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Abstract In this paper we are interested in studying how the sim-
ulation method can be applied to the verification of pro-
We study simulation relations for Probabilistic Automata tocols that involve cryptographic elements, seeking tech-
that require transitions to be matched up to negligible nhiques that lead to simple, local and rigorous arguments
sets provided that computation lengths are polynomially of correctness. Our main motivation is the fact that in the
bounded. These relations are meant to provide rigorous Crypto community several papers contain rigorous defini-
grounds to parts of correctness proofs for cryptographic tions of correctness that are proved via complex arguments
protocols that are usually carried out by semi-formal ar- about global properties of computations; often these argu-
guments. We illustrate our ideas by recasting a correctnessments appear rather informal. In several cases the argu-
proof of Bellare and Rogaway based on the notion of match-ments involve showing correspondence between the com-
ing conversation. putations of a real protocol and the computations of a more
abstract, sometimes idealized, protocol that describes the
expected behavior of a system. On the other hand, the sim-
ulation method is a rigorous sound technique to prove cor-
respondence between computations of concrete and abstract
systems. As a guideline we consider a message authentica-

The simulation method15] for hierarchical verification ~ tion protocol studied by Bellare and Rogaway with respect
of concurrent systems consists of establishing relations be-0 the definition of correctness based on matching conver-
tween the states of two automata, calithulation rela-  Sations [3].
tions and to verify that such relations satisfy appropriate ~ Since cryptographic protocols involve probabilistic
step conditions Typically, a step condition requires that choices, we use probabilistic automata as basic underlying
each transition of the simulated system can be matched bynodel. We describe a system in the Dolev-Yao style [9],
the simulating system up to the given simulation relation. where several agents interact via an adversarial network
The main advantage of the simulation method is the abil- that records the past history and uses its knowledge to cre-
ity of reducing the analysis of global properties of com- ate, modify and/or forward messages between agents. At
putations to the analysis of local properties of transitions. the abstract level we impose restrictions to the choices of
Also, concepts like transitivity and compositionality stud- the adversarial network so that correctness is guaranteed by
ied in the context of process a|gebras [17] allow us to fur- deﬁnition, while at the concrete level we assume that the
ther decompose large problems into smaller problems andchoices of the adversarial network are governed by a prob-
to verify systems hierarchically, that is, by building several abilistic polynomial time function. We then show that there
intermediate refinements between specifications and impleJS an appropriate simulation relation from the concrete to the
mentations. Often hierarchical verification is simpler and abstract system. Our main goal here is to understand what
cleaner than direct one-step verification. The simulation Such a simulation relation should look like and to provide
method has been extended to systems that include probabilevidence via a simple example of the potentials of using the
ity as well, leading to the model of probabilistic automata Simulation method.
and to related notions of probabilistic simulations [24]. The ~ The notion of simulation that we propose, callealy-
reader interested in surveys of the extensive literature on re-nomially accurate probabilistic simulatiomrequires that a
lated models and extensions is referred to [23, 26]. step of the concrete system is not necessarily matched ex-
actly by the abstract system, but rather up to some error
*Supported by INRIA project ProNoBiS and MIUR project AIDA. ¢, which should correspond to the probability with which
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the adversarial network may be able to compromise cor-of showing that computations with non-negligible error sets
rectness. The error should then be exponentially small inare attackers for some underlying protocol or cryptographic
some security parameter provided that computations are ofprimitive. It is worth investigating whether the proofs in [2]
polynomial length. For this reason, our simulations are de- would benefit from the use of polynomially accurate simu-
fined over families of probabilistic automata, parameterized lation (or bisimulation) relations. Simulation relations are
over the security parameter, and relate computations ratheused also in [8] in the context of the Universally Compos-
than states to account for lengths of computations. Usingable framework [6]. In this case simulation relations are ex-
the notion of lifting of a relation to probability measures act and the computational arguments are carried out with re-
(see e.g. [23]), we impose a step condition stating infor- spect to a notion of approximated probabilistic language in-
mally that whenever two probability measures over execu- clusion [7] based on the trace distribution semantics of [22].
tions are related up to some errgrwhere computations  Also in [18] there is a use of exact probabilistic bisimula-
have polynomial length, each computational step from thetions in the context of a probabilistic polynomial time pro-
first measure can be matched by a computational step froncess calculus. In this case the computational aspects are
the second measure up to an extra error which is smallercaptured directly in the definition of the calculus. Another
than any polynomial. This means that the cumulated errorproposal of approximated probabilistic simulation relations
in matching any polynomial number of steps is also smaller appears in [19]. In this case a distance between probability
than any polynomial. Thus, the probability of the computa- of measures is defined based on the ability to produce sim-
tions that cannot be matched, that is those that may lead tdlar trace distributions. Then, roughly speaking,sasimu-
failure, is negligible. lation matches steps fromdistant measures by preserving
The advantage of our notion of polynomially accurate s—_distance. Our de_finit@on is based on a differen_t r_10ti0n of
probabilistic simulation, which we illustrate via the exam- distance and permits distances to grow by a negligible value
ple of the MAP1 protocol of Bellare and Rogaway [3], is &t €ach step.
that the verification of the step condition reduces directlyto ~ The idea of hierarchical analysis is also not new in the
the statement of correctness of the underlying cryptographicsecurity literature. Besides the above literature on the use
primitives. Also, the transitivity of our simulation relations of the simulation method, in [25] there is an idea of repre-
allow us to separate concerns by describing adversarial netsenting a correctness proof as a sequence of related games,
works at several levels of abstractions. For example, in thewhere games are representations of attacks against proto-
Bellare-Rogaway case study we can define a first interme-cols that are either described at different levels of abstrac-
diate network where all new nonces from agents are forcedtion, and where two games are related if the difference of
to be fresh, and a second abstract network where all newthe probabilities of successful attacks is negligible. A sim-
nonces from agents are fresh and at the same time no sigiar idea is followed by [4, 5] with the difference that a me-
nature (message authentication code) is forged. The steghanical correctness proof can be provided by means of a
condition for the first level can be proved by observing that collection of sound game transformation rules. We view
nonces are generated randomly by agents, while the stegprobabilistically accurate simulations as a potential tool for
condition for the second level follows from the observation proving correctness of game transformations in [25] and for
that a transition that cannot be matched is a forger for theproving the soundness of the rules of [4,5]. Indeed, the two
employed signature schema. Finally, the compositionality steps of our case study are very similar in style to the game
of our simulation relations allow us to analyze only subparts transformation of [25].
of a system. For example, the second level of the Bellare-  Another formal analysis of the MAP1 protocol of Bel-
Rogaway analysis can be carried out by ignoring the struc-lare and Rogaway appears in [13]. In this case a prob-
ture of the agents. abilistic polynomial time observational equivalence is de-

The simulation method is used already in the security lit- fined on a probabilistic polynomial time calculus similar to
erature. For example in [2] bisimulation relations are used the asynchronous-calculus: two processes are equivalent
to prove correctness of implementations according to theif for each context, the probability that the context distin-
notion of reactive simulatability [20, 21]. Although the def- 9uishes the two processes is negligible. The calculus is
inition of bisimulation is not worked out in full details, the Used to formalize the MAP1 protocol, while the analysis
idea is clear: transitions should be matched up to some “er-iS carried out via typical arguments from the cryptography
ror sets”, where an error set is a set of parts of transitionsliterature. More recent work [18] considers also axiomati-
(e.g., messages, states) that have no corresponding pieC@tions for the observational equivalence, which could be
in the abstract system; then, a separate arguments showdsed as an alternative process algebraic method to prove the
that the global probability of the error sets is negligible. correctness of the MAP1 protocol.

