
Approximated Computationally Bounded Simulation Relations for Probabilistic
Automata∗

Roberto Segala and Andrea Turrini
Dipartimento di Informatica
Universit̀a di Verona - Italy

Abstract

We study simulation relations for Probabilistic Automata
that require transitions to be matched up to negligible
sets provided that computation lengths are polynomially
bounded. These relations are meant to provide rigorous
grounds to parts of correctness proofs for cryptographic
protocols that are usually carried out by semi-formal ar-
guments. We illustrate our ideas by recasting a correctness
proof of Bellare and Rogaway based on the notion of match-
ing conversation.

1 Introduction

Thesimulation method[15] for hierarchical verification
of concurrent systems consists of establishing relations be-
tween the states of two automata, calledsimulation rela-
tions, and to verify that such relations satisfy appropriate
step conditions. Typically, a step condition requires that
each transition of the simulated system can be matched by
the simulating system up to the given simulation relation.
The main advantage of the simulation method is the abil-
ity of reducing the analysis of global properties of com-
putations to the analysis of local properties of transitions.
Also, concepts like transitivity and compositionality stud-
ied in the context of process algebras [17] allow us to fur-
ther decompose large problems into smaller problems and
to verify systems hierarchically, that is, by building several
intermediate refinements between specifications and imple-
mentations. Often hierarchical verification is simpler and
cleaner than direct one-step verification. The simulation
method has been extended to systems that include probabil-
ity as well, leading to the model of probabilistic automata
and to related notions of probabilistic simulations [24]. The
reader interested in surveys of the extensive literature on re-
lated models and extensions is referred to [23,26].

∗Supported by INRIA project ProNoBiS and MIUR project AIDA.

In this paper we are interested in studying how the sim-
ulation method can be applied to the verification of pro-
tocols that involve cryptographic elements, seeking tech-
niques that lead to simple, local and rigorous arguments
of correctness. Our main motivation is the fact that in the
crypto community several papers contain rigorous defini-
tions of correctness that are proved via complex arguments
about global properties of computations; often these argu-
ments appear rather informal. In several cases the argu-
ments involve showing correspondence between the com-
putations of a real protocol and the computations of a more
abstract, sometimes idealized, protocol that describes the
expected behavior of a system. On the other hand, the sim-
ulation method is a rigorous sound technique to prove cor-
respondence between computations of concrete and abstract
systems. As a guideline we consider a message authentica-
tion protocol studied by Bellare and Rogaway with respect
to the definition of correctness based on matching conver-
sations [3].

Since cryptographic protocols involve probabilistic
choices, we use probabilistic automata as basic underlying
model. We describe a system in the Dolev-Yao style [9],
where several agents interact via an adversarial network
that records the past history and uses its knowledge to cre-
ate, modify and/or forward messages between agents. At
the abstract level we impose restrictions to the choices of
the adversarial network so that correctness is guaranteed by
definition, while at the concrete level we assume that the
choices of the adversarial network are governed by a prob-
abilistic polynomial time function. We then show that there
is an appropriate simulation relation from the concrete to the
abstract system. Our main goal here is to understand what
such a simulation relation should look like and to provide
evidence via a simple example of the potentials of using the
simulation method.

The notion of simulation that we propose, calledpoly-
nomially accurate probabilistic simulation, requires that a
step of the concrete system is not necessarily matched ex-
actly by the abstract system, but rather up to some error
ε, which should correspond to the probability with which

the adversarial network may be able to compromise cor-
rectness. The error should then be exponentially small in
some security parameter provided that computations are of
polynomial length. For this reason, our simulations are de-
fined over families of probabilistic automata, parameterized
over the security parameter, and relate computations rather
than states to account for lengths of computations. Using
the notion of lifting of a relation to probability measures
(see e.g. [23]), we impose a step condition stating infor-
mally that whenever two probability measures over execu-
tions are related up to some errorε, where computations
have polynomial length, each computational step from the
first measure can be matched by a computational step from
the second measure up to an extra error which is smaller
than any polynomial. This means that the cumulated error
in matching any polynomial number of steps is also smaller
than any polynomial. Thus, the probability of the computa-
tions that cannot be matched, that is those that may lead to
failure, is negligible.

