N(QK) + varying N(T ) + varying N(D)

• Base system N(QK):

� Natural deduction system formalizing QK.

� Reason about w:A.

• Relational theory N(T ):

� Describes the behavior of R.

� Reason about wiRwj.

• Domain theory N(D):

� Describes the behavior of domains of quantification behavior.

� Reason about labelled terms w:t (t exists at w).

• Separation ⇒ structure ⇒ properties.

Labelled Deductive Systems UniLog’05



Luca Viganò 104

The base system N(QK) for quantified K

[wi:A ⊃ ⊥]....
wj:⊥
wi:A

⊥E

[w:A]....
w:B

w:A ⊃ B
⊃ I w:A ⊃ B w:A

w:B
⊃E

[wiRwj]....
wj:A
wi:2A

2I wi:2A wiRwj

wj:A 2E

[w:t]....
w:A[t/x]
w:∀x(A)

∀ I w:∀x(A) w:t
w:A[t/x] ∀E

In 2I, wj is different from wi and does not occur in any assumption

on which wj:A depends other than wiRwj.

In ∀ I, t does not occur in any assumption on which w:A[t/x]
depends other than w:t.
Labelled Deductive Systems UniLog’05



Luca Viganò 105

Derived rules of N(QK)

wj:A wiRwj

wi:3A
3I

w:A[t/x] w:t
w:∃x(A)

∃ I

wi:3A

[wj:A] [wiRwj]....
wk:B

wk:B
3E

wi:∃x(A)

[wi:A[t/x]] [wi:t]....
wj:B

wj:B
∃E

In 3E, wj is different from wi and wk, and does not occur in any

assumption on which the upper occurrence of wk:B depends other

than wj:A and wiRwj.

In ∃E, t does not occur in any assumption on which the upper

occurrence of wj:B depends other than wi:A[t/x] and wi:t.
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Extensions of N(QK)
• Relational theories axiomatize properties of R (as in the

propositional case).

• Domain theories: different combinations of the rules

wiRwj wi:t
wj:t

id
increasing domains, corresponds to CBF

2∀x(A) ⊃ ∀x(2A)

wiRwj wj:t
wi:t

dd
decreasing domains, corresponds to BF

∀x(2A) ⊃ 2∀x(A)

yield different labelled ND systems for quantified modal logics.

The labelled ND system N(QL) = N(QK) + N(T ) + N(D) is

obtained by extending N(QK) + N(T ) with a given domain theory

N(D) generated by a subset of {id, dd}.
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Two-dimensional uniformity

N(QK) + N(D)
accessibility

relation

//// N(QK) + N(T ) + N(D)

N(QK)
accessibility

relation

//

domains

OO

N(QK) + N(T )

domains

OOOO

N(QKT4.c)

N(QKT4.i)

dd 66lllllllllllll

N(QKT4.d)

idiiRRRRRRRRRRRRR

N(QKT4)id

hhRRRRRRRRRRRRR

dd

55lllllllllllll
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Example derivations

CBF is a theorem of (any extension of) N(QK.i):

[w:2∀x(A)]1 [wRw1]3

w1:∀x(A) 2E [wRw1]3 [w:t]2
w1:t id

w1:A[t/x] ∀E

w:2A[t/x] 2I3

w:∀x(2A) ∀ I2

w:2∀x(A) ⊃ ∀x(2A)⊃ I1

We can prove similarly that BF is a theorem of (any extension of)

N(QK.d).

Remark: id and dd are interderivable when the accessibility relation

is symmetric.
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Labelled quantified modal logics: Properties
1. Labelled deduction systems are uniform and modular.

2. Labelled deduction systems are sound and complete.

For Θ a set of lterms: (a) ∆ `N(QL) wiRwj iff ∆ � wiRwj,

(b) ∆,Θ `N(QL) w:t iff ∆,Θ � w:t

(c) Γ,∆,Θ `N(QL) w:A iff Γ,∆,Θ � w:A.

3. The deduction machinery is minimal.

4. Derivations are strictly separated.

(a) A derivation of an lwff can depend on a derivation of an rwff (via an
application of 2E), but not vice versa.

(b) A derivation of an lwff can depend on a derivation of an lterm (via an
application of ∀E), but not vice versa.

(c) A derivation of an lterm can depend on a derivation of an rwff (via an
application of id or dd), but not vice versa.

5. Derivations normalize and satisfy a subformula property.

As in the propositional case.
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Falsum

• Also local and universal falsum generalize.

• Moreover, we may also need universal falsum for lterms:

wi:⊥
wj:∅

uf t1 wj:∅
wi:⊥ uf t2

allow us to mingle derivations of lwffs with derivations of lterms.

• Needed, for example, to prove

w:∀x(A) ⊃ ∃x(A)

when we extend a first-order domain theory with

w:
⊔

x(x)
non-empty
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Road Map

• Introduction: A framework for non-classical logics.

• Labelled deduction for modal logics.

• Labelled deduction for non-classical logics.

• Encoding non-classical logics in Isabelle.

• Substructural and complexity analysis of labelled non-classical

logics.

• Conclusions and outlook.
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Encoding non-classical logics in Isabelle

• Isabelle: a generic theorem prover.

• Metalogic Meta: a natural deduction presentation of minimal

implicational predicate logic with universal quantification over all

higher-types.

(universal quantifier Λ or !!, implication ⇒ or ==>)

• Object logics encoded by declaring a theory, composed of a

signature and axioms, which are formulas in the language of Meta.

� Theories in Isabelle correspond to instances of an abstract

datatype in ML and Isabelle provides means for creating

elements of these types, extending them, and combining them.

� Axioms establish the validity of judgements

(assertions about syntactic objects declared in the signature).

� Derivations are constructed by deduction in the metalogic.
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Encoding propositional modal logics
K = Pure + (* K extends Pure (Isabelle’s metalogic) *)

(* with the following signature and axioms *)
types (* Definition of type constructors *)

label,o 0
arities (* Addition of the arity ‘logic’ to the existing types *)

label, o :: logic
consts

(* Logical operators *)
falsum :: "o"
imp :: "[o, o] => o" ("_ --> _" [25,26] 25)
not :: "o => o" ("~ _" [40] 40)
box :: "o => o" ("[]_" [50] 50)
dia :: "o => o" ("<>_" [50] 50)
(* Judgements *)
LF :: "[label, o] => prop" ("(_ : _)" [0,0] 100)
RF :: "[label, label] => prop" ("(_ R _)" [0,0] 100)

rules
(* Axioms representing the object-level rules *)
falsumE "(x:A --> falsum ==> y: falsum) ==> x:A"
impI "(x:A ==> x:B) ==> x:A --> B"
impE "x:A --> B ==> x:A ==> x:B"
boxI "(!!y. (x R y ==> y:A)) ==> x:[]A"
boxE "x:[]A ==> x R y ==> y:A"
(* Definitions *)
not_def "x: ~A == x: A --> falsum"
dia_def "x: <>A == x: ~([](~A))"

end

• Two types: label and o (unlabelled modal formulas).