In our approach we impose conditions on the probabilities  Though our main goal was to give more rigorous grounds
of the error sets directly in the step condition with the aim to proofs carried out in the pure computational framework,



we believe our results can be seen as a further step in thgrobability measures are used to describe progress. If the

process of proving the soundness of the Dolev-Yao model
[9] with respect to the computational model. Indeed, in

measure of a sample space is hpthen it means that with
some non-zero probability the system does not progress.

our case study the abstract description of the adversarial
network assumes perfect cryptography and fresh nonces2.2 Probabilistic Automata

Initial work on the soundness of the Dolev-Yao model [1]

was considering passive eavesdropping, showing how non-

derivability of terms in the Dolev-Yao model is related to
non-computability in probabilistic polynomial time in the
concrete model. Later work started to consider active ad-
versaries as well [2,12,16]. In this last case it is important
to establish connections between concrete and abstract co
putations, which is one of the uses of polynomially accurate
simulation relations. One point of our definition is that we
can work with any abstract model.

The rest of the paper is structured as follows. Section 2
gives formal definitions of probabilistic automata; Section 3
introduces the polynomially accurate probabilistic simula-
tion relation and its properties; Section 4 shows the appli-
cation of polynomially accurate probabilistic simulation to
the Bellare-Rogaway protocol; Section 5 gives some con-
cluding remarks.

2 Probabilistic Automata

In this section we recall the basic definitions for Prob-
abilistic Automata and the notion of simulation of [24].
The reader interested in an introduction to Probabilistic Au-
tomata is referred to [23].

2.1 Mathematical Preliminaries

A o-field over a setX is a setF C 2X that includes

A Probabilistic Automator(PA) is a tuple(S, s, A, D)
wheresS is a countable set agftates s € S is thestart state
Ais a set ofactions andD C S x A x Disc(5) is atran-
sition relation

The restriction on the state s&tto be countable is not

IT‘Hecessary for the results if this paper, but we impose it for

simplicity.

Throughout the paper we let range over probabilistic
automatag, r, s range over states, b, c range over actions,
andp range over discrete measures over states. We also de-
note the generic elements of a probabilistic automatday
S, s, A, D, and we propagate primes and indices when nec-
essary. Thus, for example, the probabilistic automadén
has transition relatio®,. We also denote the start state of a
probabilistic automatomt, 3, ... bya, b, . .., respectively.

An element of a transition relatiob is called atransi-
tion or astep A transitiontr = (s, a, 1), denoted alterna-
tively by s = 1, is said tdeavefrom states, denoted also
by src(tr), to belabeledby a, denoted byact(tr), and to
leadto i, denoted bytrg(tr) or uyr. We also say that state
s enablesactiona, that actioru is enabledfrom s, and that
(s,a, p) is enabled frons.

An execution fragmenof a PA A is a sequence of al-
ternating states and actions,= sgas; .. ., starting with
a state and, if the sequence is finite, ending with a state,
such that, for each non final indéxthere exists a transi-
tion (si,ai+17ui+1) in D with Iit1 (Si+1) > 0. We de-

X and is closed under complement and countable union. Anote the first state, of o by fstat§«). We say that an

measurable spacis a pair(X, F) whereX is a set, also
calledsample spaceand.F is ac-field over X. A measur-
able spacé X, F) is calleddiscreteif 7 = 2. A measure
over a measurable spac¥, F) is a functionp: F — R>0

such that, for each countable collectipK; }, . , of pairwise
disjoint elements ofF, p(U;X;) = >, p(X;). A proba-

bility measureover a measurable spa¢&’, F) is a mea-
surep over (X, F) such thatp(X) = 1. A sub-probability
measureover (X, F) is a measure ovefX, F) such that

execution fragment idinite if it is a finite sequence, and
we denote the last state of a finite execution fragnaehy
Istate(«r). We define the length of an execution fragment
« to be the number of occurrences of actionsinAn ex-
ecutionof a PA A is an execution fragment off whose
first state iss. We denote byFrags®(.A) the set of finite
execution fragments ofl, by Frags(.A) the set of finite or
infinite execution fragments, and tBxecs(A), Exec$.A)
the corresponding sets of executions. Weletnge over

p(X) < 1. A measure over a discrete measurable spacediscrete probability measures over finite executionsAof

(X,2%) is called adiscrete measurever X. Thesupport

of a measure over (X, F) is the sex € X | p(z) > 0}.
Given a setX, denote byDisc(X) the set of discrete

probability measures oveX, and bySubDis¢X) the set

of discrete sub-probability measures ovEr We call a

discrete probability measureRirac measure if it assigns

measurel to exactly one object (denote this measure by

d.). We also call Dirac a sub-probability measure that as-

signs measuré to all objects. In the sequel discrete sub-

that is,v € Disc(Execs(A)).

A scheduler for a PA4 is a functiono : Frags‘(A) —
SubDis¢D) such that, for each finite execution fragment
a and each transitiotr with o(«)(tr) > 0, src(tr) =
Istate(«). A schedulew is deterministic if, for each finite
execution fragment, o(«) is a Dirac sub-measure.

A schedulers can be used to describe the result of re-
solving nondeterminism starting from some stat&pecif-
ically, a schedules and a state induce a probability mea-



suree, s over execution fragments as follows. The basic of computations, a notion of lifting that accounts for errors,
measurable events are the cones of finite execution frag-and a notion of security parameter. Furthermore, since we
ments, where the cone of a finite execution fragmerde- will also need ways to match sequences of steps, we need a
noted byC,, is the sef{o’ € Frags(A) | o < o'}, where way to bound the amount of extra error introduced by each
< is the standard prefix preorder on sequences. The probastep. We try to address one issue at a time, getting closer

bility ¢, s of a coneC,, is defined recursively as follows: and closer to our desired notion of simulation.
The first step is to define a relation that can "see” lengths
0  if a=qforsome stateg # s, of computation. For this purpose, we define a relation on
. 1 if a = s, sets of executions rather than sets of states. This definition
€0,5(Ca) = / . : , >
€o,5(Car) 2Ztrep(ay o (@) (tr)ptr () is based on a derived notion of transition that shows how
if @ = d/ag, finite executions evolve in a single step. Formally, we say
that there is a step from a finite executiarto a measure
whereD(a) denotes the set of transitions B with label v € Disc(Execd(A)), denoted byy — v, if there exists

a. Standard measure theoretical arguments ensuredhat g transition(Istate{«), a, x1) such that, for each finite execu-

extends uniquely to the—flgl_d generateq by cones. We call  tion aas, v(aas) = u(s).