The advantage of our notion of polynomially accurate
probabilistic simulation, which we illustrate via the exam-
ple of the MAP1 protocol of Bellare and Rogaway [3], is
that the verification of the step condition reduces directly to
the statement of correctness of the underlying cryptographic
primitives. Also, the transitivity of our simulation relations
allow us to separate concerns by describing adversarial net-
works at several levels of abstractions. For example, in the
Bellare-Rogaway case study we can define a first interme-
diate network where all new nonces from agents are forced
to be fresh, and a second abstract network where all new
nonces from agents are fresh and at the same time no sig-
nature (message authentication code) is forged. The step
condition for the first level can be proved by observing that
nonces are generated randomly by agents, while the step
condition for the second level follows from the observation
that a transition that cannot be matched is a forger for the
employed signature schema. Finally, the compositionality
of our simulation relations allow us to analyze only subparts
of a system. For example, the second level of the Bellare-
Rogaway analysis can be carried out by ignoring the struc-
ture of the agents.

The simulation method is used already in the security lit-
erature. For example in [2] bisimulation relations are used
to prove correctness of implementations according to the
notion of reactive simulatability [20,21]. Although the def-
inition of bisimulation is not worked out in full details, the
idea is clear: transitions should be matched up to some “er-
ror sets”, where an error set is a set of parts of transitions
(e.g., messages, states) that have no corresponding piece
in the abstract system; then, a separate arguments shows
that the global probability of the error sets is negligible.
In our approach we impose conditions on the probabilities
of the error sets directly in the step condition with the aim

of showing that computations with non-negligible error sets
are attackers for some underlying protocol or cryptographic
primitive. It is worth investigating whether the proofs in [2]
would benefit from the use of polynomially accurate simu-
lation (or bisimulation) relations. Simulation relations are
used also in [8] in the context of the Universally Compos-
able framework [6]. In this case simulation relations are ex-
act and the computational arguments are carried out with re-
spect to a notion of approximated probabilistic language in-
clusion [7] based on the trace distribution semantics of [22].
Also in [18] there is a use of exact probabilistic bisimula-
tions in the context of a probabilistic polynomial time pro-
cess calculus. In this case the computational aspects are
captured directly in the definition of the calculus. Another
proposal of approximated probabilistic simulation relations
appears in [19]. In this case a distance between probability
of measures is defined based on the ability to produce sim-
ilar trace distributions. Then, roughly speaking, anε simu-
lation matches steps fromε-distant measures by preserving
ε-distance. Our definition is based on a different notion of
distance and permits distances to grow by a negligible value
at each step.

The idea of hierarchical analysis is also not new in the
security literature. Besides the above literature on the use
of the simulation method, in [25] there is an idea of repre-
senting a correctness proof as a sequence of related games,
where games are representations of attacks against proto-
cols that are either described at different levels of abstrac-
tion, and where two games are related if the difference of
the probabilities of successful attacks is negligible. A sim-
ilar idea is followed by [4, 5] with the difference that a me-
chanical correctness proof can be provided by means of a
collection of sound game transformation rules. We view
probabilistically accurate simulations as a potential tool for
proving correctness of game transformations in [25] and for
proving the soundness of the rules of [4,5]. Indeed, the two
steps of our case study are very similar in style to the game
transformation of [25].

Another formal analysis of the MAP1 protocol of Bel-
lare and Rogaway appears in [13]. In this case a prob-
abilistic polynomial time observational equivalence is de-
fined on a probabilistic polynomial time calculus similar to
the asynchronousπ-calculus: two processes are equivalent
if for each context, the probability that the context distin-
guishes the two processes is negligible. The calculus is
used to formalize the MAP1 protocol, while the analysis
is carried out via typical arguments from the cryptography
literature. More recent work [18] considers also axiomati-
zations for the observational equivalence, which could be
used as an alternative process algebraic method to prove the
correctness of the MAP1 protocol.

Though our main goal was to give more rigorous grounds
to proofs carried out in the pure computational framework,

we believe our results can be seen as a further step in the
process of proving the soundness of the Dolev-Yao model
[9] with respect to the computational model. Indeed, in
our case study the abstract description of the adversarial
network assumes perfect cryptography and fresh nonces.
Initial work on the soundness of the Dolev-Yao model [1]
was considering passive eavesdropping, showing how non-
derivability of terms in the Dolev-Yao model is related to
non-computability in probabilistic polynomial time in the
concrete model. Later work started to consider active ad-
versaries as well [2, 12, 16]. In this last case it is important
to establish connections between concrete and abstract com-
putations, which is one of the uses of polynomially accurate
simulation relations. One point of our definition is that we
can work with any abstract model.

The rest of the paper is structured as follows. Section 2
gives formal definitions of probabilistic automata; Section 3
introduces the polynomially accurate probabilistic simula-
tion relation and its properties; Section 4 shows the appli-
cation of polynomially accurate probabilistic simulation to
the Bellare-Rogaway protocol; Section 5 gives some con-
cluding remarks.