• Operators: typed constants over this signature.

• Two judgements: LF and RF.

• Mixfix annotations: abbreviate imp with -->, LF(x,A) with x:A.

• In axioms, free variables are implicitly outermost universally quantified.
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Extensions of K

Addition of Horn axioms:
KT = K +
rules

refl "x R x"
end

K4 = K +
rules

trans "x R y ==> y R z ==> x R z"
end

KT4 = K4 +
rules

refl "x R x"
end

K2 = K +
consts

g :: "[label,label,label] => label"
rules

conv1 "x R y ==> x R z ==> y R g(x,y,z)"
conv2 "x R y ==> x R z ==> z R g(x,y,z)"

end

Logics inherit theorems and derived rules from their ancestors,

e.g. x:2A ↔ 22A in KT4
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Faithfulness and adequacy

• MetaN(L) is faithful (with respect to N(L)) iff

1. RF(∆) `MetaN(L)
RF(x, y) implies ∆ `N(L) xRy, and

2. LF(Γ),RF(∆) `MetaN(L)
LF(x,A) implies Γ,∆ `N(L) x:A.

• MetaN(L) is adequate (with respect to N(L)) iff the converses

hold, i.e. iff

1. ∆ `N(L) xRy implies RF(∆) `MetaN(L)
RF(x, y), and

2. Γ,∆ `N(L) x:A implies LF(Γ),RF(∆) `MetaN(L)
LF(x,A).

• Theorem: MetaN(L) is faithful and adequate.

By induction on structure of (object/meta) derivations.
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Isabelle proof session

• Isabelle manipulates rules. A rule is a formula

!! v1 ... vm. A1 ==> ... ==> (An ==> A)

which is also displayed as

!! v1 ... vm. [| A1; ...; An|] ==> A

• Rules represent proof states where A is the goal to be established

and the Ai’s are the subgoals to be proved.

• Isabelle supports proof construction through higher-order

resolution

� given a proof state with subgoal B and a rule,
� we treat the vi’s of the rule as variables for unification,
� and higher-order unify A with B.
� If this succeeds, then unification yields a substitution σ,
� and the proof state is updated replacing B with the subgoals A1 , . . . , An and

applying σ to the whole proof state.
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Examples

• An interactive proof.

> goal K4.thy "x:[]A --> [][]A";
x : []A --> [][]A
1. x : []A --> [][]A

> by (rtac impI 1);
x : []A --> [][]A
1. x : []A ==> x : [][]A

> by (rtac boxI 1);
x : []A --> [][]A
1. !!y. [| x : []A; x R y |] ==> y : []A

> by (rtac boxI 1);
x : []A --> [][]A
1. !!y ya. [| x : []A; x R y; y R ya |] ==> ya : A

> by (etac boxE 1);
x : []A imp [][]A
1. !!y ya. [| x R y; y R ya |] ==> x R ya

> by (etac trans 1);
x : []A --> [][]A
1. !!y ya. y R ya ==> y R ya

> by (atac 1);
x : []A --> [][]A
No subgoals!

> qed "BoxImpliesBoxBox";
val BoxImpliesBoxBox = "?x : []?A --> [][]?A"
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Examples (cont.)

• We can also derive new rules

> val [major,minor] =
goalw K.thy [dia_def] "[| y:A; x R y |] ==> x: <>A";

x : <>A
1. x : ~ [](~ A)

val major = "y : A [y : A]" : thm
val minor = "x R y [x R y]" : thm

...

> qed "diaE";
val diaE = "[| ?x : <>?A; !!y. [| y : ?A; ?x R y |] ==> ?z : ?B |] ==> ?z : ?B" : thm

• We can use Isabelle’s built-in tacticals such as EVERY, THEN, REPEAT

• We can increase automation by writing tactics.
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Encoding propositional non-classical logics
Rplus = Pure +
types (* Definition of type constructors *)

label, o 0
arities (* Addition of the arity ‘logic’ to the existing types *)

label, o :: logic
consts (* Labels, Logical operators, Judgements *)

act :: "label"
f2 :: "[label,label,label,label,label] => label"
f3 :: "[label,label,label,label,label] => label"
f4 :: "[label,label,label] => label"
inc :: "o"
and :: "[o, o] => o" (infixr 35)
or :: "[o, o] => o" (infixr 30)
imp :: "[o, o] => o" (infixr 25)
LF :: "[label, o] => prop" ("(_ : _)" [0,0] 100)
RF :: "[label, label, label] => prop" ("(R _ _ _)" [0,0,0] 100)

rules (* Base system and Properties of the compossibility relation R *)
conjI "[| a:A; a:B |] ==> a: A and B"
conjE1 "a: A and B ==> a:A"
conjE2 "a: A and B ==> a:B"
disjI1 "a:A ==> a: A or B"
disjI2 "a:B ==> a: A or B"
disjE "[| a: A or B; a:A ==> c:C; a:B ==> c:C |] ==> c:C"
impI "[| !!b c. [| b:A; R a b c |] ==> c:B |] ==> a: A imp B"
impE "[| a: A imp B; b:A; R a b c |] ==> c:B"
monl "[| a:A; R act a b |] ==> b:A"
monR1 "[| R a b c; R act x a |] ==> R x b c"
monR2 "[| R a b c; R act x b |] ==> R a x c"
monR3 "[| R a b c; R act c x |] ==> R a b x"
iden "R act a a"
suff1 "[| R a b x; R x c d |] ==> R a c f2(a,b,c,d,x)"
suff2 "[| R a b x; R x c d |] ==> R b f2(a,b,c,d,x) d"
assoc1 "[| R a b x; R x c d |] ==> R b c f3(a,b,c,d,x)"
assoc2 "[| R a b x; R x c d |] ==> R a f3(a,b,c,d,x) d"
cont1 "R a b c ==> R a b f4(a,b,c)"
cont2 "R a b c ==> R f4(a,b,c) b c"
specassert "R a act a"
comm "R a b c ==> R b a c"

end
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Encoding quantified modal logics
QK = Pure +

classes
term < logic

default
term

types (* Definition of type constructors *)
label, o 0

arities (* Addition of the arity ‘logic’ to the existing types *)
label, o :: logic

consts
falsum :: "o"
imp :: "[o, o] => o" ("_ --> _" [25,26] 25)
not :: "o => o" ("~ _" [40] 40)
box :: "o=> o" ("[]_" [50] 50)
dia :: "o=> o" ("<>_" [50] 50)
All :: "(’a => o) => o" (binder "ALL " 10)
Ex :: "(’a => o) => o" (binder "EX " 10)
LF :: "[label, o] => prop" ("(_ : _)" [0,0] 100)
RF :: "[label, label] => prop" ("(_ R _)" [0,0] 100)
LT :: "[label, ’a] => prop" ("(_ E _)" [0,0] 100)

rules
falsumE "(w:A --> falsum ==> v: falsum) ==> w:A"
impI "(w:A ==> w:B) ==> w:(A --> B)"
impE "w: A --> B ==> w:A ==> w:B"
boxI "(!!v. (w R v ==> v:A)) ==> w:([]A)"
boxE "w:[]A ==> w R v ==> v:A"
allI "(!!t. (w E t ==> w: A(t))) ==> (w: ALL x.A(x))"
allE "w: ALL x. A(x) ==> w E t ==> w:A(t)"

(* Definitions *)
not_def "w: ~A == w: A --> falsum"
dia_def "w: <>A == w: ~([](~A))"
ex_def "w: EX x. A(x) == w: ~(ALL x. ~A(x))"

end
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Road Map

• Introduction: A framework for non-classical logics.