the measure,, s a probabilistic execution fragmeruf A

and we say that it is generated byfrom s. If s is the start ~ Definition 1. An execution simulatiorfirom a PAA, to a

state ofA4, then we say that, ; is aprobabilistic execution ~ PAA; is arelationR from Exec$(A; ) to Exec$(Az) such
We now turn to the notion of simulation for probabilistic ~ that:

automata [24], defining first what it means to lift a relation

on states to a relation on measures. Rebe a relation

from a setX to a sefY”. The lifting of R, denoted byC(R),

is a relation fromDisc(X) to Disc(Y) such thatp; £(R)

po if and only if there exists aveighting functionw: X x

Y — [0,1] such that (1jw(z1,2) > 0 impliesz; R 2, We say thatd, is execution simulated byt;, denoted by

() >°,, w(z1,22) = pa(z2), and (3)3°,, w(x1,72) =  A; <. A,, if there exists an execution simulation fron

pi(z1). An alternative definition of lifting given in a more o A4,.

probabilistic style states that L£(R) p- iff there exists a

joint measurev with marginal measuregs, andp, such that It is interesting to observe that so far we have not intro-

the support ofv is included inR. duced anything new since and=,, coincide.

A simulationfrom a PAA; to PA A, is a relationR » .
from S, to S, such that Proposition 1. Let A4;, A; be two PAs. Thetl; <. A; if

and only if4; < As.

e 51 R 5, and

e for each pair(ai,as) €R, if a3 — 14, then there
existsvy such thatvy — 9 andvy L(R) vs.

e 51 R 55 and . . . . .
Proof outline. Given a simulation relatio® from S; to Sy,

e for each pair(si,s2) €R, if (s1,a,11) € Dy, then define a relatiorR’ from Execs(A;) to Exec$(A,) such

there existg sz, a, ua) € Do such thaju; L(R) pa. thatay R’ as iff Istatga;) R Istatgas). It is routine to
o verify thatR' is an execution simulation.

We say thatA, is simulated byAs, denoted byd; = Conversely, given an execution simulatidd from

Ay, if there exists a simulation from, to A,. Exec$(A;) to Exec$(A,), define a relationR’ from S,

Itis known that relation< is transitive and preserved by {5 g, such thats; R’ s, iff there exista; and as such
parallel composition of PAs. This is the key feature that thata; R ao, Istatga;) = s1, andlstateg(as) = s». Itis

enables hierarchical and modular verification. We do not routine to verify thatR’ is a simulation relation. O

define composition here and we refer the interested reader

to [23]. We now generalize the notion of lifting so that two mea-
sures are not related exactly, but up to some err@ur def-

3 Polynomially Accurate Simulations inition states that two measures are related upifsome
(1 — ¢) fractions of the two measures are related exactly.

In this section we define our notion of polynomially ac- pefinition 2. LetR be a relation fromX to Y and lete >
curate simulation relation. Our aim is to define a rela-  Thec-lifting of R, denoted byC(R, <) is a relation from
tion where transitions are matched up to some error thatpise( X) to Disq(Y') defined as follows: for each pajs,

ter k provided that computations are of polynomial length.

This means that we need a relation that can “see” lengths e if ¢ > 1, thenp, L(R,¢) py;



e if ¢ €[0,1], thenp, L(R,¢) p, if there existp!,, p o 11 L(R,7) va,
Disc(X) andpy, p;, € Disc(Y') such that N y—

= pa = (1 —¢€)py +pf, then there exists}, such that

_Py:(1_5)9;+5051 . 1/24>l/é,

_ /
% LR) £y o Y LR +E) v
It is interesting to observe thatlifting is monotone on

 and thap-lifing coincides with lifting, We say thaid, is e-execution simulated byl,, denoted

by A; <¢ A,, if there exists as-execution simulation from
Proposition 2. The following holds for a relatiorR from Ap to As.

XY, The definition above satisfies few important properties.
1. £L(R,0)=L(R). The first property is transitivity up to some combination of
the errors; the second property is that sequencesstéps
2. Ife <€, thenf(R,e)CL(R, ). can be matched up to an erner. Thus, the bound on the

error for a single step induces bounds on the error for any

The introduction of errors in execution simulations is
number of steps.

then straightforward.
Proposition 3. Let Ay, As, A3 be three PAs such that
Ay <812 Ay and Ay <523 A3 for somesg, 23 > 0. Then
Ay =818 A3 wherees = €12 + €23.

Definition 3. Ane-simulationfrom a PAA; to a PAA, is
arelationR from Exec$(.A; ) to Exec$(Az) such that:

* 51 R 5 and Proof sketch.Let R1s, Ro3 be twos-execution simulations

e for each pair(ay, ) €R, if &y — 14, then there  thatjustify A, ¢ A; andA; =222 A3, respectively. De-
existsv, such thatv, — vy andyy L(R, &) vs. fine R13C Execs(A;) x Execs(A;3) asRiz= {(a1, a3) |
dag € Execs$ (.AQ).Oél Ri2 as A g Rog 043}.

The above definition is still not adequate for handling  The condition on the start states is immediate since by
cryptographic protocols. The pointis that we desire to reach hypothesis; R12 32 ands, Ras 53, hence by definition of
a point where the parts of transitions that cannot be matchedeg, 51 Ri3 33, as required.
correspond to bad behavior like guessing a key or forging a  The step condition is more involved and requires several
signature. Given a finite executienthere is always away  technical constructions that we cannot include here. Sup-
to resolve nondeterminism so that a key is guessed; what iSpose thaty, £(R1s,7) vs, and suppose, — v/}. We first
difficult to do is to guess a key once we have a probability apply the definition of-lifting to decompose; andvs into
measure over executions obtained by generating a key. Thigne parts that match exactly and those that do not match.
suggests that our step conditions should be based on measimilarly we decompose; — /| into two parts. We then
sures over executions rather than single executions. Furfind a3 measure-, that can be decomposed as well and use
thermore, itis convenient to consider also pairs of measureshe step condition withy = 0 from the matching parts of

that are related up to some errpnd limit the increment . .. Finally, we recompose pieces together. [
of the error. This leads to a new proposal of simulation rela-

tion that we define below. However, we first need to extend ~ For the next property we first have to define what it
the notation for transitions to measures over executions. means to reach a measure withisteps.

Given a PA A and two measuresy,v’ €
Disc(Exec$(A)), we say that there exists a transition

X M .
frorr]ndulto v dehnothed tf’yl’ _’h ? if there exists a We say that is a probability measure reached in at most
sehedulero suc that for each finite executionas, n steps viao if there is a sequence of probability measures
V' (Caas) = V(Caas) + v(Ca) Yotrep(a) o (@) (tr) - ptr (s), Vo, ...,y such thatyy(s) = 1, v, = v and for each) <

Definition 5. Let. A be a probabilistic automaton and be
a scheduler fotA.

whereD(a) denotes the set of transitions with actian i < n, o schedules the transition — v, .
Definition 4. Let.A,, A, be two PAs and |eR be a relation Proposition 4. Let A;, A, be two PAs such thad; <¢ A,
from ExecS(A,) to Execs(Az). We say thalR is ane- for somes > 0. Let'R be ane-execution simulation from
execution simulatiofrom A4, to A, if Aj to As.