2 Probabilistic Automata

In this section we recall the basic definitions for Prob-
abilistic Automata and the notion of simulation of [24].
The reader interested in an introduction to Probabilistic Au-
tomata is referred to [23].

2.1 Mathematical Preliminaries

A σ-field over a setX is a setF ⊆ 2X that includes
X and is closed under complement and countable union. A
measurable spaceis a pair(X,F) whereX is a set, also
calledsample space, andF is aσ-field overX. A measur-
able space(X,F) is calleddiscreteif F = 2X . A measure
over a measurable space(X,F) is a functionρ : F → R>0

such that, for each countable collection{Xi}i∈I of pairwise
disjoint elements ofF , ρ(∪IXi) =

∑
I ρ(Xi). A proba-

bility measureover a measurable space(X,F) is a mea-
sureρ over(X,F) such thatρ(X) = 1. A sub-probability
measureover (X,F) is a measure over(X,F) such that
ρ(X) 6 1. A measure over a discrete measurable space
(X, 2X) is called adiscrete measureoverX. Thesupport
of a measureρ over(X,F) is the set{x ∈ X | ρ(x) > 0}.

Given a setX, denote byDisc(X) the set of discrete
probability measures overX, and bySubDisc(X) the set
of discrete sub-probability measures overX. We call a
discrete probability measure aDirac measure if it assigns
measure1 to exactly one objectx (denote this measure by
δx). We also call Dirac a sub-probability measure that as-
signs measure0 to all objects. In the sequel discrete sub-

probability measures are used to describe progress. If the
measure of a sample space is not1, then it means that with
some non-zero probability the system does not progress.

2.2 Probabilistic Automata

A Probabilistic Automaton(PA) is a tuple(S, s̄, A, D)
whereS is a countable set ofstates, s̄ ∈ S is thestart state,
A is a set ofactions, andD ⊆ S × A × Disc(S) is a tran-
sition relation.

The restriction on the state setS to be countable is not
necessary for the results if this paper, but we impose it for
simplicity.

Throughout the paper we letA range over probabilistic
automata,q, r, s range over states,a, b, c range over actions,
andµ range over discrete measures over states. We also de-
note the generic elements of a probabilistic automatonA by
S, s̄, A, D, and we propagate primes and indices when nec-
essary. Thus, for example, the probabilistic automatonA′

i

has transition relationD′
i. We also denote the start state of a

probabilistic automatonA, B, . . . by ā, b̄, . . . , respectively.
An element of a transition relationD is called atransi-

tion or astep. A transitiontr = (s, a, µ), denoted alterna-
tively by s

a−→ µ, is said toleavefrom states, denoted also
by src(tr), to be labeledby a, denoted byact(tr), and to
lead to µ, denoted bytrg(tr) or µtr . We also say that state
s enablesactiona, that actiona is enabledfrom s, and that
(s, a, µ) is enabled froms.

An execution fragmentof a PAA is a sequence of al-
ternating states and actions,α = s0a1s1 . . . , starting with
a state and, if the sequence is finite, ending with a state,
such that, for each non final indexi, there exists a transi-
tion (si, ai+1, µi+1) in D with µi+1(si+1) > 0. We de-
note the first states0 of α by fstate(α). We say that an
execution fragment isfinite if it is a finite sequence, and
we denote the last state of a finite execution fragmentα by
lstate(α). We define the length of an execution fragment
α to be the number of occurrences of actions inα. An ex-
ecutionof a PAA is an execution fragment ofA whose
first state iss̄. We denote byFrags∗(A) the set of finite
execution fragments ofA, by Frags(A) the set of finite or
infinite execution fragments, and byExecs∗(A), Execs(A)
the corresponding sets of executions. We letν range over
discrete probability measures over finite executions ofA,
that is,ν ∈ Disc(Execs∗(A)).

A scheduler for a PAA is a functionσ : Frags∗(A) →
SubDisc(D) such that, for each finite execution fragment
α and each transitiontr with σ(α)(tr) > 0, src(tr) =
lstate(α). A schedulerσ is deterministic if, for each finite
execution fragmentα, σ(α) is a Dirac sub-measure.

A schedulerσ can be used to describe the result of re-
solving nondeterminism starting from some states. Specif-
ically, a schedulerσ and a states induce a probability mea-

sureεσ,s over execution fragments as follows. The basic
measurable events are the cones of finite execution frag-
ments, where the cone of a finite execution fragmentα, de-
noted byCα, is the set{α′ ∈ Frags(A) | α 6 α′}, where
6 is the standard prefix preorder on sequences. The proba-
bility εσ,s of a coneCα is defined recursively as follows:

εσ,s(Cα) =


0 if α = q for some stateq 6= s,
1 if α = s,
εσ,s(Cα′)

∑
tr∈D(a) σ(α′)(tr)µtr (q)

if α = α′aq,

whereD(a) denotes the set of transitions ofD with label
a. Standard measure theoretical arguments ensure thatεσ,s

extends uniquely to theσ-field generated by cones. We call
the measureεσ,s a probabilistic execution fragmentof A
and we say that it is generated byσ from s. If s is the start
state ofA, then we say thatεσ,s is aprobabilistic execution.