• Labelled deduction for modal logics.

• Labelled deduction for non-classical logics.

• Encoding non-classical logics in Isabelle.

• Substructural and complexity analysis of labelled non-classical

logics.

� Substructural analysis of labelled sequent systems.

� A new proof-theoretic method (a recipe) for establishing

decidability and bounding the complexity of non-classical logics.

� Justification (and partial refinement) of rules of standard

sequent systems.

• Conclusions and outlook.
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Properties of N(L) = N(K) + N(T )
• Γ a set of labelled formulas, ∆ a set of relational formulas.

• Parameterized proofs of

� Soundness and completeness with respect to Kripke semantics

Γ,∆ `N(L) ϕ ⇔ Γ,∆ � ϕ

� Faithfulness and adequacy of the implementation

Γ,∆ `N(L) ϕ ⇔ Γ, ∆ ` ϕ in IsabelleN(L)

• Proof search: normalization and subformula property
Γ ∆.... ?
ϕ

Proof is ‘normal’ (well-defined structure) and contains only subformulas.
⇒ Restricted proof search.
⇒ Decidability, complexity? (new proof-theoretical method based on

substructural analysis).
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Proof search: Normalization and subformula property

• Structure:
Γ ∆.... ?
α

• Theorem: Every derivation of x:A from Γ,∆ in N(K) + N(T )
reduces to a derivation in normal form.

“no detours or irrelevancies”

example:

[xRy]
Π

y:A
x:2A 2I xRz

z:A 2E

reduces to
xRz

Π[z/y]
z:A

• Corollary: Normal derivations in N(K) + N(T ) satisfy a

subformula property.

⇒ Restricted proof search.

⇒ Decidability, complexity?
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Proof search: Tracks

• Thread in a derivation Π in N(K) + N(T ): a sequence of

formulas ϕ1, . . . , ϕn such that (i) ϕ1 is an assumption of Π, (ii)

ϕi stands immediately above ϕi+1, for 1 ≤ i < n, and (iii) ϕn is

the conclusion of Π.

• Lwff-thread: a thread where ϕ1, . . . , ϕn are all lwffs.

• Track: initial part of an lwff-thread in Π
which stops either at the first minor

premise of an elimination rule in the

lwff-thread or at the conclusion of the

lwff-thread.

• Corollary: The form of tracks

in a normal derivation of an lwff

in N(K) + N(T ) is

E

xRy
π

E

I
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Proof search: structural analysis
Γ ∆.... ?α

• Normalization & subformula property ⇒ restricted proof search.

• Further restriction by exploiting labels.

Structural analysis of proofs in normal form.

⇒ bounds on formulas in proofs:

Q: Which formulas?

A: Subformulas!

Q: How many formulas?

β....
α

or β, β....
α

or ... or β, . . . , β....
α

or β, . . . , β, . . .....
α

?

A: this kind of analysis is more easily performed when logics are

presented using sequent systems, which allow for a finer grained

control of structural information via their structural rules.

Labelled Deductive Systems UniLog’05



Luca Viganò 126

Proof search: details (recipe)

• A new proof-theoretical method for bounding the complexity of

the decision problem for propositional non-classical logics.

1. Logics presented as cut-free labelled sequent systems.

2. Guidelines to provide bounds on

� structural reasoning (structural rules: contraction, ...),

� relational reasoning (accessibility relation).

⇒ Decision procedures with bounded space requirements

(PSPACE bounds: new/compare well with best currently known)

� O(n log n)-space for K, B[→,∧], B+, ...

� O(n2 log n)-space for T, ...

� O(n4 log n)-space K4 and S4, ...
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Labelled sequent systems for non-classical logics
Our normalizing labelled natural deduction systems yield equivalent cut-free
labelled sequent systems that

1. allow us to present non-classical logics in a uniform and modular way;

2. are decomposed into two separated parts: a base system fixed for related logics,
and a labelling algebra, which we extend to generate particular logics;

3. contain left and right rules for each logical operator (except for falsum ⊥ and
incoherence ⊥⊥), independent of the relation(s) Ri and of the other operators;

4. satisfy a subformula property; and

5. provide the basis of a general proof-theoretical method for bounding the
complexity of the decision problem for propositional non-classical logics.

We consider (some) modal logics in detail and discuss extensions for other logics.
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Base modal sequent system S(K)
• Language is the same as for modal N(K), but now

� Γ is a finite multiset of labelled formulas,

� ∆ is a finite multiset of relational formulas.

Axioms:

x:A ` x:A AXl y:⊥ ` x:A ⊥L xRy ` xRy AXr

Structural rules:

Γ, ∆ ` Γ′

x:A, Γ, ∆ ` Γ′
WlL

Γ, ∆ ` Γ′

Γ, ∆ ` Γ′, x:A
WlR

x:A, x:A, Γ, ∆ ` Γ′

x:A, Γ, ∆ ` Γ′
ClL

Γ, ∆ ` Γ′, x:A, x:A

Γ, ∆ ` Γ′, x:A
ClR

Γ, ∆ ` Γ′

Γ, ∆, xRy ` Γ′
WrL

∆, xRy, xRy ` uRv
∆, xRy ` uRv CrL

Logical rules:

Γ, ∆ ` Γ′, x:A x:B, Γ, ∆ ` Γ′

x:A ⊃ B, Γ, ∆ ` Γ′
⊃L

x:A, Γ, ∆ ` Γ′, x:B

Γ, ∆ ` Γ′, x:A ⊃ B
⊃R

∆ ` xRy y:A, Γ, ∆ ` Γ′

x:2A, Γ, ∆ ` Γ′
2L

Γ, ∆, xRy ` y:A, Γ′

Γ, ∆ ` x:2A, Γ′
2R [y fresh]
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Relational theory S(T ): Extensions of S(K)

N(T ) is a collection of relational rules (‘intuitionistic’ sequents)

∆ ` s1 Rt1 · · · ∆ ` sm Rtm

∆ ` s0 Rt0

Examples:

S(S4) = S(K) + ` xRx
refl + ∆ ` xRy ∆ ` yRz

∆ ` xRz
trans

S(D) = S(K) + ` xRf(x)
ser

S5

S4

symm
OO

T

trans >>||||||||

D K4

reflbbDDDDDDDD

K
refl

``BBBBBBBB ser
OO

trans

<<zzzzzzzz

We can again exploit correspondence theory.
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Derived rules of N(K)

Γ,∆ ` Γ′, x:A
x: ∼A,Γ,∆ ` Γ′∼L

x:A,Γ,∆ ` Γ′
Γ,∆ ` Γ′, x: ∼A∼R

x:A, x:B,Γ,∆ ` Γ′
x:A ∧B,Γ,∆ ` Γ′ ∧L

Γ,∆ ` Γ′, x:A Γ,∆ ` Γ′, x:B
Γ,∆ ` Γ′, x:A ∧B ∧R

x:A,Γ,∆ ` Γ′ x:B,Γ,∆ ` Γ′
x:A ∨B,Γ,∆ ` Γ′ ∨L

Γ,∆ ` Γ′, x:A, x:B
Γ,∆ ` Γ′, x:A ∨B ∨R

y:A,Γ,∆, xRy ` Γ′
x:3A,Γ,∆ ` Γ′ 3L

∆ ` xRy Γ,∆ ` Γ′, y:A
Γ,∆ ` Γ′, x:3A 3R

In 3L, y does not occur in x:3A,Γ,∆ ` Γ′.
Labelled Deductive Systems UniLog’05



Luca Viganò 131

Examples of derivations

Π
y:A,Γ,∆, xRy ` Γ′

x:3A,Γ,∆ ` Γ′ 3L ;

Π
y:A,Γ,∆, xRy ` Γ′

Γ,∆, xRy ` Γ′, y: ∼A∼R

Γ,∆ ` Γ′, x:2 ∼A 2R

x: ∼2 ∼A,Γ,∆ ` Γ′∼L

Side condition is ‘inherited’ from 2R.

xRy ` xRy AXr
xRy ` xRy AXr

y:A ` y:A AXl

y:A ` y:B, y:A WlL
y:B ` y:B AXl

y:B, y:A ` y:B WlL

y:A ⊃ B, y:A ` y:B
⊃L

y:A ⊃ B, y:A, xRy ` y:B WrL

y:A ⊃ B, x:2A, xRy ` y:B 2L

x:2(A ⊃ B), x:2A, xRy ` y:B
2L

x:2(A ⊃ B), x:2A ` x:2B
2R

x:2(A ⊃ B) ` x:2A ⊃ 2B
⊃R

` x:2(A ⊃ B) ⊃ (2A ⊃ 2B)
⊃R
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Labelled sequent systems for non-classical logics

We proceed like for ND systems.

Quantifier rules:

∆,Θ ` w:t w:A[t/x],Γ,∆,Θ ` Γ′

w:∀x(A),Γ,∆,Θ ` Γ′ ∀L
Γ,∆,Θ, w:t ` Γ′w:A[t/x]

Γ,∆,Θ ` Γ′, w:∀x(A) ∀R

where

• Θ is a multiset of labelled terms,

• in ∀R, t does not occur in Γ,∆,Θ ` Γ′, w:∀x(A).

Domain rules:

∆ ` wiRwj ∆,Θ ` wi:t
∆,Θ ` wj:t id

∆ ` wiRwj ∆,Θ ` wj:t
∆,Θ ` wi:t dd
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Non-local operators

∆ ` Ru a a1 . . . au Γ,∆ ` Γ′, a1:A1 · · · Γ,∆ ` Γ′, au−1:Au−1 au:Au,Γ,∆ ` Γ′

a:MuA1 . . . Au,Γ,∆ ` Γ′ MuL

a1:A1, . . . , au−1:Au−1,Γ,∆, Ru a a1 . . . au ` Γ′, au:Au

Γ,∆ ` Γ′, a:MuA1 . . . Au
MuR

In MuR, a1, . . . , au are all different from a and each other, and do not occur in
Γ,∆ ` Γ′, a:MuA1 . . . Au.

Examples (in →R, b and c are different from a and each other, and do not occur
in Γ,∆ ` Γ′, a:A → B):

∆ ` R a b c Γ,∆ ` Γ′, b:A c:B,Γ,∆ ` Γ′
a:A → B,Γ,∆ ` Γ′ →L

b:A,Γ,∆, R a b c ` Γ′, c:B
Γ,∆ ` Γ′, a:A → B

→R

Γ,∆ ` Γ′, a∗:A
a:¬A,Γ,∆ ` Γ′ ¬L

a∗:A,Γ,∆ ` Γ′
Γ,∆ ` Γ′, a:¬A

¬R ∆ ` R a b c
∆ ` R a c∗ b∗ inv

` R 0 a a∗∗ ∗∗i ` R 0 a∗∗ a
∗∗c
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Labelled seq. sys. for the basic relevance logic B+

x:A ` x:A AXl R xy z ` R xy z AXr

x:A, x:B,Γ,∆ ` Γ′
x:A ∧B,Γ,∆ ` Γ′ ∧L

Γ,∆ ` Γ′, x:A Γ,∆ ` Γ′, x:B
Γ,∆ ` Γ′, x:A ∧B ∧R

x:A,Γ,∆ ` Γ′ x:B,Γ,∆ ` Γ′
x:A ∨B,Γ,∆ ` Γ′ ∨L

Γ,∆ ` Γ′, x:A, x:B
Γ,∆ ` Γ′, x:A ∨B ∨R

∆ ` R xy z Γ,∆ ` Γ′, y:A z:B,Γ,∆ ` Γ′
x:A → B,Γ,∆ ` Γ′ →L

y:A,Γ,∆, R x y z ` Γ′, z:B
Γ,∆ ` Γ′, x:A → B

→R [b, c fresh]

Γ,∆ ` Γ′
x:A,Γ,∆ ` Γ′ WlL

Γ,∆ ` Γ′
Γ,∆ ` Γ′, x:A WlR

Γ,∆ ` Γ′
Γ,∆, R x y z ` Γ′ WrL

x:A, x:A,Γ,∆ ` Γ′
x:A,Γ,∆ ` Γ′ ClL

Γ,∆ ` Γ′, x:A, x:A
Γ,∆ ` Γ′, x:A ClR

∆, R a b c,R a b c ` R xy z
∆, R a b c ` R xy z CrL

∆ ` R 0 x y Γ,∆ ` Γ′, x:A
Γ,∆ ` Γ′, y:A monl ` R 0 xx iden

∆ ` R 0 a x ∆ ` R xy z
∆ ` R ay z monr1 ∆ ` R 0 a y ∆ ` R xy z

∆ ` R xa z monr2
∆ ` R 0 z a ∆ ` R xy z

∆ ` R xy a monr3
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Properties of S(L) = S(K) + S(T )

• Cut-free: cut is an admissible rule

Γ,∆ ` Γ′, x:A x:A,Γ,∆ ` Γ′
Γ,∆ ` Γ′ cut

• Normalizing ND systems and cut-free sequent systems are

‘equivalent’.

