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Road Map

e Introduction: A framework for non-classical logics.

» Modal, relevance and other non-classical logics:
deduction systems (Hilbert, ND, sequent) and Kripke semantics.
» A labelled deduction framework: why and how?

e Labelled deduction for modal logics.
e Labelled deduction for non-classical logics.
e Encoding non-classical logics in Isabelle.

e Substructural and complexity analysis of labelled non-classical
logics.

e Conclusions and outlook.
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Motivation

e Problem: find uniform deduction systems for non-classical logics.

e Our solution: a framework based on labelling (labelled deduction).

» Non-classical logics: why?
» A framework: why and how?

e Modal logics.

e Other non-classical logics: extensions and restrictions (but there
are limits).

Labelled Deductive Systems UniLog'05
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Why non-classical logics?

Modal, temporal, relevance, linear, substructural, non-monotonic, ...
R
e Reason about: R @\.@R
. / R
» State and action. X
» Resources. . a

e Applications in: computer science, artificial intelligence,
knowledge representation, mathematics, philosophy, engineering...

Programs and circuits.

Distributed and concurrent systems.
Security.

Knowledge and belief.
Computational linguistics.

vVvyyVvyyvyy

v
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The problems

e Specialized approach vs. general methodology.

e 'Explosion’ of logics.

» Each logic demands, at a minimum, a semantics (‘truth’, F A),
a deduction system (- A), and metatheorems relating them

together (F A iff = A).
» Specialized or uniform deduction systems?

e Efficient proof search.

» Specialized or generic provers?
» Interactive or automated provers?

Labelled Deductive Systems UniLog'05
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The problems: a solution (why a framework?)

e Specialized approach vs. general methodology.
General methodology: how general? = Analysis of the limits.

e 'Explosion’ of logics.

» Each logic demands, at a minimum, a semantics (‘truth’, F A),
a deduction system (- A), and metatheorems relating them
together (F A iff = A).

» Specialized or uniform deduction systems?

» Uniform deduction systems: good’ properties?
= Analysis of structure of deductions and proofs.

e Efficient proof search.

» Specialized or generic provers?
» Interactive or automated provers?
» Interactive generic provers.
= Uniform implementations (add automation).
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A framework: how?
1. Hilbert-style
— difficult to use in practice
2. Natural deduction systems

+ structured reasoning (normal deductions)
— lack uniformity

3. Full semantic translation into predicate logic

+ general and uniform
— lacks structure

Labelled Deductive Systems UniLog'05



A framework: how? A labelled deduction framework

1. Hilbert-style
— difficult to use in practice
2. Natural deduction systems

+ structured reasoning (normal deductions)
— lack uniformity

3. Full semantic translation into predicate logic

+ general and uniform
— lacks structure

4. Combine 2 and 3: partial (controlled) translation

-+ uniform & modular, ‘natural’ deduction systems
+ structured reasoning
— there are limits

Labelled Deductive Systems
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The big picture

labelling

¢

deduction system
+

implementation

A T
soundness Y decidability
& - structural - &
completeness properties complexity

e Labelling: partial translation:

» Lift minimal information from semantics (or “from somewhere
else” ) into syntax.
» Investigate the structure of the deduction systems.

Labelled Deductive Systems UniLog'05
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Main results
e Methodology:

» Presentation: (modal, relevance, ... logics).

+ Labelled natural deduction (sequent) systems.

« Uniform & modular: fixed base system + separate theories.
» Implementation: in Isabelle (generic theorem prover).

e [echnical contributions:

» Soundness and completeness: parameterized proofs.
» Proof theory:
« Normalization and subformula property.
« Structural properties vs. generality.
» Substructural analysis:
« Decidability and complexity analysis.
+ Bounded space requirements (K, T, K4, S4, ...; BT, ...).
+ Justification (& refinement) of ‘standard sequent systems’.
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What is a deduction system?
e Hilbert system.
» Finitary inductive definitions.

e Natural deduction system.

» Proof under assumption — useful in practice.

e Sequent calculus system.

» Generalized sequent notation — useful for theory.

Labelled Deductive Systems UniLog'05
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Propositional arrow logic: Hilbert system H(D)

e Want to capture:

ADB = if Athen B

e Axioms and modus ponens rule.
» S (ADB)D(ADBDOC)D(ADC0)

>A35 Anip
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Propositional arrow logic: ND system N(D)

e \Want to capture: proof under assumption.

The ‘meaning’ of A D B is: If A were to be true, then B would
be true.

e So if, for the sake of argument, | assume that A is true, and show,
from that, that B is true, that means that A D B is true

irrespective of whether or not A is true. (Al
. B
Formally: if A implies B then A D B. A5 B"

e Similarly, if | know that A D B is true, and | know that A is true,
then | know that B is true.

ASB A_
Formally: if A D B and A, then B. B -

Labelled Deductive Systems UniLog'05
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Sufficiency of Hilbert system H(D)

e By induction (using MP):
if A D B, then A implies B

e The deduction theorem (again by induction):
if assuming A then B (if A implies B), then A D B

= proof under assumption

Labelled Deductive Systems UniLog'05
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Equivalence of H(D) and N(D)

The natural deduction and Hilbert presentations are equivalent

OI+>DE = K5+ S5 +MP

Proof: easy, given deduction theorem.
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Proving A D A

e In H(D):
1. (AD(ADA)DADADA)DA)DADA S
2. ADADA K+
3. AD(ADA)DA K+
4. (AD(ADA)DA)DADA) MP 1,2
5. AD A MP 3,4

Using the deduction theorem: A follows from A, so A D A.

e In N(D): A implies A, thus A D A.

Labelled Deductive Systems UniLog'05
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Infeasibility of Hilbert Systems

e Trytoprove: ADBDODCD(ADBDCDD)DD
» Natural Deduction proof in N(D): trivial (8 steps).
» Hilbert proof in H(D): definitely not trivial (~4* steps).

e The situation is even worse for non-classical logics such as modal
logics!

e But before let us look at:

» Extension to propositional classical logic.
» Sequent systems.

Labelled Deductive Systems UniLog'05
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Proof under assumption
I' x5y A, where T is a set of formulas, means that in N(D) there is
a derivation 1I of the formula A from the assumptions I, i.e.

[
II
A
Example:
[A>DB>C>D* [A}
B>(C>D Sk gy
Co>D OB o

D O E
oI
(ADBD>CD>D)DD 3
C>(A>B>C>D)>D-" |
B>C>(A>B>C>D)>D->! "
A>B>C>(A>B>C>D)>D"

This is a proof.
A derivation would be: {A,B,C,AD>DB>C DD} D.

Labelled Deductive Systems UniLog'05
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Propositional classical logic: Hilbert & ND systems

H(PCL) = H(D) +

A —~~A
1L>A, AABDA, AABDOB, ﬁ/\‘gadjunction
e N(PCL) =N(D) +:
A D 1]
1
4 LE

where ~, A, V and other operators (and the corresponding rules) are defined
(derived) using D and L (and the corresponding rules), e.g. ~A =45 A D L,
AVB =4 (AD L) DB, ANB=4gef(ADBD1)D L

; [A] [B] ; MDHlADE
AAB A_B : : A =5 1
A NE, AABAL .AVBCC Cvg. avBV! ef = LE

(A5 1) >B2T
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Propositional classical logic: Sequent system S(PCL)

Axioms:

AFAMR TrRath

Structural rules:

T =TI

ATFD WL ppp g WR

A AT ETY TV, A A

A R Y
Logical rules:

[FIMA BILFDY_ . ALED.B .
ASBTFI/ -~ TFI',A>B"

where I and TV are multisets of formulas
and we can derive

THI', A ADET o

~Arrr~L rrr <4
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Deduction systems for non-classical logics: Problems

e We have ‘assumed’ that D and F have the same properties.

e \We have essentially that
‘follows from' () = ‘implies’ (D)

e [here are many logics where this may not hold.

» ‘Substructural’ (e.g. relevance, linear) logics: — has different

properties
¥A—B—A
So I should have different properties if the two are to be the
same, e.g.
A BFA

» Modal logics: relationship between D and - becomes more
complex.

Labelled Deductive Systems UniLog'05
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Propositional modal logics: Hilbert systems

o We extend our language with O (and CA =, ~0 ~ A).

e H(K), a Hilbert system for the basic modal logic K:

» all axioms schemas of PCL and the rule MP
» the new axiom schema

K: O(AD B) D (OADDOB)

» and the new rule

Labelled Deductive Systems UniLog'05
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Propositional modal logics: Hilbert systems (cont.)

e Systems for other logics: we add axioms characterizing O

D: O0A D CA S5

T: OADA | B

4: 0OA D O0OA , St

B: ADOCA - e N o
D: CA D OCA \ /

2: COA D OCA o
M: O0CA DO OCOA | O4K+4Nec
Grz: OO(ADOA)DA)DA PCL

but ...

Labelled Deductive Systems UniLog'05
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Propositional modal logics: Hilbert systems (cont.)

e Systems for other logics: we add axioms characterizing O

D: O0A D CA S5

T: OADA | B

4: 0OA D O0OA , St

B: ADOCA - e N o
D: CA D OCA \ /

2: COA D OCA o
M: O0CA DO OCOA | O4K+4Nec
Grz: OO(ADOA)DA)DA PCL

but ... the deduction theorem fails!

Not thm: If assuming A then OA, then A D OA.

Labelled Deductive Systems UniLog'05
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A problem with proof under assumption in 54

Imagine we have the deduction theorem in S4.

Then
1. from A infer OA Nec, 1
2. ADUOA D1
Thus we have
ADOA
but we also have (as an axiom)
OAD A
and thus that
O0A — A

l.e. O Is meaningless!

What is going wrong?

Labelled Deductive Systems UniLog'05
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An attempted proof of the deduction theorem
We have a proof of B given A, and we want a proof of A D B.

By induction on the length of the derivation:

Base: B is immediate. Two subcases:

1. B is an axiom. Then B follows without A.
We also have, as an axiom, B D A D B, so by MP, we have A D B.

2. Bis A. We can prove A D A since we have the axioms of PCL and MP.

Step: B is the result of a rule application. Two subcases:

1. B is a result of MP from C' and C D B.
By the induction hypothesis we have A D C' and A D C D B, and as an axiom
we have (A D C) D (ADC D B) D> (A D B), so by two applications of MP
we have A D B.

2. B =08’ s the result of Nec from B’.
By the induction hypothesis we have A D B’, and we want to get A D OB’.
How should we do this?

We can't!

Labelled Deductive Systems UniLog'05
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The problem, and solutions

The problem seems to be with the relationship between = and D.

We have A+ B’ and can get A+ OB’, but we can't get A D B’ to
AD OB

One way (there are others) to proceed:

assume = = D and try to arrange things so that this makes
sense

Labelled Deductive Systems UniLog'05
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How do we get - = D to work?

e \We have
ADB
and we want
A>D OB
e \We can argue
1. ADB
2. O(ADB) Nec, 1
3. OJA>DB)>D0A>0OB K
4. OA DO OB MP 2,3

e But remember that we also have, as an axiom

OA D OOA

Labelled Deductive Systems
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How do we get - = D to work?

e Thus, if Ais boxed, i.e. Ais OA’

OA'D B

O(0A" D B)

O(0A’ D> B) DonA’' > OB

OO0A’ > OB

(0DA" > 004" D (0D0A’ > 0OB) D (DA’ D OB)
OA" D ODA

(D0A'>0B) D (DA’ D OB)

0A" D OB

X NSOt W=

So, we have A D OB from A D B as desired.

Labelled Deductive Systems

27

Nec, 1

K

MP 2,3
prop taut
axiom 4
MP 5,6
MP 7.4

UniLog'05
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How do we get - = D to work?

e That is, box-introduction works if all the hypotheses

(assumptions) are boxed

lonly ‘boxed’ assumptions| [=ly
A 1.e. A
OA 1 OA 01

e For box-elimination we can use the rule

0A
4 OE

since
1. OA

2. ODAD A T

3. A MP 1,2

Labelled Deductive Systems
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A complete natural deduction system for 54

o N(S4) = N(PCL)+

(O] A
and =2 0E
EIAA Ul A

e But what about other logics?

e OK for some logics (K, T, K4, S5, ...),

but in general there is no ‘easy’ way of coming up with ‘good’
(uniform and modular) systems!

= Look for ‘better’ systems!