We now turn to the notion of simulation for probabilistic
automata [24], defining first what it means to lift a relation
on states to a relation on measures. LetR be a relation
from a setX to a setY . The lifting ofR, denoted byL(R),
is a relation fromDisc(X) to Disc(Y) such thatρ1 L(R)
ρ2 if and only if there exists aweighting functionw : X ×
Y → [0, 1] such that (1)w(x1, x2) > 0 impliesx1 R x2,
(2)

∑
x1

w(x1, x2) = ρ2(x2), and (3)
∑

x2
w(x1, x2) =

ρ1(x1). An alternative definition of lifting given in a more
probabilistic style states thatρ1 L(R) ρ2 iff there exists a
joint measurew with marginal measuresρ1 andρ2 such that
the support ofw is included inR.

A simulation from a PAA1 to PA A2 is a relationR
from S1 to S2 such that

• s̄1 R s̄2 and

• for each pair(s1, s2) ∈R, if (s1, a, µ1) ∈ D1, then
there exists(s2, a, µ2) ∈ D2 such thatµ1 L(R) µ2.

We say thatA1 is simulated byA2, denoted byA1 �
A2, if there exists a simulation fromA1 toA2.

It is known that relation� is transitive and preserved by
parallel composition of PAs. This is the key feature that
enables hierarchical and modular verification. We do not
define composition here and we refer the interested reader
to [23].

3 Polynomially Accurate Simulations

In this section we define our notion of polynomially ac-
curate simulation relation. Our aim is to define a rela-
tion where transitions are matched up to some error that
is smaller than any polynomial in some security parame-
ter k provided that computations are of polynomial length.
This means that we need a relation that can “see” lengths

of computations, a notion of lifting that accounts for errors,
and a notion of security parameter. Furthermore, since we
will also need ways to match sequences of steps, we need a
way to bound the amount of extra error introduced by each
step. We try to address one issue at a time, getting closer
and closer to our desired notion of simulation.

The first step is to define a relation that can ”see” lengths
of computation. For this purpose, we define a relation on
sets of executions rather than sets of states. This definition
is based on a derived notion of transition that shows how
finite executions evolve in a single step. Formally, we say
that there is a step from a finite executionα to a measure
ν ∈ Disc(Execs∗(A)), denoted byα −→ ν, if there exists
a transition(lstate(α), a, µ) such that, for each finite execu-
tion αas, ν(αas) = µ(s).

Definition 1. An execution simulationfrom a PAA1 to a
PAA2 is a relationR from Execs∗(A1) to Execs∗(A2) such
that:

• s̄1 R s̄2 and

• for each pair(α1, α2) ∈R, if α1 −→ ν1, then there
existsν2 such thatα2 −→ ν2 andν1 L(R) ν2.

We say thatA1 is execution simulated byA2, denoted by
A1 �e A2, if there exists an execution simulation fromA1

toA2.

It is interesting to observe that so far we have not intro-
duced anything new since� and�e coincide.

Proposition 1. LetA1, A2 be two PAs. ThenA1 �e A2 if
and only ifA1 � A2.

Proof outline. Given a simulation relationR fromS1 toS2,
define a relationR′ from Execs∗(A1) to Execs∗(A2) such
thatα1 R′ α2 iff lstate(α1) R lstate(α2). It is routine to
verify thatR′ is an execution simulation.

Conversely, given an execution simulationR from
Execs∗(A1) to Execs∗(A2), define a relationR′ from S1

to S2 such thats1 R′ s2 iff there existα1 and α2 such
thatα1 R α2, lstate(α1) = s1, andlstate(α2) = s2. It is
routine to verify thatR′ is a simulation relation.

We now generalize the notion of lifting so that two mea-
sures are not related exactly, but up to some errorε. Our def-
inition states that two measures are related up toε if some
(1− ε) fractions of the two measures are related exactly.