� Theorem:

◦ Γ,∆ `N(L) x:A iff Γ,∆ ` x:A is provable in S(L).
◦ ∆ `N(L) xRy iff ∆ ` xRy is provable in S(L).

� Theorem: N(L) is sound and complete.

� Corollary: S(L) is sound and complete.
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Sequent systems as refutation systems

• The progressive (backwards) construction of a derivation
Π

S0 = Γ0,∆0 ` Γ′0
is associated to the progressive construction of a (partial) model
M = (W,R,V) such that for each Si = Γi,∆i ` Γ′i in Π, with i ≥ 0,

� the worlds of M are connected according to ∆i, i.e. (x, y) ∈ R iff ∆i ` xRy,
� M satisfies all lwffs x:A ∈ Γi, i.e. �M x:A, and
� M falsifies all lwffs x:B ∈ Γ′i, i.e. 2M x:B.

• Then we have:

� if S0 is provable, then M is inconsistent (i.e. it contains an inconsistent
world),

� if S0 is not provable, then M is a counter-model for it.

M is partial in the sense that the truth values of some propositional variables
might be missing from the model, but we can univocally determine these values
from the values of the composite formulas of Si they appear in (e.g. �M x: ∼p,
for p a propositional variable, implies 2M x:p, i.e. V(x, p) = 0).
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Example

We can represent the inconsistent model M spawned by

` x1 Rx1
refl

x1 Rx2 ` x1 Rx2
AXr

x2:B ` x2:B
AXl

.... W
x1:B, x2:B, x1 Rx2 ` x2:B, x2:2B
x1:B, x1 Rx2 ` x2:B, x2:B ⊃ 2B

⊃R

x2: ∼(B ⊃ 2B), x1:B, x1 Rx2 ` x2:B
∼L

x1:2 ∼(B ⊃ 2B), x1:B, x1 Rx2 ` x2:B
2L

x1:2 ∼(B ⊃ 2B), x1:B ` x1:2B
2R

x1:2 ∼(B ⊃ 2B) ` x1:B ⊃ 2B
⊃R

x1: ∼(B ⊃ 2B), x1:2 ∼(B ⊃ 2B) ` ∼L

x1:2 ∼(B ⊃ 2B), x1:2 ∼(B ⊃ 2B) ` 2L

x1:2 ∼(B ⊃ 2B) ` ClL

` x1: ∼2 ∼(B ⊃ 2B)
∼R
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Example (cont.)

with the diagram:

x
BCEDGF��

// y
BCEDGF��

2 ∼(B ⊃ 2B)
4

2L,∼L,⊃R

//

1 ClL

��

B,∼2B

2 ∼(B ⊃ 2B)

2 2L,∼L,⊃R

��

B,∼2B
3

2R

// ∼B

M is inconsistent since �M y: ∼B and �M y:B
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Further examples: Using relational rules and
contraction in S(K4)

x1 Rx2 ` x1 Rx2
AXr

Π
∆ ` x1 Rx3

x2 Rx3 ` x2 Rx3
AXr

∆ ` x2 Rx3
WrL

x3:2B ` x3:2B AXl
.... W

x3:2B, ∆ ` x3:B, x3:2B
x2:22B, ∆ ` x3:B, x3:2B 2L

x3: ∼2B, x2:22B, ∆ ` x3:B
∼L

x1:2 ∼2B, x2:22B, ∆ ` x3:B
2L

x1:2 ∼2B, x2:22B, x1 Rx2 ` x2:2B 2R

x2: ∼2B, x1:2 ∼2B, x2:22B, x1 Rx2 ` ∼L

x1:2 ∼2B, x1:2 ∼2B, x2:22B, x1 Rx2 ` 2L

x1:2 ∼2B, x2:22B, x1 Rx2 ` ClL

x1:2 ∼2B, x1 Rx2 ` x2: ∼22B ∼R

x1:2 ∼2B ` x1:2 ∼22B 2R

` x1:2 ∼2B ⊃ 2 ∼22B
⊃R

where ∆ = {x1Rx2, x2Rx3} and Π is

x1 Rx2 ` x1 Rx2
AXr

x1 Rx2, x2 Rx3 ` x1 Rx2
WrL

x2 Rx3 ` x2 Rz AXr

x1 Rx2, x2 Rx3 ` x2 Rx3
WrL

x1 Rx2, x2 Rx3 ` x1 Rx3
trans

.
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Proof search: problems
Let A be a formula that is not trivially provable and consider an attempted proof
of the non-theorem x:2(A ⊃ 2A) in S(K)

.... ???
y:A, xRy, yRz ` z:A

y:A, xRy ` y:2A 2R

xRy ` y:A ⊃ 2A ⊃R

` x:2(A ⊃ 2A) 2R

and its associated ‘putative’ counter-model (model or counter-model?)

x // y // z

∼2(A ⊃ 2A)
1

2R,⊃R

// A,∼2A
2

2R

// ∼A

Q: Since contraction is always applicable, how can we guarantee that proof search
terminates?

A: We have seen that contraction is not (always) eliminable, but in some cases we
can bound its application!
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Proof search (proof of ` x1:D)
• Simplifying rules: size is a decreasing measure, e.g.

∆ ` xRy y:A,Γ,∆ ` Γ′
x:2A,Γ,∆ ` Γ′ 2L (subformula property)

• Non-simplifying rules: size is not a decreasing measure, e.g.

x:A, x:A,Γ,∆ ` Γ′
x:A,Γ,∆ ` Γ′ ClL

Γ,∆ ` Γ′, x:A, x:A
Γ,∆ ` Γ′, x:A ClR

and relational rules: CrL, ∆ ` xRy ∆ ` yRz
∆ ` xRz trans , ...

• Bounding proof search  bounding non-simplifying rules.

� Substructural and relational analysis of S(L).
⇒ decreasing measure ⇒ bounds on space complexity of decision procedures:

� combine bounds on contraction with bounds on number of labels, rwffs and
lwffs generated in proofs,

� apply and extend standard techniques.
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Logic-independent bounds (proof of ` x1:D)

1. Theorem: CrL is eliminable in S(L).
Just remove WrL− CrL pairs (delete, collapse):

xRy ` xRy AXr

xRy, y Rz ` xRy WrL
yRz ` yRz AXr

xRy, y Rz ` yRz WrL

xRy, y Rz ` xRz
trans

xRy, xRy, yRz ` xRz WrL

xRy, y Rz ` xRz CrL

z:A ` z:A AXl

z:A, yRz ` z:A WrL

z:A, xRy, yRz ` z:A WrL

x:2A, xRy, yRz ` z:A 2L

x:2A, xRy ` y:2A 2R

x:2A ` x:22A 2R

` x:2A ⊃ 22A
⊃R

2. Theorem: We can always transform a proof of ` x1:D so that it

does not contain contractions, except for contractions of labelled

formulas of the form x:MA1 . . . An.