1.5 R 5 For each schedules; for A, if v, is reached viao;

within n steps, then there exists a scheduterfor A, that
2. for eachy > 0, 11 € Disc(Execs(A4;)) andvy € reaches, withim steps, a probability measurg such that
Disc(Execs(Ay)), if v L(R,ne) vs.



Proof sketch.The proof is a classical inductive argument. p(k) steps, then there exists a schedulgrfor B, that
The base case is trivial since start states are related and theeaches, aftep(k) steps, a probability measurg such that
Dirac measures over them are the only measures reachable, L(R,p(k)k™¢) vp.
within 0 steps. Hence such measures are relate€(®; 0),
as required. For the inductive step, by hypothesis we start™ ' xd )
from two measures; and v, such thaty, £(R,ne) v Wlth €= k—¢ andk chosen according to the statement of
wheren is the number of steps used to reach them. By the Definition 6. O
step condition we have that after another step the reached
measures, andv, satisfyv] L(R,ne + ¢) v4, asrequired. 4 A Simple Case Study

O

{Proof sketch.The proof follows the lines of Proposition 4

We illustrate the use of polynomially accurate simula-
tions via a simple case study that deals with the Mutual
Authentication Protocol MAP1 of Bellare and Rogaway [3]
(cf. Fig 1). The protocol uses nonces to guarantee fresh-
ness and pseudorandom functions as message authentica-
ion tool. We first give some preliminary high level defini-
tions of nonces, pseudorandom functions, message authen-
Definition 6. Let { Ay}, and{By}, ., be two families tication codes, and forgers. These o_Iefinitions are taken or
of probabilistic automata; leR= {R;}, ; be a family of adapted from [10,11]. Then we describe the MAPl proFocoI
relations such that, for each € K, R is a relation from and the structure of our correctness proof. Finally, we illus-
Exec$(Ax) to Exec$(B;); let Poly be the set of positive trate some of the details of the correctness proof, where we

We are now left with the computational aspects of our
definition. For the purpose we talk about families of PAs
and families of relations parameterized over a security pa-
rameterk. Furthermore, we impose the step condition only
for measures that are reachable within a number of step
that is polynomial irk.

polynomials oveR. emphasize how the negation of the step condition of a poly-
We say thatR is a polynomially accurate simulation —nomially accurate simulation corresponds to the definition
from { Ay}, i 10 {Bi} e if of an attacker for the underlying cryptographic primitive or
protocol.

1. for eachk, it holds thata, Ry, by:

2. for eachc € N and for eachp € Poly, there exists 4.1 Cryptographic Components

k € N such that for eachk: > k, for all probability

measures; and v, and for eachy > 0, if In the following we assume thétis a security parameter

and thatPoly is the set of positive polynomials ovai:
e 14 is reached in at mogi(k) steps in4y,

o 1y L(Rg,7) va, 4.1.1 Nonces

o v — 1 A nonceof lengthk is an element of0, 1}* that is used at
most once. An ideal way to satisfy unicity of nonces is to
use a repository that keeps track of the nonces distributed
N ——s in the paTt and tEat respor;ds to all relquests by ret]cl;rnri]ng

, v a new value each time. The practical way to satisfy the
o 1 LRy +E7) . unicity of nonces is to choose them randomly fréen1}*.

We write{ A} e e S {Bi}iex if there exists a polyno-  In this way, if we choose randomly two nonces of length
mially accurate simulatiorR from { Ay}, s t0 {Bi} e the probability that they are the same is at nst. This

means that:
Finally we can use Proposition 4 to derive our main re-
sult, that is, existence of a polynomially accurate simulation Claim 1. For eachc € N andp € Poly, there exists
allows us to match any polynomial number of steps with an ¥ € N such that for eactk > £, if we choose randomly
error that is bounded by any polynomial. ni, ...y nonces from0, 1}°, thenPrin; = n; | i #
Jjl < ke

then there exists), such that

Theorem 1. Let{ A}, and{By},  ; be two families of
PAs such tha{ Ax} o S {Brtpex- LetR= {Ri}ick
be a polynomially accurate simulation frofd}, ., to
{Br} ek - A pseudorandom functio® is a function that can not be
For eachc € N, p € Poly, there existst € N distinguished from a truly random functiaR by any ef-
such that for eachk > k and each schedules, for ficient procedure (e.g., probabilistic polynomial time algo-
Ay, if v, is the probability measure induced lay, after rithm) that can get the values of bathand R at arguments

4.1.2 Pseudorandom Functions



of its choice. In other words, given a pseudorandom func-
tion P and a truly random functiof, if we evaluate them
on a polynomial number of values, then we are not able to
distinguish when we are interacting withor with R better
than flipping a coin to decide.

Formally, we say tha{f,: {0,1}" — {0,1}"} 0.13*
is apseudorandom functiafthe following two conditions
hold:

1. There exists a polynomial time algorithm that on in-
putss andz € {0, 1}" returnsfs(z).

. For every probabilistic polynomial time machiié
that samples values from a functighand returns a
value in{0, 1}, everyp € Polyand all sufficiently large
n's,

1

Fp/1ny __ _ -

PriMAn(1m) = 1]| <
where F,, is a random variable uniformly distributed
over the multi-set{f.} .oy, Hy is a random
variable uniformly distributed among all functions
mapping arbitrarily long strings td-long strings,
Pr[M*=(1") = 1] is the probability that the machine
M, on inputl1™, answersl provided thatf is chosen
according toF,,, andPr[M*~(1") = 1] is the prob-
ability that the machinel/, on input1™, answersl
provided thatf is chosen according tH,,.

This definition of pseudorandom function conceals tech-

[b.a.R4.Rp)s

[a.RB]s

Figure 1. MAP1 protocol.

not know. Such a forger is said Bucceedin existential
forgery) if it outputs a valid MAC to a string for which it
has not requested an authentication during the attack. That
is, the forger is successful if it outputs a p@ir, 5) such that
V(s,a, 8) = 1 anda is different from all strings for which

an authentication has been required during the attack. A
message authentication schemsssure(or unforgeable) if
every feasible forger succeeds with at most negligible prob-
ability.

A way to construct message authentication schemes is to
use pseudorandom functions, using the following construc-
tion (cf. Construction 6.3.1 of [11]): Ie{t.fs}se{071}* be a
pseudorandom function. We define a message authentica-
tion schemeG, A, V) as follows:

e Key generation with G: on input*, we uniformly se-
lects € {0, 1}* and output the key.

e Authentication with A: on input a key € {0,1}" and
a stringa € {0,1}", we compute and outpift («) as
an authentication af.

nical aspects that are out the scope of this paper. Interested ® Verification with V: oninputakey € {0, 1} a string

readers can find a justification of such technicalities and a
generalized definition of pseudorandom functions in Sec-

tion 3.6 of [10].