Definition 2. LetR be a relation fromX to Y and letε >
0. Theε-lifting ofR, denoted byL(R, ε) is a relation from
Disc(X) to Disc(Y) defined as follows: for each pairρx

andρy of probability measures onX andY , respectively,

• if ε > 1, thenρx L(R, ε) ρy;

• if ε ∈ [0, 1], thenρx L(R, ε) ρy if there existρ′x, ρ′′x ∈
Disc(X) andρ′y, ρ′′y ∈ Disc(Y) such that

– ρx = (1− ε)ρ′x + ερ′′x,

– ρy = (1− ε)ρ′y + ερ′′y ,

– ρ′x L(R) ρ′y.

It is interesting to observe thatε-lifting is monotone on
ε and that0-lifting coincides with lifting.

Proposition 2. The following holds for a relationR from
X to Y .

1. L(R, 0)=L(R).

2. If ε 6 ε′, thenL(R, ε)⊆L(R, ε′).

The introduction of errors in execution simulations is
then straightforward.

Definition 3. An ε-simulationfrom a PAA1 to a PAA2 is
a relationR from Execs∗(A1) to Execs∗(A2) such that:

• s̄1 R s̄2 and

• for each pair(α1, α2) ∈R, if α1 −→ ν1, then there
existsν2 such thatα2 −→ ν2 andν1 L(R, ε) ν2.

The above definition is still not adequate for handling
cryptographic protocols. The point is that we desire to reach
a point where the parts of transitions that cannot be matched
correspond to bad behavior like guessing a key or forging a
signature. Given a finite executionα there is always a way
to resolve nondeterminism so that a key is guessed; what is
difficult to do is to guess a key once we have a probability
measure over executions obtained by generating a key. This
suggests that our step conditions should be based on mea-
sures over executions rather than single executions. Fur-
thermore, it is convenient to consider also pairs of measures
that are related up to some errorγ and limit the increment
of the error. This leads to a new proposal of simulation rela-
tion that we define below. However, we first need to extend
the notation for transitions to measures over executions.

Given a PA A and two measuresν, ν′ ∈
Disc(Execs∗(A)), we say that there exists a transition
from ν to ν′, denoted byν −→ ν′, if there exists a
schedulerσ such that for each finite executionαas,
ν′(Cαas) = ν(Cαas) + ν(Cα)

∑
tr∈D(a) σ(α)(tr) · µtr (s),

whereD(a) denotes the set of transitions with actiona.

Definition 4. LetA1,A2 be two PAs and letR be a relation
from Execs∗(A1) to Execs∗(A2). We say thatR is an ε-
execution simulationfromA1 toA2 if

1. s̄1 R s̄2;

2. for eachγ > 0, ν1 ∈ Disc(Execs∗(A1)) and ν2 ∈
Disc(Execs∗(A2)), if

• ν1 L(R, γ) ν2,

• ν1 −→ ν′1

then there existsν′2 such that

• ν2 −→ ν′2,

• ν′1 L(R, γ + ε) ν′2.

We say thatA1 is ε-execution simulated byA2, denoted
byA1 �ε

e A2, if there exists anε-execution simulation from
A1 toA2.

The definition above satisfies few important properties.
The first property is transitivity up to some combination of
the errors; the second property is that sequences ofn steps
can be matched up to an errornε. Thus, the bound on the
error for a single step induces bounds on the error for any
number of steps.

Proposition 3. Let A1, A2, A3 be three PAs such that
A1 �ε12

e A2 andA2 �ε23
e A3 for someε12, ε23 > 0. Then

A1 �ε13
e A3 whereε13 = ε12 + ε23.

Proof sketch.LetR12,R23 be twoε-execution simulations
that justifyA1 �ε12

e A2 andA2 �ε23
e A3, respectively. De-

fineR13⊆ Execs∗(A1)×Execs∗(A3) asR13= {(α1, α3) |
∃α2 ∈ Execs∗(A2).α1 R12 α2 ∧ α2 R23 α3}.

The condition on the start states is immediate since by
hypothesis̄s1 R12 s̄2 ands̄2 R23 s̄3, hence by definition of
R13, s̄1 R13 s̄3, as required.

The step condition is more involved and requires several
technical constructions that we cannot include here. Sup-
pose thatν1 L(R13, γ) ν3, and supposeν1 −→ ν′1. We first
apply the definition ofε-lifting to decomposeν1 andν3 into
the parts that match exactly and those that do not match.
Similarly we decomposeν1 −→ ν′1 into two parts. We then
find a measureν2 that can be decomposed as well and use
the step condition withγ = 0 from the matching parts of
ν1, ν2, ν3. Finally, we recompose pieces together.

For the next property we first have to define what it
means to reach a measure withinn steps.

Definition 5. LetA be a probabilistic automaton andσ be
a scheduler forA.