Labelled Deductive Systems UniLog'05
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Standard deduction systems for non-classical logics:
Summary

e Hilbert systems:

» Simple inductive definitions.
» Can be hard to use.
» Very general (a framework).

e Natural deduction systems:

» Proof under assumption (consequence).
» Easy to use but lack generality (no ‘real’ framework).

e Sequent systems:

» Special (multiple conclusioned) form of natural deduction with
good proof-theoretical properties.

Labelled Deductive Systems UniLog'05
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Standard deduction systems for non-classical logics:
Summary

e Hilbert systems:

» Simple inductive definitions.
» Can be hard to use.
» Very general (a framework).

e Natural deduction systems:

» Proof under assumption (consequence).
» Easy to use but lack generality (no ‘real’ framework).

e Sequent systems:
» Special (multiple conclusioned) form of natural deduction with

good proof-theoretical properties.

= Looking for a usable framework? Try labelled deduction systems.

Labelled Deductive Systems UniLog'05
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Road Map

e Introduction: A framework for non-classical logics.

e Labelled deduction for modal logics.

» Labelled deduction systems: uniform and modular.
» Properties: soundness, completeness, normalization, ...
» A topography of labelled modal logics.

e Labelled deduction for non-classical logics.
e Encoding non-classical logics in Isabelle.

e Substructural and complexity analysis of labelled non-classical
logics.

e Conclusions and outlook.

Labelled Deductive Systems UniLog'05
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Evolution of state

e Possible worlds (states) x,y, z,w € W.

» Set of

e Accessibility relation R:

» Binary transition relation.

e Kripke semantics:

» Model M = (W, R, V).
» Formulas evaluated locally: M F z:A (truth).

= Logics characterized by properties of models.

UniLog'05
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Modal logics

e Possible worlds (states) z,y, z,w € W.

» Set of

e Accessibility relation R:

» Binary transition relation.

e Kripke semantics:

» Model M = (W, R, V).
» Formulas evaluated locally (truth F):

=M 204 < forally. Ry = EM 4: A

= Logics characterized by properties of R.

Labelled Deductive Systems UniLog'05
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Labelled Deductive Systems

Modal logics
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Modal logics: partial translation

e IW: aset of labels (z,y,...) representing possible worlds.
e RCW xW.

labelled formula (lwff) — x:A  Ais provable iff Vaxe W(F x:A)
relational formula (rwff) xRy "z accesses y"

= Uniform & modular (& natural) deduction systems.
= ‘Good’ properties (completeness, structure).

= Generalization to relevance and other non-classical logics (but
there are limits).

Labelled Deductive Systems UniLog'05
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Modal logics: partial translation (cont.)

N(L) = fixed base system + varying relational theory
N(K) + N(7T)

e Base system N(K) :

» Natural deduction system formalizing K.
» Reason about z:A.

e Relational theory N(7 ):

» Describes the behavior of R.
» Reason about x Ry.

e Separation = structure = properties.

Labelled Deductive Systems UniLog'05
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Labelled modal logics: definitions

e The language of propositional modal logics consists of a denumerable infinite
set of propositional variables, the brackets ‘(" and ‘)', and the primitive logical
operators:

» the classical connectives | (falsum) and D, and
» the modal operator OI.

e The set of propositional modal formulas is the smallest set that contains the
atomic formulas (propositional variables and 1) and is closed under the rules:

1. if A and B are formulas, then sois A D B:
2. if A is a formula, then so is JA: and
3. all formulas are given by the above clauses.

Other operators can be defined in the usual manner, e.g. ~A =;.+ A D L and
OCA =ger~0O~A.

e Let W be a set of labels and R a binary relation over W. If z and y are labels
and A is a propositional modal formula, then = Ry is a relational formula (or
rwff) and x:A is a labelled formula (or Iwff).

Labelled Deductive Systems UniLog'05
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Labelled modal logics: the deduction theorem, again

e T he deduction theorem

if assuming A true we can show B true, then A D B is true

fails for implications weaker or substantially different from intuitionistic D.

e Kripke completeness tells us: A is provable if and only if A is true at every
world in every suitable Kripke model M = (W, R, V)

A iff EMaw:Aforallwe W,

e Hence, the deduction theorem corresponds to

(Vvw e W (EM w:A) = vw e W(EM w:B)) =vVwe W (EM wADB).

but this is false. The semantics of D in a Kripke model is just the weaker:
vw e W (EM w:A = EY w:B) = EM w:A > B).
e Labelling provides a language in which we can formulate a ‘proper’ deduction

theorem:

if assuming w:A true we can show w:B true, then w:A D B is true.
Labelled Deductive Systems UniLog'05
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N(PCL) for propositional classical logic

| AD 1]
Ly
A
AgBDI ADBB ADE

Labelled Deductive Systems UniLog'05
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The base modal system N(K)

[:z;-A D ]
ijLE
72 A]
xi:gBDI IADZE% oA ok
@ 1ty
;{EAA 01 [y fresh] x:D@:Any OR

MEz.O0A & forally. rRy = MFEy:A
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Hilbert systems for other (normal) modal logics are obtained by

Extensions of K

41

extending H(K) with axiom schemas formalizing the behavior of O.

Name | Axiom schema Name | Axiom schema
K 0(AD B) D (0ADOB) 3 O(0AD B)vO(OB D A)
D 0ADCA R OOA D (A D DOA)
T OAD A MV | COAVDOA
B ADOCA Lob | O(OA D A) D OA
4 0OA D O0A Grz | OOADOA)DA)DA
5 OCADOCA Go |O(OADOA)DA)DOA
2 COA D OCA M OCA D OOA

Cxt | ©OA D> OOA4 Z O0(0AD A) D (COADOA)
X O0A D OA Zem | OCOA D (A D OA)

Labelled Deductive Systems
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Extensions of N(K)

e We extend N(K) with relational theories (labelling algebras),
which axiomatize properties of R formalizing the accessibility
relation R in Kripke frames.

e Correspondence theory tells us which modal axiom schemas
correspond to which axioms for R.

e Should relational theories be axiomatized in higher-order logic (=
all normal propositional modal logics), first-order logic, or some
subset thereof?

e This is an important decision!

» Different choices of interface between N(K) and the relational theory result
in essentially different systems.

» We choose the Horn-fragment: cannot capture all axioms, e.g. 3, M, Lob, but
* it captures a large family of logics (including most common ones),
« good normalization properties.

Labelled Deductive Systems UniLog'05
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Extensions of N(K) (cont.)

e Horn relational formula: closed formula of the form
Vaq.. VlEn((Sl RtiN... A SmRtm) D) SQRtO)

where m > 0, and the s; and t; are terms built from the labels
x1,...,ZTy, and constant function symbols, i.e. Skolem function
constants.

e Corresponding Horn relational rule:

SlRtl SmRtm
SQRtQ

Labelled Deductive Systems UniLog'05
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Extensions of N(K) (cont.)

e Generalized Geach axiom schema <¢!/0™A D /O™ A corresponds to
(i, 7, m,n) convergency
N
VoVyVz(x R'y Az R? 2z D Ju(y R™u A z R™"u)) x u
J zZ
where z R’y means x = y and x R*"1y means Jv(x Rv AvR'y).
Example: transitivity is given by (0,2, 1,0).

e Restricted (7, 7,m,n) convergency axioms: class of properties of R that can be
expressed as Horn rules in the theory of one binary predicate R (without =)

m=n=0impliest=7=0

e Proposition: If 74 is a theory corresponding to a collection of restricted
(i, 7, m,n) convergency axioms, then there is a Horn relational theory N(7)
conservatively extending it.

Labelled Deductive Systems UniLog'05
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Some correspondences

45

Property (4,7, m,n) | Axiom schema Horn relational rule
Seriality (0,0,1,1) | D: OAD> A Rf(z)
Reflexivity | (0,0,1,0) | T: OAD A Rme
TRy
: ymm,
Symmetry (0,1,0,1) | B: AD>OCA y Rz
R R
Transitivity (0,2,1,0) | 4: 0A D OOA ‘ gx/Rg “ trans
Ry xRz
Euclideaness | (1,1,0,1) | 5: CADOCA = ZRy eucl
xRy xRz xRy xRz
: 1 2
Convergency | (1,1,1,1) | 2: COA D OCA y Ry, y, 2) conv 2 Rg(z,1, ) conv
Ry Rz zRw
Contextuality | (1,2,1,0) | Cxt: OOA D OOA Ty y Rw crt
xRy xRy
: . p
Density (0,1,2,0) | X: OOA D OA v Rh(z.y) densl h(z.y) Ry ens2
f, g and h are (Skolem) function constants.
Labelled Deductive Systems UniLog'05
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Some correspondences (cont.)

Property Axiom schema Horn relational rule
Weak reflexivity O(O0A D A) Z;g; wrefl
R R
Weak symmetry O(A D OCA) Wit LY ysymm
yRx
R R R
Weak transitivity | O(OA D OOA) v a:fRi/ Y222 wtrans
R R R
Weak euclideaness | O(CA D OCGA) e :Ryy T weucl

Labelled Deductive Systems UniLog'05
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Relational theory N(7 ) (extensions of N(K))

e Various combinations of Horn relational rules define labelled ND
systems for common propositional modal logics.

e The labelled ND system N(L£) = N(K) + N(7 ) for the

propositional modal logic £ is obtained by extending N(K) with a
Horn relational theory N(7).

N(7 ) is a collection of relational rules: stymm
S4
1Ry - T Rym trans refl
L0 Ryo / \

T K4
er

D
% IT{S%S

Examples:

» N(S4) =N(K) + -, refl  + szRng trans
» N(D) =N(K) + zRf(z) ser

Labelled Deductive Systems UniLog'05
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Derivations

e A derivation of an Iwff or rwff v from a set of lwffs I' and a set of
rwffs A in a ND system N(£) = N(K) + N(7 ) is a tree formed
using the rules in N(L£), ending with ¢ and depending only on
[I'UA.

o We write I', A () .

o A derivation of ¢ in N(£) depending on the empty set, ) ¢, is
a proof of ¢ in N(L) (¢ is a N(L)-theorem).
Fact: When ¢ is an rwff z Ry we have:

2. F, A |_N(K)—|—N(T) ny iff A |_N(’T) CURy

Labelled Deductive Systems UniLog'05
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Examples of derivations

o N(S5) = N(KT5) = N(KTB4) = N(KT45)

x%y ~> x%y xRx refl
y Rz sYymim y Rz eucl
II
11 115 a:Rly xRx refl
xRy yRz ~> R eucl R2
g trans ynr yhnuz cucl
xRz

Labelled Deductive Systems
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Examples of derivations (cont.)

e Derived rules

[z:0 ~A]' zRy

OF
c~ A A
Tl Il
r:~O~A"
[y: Al [z Ry)?
[2:B D 1]° HB
Z:
y:A] [z Ry ST O
x<>A. 2B ~p :mANIl
€. ~ [ NA x:[] NA

Labelled Deductive Systems UniLog'05
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Properties of N(L) = N(K) + N(7")
e ' a set of labelled formulas, A a set of relational formulas.

e Parameterized proofs of

» Soundness and completeness with respect to Kripke semantics

Ay e & INAFgp

» Faithfulness and adequacy of the implementation

VAR ¢ & T,AF ¢ in Isabelleyy)

' A
e Proof search: normalization and subformula property e
v

Proof is ‘normal’ (well-defined structure) and contains only subformulas.

= Restricted proof search.
= Decidability, complexity? (new proof-theoretical method based on

substructural analysis).

Labelled Deductive Systems
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Kripke semantics

e A (Kripke) frame for N(£) is a pair (20,R), where 20 is a
non-empty set of worlds and R C 20 x 2.

e A (Kripke) model for N(L£) is a triple 991 = (20, R, 0), where

> (20,%R) is a frame for N(L).
» The valuation T maps an element of 20 and a propositional
variable to a truth value (O or 1).

o Truth for an rwff or Iwff ¢ in a model 9, E™ ¢, is the smallest
relation F” satisfying:

=M xRy iff (z,y) € R

=0 2 iff U(x,p) =1

EMN A D B iff E™ 2:A implies F' 2:B

=N 204 iff for all y, F”' z Ry implies ™ 4: 4
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Soundness and completeness of
N(L) =N(K) 4+ N(7)

Theorem: N(L£) = N(K) + N(7) is sound and complete.

e For I' a set of labelled formulas, A a set of relational formulas, we
have

1. Ay e Ry iff ARz Ry
2. F, A l_N([,) x: A iff F, AFz:A.

e Proof is parameterized over N(7 ).

» Soundness: By induction on the structure of the derivations.