4.1.3 Message Authentication Code

A message authentication schersea triple (G, A, V') of
probabilistic polynomial time algorithms satisfying the fol-
lowing two conditions:

1. On inputl*, algorithmG (called the key-generator)
outputs a bit string.

. For everys in the range ofG(1%) and for everya €
{0,1}", algorithms A (authentication) and” (verifi-
cation) satisfyPr[V (s, «, A(s,a)) = 1] = 1 where
the probability is taken over the internal coin tosses of
algorithmsA andV'.

We call A(s, ) a message authentication co@dAC) to
the documenty produced using the key.
A forger is a process that, on inpuf, can obtain mes-

a € {0,1}%, and an alleged authenticatigh we ac-
ceptif and only if3 = fs(a).

Given a keys, we say thaffs(m) is the message authen-
tication code ofn with respect to the key and thatf, is a
MAC value generator.

Proposition 5 (cf. Proposition 6.3.2 of [11]). Suppose
that {fs},c(0,1+ is @ pseudorandom function. Then the
given construction constitutes a secure message authenti-
cation scheme.

A message authentication code can be used when an en-
tity A wants to prove its identity to another entiB. If A
and B share a secret key and a pseudorandom function,
then A can provide evidence of its identity by sending a
message of the forifu.m, f;(a.m)) to B, wherem is some
random valueg is a coding of the identity ofl, anda.m is
the concatenation af andm. B can rely onA’s identity by
verifying the correctness of the received message.

4.2 The Protocol

sage authentication codes to strings of its choice, relative to  Let {fs},c0,1;~ be a pseudorandom function, and let

a keys that is generated b (1%) and that the forger does

[]s denote the messade, f(x)) wherefs(x) is the mes-



sage authentication code ofwith respect tcs.

The MAP1 protocol is used to establish a mutual authen-

tication between any two agents and B among a set of
agentsA who share a key. At the beginning, all agents

munication with another agenf without a matching
conversation withy” is negligible.

E, during the attack, can play as initiator or responder, or

share a pseudorandom function and a secret random eleeven in both roles if it tries to break the MAP1 protocol

ments € {0, 1}*, wherek is the security parameter. When
agentA wants to communicate with ageBt A sends taB

a random challenge (a noncB) €r {0,1}*. B responds
by making up a random challenges €5 {0,1}* and re-
turning[b.a.R4.Rp|s, wherea andb are descriptions of the
identity of agentsd and B, respectively. ThenA checks
that the message received frabhis of the right form and
that it is correctly tagged as coming from. If it is, A
sendsB the messagé:.Rg]s and accepts.B checks that
the message from is of the right form and that it is cor-
rectly tagged as coming from. If itis, B accepts. Fig. 1
depicts how the MAP1 protocol works.

The definition of correctness proposed by Bellare and
Rogaway in [3] is based on the concephuditching conver-
sation All agents communicate via an adversarial network
E, controlled by a probabilistic polynomial time algorithm,

that can block, delay and/or modify messages, and possibly,

create new messages. Two agehtsnd B have a matching
conversation if the following conditions hold:

1. every message that sends out, except possibly the
last, is subsequently delivered B with the response
to this message being returned Aoas its own next
message;

. every messagB receives was previously generated by
A and each message thiatsends out is subsequently
delivered to A, with the response that this message
generates being returnedMoas its own next message.

The first condition states that when(that plays as a sender
or initiator agent) sends a message3tathe message is not
modified or blocked by the adversaby(except for the last
message) and the responsdiis correctly delivered tad,
without changing the messages order. The second conditio
is very similar to the first one, but it is based &'s point
of view (B plays as a receiver or responder agent).

Given an adversar¥ (that does not know the secret key
s shared by the agents}; breaks the MAP1 protocol if
it completes a mutual authentication with some ag&nt
persuadingX that the other participant is another ag&nt
This means thak’ completes the protocol without a match-
ing conversation witly". More formally, MAP1 is a secure
mutual authentication protocol if

e for each pair of agentX andY, if X andY have a
matching conversation, then both agents accept;

e for any probabilistic polynomial time adversagy the
probability thatF induces an agenY to accepta com-

interacting with several agents.

4.3 The Correctness Proof of Bellare-
Rogaway

The original proof that MAP1 is a secure mutual au-
thentication protocol can be found in Appendix A of [3].
The proof is split into two parts. First it is shown that the
probability of breaking the protocol when the agents share
a truly random function is negligible; then it is shown that
an adversan¥ that successfully attacks the MAP1 proto-
col with a non-negligible probability can be turned into a
distinguisher for a pseudorandom function.

The second step is rather standard in cryptography: the
distinguisher is an algorithm that simulates the interaction
between the adversafy and the agents and that queries the
message authentication scheme whenever it simulates a real
agent that computes a message authentication code. The
distinguisher return$ whenever it successfully induces an
agentA to accept without a matching conversation. The
probability of returningl is then significantly different if
the message authentication scheme is given by a truly ran-
dom function or by a pseudorandom function. Though this
construction is described in a semi-formal language, it is
quite standard and widely accepted.

The first step is based on an explicit computation of the
probability that the adversary induces acceptance without
a matching conversation when the message authentication
scheme is given by a truly random function. The short
proof must be read with great attention because of the high
number of potential pitfalls. It is a classical proof where
we reason about global properties of computations by ar-

rZ;uing back and forth about properties of different compu-

tational steps. These are typical arguments employed in
correctness proofs for distributed and concurrent systems.
In the specific case the argument is complicated further by
the presence of probabilities. More or less the argument
is a sequence of semi-formal statements about what mes-
sages are generated, in what order, who can have generated
them (and with which probability), and whether messages
can be repeated (and with which probability). Arguments
about uniqueness of nonces and unforgeability of message
authentication codes are intermixed. Our suggestion is that
the use of polynomially accurate simulations in this context
can provide us with the same simplifications that the sim-
ulation method provided in the area of distributed systems
(cf. [14]).