We say thatν is a probability measure reached in at most
n steps viaσ if there is a sequence of probability measures
ν0, . . . , νn such thatν0(s̄) = 1, νn = ν and for each0 6
i < n, σ schedules the transitionνi −→ νi+1.

Proposition 4. LetA1,A2 be two PAs such thatA1 �ε
e A2

for someε > 0. LetR be anε-execution simulation from
A1 toA2.

For each schedulerσ1 for A1, if ν1 is reached viaσ1

within n steps, then there exists a schedulerσ2 for A2 that
reaches, withinn steps, a probability measureν2 such that
ν1 L(R, nε) ν2.

Proof sketch.The proof is a classical inductive argument.
The base case is trivial since start states are related and the
Dirac measures over them are the only measures reachable
within 0 steps. Hence such measures are related byL(R, 0),
as required. For the inductive step, by hypothesis we start
from two measuresν1 and ν2 such thatν1 L(R, nε) ν2

wheren is the number of steps used to reach them. By the
step condition we have that after another step the reached
measuresν′1 andν′2 satisfyν′1 L(R, nε + ε) ν′2, as required.

We are now left with the computational aspects of our
definition. For the purpose we talk about families of PAs
and families of relations parameterized over a security pa-
rameterk. Furthermore, we impose the step condition only
for measures that are reachable within a number of steps
that is polynomial ink.

Definition 6. Let {Ak}k∈K and{Bk}k∈K be two families
of probabilistic automata; letR= {Rk}k∈K be a family of
relations such that, for eachk ∈ K, Rk is a relation from
Execs∗(Ak) to Execs∗(Bk); let Poly be the set of positive
polynomials overN.

We say thatR is a polynomially accurate simulation
from{Ak}k∈K to {Bk}k∈K if

1. for eachk, it holds that̄ak Rk b̄k;

2. for eachc ∈ N and for eachp ∈ Poly, there exists
k̄ ∈ N such that for eachk > k̄, for all probability
measuresν1 andν2 and for eachγ > 0, if

• ν1 is reached in at mostp(k) steps inAk,

• ν1 L(Rk, γ) ν2,

• ν1 −→ ν′1

then there existsν′2 such that

• ν2 −→ ν′2,

• ν′1 L(Rk, γ + k−c) ν′2.

We write{Ak}k∈K . {Bk}k∈K if there exists a polyno-
mially accurate simulationR from{Ak}k∈K to {Bk}k∈K .

Finally we can use Proposition 4 to derive our main re-
sult, that is, existence of a polynomially accurate simulation
allows us to match any polynomial number of steps with an
error that is bounded by any polynomial.

Theorem 1. Let{Ak}k∈K and{Bk}k∈K be two families of
PAs such that{Ak}k∈K . {Bk}k∈K . LetR= {Rk}k∈K

be a polynomially accurate simulation from{Ak}k∈K to
{Bk}k∈K .

For each c ∈ N, p ∈ Poly, there exists̄k ∈ N
such that for eachk > k̄ and each schedulerσa for
Ak, if νa is the probability measure induced byσa after

p(k) steps, then there exists a schedulerσb for Bk that
reaches, afterp(k) steps, a probability measureνb such that
νa L(Rk, p(k)k−c) νb.

Proof sketch.The proof follows the lines of Proposition 4
with ε = k−c and k̄ chosen according to the statement of
Definition 6.

4 A Simple Case Study

We illustrate the use of polynomially accurate simula-
tions via a simple case study that deals with the Mutual
Authentication Protocol MAP1 of Bellare and Rogaway [3]
(cf. Fig 1). The protocol uses nonces to guarantee fresh-
ness and pseudorandom functions as message authentica-
tion tool. We first give some preliminary high level defini-
tions of nonces, pseudorandom functions, message authen-
tication codes, and forgers. These definitions are taken or
adapted from [10,11]. Then we describe the MAP1 protocol
and the structure of our correctness proof. Finally, we illus-
trate some of the details of the correctness proof, where we
emphasize how the negation of the step condition of a poly-
nomially accurate simulation corresponds to the definition
of an attacker for the underlying cryptographic primitive or
protocol.

4.1 Cryptographic Components

In the following we assume thatk is a security parameter
and thatPoly is the set of positive polynomials overN.

4.1.1 Nonces

A nonceof lengthk is an element of{0, 1}k that is used at
most once. An ideal way to satisfy unicity of nonces is to
use a repository that keeps track of the nonces distributed
in the past and that responds to all requests by returning
a new value each time. The practical way to satisfy the
unicity of nonces is to choose them randomly from{0, 1}k.
In this way, if we choose randomly two nonces of lengthk,
the probability that they are the same is at most2−k. This
means that:

Claim 1. For each c ∈ N and p ∈ Poly, there exists
k̄ ∈ N such that for eachk > k̄, if we choose randomly
n1, . . . , np(k) nonces from{0, 1}k, thenPr[ni = nj | i 6=
j] < k−c.