» Completeness: By a modified canonical model construction that
accounts for the explicit formalization of labels and of the
relations between them.
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Translations (full vs. partial)

e Full translation: [x:0A] ~ Vy. z Ry D [y:A]
Transitivity: Ve.y.z. cRyANyRz D xRz

Full translation

» Labelled ND

+ generality
— structure: relations mingled with formulas

e Labelled natural deduction: partial translation

xRy
‘A R R
;{D L ly fresh] & z Rg © trans

— less general (but large and extensible)
+ structure (separation)

rwffs derived from rwffs alone

lwffs derived from Iwffs and rwffs
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Extensions and restrictions

Reason about propagation of inconsistency

= vary interface between N(K) and N(7 ).

Full translation

Labelled ND

Paraconsistent logics

AD L

[z | i —-(xRz) xRz @ A;D +
y:L :J;sz and y: L r: |
pALE | v A

= give up some of the properties, e.g. structure, completeness.
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Proof search: Normalization and subformula property

| AN
e Structure:  ;?

e
e Theorem: Every derivation of z:A from I',) A in N(K) + N(7")
reduces to a derivation in normal form.

“no detours or irrelevancies”

& Ry] .
example: y: A - reduces to II|z/y]
x:0A TRz qp 2:A
2: A

e Corollary: Normal derivations in N(K) + N(7 ) satisfy a
subformula property.

= Restricted proof search.
= Decidability, complexity?
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Proof search: Tracks

e Thread in a derivation IT in N(K) 4+ N(7 ): a sequence of
formulas ©1, ..., @, such that (i) ¢ is an assumption of II, (ii)
@; stands immediately above ;. 1, for 1 < i < n, and (iii) ¢, is
the conclusion of II.

e Lwff-thread: a thread where ¢, ..., @, are all lwffs.

e Track: initial part of an Iwff-thread in II
which stops either at the first minor
premise of an elimination rule in the

lwff-thread or at the conclusion of the
lwff-thread.

e Corollary: The form of tracks

In a normal derivation of an Iwff
in N(K) +N(7) is
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A topography of labelled modal logics

3 apprOaCheS to fa|sum- LOCAL GLOBAL UNIVERSAL
large
“paraconsistent” first-order
and
(modal?) well-known axiomatizable
) class of )
logics modal logics

modal logics

(K,T,.D,B,S4,S5, ... )
equivalent to

[x°A D 1]
e Up to now we have used global falsum: | = x:i af
Y: Yy
zALE

e Falsum propagates between worlds.

= unidirectional interface between N(K) and N(7 ):

+ Rwiffs derived from rwffs alone.
+ Lwffs derived from Iwffs and rwffs (OE).
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Classes of labelled modal logics

By changing:

e Labelling algebra
— Different Horn relational theories. ./

— First-order relational theories, e.g. Vz(~ (Rxx)).
— Higher-order relational theories.

e Interface
— Unidirectional. ./

— Bidirectional.

e Base system

— Extension: N(K“f) = N(K) with universal falsum.

— Narrowing: N(Klf) = N(K) with local falsum.

Labelled Deductive Systems
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First-order relational theories N(7z) = Ny + Cpg

e Np: first-order ND system of R

2 0] 1]
(:b é2 1 2 1 £ |_|$(P)
p@E pl'%ijI P :lpr PLoE |_|51:(,0)|—|I plt/x| e

In [ ]I, £ must not occur free in any open assumption on which p
depends.

e Cp: collection of rules for relational properties

Ma(— @Ra) "

|_|$|_|y|_|z((xR%y |—|ij2) = UU(yRmul—l anu)) rconv
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A problem, the cause, and a solution

e A problem:

» Theorem There are systems N(K) + N(7g) with
N(7g) = Ng + Cg that are incomplete with respect to the
corresponding Kripke models with accessibility relation defined
by a collection Cg of first-order axioms.

» Example: N(7g) = Ny +

{‘ ‘x‘ ‘yl ‘z((nyl_lsz)j(szl_lzRy))}

Normalization = ¥y 1Nz 3, 1.€.

P N(K)+N(Tin) ~0(0AD B)>O(OBDA)
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A problem, the cause, and a solution (cont.)
Normalization = ¥ nk)4n(zn) 3, 1.€

P N(K)+N(Tin) ~0(0AD B)D>O(OB D A)

since
[z Ry])* [y:A D L]* [x R2]° [2:0A]°
1
O BJ° Rz
[y:0B] — IGy -
[: ~O0(0A D B)]* x:0(0A D B) -
zil | g
y: 13
y:O0B D A - 2
z:0(0B D A) )
Ol
x: ~0(0A D B)D>DO(OBDA)
but

xRy, rRz¥ yRzin Ng+Cpgr

Labelled Deductive Systems
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A problem, the cause, and a solution (cont.)

e A problem:

» Theorem There are systems N(K) + N(7g) with
N(7r) = Ng + Cg that are incomplete with respect to the
corresponding Kripke models with accessibility relation defined
by a collection Cg of first-order axioms.

» Example: N(7g) = Ny +

{ ‘ ‘x‘ ‘y‘ ‘z((:z:Ryl_lsz) J(yRzUzRy)) }
Normalization = ¥ k)N 3, 1.€.
Fraon ~B(0AD B) D008 D A)

» But: property corresponds to axiom 3!
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A problem, the cause, and a solution (cont.)

e The cause: global falsum is not enough!

» Falsum must propagate between base system and labelling
algebra. = Bidirectional interface:

[x Ry]* [t Rz]° [yRz 3 0]

[2:0A)]° zRy
[y:A D L] y: A =

E

DOE

since xRy, v Rz,yRz 30+ 2Ry in Ng + Cg.
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A problem, the cause, and a solution (cont.)

e The cause: global falsum is not enough!

» Falsum must propagate between base system and labelling
algebra. = Bidirectional interface:

[x Ry]* [t Rz]° [yRz 3 0]

[2:0A)]° zRy
[y:A D L] y: A Dk

since xRy, v Rz,yRz 30+ 2Ry in Ng + Cg.

e A solution: collapse | and ) (universal falsum)

NKY) = NK) + “5uf + 0 oup,

64

But: we lose the separation between the 2 parts of the deduction

system.
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Universal falsum = semantic embedding

Theorem: In N(K“f) + N(7r) the two parts of the deduction system
are not separated: derivations of |lwffs can depend on derivations of

rwffs, and vice versa.
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Universal falsum = semantic embedding (cont.)

e In fact, N(Kuf) + N(7r), unlike N(K) + N(7 ), is essentially
equivalent to the usual semantic embedding of propositional
modal logics in first-order logic.

» Translation [-] of formulas of N(K“f) + N(7Zg) into formulas of

first-order logic:

[0]
[z Ry]
lp1 O po]

[Mz(p)]
[A]

¢ ¢ ¢ ¢

1 [@: 1]
R(z,y); [z:p]
[1] O Lp2l; [#:A D Bl
va([p]); [w:0A]
{le] [ p € A}; [T

» The following are then equivalent:
1. T,AF ¢in N(KW) + Ng+Cr
2. Cr, [IT'], [A] F [¢] in (the ND system for) first-order logic.

Labelled Deductive Systems

¢ ¢ ¢ g

L3

P(z);

|x:A] D [z:B] ;
Vy(R(z,y) O [y:Al);
{[x:A] | z:A €T},
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Local falsum: Paraconsistent modal logics
N(Klf) is N(K) with LE restricted so that falsum is local and

cannot move arbitrarily between worlds:
A D 1]

x: A i
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Local falsum: Paraconsistent modal logics
(Klf) is N(K) with LE restricted so that falsum is local and

cannot move arbitrarily between worlds:
A D L]

il
Al

If propagates L forward indirectly (and backward, when R symmetric):

x: DL if xRy
y: L

OF

but not to an arbitrary world: x: L }7/N(Klf) y: L

= O and < are not interdefinable in N(Klf)!

They are not even ‘intuitionistically’ related (e.g. O ~ A does not
imply ~<A).
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Local falsum: Paraconsistent modal logics (cont.)

= N(Klf) in general not suitable for formalizing modal logics.

e Only certain logics (e.g. if R universal as for S5 — where = Ry
for all x,y).

e But: resulting formalization is unsatisfactory, since it lacks
important metatheoretical properties that we get in N(K).

e Proposition: Derivations in N(Klf) do not have normal forms
satisfying the subformula property.

For example:

x: DJ_ if xRy
(i

OF

e Can be fixed, but ...
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Summary

e A labelled deduction framework for (propositional) modal logics.

» Labelled (natural) deduction systems: uniform and modular.
» Structural properties vs. generality.
» Structure = implementation, decidability, complexity.

Falsum | Base system Interface Labelling algebra Presentation
local N(Klf) unidirectional (only OE) separate N (7 ) inadequate
global N(K) unidirectional (OE + LE) separate N(7 ) complete

separate N(7p) incomplete
universal N(Kuf) bidirectional N(7r), NOT separate complete
BUT
equivalent to
semantic
embedding

e Other non-classical logics: extensions and restrictions (but there
are limits).
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Extension to quantified modal logics

e Two degrees of freedom:

» Properties of the accessibility relation (as in propositional case).
» How the domains of individuals change between worlds: varying,
Increasing, decreasing, or constant domains.

e Hence: extend fixed base ND system N(QK) with relational
theory (as before) and with domain theory formalizing the
behavior of the domains of quantification.

» Introduce labelled terms w:t expressing the existence of the
term ¢ at world w.
» Adopt quantifier rules similar to those of free logic

where, Iin VI, t does

[w:t] not occur In any
d wVr(A) w:t assumption on which
w:Alt/x] anl w:Alt/z] v w:A[t/x] depends other

I
w:Vr(A) v than w:t.
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Generalization to non-classical logics

e Modal logics ~» non-classical logics.
Unary O with binary R ~»  n-ary modality M with n + 1-ary relation R

[%Ry] [5611141] ce [xn—len—l] [RCI?ZIJl ce xn]
A ~ WA
;U?{DA OI [y fresh] :C:J\/ZIUAl A MI [x4,...,x, fresh]
x:0A xRy xMA;... A, x1:A1 -2 1:A,1 Rxxy...7,
y:A b T Ay ME

e Example: relevance logics, binary — with ternary R

y:A] [Rzy 2]

x:j:ﬁ B—>I ly, z fresh] A= B zyBA Rmyz_)E
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Road Map
e Introduction: A framework for non-classical logics.
e Labelled deduction for modal logics.
e Labelled deduction for non-classical logics.

» Propositional relevance logics and quantified modal logics.
x Labelled deduction systems: uniform and modular.
x Properties: soundness, completeness, normalization, ...
x A first step towards the combination of non-classical logics.

e Encoding non-classical logics in Isabelle.

e Substructural and complexity analysis of labelled non-classical
logics.

e Conclusions and outlook.
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A labelling recipe for non-classical logics

e \We have seen labelled presentations of propositional modal logics:

» The deduction machinery is minimal (a minimal fragment of
first-order logic).

» Derivations are strictly separated.

» Derivations normalize and satisfy a subformula property.

e \We will now see a recipe to present non-classical logics in an
analogous way:

» Introduce labelling.

» Give ND rules for the operators, distinguishing ‘local’ and
‘non-local’ ones.

» Introduce quantifiers.

= labelled ND presentations with ‘good’ properties.
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Labelled deduction for propositional non-classical
logics

We distinguish local and non-local logical operators.

e The truth of a:OA;...A,, where O is a local operator, depends
only on the local truth of a:A44, ..., a:A,,.

e Examples: D, A, V, ~, ...