Now we give a more detailed description of the three lev-
els of the abstraction. The lowest level, depicted on the left
of Figure 2, consists of several automata, each one parame-
terized by a security parametefwe don’t add such param-
eter to the automata names for clarity). The automaion
is a secret generator that generates and provides the agents
with a secrets that is used as the key of the message au-
thentication scheme of MAP1 protocol. The automatg
models a real nonce generator. Whenever an agent needs a
nonce, it sends a requestig; and obtains a random value
AL A2 A3 taken from{0, 1}" as answer. The sétl;, A,,... } isanu-
merable set of automata that describe end-points of sessions
of the protocol. That is, each automatdn corresponds to
some oracldl’ - of [3], where oracldI’ ;- describes the
participantX trying to authenticate participaitin session
t, wheret is different for each authentication attempt. Com-
munication between agents and secret and nonce genera-
4.4 Our Correctness Proof tors is private, while communication between agents is per-
formed using a network that is controlled by the adversary
RAdv:. The network keeps an history variable that contains

We now give an outline of the correctness proof of the , . :
MAP1 protocol based on polynomially accurate simula- _aII previous messages sent and received by agents, which

tions. We describe the protocol at three levels of abstraction.'S USed (0 select the next action to perform (e.g., delivering
The lowest level description consists of the actual agemsmessages, casting new messages, blocking messages, ....).

that receive the secretfrom a secret generator and receive ! n€ choices of network should be computable in probabilis-
nonces from a device that generates random numbers. ThiC Polynomialtime. For this reason, the adversaidy is
adversary is controlled by a generic probabilistic polyno- parameterized by r_;l_probablllstlc polynomial time function
mial time algorithm. At the intermediate level nonces are /SO that the transition enabled from a staie f(s). _
generated by an ideal device that keeps track of what was 1he€ intermediate level, depicted in the middle of Fig-
distributed earlier, while at the highest level the adversary is Uré 2, differs from the lowest level only in the nonce gen-
purely nondeterministic and is not allowed to generate new &rator automaton; models an ideal nonce generator that
message authentication codes without obtaining them fromguarantees that nonces are never repeated. This implies that
the agents. Figure 2 depicts the three levels of abstraction. Unicity of nonces chosen by agents is guaranteed by defini-
The highest level abstraction is similar in style to the tion.

Dolev-Yao model where we assume perfect cryptography, 1he highest level, depicted in the right of Figure 2, dif-
while the description in three levels is similar in style to the fers from the intermediate level only in the automaton that

game transformations proposed in [4, 5, 25]. The most ab-COntrols the network. The new adversary, denoteGByly
stract system can be shown easily not to exhibit any attack'S & non_determmlstlc automaton that is allowed to pe_rfor_m
by employing ordinary well known techniques for purely &Ny action except for casting new message authentication
nondeterministic systems. The novel element here is thec0des without obtaining them from the agents. More pre-
use of simulation relations to relate the three levels. cisely, we define a functioNot Bad that, given a secret

We exhibit a polynomially accurate simulation for each @nd @ histonistory, returns the set of messages where all
pair of neighbor abstractions, use transitivity to state that SUPParts that are tagged correctly with a message authen-

there is a polynomially accurate simulation from the lowest tication code relative ta are taken fromhistory. That is,

level to the highest level abstraction, use Theorem 1 to argud© NeW correct tag is cast. Then we requiadvto gener-
that the probability of low level computations that do not ate only those messages that are in the outcome of function

have corresponding high level computations is negligible, NotBad This implies that unforgeability of message au-

and use the fact that at the highest level there are no attackd1entication scheme is warranted by definition.

to deduce that at the lowest level the probability of attack is

negligible. The crucial and interesting point is that at each 4 4 1  Automata Specification

level the negation of the step condition is the negation of

the key property of nonces or the definition of a successful We now provide the automata that describe the participants
forger for a message authentication scheme depending oand adversaries of the MAP1 protocol. We adopt the nota-
the simulation relation we are analyzing. tion used by Lynch in [14] (cf. Figure 3). Each automaton

Figure 2. The three levels of abstraction for
MAP1.



G*(A)

Signature:

Output:
secret \ (s),s € {0,1}*, X, Y € A,t €N
secrety (s), s € {0,1}F

State:
valuee {0, 1}*, initially v € {0, 1}*

Transitions:

Output secret - (s)
Precondition:
s = value
Effect:
none

Output secrety (s)
Precondition:
s = value
Effect:
none

Figure 3. The Secret Generator, G*

NF(A), NE(A)
Signature:
Input:
noncerequesg(yy, X, Y €A teN
Output:
nonceresponsg - (n),n € {0,1}*, X, Y € A, t €N

State:
freshnoncesC {0, 1}*, initially {0, 1}*
valudy, - € {0,1}F U {1}, initially 1, X,Y € A,t €N

Transitions:

Input noncerequest, -

Effect:
v € freshinonces for NF(A)
veg {0,1}" for Nk (A)
fresh.nonces.= fresh.nonces, {v}

valuey y =

Output nonceresponsg’y (n)
Precondition:
n = valuéy
Effect:
valugy = L

Figure 4. The Nonce Generators, N¥(A) and

is described by three parts: signature, states, and transitions. NE(A)

The signature lists the actions of the automaton, partitioned
into input, output, and internal. Each action has a name, a
sequence of parameters, and a set of values each parameter

may assume. The states are described by a set of variablegg get of fresh nonces, and assigns it to a local variable to

Each _vari_able assum_es_values in a given se_t, and the starﬁe used by the correspondingnceresponseaction. The
state is given by the initial value of each variable. Transi- jitterence between the two automata is on how the new
tions specify, for each action, whatis the effect of the action e is chosen: the ideal generator chooses it randomly
on the state, that is, how the state evolves. Output and iny, fresh nonces while the real nonce generator chooses it

ternal actions have also a precondition that specifies Whenrandomly in{0 1}k Thus Ny always return fresh nonces

theybiarg enztilhed. Input actlg'r;S are assu'?jeddfto ttr’]e alwv?/y hile N; may generate repeated nonces. Observe that vari-
enabled, and thus no precondition 1S Specilied Tor them. We, 1, o frash noncess not needed iVg, but it is convenient

use the Sy”_“b"t_ to denote denote the fact that a value is to keep it to simplify the formulation of the simulation rela-
chosen arbitrarily from some set, and we use the symboltions

€ g to denote the fact that a value is chosen randomly and ] )
Figures 5 and 6 depict th&/ AP1% ,- automaton that

uniformly from a finite set. . . ‘
. . ) describes an agetfi trying to authenticate to another agent

Figure 3 depicts the secret genkeraﬁir It starts with Y in sessiont.. AgentX may play either as a sender or as
a secret;, chosen randomly if0, 1}", which is then sent 5 raceiver, and the role of is determined by the first input
to all agents via actions of the forgecret, ,,. The secret o eived by the automaton: if the first input isgart init
is sent also to the adversary via actsecrety, though the  ,c(on  thenX acts as sender (or initiator) agent; if the
real adversary will discard the value received. The value of st input is areceivelaction, thenX acts as a receiver
the secret will be used by the good adversary to prevent theagent. The state of the auto,maton has two variaBies

generation of forged signatures. Ry that store local copies of the noncesXfandY’, re-
Figure 4 shows the ideal and the real nonce genera-spectively; a variableecretthat stores the secret key of the
tors Ny and Ng, respectively. The two automata are al- message authentication scheme; a variableeptthat as-
most identical. Both automata keep a $gshnonces  sumes value true when the automaton accepts the authenti-
of fresh nonces, i.e., values that are not yet returned ascation; anoncerequestedsariables that is used to remem-
nonces, which is is initialized to the set of all possible berwhen anonce requestis pending; and a program counter
nonces, i.e.{0, 1}’“. When the automaton receives an in- pcthat keeps track of the current position in the flow of the
putnoncerequestit chooses a new nonce, removes it from MAP1 protocol. The automaton switches to an error state



MAP1%Y,

Signature:

Input:
startinit’y
receivel, y (m), m € {0,1}*
receiveZ, . (m), m € {0,1}°*
received, , (m), m € {0,1}%*
noncerespons y (n), n € {0,1}"
secrefy y (s), s € {0,1}*

Output:
noncerequest, .-
send , (m), m € {0,1}*
send%  (m), m € {0,1}°*
sendd, , (m), m € {0,1}°*

State:
Rx, Ry € {0,1}* U {1}, initially L
secrete {0,1}* U {}, initially L
pce {error, end, waitl,wait2,wait3,
sendl, send2, send3}, initially wait1
noncerequesteds {T', F'}, initially F
accepte {7, F'}, initially F

Transitions:

Input secret, 1 (s)
Effect:
secret:= s

Output noncereques&yy
Precondition:
pc € {send1, send2} A Rx = L A —noncerequested
Effect:
noncerequested= T

Input nonceresponsgﬁy(n)
Effect:

if —noncerequestedhen
pC:= error

else
Rx :=n
noncerequested= F

fi

Input starLinit&’Y

Effect:
if pc = wait1 then
pC:= sendl
else

pc:= error
fi

. k,
Figure 5. The MAP1 Agent, MAP1Y'y, Part|

Transitions:

Output sendZ; ,-(m)
Precondition:
pc=sendl Am = Rx # 1 A secret# L
Effect:
pc:= wait2

Input receive?,  (m)
Effect: ’
if pc=wait2 A
Ir € {0,1}*.m = [y.z.Rx .r]secretthen

Ry =7
pc:= send3
else

pC:= error

fi

Output send3, - (m)
Precondition:
pc = send3 A m = [z.Ry]secret

Effect:
pC:= end
accept:=T

Input receivek - (m)
Effect:
if pc = wait1 then
pcC := send2
Ry :=m
else
pC:= error

fi

Output send?, ;- (m)
Precondition:
pc = send2 A Rx # L Asecret# L A

m = [z.y.Ry .Rx]|secret
Effect:

pCc:= wait3

Input received, - (m)
Effect:
if pc = wait3 A m = [y.Rx]secretthen
pc:= end
accept:=T
else
PC:= error

fi

Figure 6. The MAP1 Agent, MAP1%',, Part I

adversary waits for the secret from the secret genefator
Then it alternates internal generation of messages according
to functionNot Bad, which guarantees no forging of signa-
tures, and delivery of messages to agents. All inputs from

(pc = error) as soon as an unexpected input or a badly the agents are simply added to the history.

formatted message is received. From the error state the au- Figures 9 and 10 depict the real adversary. Also in this
tomaton does not perform any output action and ignores thecase the adversary waits for the secret fi@nbut the actual
effects of all input actions. The sequence of actions follows value of the secret is discarded. After that, the adversary be-

the MAP1 protocol as proposed in [3].

haves sequentially: it generates internally a new message,

Figures 7 and 8 show the good adversary. First of all the including the destination, according to a probabilistic poly-



GAdV (A)
Signature:
Input:
secrety (s), s € {0,1}F
sendl  (m),m € {0,1}", X, Y € A,t €N
sendd  (m),m € {0,1}°*, X,Y € A, t €N
sendd,  (m),m € {0,1}°*, X, Y € A, t €N
Output:
starLinitg(,Y, X, Y eAteN
received y (m), m € {0,1}*, X, Y € A, t €N
received, . (m),m € {0,1}°*, X,Y € A, t €N
received, - (m), m € {0,1}*F, X,V € A, t €N
Internal:
createmessage

State:
history € Sequences(ActiongA) x M), initially @,
M = {0,1}* u{0,1}%* U {0, 1}°*
message= {0,1}* U {0,1}** U {0, 1}°%
secrete {0,1}* U {}, initially L

Transitions:

Input secrets (s)
Effect:
secret:= s

Internal createmessage
Precondition:
secret# L
Effect:
message= m € NotBad(secret history)

Figure 7. The Good Adversary, GAdV(A),

Part |

nomial time functionf, it forwards the generated message
to the chosen destination, and, if specified in the MAP1 pro-
tocol, waits for the answer. Then the cycle is repeated. The

Transitions:

Output startinit -
Precondition:
secret# |
Effect:
history := history - (starLinitg(’Y, message

Input send%; y (m)
Effect:
history := historyt (send ,-,m)

Output receivel, - (m)
Precondition:
™m = message
Effect:
history := history (receiveix,y,m)

Input send%, y (m)
Effect:
history := historyt (send2; ,-,m)

Output receive?, ;- (m)
Precondition:
™m = message
Effect:
history := history - (receive%(,y,m)

Input send; - (m)
Effect:
history := historyt (send3; ,-,m)

Output received ;- (m)
Precondition:
m = message
Effect:
history := history - (receive?x,y,m)

Figure 8. The Good Adversary, GAdV(A),
Part Il

correctness of the cycle is guaranteed by a boolean variabléhe real adversary to generate messages accordifigrto

enableaction creation which is true only when a new mes-

sage can be generated.

4.4.2 Some Considerations on the Automata

any order, without necessarily waiting for the answers from
the agents. Then we can build a scheduler, and an appro-
priate functionf, where the adversary initializéssessions

of the MAP1 protocol, say, ..., Sk, and make sure that
sessionS; responds only if thé'" bit of the secret id. In

We have been very careful in the definition of the real ad- this way the adversary knows the value of the secret and is
versary, and in particular we have ensured that its behaviortherefore able sign messages. In other words we can resolve
is sequential. One reason for doing this is that in the defi- NOndeterminism to create a covert channel that communi-
nition of correct message authentication schemas the forgefates the secret to the adversary. Solutions to this problem
is a sequential process, and thus, if we want the negatior@re studied already in the literature [8,18,21] and it is worth

of the step condition to become the definition of a forger, investigating how polynomially accurate simulations can be
we need to make sure that we will deal with a sequential adapted to such frameworks. Here we have chosen to avoid

process.

restrictions to the schedulers to keep the treatment simple

It would be desirable to be able to reason with a more @nd t0 show that it is also possible to remove dangerous
general, non-sequential, adversary, but unfortunately it is"ondeterminism and work with unrestricted schedulers.
not possible to do it in the current setting. Suppose we allow  Another observation about our definition of the adver-



RAdV(A)
Signature:
Input:
secrety (s), s € {0,1}F
sendl  (m),m € {0,1}*, X, Y € A,t €N
sendd y (m),m € {0,1}°*, X,Y € A, t €N
sendd, , (m),m € {0,1}°*, X,Y € A, t €N
Output:
starLinitg(,Y, X, Y eAteN
received y (m), m € {0,1}*, X, Y € A, t €N
received, . (m),m € {0,1}°*, X,Y € A, t €N
received, - (m), m € {0,1}*F, X,V € A, t €N
Internal:
createaction

v (
v (
v (

State:
history € Sequences(ActiongA) x M), initially @,
M = {0,1}* u{0,1}%* U {0, 1}°*
action € ActiongA) U {_L}, initially L
messages {0,1}* U {0,1}?* U {0, 1}°%
enableactioncreatione {T', F'}, initially T
run_enablede {T', F'}, initially F’

Transitions:

Input secrety (s)
Effect:
run_enabled:= T

Internal createaction
Precondition:
run_enabledA enableaction.creation
Effect:
enableactioncreation:= F'
(action, messagg:= f (history)

Figure 9. The Real Adversary, RAd\éﬁ(A), Part |

saries is that we have separated message generation from

message delivery. We could easily avoid this separation,
but in this case we would be forced to use probabilistic

automata with generative transitions [23] to describe the
real adversary, which have a more complex theory. Once
again, our choice is to keep the presentation simple and fo-
cus on the ideas behind polynomially accurate simulations.
Finally, we could easily remove the internal generation of

messages from the good adversary and yet avoid generativ
transitions. However, in this case we would need to use
weak simulations to deal with the internal moves of the real
adversary. In this paper we have chosen to focus only on
strong relations, again for the sake of simplicity.