4.1.2 Pseudorandom Functions

A pseudorandom functionP is a function that can not be
distinguished from a truly random functionR by any ef-
ficient procedure (e.g., probabilistic polynomial time algo-
rithm) that can get the values of bothP andR at arguments

of its choice. In other words, given a pseudorandom func-
tion P and a truly random functionR, if we evaluate them
on a polynomial number of values, then we are not able to
distinguish when we are interacting withP or with R better
than flipping a coin to decide.

Formally, we say that{fs : {0, 1}∗ → {0, 1}k}s∈{0,1}∗
is apseudorandom functionif the following two conditions
hold:

1. There exists a polynomial time algorithm that on in-
putss andx ∈ {0, 1}∗ returnsfs(x).

2. For every probabilistic polynomial time machineM
that samples values from a functionf and returns a
value in{0, 1}, everyp ∈ Polyand all sufficiently large
n’s,

|Pr[MFn(1n) = 1]− Pr[MHn(1n) = 1]| < 1
p(n)

whereFn is a random variable uniformly distributed
over the multi-set{fs}s∈{0,1}n , Hn is a random
variable uniformly distributed among all functions
mapping arbitrarily long strings tok-long strings,
Pr[MFn(1n) = 1] is the probability that the machine
M , on input1n, answers1 provided thatf is chosen
according toFn, andPr[MHn(1n) = 1] is the prob-
ability that the machineM , on input1n, answers1
provided thatf is chosen according toHn.

This definition of pseudorandom function conceals tech-
nical aspects that are out the scope of this paper. Interested
readers can find a justification of such technicalities and a
generalized definition of pseudorandom functions in Sec-
tion 3.6 of [10].

4.1.3 Message Authentication Code

A message authentication schemeis a triple (G, A, V) of
probabilistic polynomial time algorithms satisfying the fol-
lowing two conditions:

1. On input1k, algorithmG (called the key-generator)
outputs a bit string.

2. For everys in the range ofG(1k) and for everyα ∈
{0, 1}∗, algorithmsA (authentication) andV (verifi-
cation) satisfyPr[V (s, α,A(s, α)) = 1] = 1 where
the probability is taken over the internal coin tosses of
algorithmsA andV .

We call A(s, α) a message authentication code(MAC) to
the documentα produced using the keys.

A forger is a process that, on input1k, can obtain mes-
sage authentication codes to strings of its choice, relative to
a keys that is generated byG(1k) and that the forger does

A B
Rs

[b.a.RA.RB]s

[a.RB]s

Figure 1. MAP1 protocol.

not know. Such a forger is said tosucceed(in existential
forgery) if it outputs a valid MAC to a string for which it
has not requested an authentication during the attack. That
is, the forger is successful if it outputs a pair(α, β) such that
V (s, α, β) = 1 andα is different from all strings for which
an authentication has been required during the attack. A
message authentication scheme issecure(or unforgeable) if
every feasible forger succeeds with at most negligible prob-
ability.

A way to construct message authentication schemes is to
use pseudorandom functions, using the following construc-
tion (cf. Construction 6.3.1 of [11]): let{fs}s∈{0,1}∗ be a
pseudorandom function. We define a message authentica-
tion scheme(G, A, V) as follows:

• Key generation with G: on input1k, we uniformly se-
lects ∈ {0, 1}k and output the keys.

• Authentication with A: on input a keys ∈ {0, 1}k and
a stringα ∈ {0, 1}∗, we compute and outputfs(α) as
an authentication ofα.

• Verification with V: on input a keys ∈ {0, 1}k, a string
α ∈ {0, 1}∗, and an alleged authenticationβ, we ac-
cept if and only ifβ = fs(α).

Given a keys, we say thatfs(m) is the message authen-
tication code ofm with respect to the keys and thatfs is a
MAC value generator.

Proposition 5 (cf. Proposition 6.3.2 of [11]). Suppose
that {fs}s∈{0,1}∗ is a pseudorandom function. Then the
given construction constitutes a secure message authenti-
cation scheme.

A message authentication code can be used when an en-
tity A wants to prove its identity to another entityB. If A
andB share a secret keys and a pseudorandom function,
then A can provide evidence of its identity by sending a
message of the form(a.m, fs(a.m)) to B, wherem is some
random value,a is a coding of the identity ofA, anda.m is
the concatenation ofa andm. B can rely onA’s identity by
verifying the correctness of the received message.