N g ANB it E?Ma:A and EM a:B:;
EMa:AVv B iff EMa:A or FM a:B:;
EMNa:AD> B iff E™a:A implies E™ a:B:
EMN g~ A iff E?a:A.
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Non-local operators

e A non-local operator M is associated with an n+1-ary relation R
on worlds

= truth of a:MA; ... A, is evaluated non-locally at worlds
R-accessible from a

l.e. in terms of the truth of a1:A44,...,a,:A, where Raa;...a,.

e Examples:
» unary O (and <) and binary R,
» binary relevant — and ternary compossibility relation R,
» (binary intuitionistic — and binary partial order R =C),
> ...

e We extend F”" so that: F” Raay...a, iff (a,aq,...,a,) €R

and distinguish ‘universal’ and ‘existential’ non-local operators.
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Non-local operators (cont.)

e M is a universal non-local operator when the metalevel quantification in the
evaluation clause is universal (and the body is an implication):

EMa:MA; .. A, iff forallaq,..., a,
(F™ Raay...a, and " a1:A; and...and F™ a,_1:A,_1)
imply F™ a,:4,)

Examples:

M q:0A, iff for all ay (IZEm Raa; implies E™ ai:Aq)
M a:A; — A iff for all ai,as (F™ Raayas and F™ aq:A;) imply F™ ay:45)

e M is an existential non-local operator when the metalevel quantification in the
evaluation clause is existential (and the body is a conjunction):

M a:MA, ... A, iff  there exist ay,...,ay,
(F™ Raay...a, and F" a1:A; and...and F” a,_1:A,_1
and F™ q,:A,)

Example: E™ q:O A iff there exists aq (|=Sm Raay and E™ ai:Aq).
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Non-local negation
e In relevance (and other) logics, both a formula and its ‘negation’
may be true at a world.

e [his cannot be the case with ~.
= Introduce a new operator: non-local negation — is formalized
by a unary function * on worlds

=M gi—A i B A

Informally: a* is the world that does not deny what a asserts,
l.e. a and a™ are compatible worlds.

e \We generalize this to
=M q:= A iff for all b (™ a*:A implies E™ b: 1)

where the constant L expresses incoherence of compatible worlds,
i.e. EP bl for every world b.
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On negation and incoherence

e Equivalent to approaches based on incompatibility relation /N between worlds:
=M a:mA iff for all b(E™ b:A implies b N a)

= a” is the ‘strongest’ world b for which b N a does not hold

e Given relevant implication, we can define
a:—A as a:A — 1L

and postulate that for every b
Raa™b

That a and a™ are ‘compossible’ according to every b is justified by the meaning
of x.

e When a = a™:
1l reduces to L
= reduces to ~
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Language of a non-classical logic £ (and of N(£))
(W7 *7 S? O? F)

e IV is a set of labels closed under x of type W D W.
(We assume that 0 € W is a label denoting the actual world 0.)

e S a denumerably infinite set of propositional variables.
e O is the set whose members are

» the constant Il (and/or 1);
» local and/or non-local negation (or neither for positive logics);

» a set of local operators C;,Co, .. .; and
» a set of non-local operators M, My, ... with associated
relations R1, Ro, ... of the appropriate arities.

e I is the set of rwffs R, aay...a, and lwffs a:A.

Remark: NO assumptions on interrelationships between R; and R;!
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Characterization of a non-classical logic L
e By language.
e By models 9 = (20, 0,R1,*Rs, ..., *, V).

» Independent conditions on * and each ‘R;.
» Moreover: truth is monotonic in some logics.
= Define a partial order = on worlds

relevance logics: * CE y iff ROz y
intuitionistic logic: z C y iff x Ry
(modal logics: x C y iff x = y)

and add conditions
« if EY a;:A and E™ q; C a;, then = a;:A,

« for all j < n, if E™ Riap...aj-1a;a44 ...a, and Izmagaj,
then ™ Riao...aj_l A .- 0p
« if E™ R;ag...an,_1a, and E% a,, C a, then F™ R ag...a,_1 a.
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Monotony and persistency

e There are logics for which
if E?q;:A and E™ q; C a;, then = a;:A
does not hold.

e Example: intuitionistic logic (with —) plus classical implication D.

» Monotony holds for A — B, but not for A D B.
» Solution: restrict rule monl to persistent formulas, e.g. A is
persistent if
* 1t 1S atomic,
x it is B — C or =B, where = is intuitionistic (and thus
non-local) negation,
x itis BAC or BV C, and B, (' are persistent.

Labelled Deductive Systems UniLog'05



Luca Vigano 82

The base system N(B5)

As for modal logics: Kripke semantics ‘suggests’ ND rules.

e Rules for local operators are trivial, e.g.

a: Al
0B . a:A Da% a:A ~E
a:A DB
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The base system N(B) (cont.)

e For the non-local operators M" and M¢® we give the rules

[CL1:A1] s [au_le?_l] [Ru aaq... Cl,u]

au::Au u
a,:./\/l“Al “ . Au M1

MUYA .. A Ay - ay_1:A,-1 RY Ce Gy
a 1 ai 1 - :X 1 1 a a; a MuE

[a1:Aq1] -+ - [ae:Ae] [REaar ... a.

a1:A1--a.iA. Raaq...ae a:MA;... A, b::B

aMA;... A, M-I b:B MTE
In M*"I and MF€E, each ar and each a;, for 1 <k <wand 1 <[ <e, is fresh.

Note that the rules are independent of the properties of R* and R°!
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The base system N(B) (cont.)

e Negation rules:

la*:A]

a:—A a*: A _E
b: 11 I b: 1L
CL:—lAﬁ

reflect the semantics and capture only a minimal non-local negation.

For intuitionistic or classical non-local negation we must also add

b Ll [a—uA]
a:A AL i IR
a*:A ¢
e Monotony at the level of Iwffs:
ai:A a; E Q ;
a;:A monl

where A is a persistent.
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Relational theories (Labelling algebras)

e Relational theories axiomatize the properties of * and of the
relations ¢R;.

(We can again exploit correspondence theory.)

e \We restrict again our attention to Horn relational rules

Rit...th o Ryt
Ritg...t°

where the ¢/ are terms built from labels and (Skolem) function
symbols, e.g.

: Rabx Rxcd Rabx Rxcd
ROaa wen Rbc f(a,b,c,d, x) assocl Ra f(a,b,c,d,x) d assoce
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Relational theories (Labelling algebras; cont.)

e For negation, we give Horn rules that impose different behaviors
on *, e.g.

al a

alC a** okl aFCa ¥ —= % orthol T a ortho?2

encode intuitionistic (*xi), classical (x*i and *xc), or ortho
(orthot) negation.

e For monotony at the level of rwffs (0 < 5 < n):

Riao...aj_lajajﬂ...an CLECL]'

monk; (7
Riao...aj_laajﬂ...an Z(])

R;ag...0p,—1a, a,C a
Riao...an_la

monkR;(n)
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Labelled ND systems for prop. non-classical logics

e Our framework presents large families of (fragments of and full) non-classical

logics.

e The labelled ND system N(L£) = N(B) + N(7 ) for the propositional
non-classical logic £ is the extension of an appropriate base system N(B) with
a given Horn relational theory N(7 ).

By considering the rules for 1L, we distinguish 3 families of systems according
to their treatment of non-local negation: minimal, intuitionistic, or classical.

N(L) N(B) N(7) (includes at least)
N(ML) | rules for A, V, D, M¥ M€, —
monl monkR; rules (for R* and R°)
N(JL) | rules for A,V, D, M¥ M€, —
monl monkR; rules (for R“ and R°)
1 Ei * %1
N(CL) rules for A,V, D, M* M*®, —
monl monkR; rules (for R* and R°)
1 Ec k%1, *%C

Labelled Deductive Systems
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Examples of propositional non-classical logics

e Not all non-classical logics expressible in our framework.

(Not all relational theories expressible as Horn theories.)

e But: large and well-known families of non-classical logics:

» Modal logics in the Geach hierarchy: K, D, T, B, 5S4, S4.2,
KD45, S5, ...
and their (simple) multimodal versions.

» Many relevance logics: B, N, T, R, ...

» ‘Independent’ combinations of the above.

» Fragments and full logics.
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Al:
A2:
A3:
A4
Ab:
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H(B™), a Hilbert system for B*

e Axiom schemas:

A — A.

ANB — A.
ANB — B.
A— AV B.
B— AV B.

e Inference rules:
Rl. A—=B A4

R2:

A
AANB

Iz modus ponens,

B

adjunction ,

R3:

along with their disjunctive forms, where if Ay
CVA ---CVA,

disjunctive form is the rule

A—-B (C—=D :
(B—C) = (A — D) affixing,

- A

A6: AN(BVC)— (AANB)V(ANC).
A7: (A—- B)AN(A—-C)— (A— BAC).
A8: (A—-C)N(B—C)— (AVB— ().

" s a rule, then its

CVDB

Labelled Deductive Systems
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N(B™), a labelled ND system for B

aANB aANB

a:A a:B : :
a:ANDB Al a:A AEL a:B NE2
[a:A]  [a:B]
a:A a:B a:AV B c::C' c::C
a:AV B VIl a:AV B \/I2 c:C VE

b: A [R abcl

B 1 (hetresh) @A= B bBA Rabe_ g

Rab}%ajg?c()xa monR(1) Rabfgaai()xb monR(2) RCLbRCabRxOCZC monR(3)

a:A bﬁOab monl R0aa 1den
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| Name | Axiom schema/Inference rule | Property Horn relational rules
A9 AN(A— B)— B Raaa or ROabD Raab | Baaa 'dem
(idempotence) or 2222 idem

Rabx Rxzcd

All (A—B)— ((B—C)—(A—=0)) | RPabed > R?b(ac)d Rachabedz
.. Rabx Rxcd
(suffixing) Rbfy(a,b,c, d,x)d suff2
A12 | (A= B)= ((C— A) = (C—B)) | R2abcd> R2a(be)d Rfcafg(wa fé”’;dm) assocl
e .. Rabx Rzxcd
(associativity or prefixing) assoc2

Ra f3(a,b,c,d,x)d

Rabe

(commutativity or assertion)

2
A13 (A—- (A— B)) — (A— B) Rabc D R“abbc Rabfy(a,b,c) contl
. Rabc

(contraction) Rfa(a,b,c)be cont?
Al4 (A—-A)—B)— B RaOa 7 a0a specassert

(specialized assertion)

Rabc

A1l5 A— ((A— B) — B) Rabc D Rbac Rbac Comm

° R2abcd:d€f Jz(Rabx AN Rx cd) and R2a(bc)d:def Jz(Rbcx AN Raxd).

e All the properties of R are outermost universally quantified.

e Using the definition of the partial order we could write a C b for RO a b.
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| Name | Axiom schema/Inference rule | Property | Horn relational rules
Al6 A— (A— A) Rabc D (ROacV RObc) no Horn relational rules!
or ROOaV R00a™ (mingle) (requires universal L)
A17 A — (B — B) R00a or RabcD RObc RO00q Hin
o Rabc .
(thinning) o R 0be thin
A18 A— (B— A) Rabc D RO0ac (positive paradox) 2822 pospar
R4 H contraposition R0ab > ROb™ a™ (antitonicity) RRO(I))% anti
k 7% ;- . Rabc .
A19 (A— —-B) - (B — —-A) Rabc D Rac™b" (inversion) . x Inv
Rac™ b
A20 -—A - A a™* =a (period two) Roaa™ ™ R0oa™™a xC
A21 AV -A RO0*0 (excluded middle) RO “umid
Labelled Deductive Systems UniLog'05



Luca Vigano

93

Extensions of B": Hilbert and labelled ND systems

Logic £ | Hilbert system H(L) Labelled ND system N(£)

N+ H(BT) + {A11,A12} N(B™) + {suff1, suff2, assocl, assoc2}

T+ H(NT) + {A13} N(NT) + {cont1, cont2}

ET H(TT) + {A14} N(TT) + {specassert}

RT H(ET) + {A15} N(E™) + {comm}

S4+ H(ET) + {A17} N(E™) + {thin}

JT H(RT) + {A17} = H(S4™") + {A15} | N(R™T) + {thin} = N(S4™) + {comm}

B H(BT) + {A20,R4} N(BT) + {=1I, —E, L Ec, xxi, xxc, anti}

R H(B) + {A11,A13,A15, A19} N(B) + {suff1, suff2, contl, cont2, comm, inv}
= H(B™) + {A11, A13, = N(B™) 4 {=1, —-E, 1LEc, *xi, *xc,
A15,A19,A20} suff1, suff2, cont1, cont2, comm, inv}

G H(B) + {A21} N(B) + { exmid}

C H(R) + {A17} N(R) + {thin}

J7 is positive intuitionistic logic, G is ‘basic’ classical logic and C is

‘full’ classical logic.
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Extensions of B™: Hilbert and labelled ND systems

Note that we have chosen the ‘economical’ system H(R), where,
e.g., R4 is redundant as it can be derived using A19 and R1;
similarly, in N(R) we can trivially derive the rule anti using inv, and

the rule ¢dem using identity and contraction:

R()aaiden R()aaiden
cont? contl
Rf4(07a’7a)aaR ROCLf4(O,CL,CL) monR(l)
aaa

Alternative, equivalent, axiomatizations are possible, for R and other

logics.
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An advantage of our approach

e Routley and Meyer have shown that

» H(R™) is a subsystem of the system H(JT) for positive intuitionistic logic J¥,

» but H(R) is a subsystem only of the system H(C) for ‘full’ classical logic C.