That is: contractions of x:2A, x:A → B, ...

3. ...
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Logic-independent bounds (proof of ` x1:D; cont.)

• Permutations: invert order of rules.

Example:

u:A, Γ, ∆, xRy ` Γ′, u:B, y:C

Γ, ∆, xRy ` Γ′, u:A ⊃ B, y:C
⊃R

Γ, ∆ ` Γ′, u:A ⊃ B, x:2C
2R

permutes to
u:A, Γ, ∆, xRy ` Γ′, u:B, y:C

u:A, Γ, ∆ ` Γ′, u:B, x:2C
2R

Γ, ∆ ` Γ′, u:A ⊃ B, x:2C
⊃R

• Fact: Every ‘lwff-rule’ permutes w.r.t. any other ‘lwff-rule’, with

the exception of 2L which does not permute w.r.t. 2R.

∆, xRy ` xRy y:A, Γ, ∆, xRy ` Γ′, y:B

x:2A, Γ, ∆, xRy ` Γ′, y:B
2L

x:2A, Γ, ∆,` Γ′, x:2B
2R

Analogous problem for ML and MR.

Labelled Deductive Systems UniLog’05



Luca Viganò 144

The recipe for an arbitrary non-classical logic L

1. Give a cut-free labelled sequent system for S(L).

(a) Distinguish simplifying and non-simplifying rules.

(b) Apply logic-independent bounds to restrict non-simplifying rules.

2. Provide (logic-dependent) bounds for the remaining

non-simplifying rules.

(a) By following our guidelines and examples.

(b) Possibly bringing in relational oracles to decide

∆ ` R xx1 . . . xn.

3. Compute the space requirements of the decision procedure.

(a) Based on the results of step (2) and our guidelines.
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Space complexity of proof search (proof of ` x1:D)

• Combine bounds on non-simplifying rules with bounds on number

of labels and relational formulas generated in proofs.

• Adapt and extend standard techniques:

� Rather than storing entire proofs (branches),

� store a sequent and a stack that maintains information sufficient

to reconstruct branching points

(stack entry: indices for rules, principal formulas and branching

points),

� each rule application generates a new sequent and extends the

stack,

� if necessary, bring in oracle to decide relational queries.
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Space complexity of proof search (proof of ` x1:D)

• Overall space required is O((l e) + s + r):

� length l of the stack,

� size e of a stack entry,

� size s required to store any single sequent that could arise in the

proof,

� space requirement r of oracle.

• Measure m bounds:

� length l of the stack (proof depth),

� number of labels, labelled formulas and relational formulas in

the proof,

• e is bounded by O(log m),

• represent subformulas with indices ⇒ s is O(m log m).

⇒ Overall space required is O(m log m + r).
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Logic-dependent bounds (Measure m and oracle r)

Guidelines:

• Contractions: annotate sequents with contraction index, e.g.

x:MA1 . . . An, x:MA1 . . . An, Γ, ∆ `s−1 Γ′

x:MA1 . . . An, Γ, ∆ `s Γ′
ClLs (s > 0)

⇒ (lexicographically ordered) measure (s, Σ), where Σ is size of

sequent.

• Relational reasoning: compute space requirement r of oracle.

• ...
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Logic-dependent bounds (Measure m and oracle r)

No!x

y

z

• Theorem (2-disjunction property): If S(L) is ‘divergent’, then

ClR is eliminable.

� I.e. every ` x1:D provable in S(L) has

a proof with no applications of ClR.

� Intuition: divergent = ‘follow only one path’.
....

. . . , xRy, xRz ` . . . , y:A, z:A
. . . , xRy ` . . . , y:A, x:2A 2R

. . . ` . . . , x:2A, x:2A 2R

. . . ` . . . , x:2A ClR
....

` x1:D

;

....
. . . , xRy ` . . . , y:A

. . . ` . . . , x:2A 2R
....

` x1:D
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Logic-dependent bounds (Measure m and oracle r)

No!x

y

z

• Theorem (2-disjunction property): If S(L) is ‘divergent’, then

ClR is eliminable.

� I.e. every ` x1:D provable in S(L) has

a proof with no applications of ClR.

� Intuition: divergent = ‘follow only one path’.
....

. . . , xRy, xRz ` . . . , y:A, z:A
. . . , xRy ` . . . , y:A, x:2A 2R

. . . ` . . . , x:2A, x:2A 2R

. . . ` . . . , x:2A ClR
....

` x1:D

;

....
. . . , xRz ` . . . , z:A

. . . ` . . . , x:2A 2R
....

` x1:D

• Divergent logics: K, D, T, K4, KD4, S4, B[→,∧], B+, ... (not

S5!)

⇒ Only remains to analyze ClL in each logic.
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Modular analysis of ClL (proof of ` x1:D)

• ClL is eliminable in S(K).

• ClL is not eliminable in S(T), e.g. ` x: ∼2 ∼(B ⊃ 2B),
but we need at most O(n) applications of ClL in each branch,

with n = | ` x1:D|

x:2A, x:2A,Γ,∆ `s−1 Γ′
x:2A,Γ,∆ `s Γ′ ClLs

• ClL is not eliminable in S(K4) and S(S4), but we need at most

O(n3) applications in each branch.

• ClL is eliminable in B[→,∧] and B+.
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Summary

• A proof-theoretic recipe for bounding the complexity of

non-classical logics:

(1) logics presented as cut-free labelled sequent systems,

(2) combination of bounds on non-simplifying rules.

• Examples: K, T, K4, S4, B[→,∧] and B+ are decidable in

PSPACE (bounds new/compare well with best currently known).

Let n = | ` x1:D|

ClL generated sequent proof depth stack entry space

S(K) none O(n log n) O(n) O(log n) O(n log n)

S(T) ClLs O(n2 log n) O(n2) O(log n) O(n2 log n)

S(K4); S(S4) ClLs O(n4 log n) O(n4) O(log n) O(n4 log n)

S(B[→,∧]); S(B+) none O(n log n) O(n) O(log n) O(n log n)
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Standard sequent systems for modal logics

• SS(K) is

A,Σ ` Σ′, A (AX) Σ ` Σ′, A
∼A,Σ ` Σ′ (∼L) A,Σ ` Σ′

Σ ` Σ′,∼A
(∼R)

Σ ` Σ′, A B,Σ ` Σ′
A ⊃ B,Σ ` Σ′ (⊃L) A,Σ ` Σ′, B

Σ ` Σ′, A ⊃ B
(⊃R) Γ ` A

Σ,2Γ ` 2A,Σ′ (K)

• SS(T) = SS(K) + A,2A,Σ ` Σ′
2A,Σ ` Σ′ (T)

• SS(K4) = SS(K) + Γ,2Γ ` A
Σ,2Γ ` 2A,Σ′ (K4)

• SS(S4) = SS(T) + 2Γ ` A
Σ,2Γ ` 2A,Σ′ (S4)

where the Σ’s are multisets of formulas.
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Justification (and refinement) of standard rules

• Theorem: Our labelled sequent systems provide proof-theoretical justifications
(and in some case refinements) of the rules of standard modal sequent systems.