4.4.3 The Correctness Proof

e

Transitions:

—
Output starLlnltX,Y
Precondition:
action= start.initf, .

Effect:
action:= L
history := history (startlnlttX’w message

Input send%,  (m)
Effect:
history := history- (send%, -, m)
enableactioncreation:= T

Output receivel,  (m)
Precondition:
action= receivel, ,, A m = message

Effect:
history := history - (receivel ,-,m)
action:= L

Input send?,  (m)
Effect:
history := historyt (sendZ; -, m)
enableactioncreation:= T'

Output received,  (m)
Precondition:
action= receive?, ,, A m = message

Effect:
history := historyt- (receive, ,.,m)
action:= L

Input send3,  (m)
Effect:
history := history+ (send3; -, m)
enableactioncreation:= T'

Output received,  (m)
Precondition:
action= received, ,, A m = message
Effect: 7
history := history - (received, -, m)
enableactioncreation:= T
action:= L

Figure 10. The Real Adversary,
Part Il

RAdV; (A),

Proposition 6. {A}}, ., < {A2},cx

Proof. Define the relation family{ Ry}, ., as the family
of identity relations.

The condition on start states is trivially true. Suppose
that the step condition does not hold. This means that there
existc € N, p € Poly such that for all € N there exist

k > k, v1, va, v andn; such thaty; is reached byA}

within p(k) stepsyy L(Rg,7) v2, v1 — m; and there is

Now we are ready to show the correctness of the MAP1
protocaol.

nonq such thats — 1 andny L(Ri,y + k=) 2.
Figure 11 gives a graphical representation of the transi-



and the probability to generate new message authentication
codes iy, is at least:—¢. This contradicts the fact that the
message authentication scheme used by MAPL1 is a secure
message authentication scheme since the statement above
is the negation of the negligible probability of successful
forger after using a polynomial (k) to denotep(k) + 1 and
observing that at most' (k) message authentication codes
are requested withip/ (k) steps. O

As we can see, in both proofs the negation of the step
Figure 11. Graphical representation of the condition leads to a negation of properties of underlying
transition v — 7. cryptographic primitives. In the first proof we have negated
the unicity of nonces, in the second we have negated the
security of the used message authentication scheme.

tion v; — n; wheree represents the part of the transition .
that can not be emulated from; hences > k. 5 Conclusion

Since A}, A2 differ only in the nonce generators, and
sinceN; may return any nonce except for repeated nonces, We have proposed a new notion of polynomially accurate
the e fraction above corresponds to generation of repeatedsimulation relation for probabilistic automata with the aim
nonces. Thatis, the right side of Figure 11 represents a com-of adapting the simulation method to the analysis of proto-
putation of A}, of length at mosp(k) + 1 where a repeated  cols that involve cryptographic elements. The new simula-
nonce is generated with probability at le&ast®. Summing tion relations permit transitions to be matched up to some
up, there exist € N, p € Poly such that for alk € N there error that is bounded by any polynomial provided that com-
existk > k andn; such that); has length at most(k) + 1 putations are of polynomial length. In this way, the global
and the probability of repeated noncesinis at least: . property of matching polynomial computations up to some
This contradicts the fact thd¥ is a real nonce generator negligible probability can be reduced to a local property of
since the statement above is the negation of Claim 1 aftersingle transitions.

using a polynomiap’ (k) to denotep(k) + 1 and observing We have applied our simulation relations to a simple case
that at mosp’(k) nonces are generated withif(k) steps. study taken from the literature on cryptography, showing
O how the failure of the step condition can be turned immedi-

. ately into the definition of an attack against an underlyin
Proposition 7. {A%}%K S {Az}keK crygtographic primitive. In this way wg obtain proofs t)rllatg
Proof. Define the relation family{ R}, as the family ~ are more rigorous than those based on semi-formal argu-
of identity relations. ments.

The condition on start states is trivially true. Suppose  We expect that the potentials of polynomially accurate
that step condition does not hold. This means that theresimulations illustrated above can have positive impacts on
existc € N, p € Poly such that for allk € N there exist  several other scenarios. In particular, we are interested in

k > k, va, v3, v andn such that, is reached byA? studying how our approach may be beneficial to the work in
within p(k) stepsye L(Ry,v) vs, v2 — 12 and there is  [2,4,5, 25] and how polynomially accurate simulations can
nons such that’s — n3 andne L(Ri, vy + k) ns. be used to express more precisely the connections between

Figure 11 gives a graphical representation of the transi-the symbolic and computational models of security.
tion v — 19 Wheree represents the part of the transition The definitions given in this paper do not distinguish be-
that can not be emulated from; hences > k~°. tween visible and invisible actions, that is, they ateng

Since A%, A3 differ only in the adversaries, and since simulations. It is not difficult to extend our definitions to
GAdvmay perform any action except for casting new mes- the weak case; however, we have some degrees of freedom
sage authentication codes without obtaining them from thein imposing conditions on the complexity of matching tran-
agents, the: fraction above corresponds to generation of sitions, and we prefer to use more case studies as guidelines
new message authentication codes. That is, the right siddor choosing the most adequate definition.
of Figure 11 represents a computation.4f of length at In the case study of this paper we have been very careful
mostp(k) + 1 where a new message authentication code ison the use of nondeterminism so that unrestricted sched-
generated with probability at leakt . Summing up, there ulers do not have the possibility to create undesired covert
existc € N, p € Poly such that for allk € N there ex- channels. Another line of research prevents covert channels
ist k > k andn, such thaty, has length at mosgi(k) + 1 by restricting the power of nondeterminism [8, 18, 21]. It



is worth investigating how polynomially accurate simula- [17] R. Milner. Communication and Concurrencrentice-Hall
tions can be adapted to such frameworks, and in particular International, Englewood Cleiffs, 1989.
whether polynomially accurate simulations could be used [18] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague.

as a sound proof technique for the approximated language A probabilistic polynomial-time process calculus for the
inclusion relations of [8] analysis of cryptographic protocol§.heoretical Computer

Science353(1):118-164, 2006.
[19] S. Mitra and N. Lynch. Approximate simulations for task-
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