» That is: H(J) for ‘full’ intuitionistic logic J cannot be modularly obtained by
simply adding new axioms to H(R).

e This is not the case with our systems!

» Extending N(R) with the rule B, thin yields N(C),

» but we have N(R) = N(CR)

» and we can restore the modularity, we just need to consider the system
N(JR), i.e. N(R) with an intuitionistic treatment of negation.

» Indeed: N(R1) € N(JR) € N(R) and N(JR) + thin = N(J).
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Extending N(R) with thin yields N(C)

We show that we are then able to prove R0a0, so that, essentially,
all the worlds collapse; 1.e. a = a* = a™*, — reduces to D, and — to

Y |

* kx Ok LTV % FkC
R0* 0" 0 ROO™0 o R(3)

- RO*0** 0 FOF00 R0OO0OO monR(2)
R0a0* RO0°0 10n7(3)
R0OaO
where II is y
ROOQa* Y"1 :
Xk )k a/n/t/l/ xx kXK1
ROa ORan*ROM monR(2)

Note that we have:

Fact: F, A I_N(B)—i—N(T) RZ aal...an iff A l_N(T) RZ aay...qn.
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Example derivations

[Rbcd)* [ROab]?

ftacd MU monR(l) *k1
la:A — —B]® [d*:A]! Rad*c* [c:B]*> ROcc*™
=B — K * B manl
e: Il | ok
d:—=A I
b:B — —A I
O(A—>—|B)—>(B—>ﬂA)_>
la:=—A]* [ROab)?
b:——A monl (b*:= Al .
C:J_L J_LE 1 o __ 4xcC
b**: A C ROb*™ b ]
b: A mon

0:/A — A — I
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Soundness and completeness of N(L) = N(B) + N(7)
e Theorem N(£L) = N(B) + N(7 ) is sound and complete.

e For I' a set of labelled formulas, A a set of relational formulas, we
have

1. A l_N(/:) Riaal...an |fFA|:Rzaa1an
2. F,A I_N(E) a:A iff F,A = a:A.

e Proof is parameterized over N(7 ).

» Soundness: By induction on the structure of the derivations.

» Completeness: By a modified canonical model construction that
accounts for the explicit formalization of labels and of the
relations between them.

+ To account for positive (negation-less) fragments, we build the
canonical model by extending disjoint theory — counter-theory.
« That is: we do not define maximality in terms of consistency.
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Normalization and subformula property

e Theorem: Every derivation of x:A from I'; A in N(£) = N(B) + N(7 ) reduces
to a derivation in normal form.

e Normal form of a derivation = “no detours or irrelevancies’.
Two forms of detour

» proper reductions for M*, M and —E, like for modal logics

[z Ry]
I1 TRz
y:A . reduces to 1|z /y]
x:0A xRz OR z:A
z:A

» and permutative reductions for M€E, VE, 1LEi and monl
(for lwffs that potentially interact in a proper reduction but are too far apart
in a derivation).

e Corollary: Normal derivations in N(B) + N(7 ) satisfy a subformula property.

= Restricted proof search.

= Decidability, complexity?
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Proof search: Tracks

Corollary: The form of tracks in a normal derivation of an Iwff in
N(B) +N(7) is
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Positive fragments and interrelated relations

e Consider the positive modal logic K with O and R, < and R°.

e Theorem: If our restriction is withdrawn, and R® and R are
related, then incompleteness may arise:

z:0(AV B) D (CAVIOB)

corresponds to but is not provable in systems containing

ZIZ’RDy ] &

+R%y (R~ CRY)

» By exploiting normalization results.

» Hilbert-style presentations suffer from the same problem.

» Solution: give up fixed base system and add rule

2:0(AV B) O (CAV OB)
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Quantified modal logics

e Two, independent, degrees of freedom (two-dimensional space of
possible logics):

» properties of the accessibility relation (as in propositional case),
» how the domains of individuals change between worlds: varying,
Increasing, decreasing, or constant domains.

Other dimensions are possible, e.g. non-rigid designators.

e Standard approaches: piecemeal fashion or lack uniformity.
Problems:

» Hilbert systems: standard quantifier rules automatically require
domains to be increasing (because of Converse Barcan formula).

» Incompleteness with respect to Kripke semantics is common.

» Meta-results (e.g. completeness) are not proved in uniform way.

e Labelled deduction systems: no problems.
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Labelled quantified modal logics
N(QL) = base system + relational theory + domain theory

= fixed N(QK) + wvarying N(7 ) + varying N(D)
e Base system N(QK):

» Natural deduction system formalizing QK.
» Reason about w:A.

e Relational theory N(7 ):

» Describes the behavior of R.
» Reason about w; Rw;.

e Domain theory N(D):

» Describes the behavior of domains of quantification behavior.
» Reason about labelled terms w:t (¢ exists at w).

e Separation = structure = properties.
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The base system N(QK) for quantified K

[w; AED 1] [w Al
wiRuwj w
wilor WA il gy Wl el it

In OI, w; is different from w; and does not occur in any assumption
on which w;:A depends other than w; Rwj.

In V1, ¢ does not occur in any assumption on which w:A[t/x]
depends other than w:t.
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Derived rules of N(QK)

wi:A w; Rw; w:Alt/x] w:t
w;: A ©l w:3dz(A) A1
(w;: Al [w; Ruwj] wi: At/ ] [wit]
w;: O A wy: B OF w;: 3z (A) w‘j:BHE
wi:B w;:B

In OE, w; is different from w; and wy, and does not occur in any
assumption on which the upper occurrence of wy:B depends other

than w;:A and w; Rw;.
In dE, £ does not occur in any assumption on which the upper

occurrence of w;:B depends other than w;:A[t/x] and w;:t.
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Extensions of N(QK)

e Relational theories axiomatize properties of R (as in the
propositional case).

e Domain theories: different combinations of the rules

w; Rw;  w:t increasing domains, corresponds to CBF

id OVx(A) D Va(OA)

wj:t

decreasing domains, corresponds to BF

t
dd Ve (OA) D OVx(A)

w; Rw;  wj:

wi:t

yield different labelled ND systems for quantified modal logics.

The labelled ND system N(QL) = N(QK) + N(7 ) + N(D) is
obtained by extending N(QK) 4+ N(7 ) with a given domain theory
N(D) generated by a subset of {id, dd}.
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Two-dimensional uniformity

accessibility

N(QK) +N(D) — - N(QK) + N(7') + N(D)
domains ] rccossibility domains
N(QK) relation N(QK) + N(T)
N(QKT4.c)
dd d
e ~
N(QKT4.i) N(QKT4.d)
T 7
il NqkTa) 9
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Example derivations

CBF is a theorem of (any extension of) N(QK.i):

wOVs(A)! [wRwP . [wRw® [
w1Vx(A) HE [ ’U]Jllt[ ] ud
wy:Alt/z] vE
w:0A[t/x] IZ|12
w:Vr(OA) vl )
w:0OVx(A) D Ve(OA) ol

We can prove similarly that BF is a theorem of (any extension of)
N(QK.d).

Remark: id and dd are interderivable when the accessibility relation

IS symmetric.
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Labelled quantified modal logics: Properties
1. Labelled deduction systems are uniform and modular.
2. Labelled deduction systems are sound and complete.

For © a set of Iterms: (a) A Fniqey wi Rwj iff A E w; Rw,,
(b) A, 0 Fyqr wit iff A,O F w:t
(c) I A, O Fyqey w:AIff T, A O F w:A.
3. The deduction machinery is minimal.

4. Derivations are strictly separated.

(a) A derivation of an Iwff can depend on a derivation of an rwff (via an
application of OE), but not vice versa.

(b) A derivation of an Iwff can depend on a derivation of an Iterm (via an
application of V E), but not vice versa.

(c) A derivation of an Iterm can depend on a derivation of an rwff (via an
application of id or dd), but not vice versa.

5. Derivations normalize and satisfy a subformula property.

As in the propositional case.
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Falsum

e Also local and universal falsum generalize.

e Moreover, we may also need universal falsum for lterms:

w;: L w ;i)
= uft J
f 1 wZJ_ Uftg

allow us to mingle derivations of Iwffs with derivations of Iterms.
e Needed, for example, to prove
w:Vr(A) D Jdx(A)

when we extend a first-order domain theory with

non-empty
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Road Map

e Introduction: A framework for non-classical logics.
e Labelled deduction for modal logics.

e Labelled deduction for non-classical logics.

e Encoding non-classical logics in Isabelle.

e Substructural and complexity analysis of labelled non-classical
logics.

e Conclusions and outlook.
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Encoding non-classical logics in Isabelle

e |sabelle: a generic theorem prover.

e Metalogic Meta: a natural deduction presentation of minimal
implicational predicate logic with universal quantification over all
higher-types.

(universal quantifier A or .., implication = or -.)

e Object logics encoded by declaring a theory, composed of a
signature and axioms, which are formulas in the language of Meta.

» Theories in Isabelle correspond to instances of an abstract
datatype in ML and Isabelle provides means for creating
elements of these types, extending them, and combining them.

» Axioms establish the validity of judgements
(assertions about syntactic objects declared in the signature).

» Derivations are constructed by deduction in the metalogic.
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Encoding propositional modal logics

K = Pure + (* K extends Pure (Isabelle’s metalogic) *)
(* with the following signature and axioms *)
types (* Definition of type constructors *)
label,o O
arities (* Addition of the arity ‘logic’ to the existing types *)
label, o :: logic

consts
(* Logical operators *)
falsum o "o"
imp :: "[o, o] => o" ("_ --> _" [25,26] 25)
not :: "o => o ("= _" [40] 40)
box :: "o => o" (_" [50] 50)
dia i "o => o" ("<>_" [50] 50)
(* Judgements *)
LF :: "[label, o] => prop" (M : _)" [0,0] 100)
RF :: "[label, label] => prop" (" R )" [0,0] 100)
rules

(* Axioms representing the object-level rules *)
falsumE "(x:A --> falsum ==> y: falsum) ==> x:A"

impI "(x:A ==> x:B) ==> x:A --> B"
impE "x:A --> B ==> x:A ==> x:B"
boxI "(My. (x Ry ==> y:A)) ==> x:[]A"
boxE "x:[JA ==> x R y ==> y:A"
(* Definitions *)
not_def "x: A == x: A --> falsum"
dia_def "x: <>A == x: “([J("A))"
end

e Two types: ... and . (unlabelled modal formulas).

e Operators: typed constants over this signature.

e Two judgements: » and =.

e Mixfix annotations: abbreviate . with -, wen With ...

e In axioms, free variables are implicitly outermost universally quantified.
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Addition of Horn

KT = K +
rules

refl "x R x"
end

K4 = K +
rules

trans "x Ry ==>y Rz ==>xR 2z"
end

KT4 = K4 +
rules

refl "x R x"
end

K2 = K +
consts

Extensions of K

axioms:

g :: "[label,label,label] => label"

rules

convl "x Ry ==>x R z ==>yR gx,y,z)"
x R

conv?2
end

Logics inherit theorems and derived rules from their ancestors,

y ==>x R z ==> z R g(x,y,2)"

e.g. v:0A «— O0OA in «
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Faithfulness and adequacy

o Metan(r) is faithful (with respect to N(L)) iff
1. RF(A) |_MemN(£) RF(z,y) implies A Fy) Ry, and
2. LF(I'),RF(A) = Metay ) LF(x,A) implies I'y A Fyey 2:A.
o Metan(c) is adequate (with respect to N(L£)) iff the converses
hold, i.e. iff
1. AFxiy 2Ry implies RF(A) I—MemN(ﬁ) RF(z,y), and
2. I, A bxey A implies LF(T), RF(A) Fasetay ) LF (2, A).

e Theorem: Metay(r) is faithful and adequate.
By induction on structure of (object/meta) derivations.
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Isabelle proof session

e |sabelle manipulates rules. A rule is a formula

1 vl ... vm. Al ==> ... ==> (An ==> A)

which is also displayed as

" vl ... vm. [| Al; ...; An|] ==> A

e Rules represent proof states where . is the goal to be established
and the ..'s are the subgoals to be proved.

e |sabelle supports proof construction through higher-order
resolution

» given a proof state with subgoal : and a rule,

we treat the ..'s of the rule as variables for unification,

and higher-order unify . with -.

If this succeeds, then unification yields a substitution o,

and the proof state is updated replacing : with the subgoals «,... ,. and
applying o to the whole proof state.

vvyyvyy

Labelled Deductive Systems UniLog'05



Luca Vigano 117

Examples

e An interactive proof.