Intuition:

1. Derive labelled equivalents of standard rules.
2. Transform S(L)-proofs into SS(L)-proofs and vice versa

(by transforming S(L)-proofs into a block form
⇒ sequences of local and transitional reasoning).

• For (K):

y:Γ ` y:A
x:Σ, x:2Γ ` x:2A, x:Σ′ 2LRK ;

y:Γ ` y:A
y:Γ, xRy ` y:A WrL

.... 2L (all with active rwff xRy)
x:2Γ, xRy ` y:A

x:2Γ ` x:2A 2R
.... W

x:Σ, x:2Γ ` x:2A, x:Σ′
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Justification (and refinement) of standard rules

• For (T):

x:A, x:2A, x:Σ ` x:Σ′
x:2A, x:Σ ` x:Σ′ 2LT ;

` xRx
refl

x:A, x:2A, x:Σ ` x:Σ′
x:2A, x:2A, x:Σ ` x:Σ′ 2L

x:2A, x:Σ ` x:Σ′ ClL

Exploiting our results we can refine SS(T) by replacing

A,2A,Σ ` Σ′
2A,Σ ` Σ′ (T)

with

2A,2A,Σ `s−1 Σ′
2A,Σ `s Σ′ (ClLs) A,Σ `s Σ′

2A,Σ `s Σ′ (T2)
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Example of transformation S(T) ; SS(T)

We transform previous proof into block form:

` xRx
refl

xRy ` xRy AXr

y:B ` y:B AXl

y:B ` y:B, y:2B WlR

` y:B, y:B ⊃ 2B
⊃R

y: ∼(B ⊃ 2B) ` y:B
∼L

y: ∼(B ⊃ 2B), xRy ` y:B
WrL

x:2 ∼(B ⊃ 2B), xRy ` y:B
2L

x:2 ∼(B ⊃ 2B) ` x:2B
2R

x:2 ∼(B ⊃ 2B), x:B ` x:2B
WlL

x:2 ∼(B ⊃ 2B) ` x:B ⊃ 2B
⊃R

x: ∼(B ⊃ 2B), x:2 ∼(B ⊃ 2B) ` ∼L

x:2 ∼(B ⊃ 2B), x:2 ∼(B ⊃ 2B) ` 2L

x:2 ∼(B ⊃ 2B) ` ClL

` x: ∼2 ∼(B ⊃ 2B)
∼R
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Example of transformation S(T) ; SS(T)

Then into

y:B ` y:B, y:2B
AXl

` y:B, y:B ⊃ 2B
⊃R

y: ∼(B ⊃ 2B) ` y:B
∼L

x:2 ∼(B ⊃ 2B), x:B ` x:2B
2LRK

x:2 ∼(B ⊃ 2B) ` x:B ⊃ 2B
⊃R

x: ∼(B ⊃ 2B), x:2 ∼(B ⊃ 2B) ` ∼L

x:2 ∼(B ⊃ 2B) `
2LT

` x: ∼2 ∼(B ⊃ 2B)
∼R

so that SS(T)-proof is

B ` B, 2B
(AX)

` B, B ⊃ 2B
(⊃R)

∼(B ⊃ 2B) ` B
(∼L)

2 ∼(B ⊃ 2B), B ` 2B
(K)

2 ∼(B ⊃ 2B) ` B ⊃ 2B
(⊃R)

∼(B ⊃ 2B), 2 ∼(B ⊃ 2B) ` (∼L)

2 ∼(B ⊃ 2B) ` (T)

`∼2 ∼(B ⊃ 2B)
(∼R)
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For (K4) and (S4)

xi+1:Γ, xi+1:2Γ ` xi+1:A

xi:Σ, xi:2Γ ` xi:2A, xi:Σ
′ 2LRK4 ;

xi+1:Γ, xi+1:2Γ ` xi+1:A
xi+1:Γ, xi+1:2Γ, xi Rxi+1 ` xi+1:A

WrL
.... 2LK4 (all with active rwff xi Rxi+1)

xi:2Γ, xi Rxi+1 ` xi+1:A
xi:2Γ ` xi:2A 2R

.... W
xi:Σ, xi:2Γ ` xi:2A, xi:Σ

′

by a suitable number of applications of

∆ ` xi Rxj xj:A, xj:2A, Γ, ∆ ` Γ′

xi:2A, Γ, ∆ ` Γ′
2LK4

; ∆ ` xi Rxj

xi:2A ` xi:22A

∆ ` xi Rxj xj:A, xj:2A, Γ, ∆ ` Γ′

xj:A, xi:22A, Γ, ∆ ` Γ′
2L

xj:A, xi:2A, Γ, ∆ ` Γ′
cut

xi:2A, xi:2A, Γ, ∆ ` Γ′
2L

xi:2A, Γ, ∆ ` Γ′
ClL

Yields justification of SS(K4), but no immediate refinement because

of cut .
Analogous for (S4) and SS(S4).
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Road Map

• Introduction: A framework for non-classical logics.

• Labelled deduction for modal logics.

• Labelled deduction for non-classical logics.

• Encoding non-classical logics in Isabelle.

• Substructural and complexity analysis of labelled non-classical

logics.

• Conclusions and outlook.
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Conclusions and outlook

• A framework for non-classical logics.

� Labelled ‘natural’ deduction systems.

� Structural properties vs. generality.

� Structure

⇒ implementation, decidability, complexity, justification of

standard rules.

• Outlook:

� Decidability and complexity of relevance logics?

� Other logics?

� Increase automation for applications in ‘real’ world.
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Conclusions and outlook: combination of logics
Labelled deductive systems provide a suitable basis for

combination/fibring of logics (see papers by D. Gabbay, A. Sernadas,

C. Sernadas, and many many many others):

structural
properties

decidability
&

complexity

soundness
&

completeness

logic 1

deduction system
+

implementation

labelling logic 2

See also “translations”, “hybrid logics”, “substructural logics”, ...

(Labelled non-classical logics, Labelled Deductive Systems, Labelled Deduction,

...)
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See also www.inf.ethz.ch/~vigano
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Eliminating ClL in S(K)

• Theorem: ClL is eliminable in S(K),
i.e. every ` x1:D provable in S(K) has a proof with no

applications of ClL.

By 3 nested inductions (number, grade, rank of contractions).