> goal K4.thy "x:[]A --> [I[]A";
x : [1A --> [10A
1. x : [1A --> [1[]A

> by (rtac impI 1);
x : [JA -—> [10A
1. x @ [1A ==> x : [1[]1A

> by (rtac boxI 1);
x :+ [0A --> [1[]A
1. My, [ x : [JA; xRy |1 ==>y: []A

> by (rtac boxI 1);
x : [JA -—> [10A
1. Mty ya. [l x: [1A; x Ry; yRya |l ==>ya: A

> by (etac boxE 1);
x : [IA imp [1[]A
1. 'y ya. [ xRy; yRya |l ==> xR ya

> by (etac trams 1);
x : [JA -—> [10A
1. !y ya. y R ya ==> y R ya

> by (atac 1);
x : [0A --> [10]A

No subgoals!

> ged "BoxImpliesBoxBox";
val BoxImpliesBoxBox = "?x : []7A --> [J[]17A"
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Examples (cont.)

e \We can also derive new rules

> val [major,minor] =
goalw K.thy [dia_def] "[I| y:A; x Ry |1 ==> x: <>A";
x @ <>A
1. x 7 [OC B
val major = "y : A [y : Al" : thm
val minor = "x Ry [x R y]l" : thm

> ged "diaE";
val diaE = "[| ?x : <>7A; !ly. [l y : ?A; ?x Ry |] ==> 7z : 7B |] ==> 7z : 7B" : thm

e We can use Isabelle’'s built-in tacticals such as e, mer, s

e \We can increase automation by writing tactics.
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Encoding propositional non-classical logics

Rplus = Pure +

types (% Definition of type constructors *)
label, o O

arities (* Addition of the arity ‘logic’ to the existing types *)
label, o :: logic

consts (* Labels, Logical operators, Judgements *)

act :: "label"

2 :: "[label,label,label,label,label] => label"

£3 :: "[label,label,label,label,label] => label"

i :: "[label,label,label] => label"

inc :: "o"

and :: "[o, o] => o" (infixr 35)

or :: "[o, o] => o" (infixr 30)

imp :: "[o, o] => o" (infixr 25)

LF :: "[label, o] => prop" (M(_ : _)" [0,0] 100)

RF :: "[label, label, label] => prop" ("(R _ _ _)" [0,0,0] 100)

rules (* Base system and Properties of the compossibility relation R *)
conjI "[] a:A; a:B |] ==> a: A and B"

conjE1l "a: A and B ==> a:A"
conjE2 "a: A and B ==> a:B"
disjIl1 "a:A ==> a: A or B"
disjI2 "a:B ==> a: A or B"
disjE "[l a: A or B; a:A ==> c:C; a:B ==> c:C |] ==> c:C"
impI "[l ''o c. [| b:A; Rabc |] ==>c:B [|] ==>a: A imp B"
impE "[l a: A imp B; b:A; R a b c |] ==> c:B"
monl "[] a:A; R act a b |] ==> b:A"
monR1 "[l Rabc; Ract xa |] ==>R x b c"
monR2 "[l Rabc; Ract xb |] ==>R a x c"
monR3 "[l Rabc; Ract cx |] ==>R a b x"
iden "R act a a"
suffl "[l Rabzx; Rxcd|] ==>R ac f2(a,b,c,d,x)"
suff2 "[l Rabx; Rxcd|] ==>R Db f2(a,b,c,d,x) d"
assocl "[l Rabx; Rxcd|] ==>R Db c f3(a,b,c,d,x)"
assoc2 "[l Rabx; Rxcd|] ==>R a f3(a,b,c,d,x) d"
contl "R abc==>Rab f4(a,b,c)"
cont?2 "R abc==>R f4(a,b,c) b c"
specassert "R a act a"
comm "Rabc==>RDbac"
end
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Encoding quantified modal logics

QK = Pure +

classes
term < logic
default
term
types (* Definition of type constructors *)
label, o O
arities (* Addition of the arity ‘logic’ to the existing types *)
label, o :: logic

consts
falsum 1 "o"
imp :: "[o, o] => o" ("_ -=> _" [25,26] 25)
not :: "o => o" ("~ _" [40] 40)
box i "o=> o" ("[1_" [50] 50)
dia 11 "o=> o" ("<>_" [50] 50)
All :: "(CPa => 0) => o" (binder "ALL " 10)
Ex 1 "(Pa => 0) => o" (binder "EX " 10)
LF :: "[label, o] => prop" M = )" [0,0] 100)
RF :: "[label, label] => prop" ("(_ R )" [0,0] 100)
LT :: "[label, ’al => prop" ("(_ E )" [0,0] 100)
rules
falsumE "(w:A --> falsum ==> v: falsum) ==> w:A"
impI "(w:A ==> w:B) ==> w:(A --> B)"
impE "w: A -=> B ==> w:A ==> w:B"
boxI "(My. (w R v ==> v:A)) ==> w:([1A)"
boxE "wi:[JA ==> w R v ==> v:A"
alll "(It., (wE t ==>w: A(t))) ==> (w: ALL x.A(x))"
allE "w: ALL x. A(x) ==> w E t ==> w:A(t)"

(* Definitions *)

not_def "w: A == w: A --> falsum"

dia_def "w: <>A == w: “([J(CA)"

ex_def "w: EX x. A(x) == w: “(ALL x. "“A(x))"
end
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Road Map

e Introduction: A framework for non-classical logics.

e Labelled deduction for modal logics.

e Labelled deduction for non-classical logics.

e Encoding non-classical logics in Isabelle.

e Substructural and complexity analysis of labelled non-classical
logics.

» Substructural analysis of labelled sequent systems.

» A new proof-theoretic method (a recipe) for establishing
decidability and bounding the complexity of non-classical logics.

» Justification (and partial refinement) of rules of standard
sequent systems.

e Conclusions and outlook.
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Properties of N(L) = N(K) + N(7")
e ' a set of labelled formulas, A a set of relational formulas.

e Parameterized proofs of

» Soundness and completeness with respect to Kripke semantics

Ay e & INAFgp

» Faithfulness and adequacy of the implementation

VAR ¢ & T,AF ¢ in Isabelleyy)

' A
e Proof search: normalization and subformula property e
v

Proof is ‘normal’ (well-defined structure) and contains only subformulas.

= Restricted proof search.
= Decidability, complexity? (new proof-theoretical method based on

substructural analysis).
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Proof search: Normalization and subformula property

| AN
e Structure:  ;?

e
e Theorem: Every derivation of z:A from I') A in N(K) + N(7")
reduces to a derivation in normal form.

“no detours or irrelevancies”

& Ry] .
example: y: A - reduces to II|z/y]
x:0A TRz qp 2:A
2: A

e Corollary: Normal derivations in N(K) + N(7 ) satisfy a
subformula property.

= Restricted proof search.
= Decidability, complexity?
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Proof search: Tracks

e Thread in a derivation IT in N(K) 4+ N(7 ): a sequence of
formulas ©1, ..., @, such that (i) ¢ is an assumption of II, (ii)
@; stands immediately above ;. 1, for 1 < i < n, and (iii) ¢, is
the conclusion of II.

e Lwff-thread: a thread where ¢, ..., @, are all lwffs.

e Track: initial part of an Iwff-thread in II
which stops either at the first minor
premise of an elimination rule in the

lwff-thread or at the conclusion of the
lwff-thread.

e Corollary: The form of tracks

In a normal derivation of an Iwff
in N(K) +N(7) is
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. I' A
Proof search: structural analysis = 7
!

e Normalization & subformula property = restricted proof search.

e Further restriction by exploiting labels.
Structural analysis of proofs in normal form.
= bounds on formulas in proofs:

Q: Which formulas?
Subformulas!
Q: How many formulas?
6 or ﬁ’;ﬁ or ... Or ﬂ"}"ﬁ or ﬁ”ﬁ’ ?
e e e Qo
this kind of analysis is more easily performed when logics are
presented using sequent systems, which allow for a finer grained
control of structural information via their structural rules.
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Proof search: details (recipe)

e A new proof-theoretical method for bounding the complexity of
the decision problem for propositional non-classical logics.

1. Logics presented as cut-free labelled sequent systems.
2. Guidelines to provide bounds on
» structural reasoning (structural rules: contraction, ...),
» relational reasoning (accessibility relation).

= Decision procedures with bounded space requirements
(PSPACE bounds: new/compare well with best currently known)

» O(nlogn)-space for K, B[—,A], BT, ...
» O(n?logn)-space for T, ...
» O(n*logn)-space K4 and S4, ...
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Labelled sequent systems for non-classical logics

Our normalizing labelled natural deduction systems yield equivalent cut-free
labelled sequent systems that

1. allow us to present non-classical logics in a uniform and modular way;

2. are decomposed into two separated parts: a base system fixed for related logics,
and a labelling algebra, which we extend to generate particular logics;

3. contain left and right rules for each logical operator (except for falsum | and
incoherence 1l ), independent of the relation(s) R; and of the other operators;

4. satisfy a subformula property; and

5. provide the basis of a general proof-theoretical method for bounding the
complexity of the decision problem for propositional non-classical logics.

We consider (some) modal logics in detail and discuss extensions for other logics.
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Base modal sequent system S(K)

e Language is the same as for modal N(K), but now

» ['is a finite multiset of labelled formulas,
» A is a finite multiset of relational formulas.

Axioms:

xAI—g;AAXl y:J_l_CE:A LL CERyl—:IZRyAxr

Structural rules:
AT LA FTY

2A D AFD VI T AR, z:A VIR

A, x: AT, AT AT A, x:A
zA T, AFT b TAFT, oA COR
LA RTY A, zRy, rRy+ uRwv

I‘,A,nyI—F’WrL A, xRy uRwv CrL

Logical rules:

LAFT 2:A =:B, T, AT L AT, AT x:B
x:AD B, I, AFT AT, 2:A DB

OR

AFzRy y:A,F,AI—F’DL LA,z Ry - y:A, T
r:OA T, AT/ LA Fz:O0A T
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Relational theory S(7): Extensions of S(K)

N(7 ) is a collection of relational rules (‘intuitionistic’ sequents)

AFs Rty -+ AFs,Rt, S5
A+ sqg Rty T symm
Examples: tmny 54 <eﬂ

AFxRy AFyRz T D K4

t
AFzRz rans \ ng/

re trans
fl K

S(84) = S(K) + FoRpg " +

S(D) =S(K) + FzRf(z)

We can again exploit correspondence theory.

Labelled Deductive Systems UniLog'05



Luca Vigano 130

Derived rules of N(K)

DAFRT, z:A r AT, AT’ R
xNAFAI—F’N AR z:~A™
A, x:B,I', AF T’ AL DA, z2:A T'AFRT,2:B R
s AANBT.AFT T AFT. 2:AAB A
AT, AT :U:B,F,AI—F’\/L AT, z:A x:B VR
2 AVB T, AFT I AFT . 2:AV B
. / .
y.A,F,A,nyI—FOL AFzRy F>A|_FvUA<>R

2 OA T, AFT CLAFT, 2:0A

In OL, y does not occur in z:CA, T, A TV,
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Examples of derivations

I1
10 y: AL, A,x Ryt T"

y:A,F,A,nyI—F’QL ~ I AzRy+-I" y:~A
r:OA, AT AR, z:0~A
r:~O0~AT AFT™

~R
OR
L

Side condition is ‘inherited’ from OR.

AXr y:AD B,y:AFy:B
AXy crRyF xRy y:AD B,y A, xRy - y:
y:AD B,z:0A, xRyt y:B ar,
z:0(A D B),z:0A,zRy+ y:B
x:0(A D B),z:0AF z:0B HR
x:0(ADB)Fxz:0A4AD0OB R
- x:0(A D B) D (DA D UOB) R

rRyF xRy
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Labelled sequent systems for non-classical logics

We proceed like for ND systems.

Quantifier rules:

A,OFwt wAlt/z],I,A,0FT"
w:Vx(A), I, A, 0 T

[A, 0, w:t - T w:Alt/x]
VA OFT  wVz(A)

VR

VL

where

e O is a multiset of labelled terms,

e in VR, t does not occur in I',) A, © F T, w:Vx(A).

Domain rules:

A"’UJZRUJJ A,@I—wi:t . Al—szwJ A,@I—wj:t
A0 w;:t id A, O w;:t dd
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Non-local operators

AI—R“aal...au F,Al—F’,al:Al F,A |_F/,CLU_11AU_1 CLuIAu,F,A'_F/
CLZMuAl S Au, F, AT

ML

ar:Ai, .. au—1: A1, AR aay ... a, 1, ay: Ay
T.AFL, aM"A,... A, MR
In M“R, aq,...,a, are all different from a and each other, and do not occur in
AR, aM¥A; ... A,.

Examples (in — R, b and ¢ are different from a and each other, and do not occur
inAFTY a:A — B):

AFRabe T,AFT' b:A c¢B,I',AFT' [ b:A, T, A,Rabct+T1",¢:B R
a:A— B,T,AFT — TLAFT ,a:A— B
FAFF/CLA GIAFAFP/ AI—RabC

AT AT L T AFT . a-A R AFRac b ™

*%C

" ROaa™ * FROa™ a
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Labelled seq. sys. for the basic relevance logic B

:zj:Al—:U:AAX1 Ra:yzl—nyzAxr

x:A,v:B, T, AT AL DAFT , 2:A T,AFT', 2:B
xA/\BFAFF’ AR, 2:ANB

AR

AT AT x:BT,AFT' g D,ART 2:A, x:B
AV B, T,A+FT v I AFT.2:AV DB

VR

AFRzyz T, A-T",y:A 2B, I',A-T' y: AT A,Rxyz+1",2:B

2A— BT,AFT —L D ALT . 2:A— B 1 lbcfresh
AT T AT AT
AT AFT WL AR 2AWVIR 1A Reyr T WIL
v A AT, AETY DAFT A x:A A, Rabc,Rabck Rxyz
AT, AT CIL IAFTY x:A CIR A,Rabc-Rzxyz CrL
AFROzy T, AFT x:A :
D AFD. A monl | ROz ‘4"
AFROax AFRzyz 1 AFROay AFRzyz AFROza AFRxzyz g
AFRayz " AFRzxaz monr2 AFRzya monr
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Properties of S(£) = S(K) + S(7)

e (Cut-free: cut is an admissible rule

AR, 2:A AT, AFTY
T AFT cut

e Normalizing ND systems and cut-free sequent systems are
‘equivalent’.

» Theorem:
o I'A by z: A iff Iy A F 2:A is provable in S(L).
o Ay xRy iff A xRy is provable in S(L).

» Theorem: N(L) is sound and complete.

» Corollary: S(£) is sound and complete.
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Sequent systems as refutation systems

II
e The progressive (backwards) construction of a derivation Sy = I'g, Ag F I'§

is associated to the progressive construction of a (partial) model
M = (2, R,V) such that for each S; = T';, A; T in II, with ¢ > 0,

» the worlds of 9 are connected according to A, i.e. (x,y) € Riff A; - xRy,
» 9 satisfies all lwffs z:A4 € Ty, i.e. E™ x: A, and
» N falsifies all Iwffs z:B € T, i.e. ¥ 2:B.

e Then we have:

» if Sy is provable, then 901 is inconsistent (i.e. it contains an inconsistent
world),
» if Sy is not provable, then 91 is a counter-model for it.

N is partial in the sense that the truth values of some propositional variables
might be missing from the model, but we can univocally determine these values
from the values of the composite formulas of S; they appear in (e.g. F™ z: ~p,
for p a propositional variable, implies ™ z:p, i.e. V(x,p) = 0).

Labelled Deductive Systems UniLog'05



Luca Vigano

Example

We can represent the inconsistent model 9)t spawned by

CCQZB |_ aﬁgiB AXI]

: W
x1:B,x9:B, x4 Raxo b ro:B, x0:0B
x1:B,r1 Rxo - x9:B,x9:B D OB
r1Rxo b 21 Rxo AXr To: N(B D) DB),CB11B,CB1 Rxo F x9:B
xq1:0 N(B D) DB),ZEltB,lexg Fxo: B
xq1:0U N(B D) DB),CIJlIB Fx:0B HR
x1:0~(BDOB)Fx1:BD>UOB o R
-z Rxy refl x1: ~(B D OB),z1:0 ~(B D0OB) ~L
z1:0 ~(B D OB),21:0 ~(B D OB) - DL
x1:0 ~(B DOB)
F xy: ~0O N(B D) DB)

DR
~ L
OL

ClL

~R

Labelled Deductive Systems
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Example (cont.)

with the diagram:

> .

4
O~ (B DOB) B,~0OB
OL,~L, DR

1 | CIL

O~ (B D OB)

2 | OL,~L,DOR

3
B,NDB NB
OR

I is inconsistent since E™ y: ~ B and ' y: B

Labelled Deductive Systems UniLog'05



Luca Vigano

Further examples: Using relational rules and

contraction in S(K4)

$2R£B3 - szaZ‘;-; W

A F 332R£E3 WwrL 333:DB, A F :333:B,£U3:|:|B 0

AXr r3:0B F x3:0B

r:00B, A+ x3:B, x3:0B

xq:0 NDB, 332:|:||:|B, A+ .CUgZB

x1:0 ~O0B,x2:00B, 21 Rxs - x2:0B
1 Rxg - 1 RZBQ AXr 9. NDB,CE12|:| NDB,$21DDB,CE1 RCBQ -

x1:0 ~O0B,x1:0 ~0O0B, z,:00B,x1 Rxs F

x1:0 ~O0B, x2:00B, 21 Rxy F CIL
rx1:O0 ~O0B,x1Rxo F xo: ~0O0B SIP{{
r1:O0 ~O0BF z1:0 ~0O0RB

Fx:O~0B D>DUO~OO0ORB o R

where A = {x1 Rxo, x93 Rx3} and Il is

OR
~ L
OL

r1Rxo b 1 Rxo AerL o Rxs3 l—CCQRzAxr
1 Rajz, o Ribg - I R:EQ r I RCCQ, ZE2R$3 - :L‘QRCC3
$1R$2,$2R$3 - CL‘lRLCg

WrL

trans

Labelled Deductive Systems
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Proof search: problems
Let A be a formula that is not trivially provable and consider an attempted proof
of the non-theorem z:0(A D OA) in S(K)

2 777

y:A, xRy, yRzF z:A

y:A, xRyt y:0A

xRyt y:ADUOA
- x:0(A D DOA)

OR
DR
OR

and its associated ‘putative’ counter-model (model or counter-model?)

X Yy zZ
1

~O(ASDA) - A~OA A
OR, DR OR

Q: Since contraction is always applicable, how can we guarantee that proof search
terminates?

A: We have seen that contraction is not (always) eliminable, but in some cases we
can bound its application!
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Proof search (proof of - z;:D)

e Simplifying rules: size is a decreasing measure, e.g.

AFxzRy y:A T, AFTY
r:OA T, AT

0L (subformula property)

e Non-simplifying rules: size is not a decreasing measure, e.g.

A, AT, AT
v AT, AT

ART A 2 A
DAFTY 2:A

CIL

CIR

I AFxRy AFyRz

and relational rules: Cr -
AF- 2Rz trans

e Bounding proof search ~» bounding non-simplifying rules.

» Substructural and relational analysis of S(£).

141

= decreasing measure = bounds on space complexity of decision procedures:
» combine bounds on contraction with bounds on number of labels, rwffs and

lwffs generated in proofs,
» apply and extend standard techniques.

Labelled Deductive Systems
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Logic-independent bounds (proof of - x1:D)

1. Theorem: CrL is eliminable in S(L).
Just remove WrLL — CrL pairs (delete, collapse):

AXr
WrL

trans

:BRyI—:URyAX\g\/L yRzFyRz
tRy,yRzF xRy """ 2Ry, yRzF yRz
ctRy,yRzF xRz

z:AF z:A AXI

mRyaﬂﬁRy,szl—mRz\g%‘ ZZA,yRZI—z:Awr{‘NL
ctRy,yRzF xRz I z: A, xRy, yRz F z:A DIIZ

r:O0A, xRy, yRz F z:A
r:OA, xRy F y:0A DR
x:0A F x:00A D?{R

Fx:OA D OOA

2. Theorem: We can always transform a proof of - z1:D so that it
does not contain contractions, except for contractions of labelled

formulas of the form z:MA;... A,,.
That is: contractions of x:0A, x:A — B, ...
3. ...
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Logic-independent bounds (proof of - x1:D; cont.)

e Permutations: invert order of rules.

Example:
wA DT, ARy -1 w:B,y:C SR wA D A zRy T, uw:B, y:C OR
A,z Ry+FT',uw:A D B, y:C R permutes to wA, T, AFT uB,z:0C SR

LAFT uwA D B, z:0C L,AFT' w:A D B, z:0C

e Fact: Every ‘lwff-rule’ permutes w.r.t. any other ‘Iwff-rule’, with
the exception of OL which does not permute w.r.t. OR.
A, xRy-xRy vy: AT, A,xRy+-T' y:B

x:O0A, T, A nyI—F’ y:B
z:0A, T, A, F TV z:0B

OL

OR

Analogous problem for ML and MR.
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The recipe for an arbitrary non-classical logic £

1. Give a cut-free labelled sequent system for S(L).

(a) Distinguish simplifying and non-simplifying rules.

(b) Apply logic-independent bounds to restrict non-simplifying rules.

2. Provide (logic-dependent) bounds for the remaining
non-simplifying rules.

(a) By following our guidelines and examples.

(b) Possibly bringing in relational oracles to decide
AFRxxq...x,.

3. Compute the space requirements of the decision procedure.

(a) Based on the results of step (2) and our guidelines.
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Space complexity of proof search (proof of - z:D)

e Combine bounds on non-simplifying rules with bounds on number
of labels and relational formulas generated in proofs.

e Adapt and extend standard techniques:

» Rather than storing entire proofs (branches),
» store a sequent and a stack that maintains information sufficient

to reconstruct branching points
(stack entry: indices for rules, principal formulas and branching
points),

» each rule application generates a new sequent and extends the

stack,
» if necessary, bring in oracle to decide relational queries.
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Space complexity of proof search (proof of - z:D)
e Overall space required is O((1e) + s + r):

» length 1 of the stack,

» size e of a stack entry,

» size s required to store any single sequent that could arise in the
proof,

» space requirement r of oracle.

e Measure m bounds:

» length 1 of the stack (proof depth),
» number of labels, labelled formulas and relational formulas in
the proof,

e ¢ is bounded by O(logm),
e represent subformulas with indices = s is O(m logm).

= Overall space required is O(m logm + r).
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Logic-dependent bounds (Measure m and oracle r)

Guidelines:

e Contractions: annotate sequents with contraction index, e.g.

T MA; .. A,z MA, .. A, T, AT
xcMA, ... A, T, AT

ClLs (s > 0)

= (lexicographically ordered) measure (s, >), where ¥ is size of
sequent.

e Relational reasoning: compute space requirement r of oracle.

Labelled Deductive Systems UniLog'05



Luca Vigano 148

Logic-dependent bounds (Measure m and oracle r)

e Theorem (O-disjunction property): If S(L) is ‘divergent’, then

CIR is eliminable. y

» l.e. every - x1:D provable in S(£) has \\} No!
a proof with no applications of CIR. P |

> divergent = ‘follow only one path’. z

.., xRy, xRz +F ... ,y:A, z:A :

. zRyF .. .yA w04 PR . zRybF ... A
oo, O0A, x:OA DR ~> R R A DR
oo, x:0A CIR :

; - CC:liD
- CBliD
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Logic-dependent bounds (Measure m and oracle r)

e Theorem (O-disjunction property): If S(L) is ‘divergent’, then
CIR is eliminable.

» l.e. every - x1:D provable in S(L) has y \\\
a proof with no applications of CIR. ,,,> No!

-
-

[ divergent = ‘follow only one path’. 7

...,xRy,xRz+F ... ,y:A, z:A :
. zRyF ... . yAzoa SR .., xRzF ..., zA

..k o, xO0A, x:0A DR ~> R R R W | DR

oL, x:O0A CIR :

: - .CU:liD
= x1:D

e Divergent logics: K, D, T, K4, KD4, S4, B[—, A], BT, ... (not
S5!1)
= Only remains to analyze CIL in each logic.
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Modular analysis of CIL (proof of F x1:D)

e CIL is eliminable in S(K).

e CIL is not eliminable in S(T), eg. Fx: ~0O ~(B D OB),
but we need at most O(n) applications of CIL in each branch,
with n = | F z1:D|

r:0A, z:0A T, A1 T

zOAT AR Ol

e CIL is not eliminable in S(K4) and S(54), but we need at most
O(n?) applications in each branch.

e CIL is eliminable in B[—, A] and BT
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Summary

e A proof-theoretic recipe for bounding the complexity of
non-classical logics:

(1) logics presented as cut-free labelled sequent systems,

(2) combination of bounds on non-simplifying rules.

e Examples: K, T, K4, S4, B[—, A] and BT are decidable in
PSPACE (bounds new/compare well with best currently known).