⇒ m is O(n)

∆ ` xRy is provable iff xRy ∈ ∆ ⇒ r is O(n)

• Theorem: Overall space required O(m log m + r) is O(n log n).
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Eliminating ClL in S(K) (cont.)
Example of a case:

· · ·

· · ·

....
z:B, . . . , xRz ` . . .

x:2B, . . . , xRz ` . . .
2L

....
x:2B, . . . , xRz ` . . . , z:C

x:2B, . . . ` . . . , x:2C
2R

....
y:B, x:2B, . . . , xRy ` . . .

x:2B, x:2B, . . . , xRy ` . . .
2L

x:2B, . . . , xRy ` . . .
ClL

....
` x1:D

Permutations:

· · ·
· · ·

....
y:B, z:B, . . . , xRy, xRz ` . . . , z:C

y:B, x:2B, . . . , xRy, xRz ` . . . , z:C
2L

x:2B, x:2B, . . . , xRy, xRz ` . . . , z:C
2L

x:2B, x:2B, . . . , xRy ` . . . , x:2C
2R

....
x:2B, x:2B, . . . , xRy ` . . .

x:2B, . . . , xRy ` . . .
ClL

....
` x1:D

Then:

· · ·

....
y:B, . . . , xRy, xRz ` . . . , z:C

x:2B, . . . , xRy, xRz ` . . . , z:C
2L

x:2B, . . . , xRy ` . . . , x:2C
2R

....
x:2B, . . . , xRy ` . . .....

` x1:D
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Bounding ClL in S(T)
• ClL is not eliminable in S(T).

` x1: ∼2 ∼(B ⊃ 2B)

requires 1 application of ClL.

` x1:2p((C ⊃∼2 ∼D) ∧ (D ⊃∼2 ∼E)∧ ∼E) ⊃ 2 ∼C (p ≥ 3)

requires 2 applications of ClL, but can be instantiated to require more, e.g. by
replacing ‘∧ ∼E’ with ‘∧ (E ⊃∼2 ∼F )∧ ∼F ’ and requiring that p ≥ 4.

• Lemma: At most one left contraction of each x:2A in each branch.
Intuition: in each branch we need at most two instances of each x:2A in the
antecedent of a sequent: one for x:A and one for z:A for a new world z that is
a successor of x.

• Lemma: ClL only if A contains a negative subformula of the form 2B, i.e. we
only contract of the form x:2A[2B]−.
Intuition: we create a new world.
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Bounding ClL in S(T) (cont.)

• Given S = Γ,∆ ` Γ′, pbs(S) and nbs(S) are the number of positive and
negative boxed subformulas of S.

• Lemma: At most pbs(S) contractions in each branch.

• Theorem: Every sequent S = ` x1:D provable in S(T) has a proof in which
there are no contractions, except for applications of ClL with principal formula
of the form xi:2A[2B]−. However, ClL need not be applied more than pbs(S)
times in each branch. Hence, we can restrict ClL to be ClLs with s set to
pbs(S) at the start of the backwards proof, i.e. `pbs(`x1:D) x1:D.

⇒ Measure (s, Σ) is O(n2), since pbs(S) and size Σ of S are both O(n).

∆ ` xRy is provable iff xRy ∈ ∆ or y is x ⇒ r is O(n)

• Theorem: Overall space required O(m log m + r) is O(n2 log n).
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Bounding ClL in S(K4) and S(S4)
• ClL is not eliminable in S(K4) and S(S4).

` x1:2(Λn
i=1(Ci ⊃∼2 ∼Ci+1)∧ ∼Cn) ⊃ 2 ∼C1

requires i contractions of

x1:2(Λn
i=1(Ci ⊃∼2 ∼Ci+1)∧ ∼Cn)

namely, one contraction for each 2 that occurs negative in it (i.e. one for each
of its subformulas 2 ∼Ci+1).

Moreover, it can be modified to require more contractions.

⇒ We obtain a formula such that for each subformula that has a positive 2 as
its main operator we need at most as many contractions as there are 2’s that
occur negative in its scope. That is, O(| ` x1:D|2) left contractions.
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Bounding ClL in S(K4) and S(S4)
• ClL is not eliminable in S(K4) and S(S4)

⇒ Infinite chains x1, x2, x3, x4, . . . may arise.

⇒ Infinite branches.

⇒ Proof search does not terminate.

• Possible solution: infinite chains are periodic:

there exist worlds xi and xj in the chain such that xj is accessible from
xi, and A holds at xj iff A holds at xi.

� Dynamic loop checkers to truncate chains and branches:
proof search terminates but requires history (computationally expensive).

� Static counter-part: a-priori polynomial bounds on the number of
applications of ClL in each branch.
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Bounding ClL in S(K4) and S(S4)
• Extend results for S(K) and S(T) and combine them with

• polynomial bound on length of branches.

• Lemma: There is a proof of S = ` x1:D such that in each branch 2R is
applied at most pbs(S) + 1 times with principal formula 2B labelled with
increasing worlds in a chain.
Intuition: consider set of positive boxed subformulas

• Lemma: In each branch there are at most nbs(S)× (pbs(S) + 1) applications
of 2R, so that chains contain at most 1 + nbs(S)× (pbs(S) + 1) worlds.
Intuition: at most nbs(S) negative boxed subformulas in S, and ClR eliminable
by 2-disjunction property.
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Bounding ClL in S(K4) and S(S4)
• Lemma: In each branch there are at most (nbs(S)× (pbs(S) + 1))− 1

applications of ClL with the same principal formula xi:2A, so that there is one
instance of xi:2A for each world accessible from xi.

• Theorem: In each branch there are at most
((nbs(S)× (pbs(S) + 1))− 1)× pbs(S) applications of ClL with principal
formula of the form xi:2A[2B]−. Hence, we can restrict ClL to be ClLs.

⇒ Chains may consist of O(n2) worlds.

⇒ Branches may contain O(n3) applications of ClL.

⇒ Measure (s, Σ) is O(n4).

∆ ` xRy provable by (reflexive-)transitive closure of ∆ ⇒ r is O(n).

• Theorem: Overall space required O(m log m + r) is O(n4 log n).
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A smaller bound?

Conjecture

chains contain at most 1 + nbs(S)× (pbs(S) + 1) worlds

⇒ at most ((nbs(S)× (pbs(S) + 1))− 1) applications of ClL in

each branch.

Intuition: transform branches of proofs so that

ClL of xi:2A[2B]−
≡

append a new world to the chain that we are constructing

Labelled Deductive Systems UniLog’05



Luca Viganò 172

Consequence Relations

Given a language L, a consequence relation is a relation between

finite multisets of formulas in L that is

• Reflexivity: {A} ` {A}

• Transitivity (cut): if {A} ` {B} and {B} ` {C}, then {A} ` {C}

If we take sets of formulas, instead of multisets we call the relation

‘regular’.
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