Let n = ’ = :1;1:D\

CIL | generated sequent | proof depth | stack entry || space

S(K) none | O(nlogn) O(n) O(logn) O(nlogn)
S(T) ClLs | O(n’*logn) O(n?) O(logn) O(n*logn)
S(K4); S(S4) ClLs | O(n*logn) O(n*) O(logn) O(n*logn)

S(B[—, A]); S(B™) || none | O(nlogn) O(n) O(logn) O(nlogn)
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Standard sequent systems for modal logics
e SS(K) is

SEYA A EY

A Y H E’,A(AX) ~ASEY (~L) SHY, ~A

SFY A B, YXFY AYXHY B ' A
ADB,YFY (5L) SEY.AD B(DR) ¥, 00 =04, % (X)

(~R)

A, OA, S F ¥
e SS(T) = SS(K) + “2 5 (T)
[,O0F A
o SS(K4) = SS(K) + v o 5 (K4)
o SS(S4) = SS(T) + 5 o 5w (S4)

where the Y’s are multisets of formulas.
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Justification (and refinement) of standard rules

e Theorem: Our labelled sequent systems provide proof-theoretical justifications
(and in some case refinements) of the rules of standard modal sequent systems.

1. Derive labelled equivalents of standard rules.

2. Transform S(L)-proofs into SS(L)-proofs and vice versa
(by transforming S(L)-proofs into a block form
= sequences of local and transitional reasoning).

e For (K):
yI'Fy:A
yI'zRytFy:A WrL
yT Fy:A : OL (all with active rwff x Ry)

OLRk ~ 200 zRyF y:A R
.0 I—_\:sj\}ElA

x:2, x:00 - x:0A, 2:X

2, x:00 - x:0A, x:5
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Justification (and refinement) of standard rules

e For (T):
A OA 23 E 23 FrRx refi r: A, x:0A, 23 F x:Y a1
:czDA sz Y OLp  ~ x:0A, v:0A, :2 F x:X

x:0A, x:2 F x:X CIL

Exploiting our results we can refine SS(T) by replacing

A OA Y EY
OA, Y F Y (T)

with

O0A,0A 3 =13
O0A, Y 5 Y

AN S Y
OA, Y 5 %)

(T2)

(ClLs)
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Example of transformation S(T) ~» SS(T)

We transform previous proof into block form:

y:B - y:B AXl
y:B y:B,y:DBWlR
Fy:B,y:B D OB SR
yi ~(B>OB)Fy:B "~k
xRy nyAXr y: ~(B DOB), xRy - y:B WrL
x:0~(BD>OB),rRyt+ y:B bL
x:0~ (B DOB)Fx:0B
WIL
x:0~(B DOB),z:B+F x:0B
20~(BDOOB)F2:B>OB -1
I—acRacreﬂ a::N(BDDB),a::DN(BDDB)I—NL
2:0 ~(B D OB),z:0 ~(B > OB) F DL
x:0~ (B DOB)F
Fx: ~0~ (B D OB)

OR

ClL

~R
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Example of transformation S(T) ~» SS(T)

Then into
v:BF y:B,y:0B fg BF B,0B (/(xx%{)
Fy:B,y:B D OB L FB,BD>0OB D( L)
y: ~(B D OB)F y:B OLR ~(BD>OB)+F B

x:0~ (B DOB),z:B+ x:0B K . O0~(B>OB),BF OB (K)
et nrassogor so that SS(T)-proof is 2P =F8EEE8 or)

~ NL
x:~(BDOB),z:0~(BDOB)F Df ~(B D>0OB),0~(BD>OB)F (T )
z:0 ~(B D OB) T O~(B>S0B) - (T)

Fax:~0~ (B D OB) ~R F~0O ~(B D OB) (~R)
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For (K4) and (S4)

.CCZ'_HZF, 337;_|_1:|:]F - 337;+1:A

Tiv1:I'y 2100, 2 Ry B 21t A WrL
, , , : OLk4 (all with active rwff z; Rx;11
CBZ'_H.F, ZEH_l.DF = ZEH_l.A : K4 v t+1,
, ] . 7 OLRKksa ~~ x;:0, x;, Rxin1 - xi0q1: A
ZUZ'.E, ZCi.DF - $z‘.DA, CBZZ IiZDF = wiIDA OR
' W

22, 00 F 2 0A, 2%
by a suitable number of applications of

Arz;Rr; z;:A,z;:;04 T, AFT a1
ri:0A T, AF T K
A F aziRa:j ijA,CEj:DA, F, A F/
r;:OA F x;;:00A ijA, r;:OO0A, T, A T’
~  AF CUZ'RLCJ' ijA, i :OA, T', A F I’ cut
ri:OA, x;:0A, T, A T HL
r;:OA, T', A F I’

ClL

Yields justification of SS(K4), but no immediate refinement because
of cut.

Analogous for (S4) and SS(S4).
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Road Map

e Introduction: A framework for non-classical logics.
e Labelled deduction for modal logics.

e Labelled deduction for non-classical logics.

e Encoding non-classical logics in Isabelle.

e Substructural and complexity analysis of labelled non-classical
logics.

e Conclusions and outlook.
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Conclusions and outlook

e A framework for non-classical logics.

» Labelled ‘natural’ deduction systems.

» Structural properties vs. generality.

» Structure
= implementation, decidability, complexity, justification of
standard rules.

e QOutlook:

» Decidability and complexity of relevance logics?
» Other logics?
» Increase automation for applications in ‘real” world.
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Conclusions and outlook: combination of logics
Labelled deductive systems provide a suitable basis for
combination /fibring of logics (see papers by D. Gabbay, A. Sernadas,
C. Sernadas, and many many many others):

'

labelling <_
!

deduction system
+

implementation

A”///’ | \\\\x
\

soundness decidability
& - structural _____ - &
completeness properties complexity

See also “translations”, “hybrid logics”, “substructural logics”, ...

(Labelled non-classical logics, Labelled Deductive Systems, Labelled Deduction,
Labelled Deductive Systems UniLog'05
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See also www.inf.ethz.ch/ vigano

APPLIED LOGIC SERIHEE 4
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Deduction

DaridHamin,
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Eliminating CIL in S(K)

e Theorem: CIL is eliminable in S(K),
i.e. every - x1:D provable in S(K) has a proof with no
applications of CIL.

By 3 nested inductions (number, grade, rank of contractions).
= mis O(n)
A xRy is provable iff t Ry € A = ris O(n)

e Theorem: Overall space required O(m logm 4 r) is O(nlogn).
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Eliminating CIL in S(K) (cont.)

z:B,...,:.chl—...
z:O0B,..., xRz F ...

OL

z:0B,...,zRz+ ..., 2z:C
z:0B,... k..., xz:0C

OR

y:B,x:DB,..I.,mRyI— ..
x:O0B,xz:0B,..., xRy ...
z:O0B,..., xRy F ...

- OL
CIL

- xq:D

Permutations:

y:B,z:B,...,mRy,sz F...,z:C

y:B,x:0B,...,x Ry, xRz + ..., z:.C DEL
x:O0B,z:0B,..., xRy, zRz+ ..., z:.C OR
z:0B,z:0B,..., xRy + ...,z:0C

m:DB,:L':EIB,.-..,:CRy ...
xz:O0B,..., xRy ...

CIL

I—a:i:D
Then:
y:B,...,mRy,.a:Rz F...,z:C

z:O0B,..., xRy, zRzF+ ..., z:C
z:0B,...,zRy+ ..., z:0C

OL
OR

z:0B,...,sRy ...

- aci:D
Labelled Deductive Systems UniLog'05
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Bounding CIL in S(T)
e CIL is not eliminable in S(T).
- x1:~0~(B D OB)
requires 1 application of CIL.
- 2:0P((CO~O~D)AN(DD~O~FE)AN~F)DO~C (p > 3)

requires 2 applications of CIL, but can be instantiated to require more, e.g. by
replacing ‘A ~E" with ‘A (F D~0O ~F)A ~F" and requiring that p > 4.

e Lemma: At most one left contraction of each x:OA in each branch.
in each branch we need at most two instances of each z:0A in the
antecedent of a sequent: one for z:A and one for z: A for a new world z that is
a successor of x.

e Lemma: CIL only if A contains a negative subformula of the form OB, i.e. we
only contract of the form x:0A[OB]_.
we create a new world.

Labelled Deductive Systems UniLog'05



Luca Vigano 166

Bounding CIL in S(T) (cont.)

e Given S =T, AT’ pbs(S) and nbs(.S) are the number of positive and
negative boxed subformulas of §.

e Lemma: At most pbs(.S) contractions in each branch.

e Theorem: Every sequent S = F x1:D provable in S(T) has a proof in which
there are no contractions, except for applications of CIL with principal formula
of the form x;:0A[0B]_. However, CIL need not be applied more than pbs(.S)
times in each branch. Hence, we can restrict CIL to be CIL; with s set to
pbs(S) at the start of the backwards proof, i.e. -pbs(Fe1:D) 4.,

= Measure (s, 3) is O(n?), since pbs(S) and size ¥ of S are both O(n).
A xRy is provable iff t Ry € Aoryisx = ris O(n)

e Theorem: Overall space required O(m logm + 1) is O(n”logn).
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Bounding CIL in S(K4) and S(54)
e CIL is not eliminable in S(K4) and S(S4).

= 331:|:|( ?:1(07; O ~0 NC@'_H) A NCn) O O~Ch
requires ¢ contractions of
371:|:]( ?:1(01' O~ NCZ'_|_1) A\ NCn)

namely, one contraction for each O that occurs negative in it (i.e. one for each
of its subformulas O ~C;1).

Moreover, it can be modified to require more contractions.

= We obtain a formula such that for each subformula that has a positive O as
its main operator we need at most as many contractions as there are O's that
occur negative in its scope. That is, O(| - z1:D|?) left contractions.
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Bounding CIL in S(K4) and S(54)
e CIL is not eliminable in S(K4) and S(S4)

= Infinite chains x1, 2, x3, T4, ... May arise.
= Infinite branches.
= Proof search does not terminate.

e Possible solution: infinite chains are periodic:

there exist worlds z; and x; in the chain such that x; is accessible from
z;, and A holds at z; iff A holds at z;.

» Dynamic loop checkers to truncate chains and branches:
proof search terminates but requires history (computationally expensive).
» Static counter-part: a-priori polynomial bounds on the number of
applications of CIL in each branch.
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Bounding CIL in S(K4) and S(54)

e Extend results for S(K) and S(T) and combine them with
e polynomial bound on length of branches.

e Lemma: There is a proof of S = x1:D such that in each branch OR is
applied at most pbs(S) + 1 times with principal formula OB labelled with
increasing worlds in a chain.

consider set of positive boxed subformulas

e Lemma: In each branch there are at most nbs(S) x (pbs(S) + 1) applications
of OR, so that chains contain at most 1 + nbs(.S) x (pbs(S) + 1) worlds.
at most nbs(.S) negative boxed subformulas in S, and CIR eliminable
by O-disjunction property.
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Bounding CIL in S(K4) and S(54)

e Lemma: In each branch there are at most (nbs(S) x (pbs(S)+1)) — 1
applications of CIL with the same principal formula z;:0A, so that there is one
instance of x;:0A for each world accessible from ;.

e [heorem: In each branch there are at most
((nbs(S) x (pbs(S) +1)) — 1) x pbs(.S) applications of CIL with principal
formula of the form z;:0A|0B|_. Hence, we can restrict CIL to be CILy.
= Chains may consist of O(n?) worlds.
= Branches may contain O(n?) applications of CIL.
= Measure (s, X) is O(n?).

A x Ry provable by (reflexive-)transitive closure of A = r is O(n).

e Theorem: Overall space required O(m logm + 1) is O(n*logn).
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A smaller bound?

Conjecture

chains contain at most 1 + nbs(.S) x (pbs(S) + 1) worlds
= at most ((nbs(S) x (pbs(S)+ 1)) — 1) applications of CIL in
each branch.

transform branches of proofs so that

CIL of ZCZ'ZDA[DB]_

append a new world to the chain that we are constructing
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Consequence Relations

Given a language L, a consequence relation is a relation between
finite multisets of formulas in £ that is

o Reflexivity: {A} F{A}
e Transitivity (cut): if {A} - {B} and {B} F {C}, then {A} F{C}

If we take sets of formulas, instead of multisets we call the relation
‘regular’.
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