4.2 The Protocol

Let {fs}s∈{0,1}∗ be a pseudorandom function, and let
[x]s denote the message(x, fs(x)) wherefs(x) is the mes-

sage authentication code ofx with respect tos.
The MAP1 protocol is used to establish a mutual authen-

tication between any two agentsA andB among a set of
agentsA who share a keys. At the beginning, all agents
share a pseudorandom function and a secret random ele-
ments ∈ {0, 1}k, wherek is the security parameter. When
agentA wants to communicate with agentB, A sends toB
a random challenge (a nonce)RA ∈R {0, 1}k. B responds
by making up a random challengeRB ∈R {0, 1}k and re-
turning[b.a.RA.RB]s, wherea andb are descriptions of the
identity of agentsA andB, respectively. Then,A checks
that the message received fromB is of the right form and
that it is correctly tagged as coming fromB. If it is, A
sendsB the message[a.RB]s and accepts.B checks that
the message fromA is of the right form and that it is cor-
rectly tagged as coming fromA. If it is, B accepts. Fig. 1
depicts how the MAP1 protocol works.

The definition of correctness proposed by Bellare and
Rogaway in [3] is based on the concept ofmatching conver-
sation. All agents communicate via an adversarial network
E, controlled by a probabilistic polynomial time algorithm,
that can block, delay and/or modify messages, and possibly
create new messages. Two agentsA andB have a matching
conversation if the following conditions hold:

1. every message thatA sends out, except possibly the
last, is subsequently delivered toB, with the response
to this message being returned toA as its own next
message;

2. every messageB receives was previously generated by
A and each message thatB sends out is subsequently
delivered toA, with the response that this message
generates being returned toB as its own next message.

The first condition states that whenA (that plays as a sender
or initiator agent) sends a message toB, the message is not
modified or blocked by the adversaryE (except for the last
message) and the response ofB is correctly delivered toA,
without changing the messages order. The second condition
is very similar to the first one, but it is based onB’s point
of view (B plays as a receiver or responder agent).

Given an adversaryE (that does not know the secret key
s shared by the agents),E breaks the MAP1 protocol if
it completes a mutual authentication with some agentX
persuadingX that the other participant is another agentY .
This means thatX completes the protocol without a match-
ing conversation withY . More formally, MAP1 is a secure
mutual authentication protocol if

• for each pair of agentsX andY , if X andY have a
matching conversation, then both agents accept;

• for any probabilistic polynomial time adversaryE, the
probability thatE induces an agentX to accept a com-

munication with another agentY without a matching
conversation withY is negligible.

E, during the attack, can play as initiator or responder, or
even in both roles if it tries to break the MAP1 protocol
interacting with several agents.

4.3 The Correctness Proof of Bellare-
Rogaway

The original proof that MAP1 is a secure mutual au-
thentication protocol can be found in Appendix A of [3].
The proof is split into two parts. First it is shown that the
probability of breaking the protocol when the agents share
a truly random function is negligible; then it is shown that
an adversaryE that successfully attacks the MAP1 proto-
col with a non-negligible probability can be turned into a
distinguisher for a pseudorandom function.

The second step is rather standard in cryptography: the
distinguisher is an algorithm that simulates the interaction
between the adversaryE and the agents and that queries the
message authentication scheme whenever it simulates a real
agent that computes a message authentication code. The
distinguisher returns1 whenever it successfully induces an
agentA to accept without a matching conversation. The
probability of returning1 is then significantly different if
the message authentication scheme is given by a truly ran-
dom function or by a pseudorandom function. Though this
construction is described in a semi-formal language, it is
quite standard and widely accepted.

The first step is based on an explicit computation of the
probability that the adversary induces acceptance without
a matching conversation when the message authentication
scheme is given by a truly random function. The short
proof must be read with great attention because of the high
number of potential pitfalls. It is a classical proof where
we reason about global properties of computations by ar-
guing back and forth about properties of different compu-
tational steps. These are typical arguments employed in
correctness proofs for distributed and concurrent systems.
In the specific case the argument is complicated further by
the presence of probabilities. More or less the argument
is a sequence of semi-formal statements about what mes-
sages are generated, in what order, who can have generated
them (and with which probability), and whether messages
can be repeated (and with which probability). Arguments
about uniqueness of nonces and unforgeability of message
authentication codes are intermixed. Our suggestion is that
the use of polynomially accurate simulations in this context
can provide us with the same simplifications that the sim-
ulation method provided in the area of distributed systems
(cf. [14]).

GG GNI NI

A1 A1 A1 A2A2A2

NR

RAdvf RAdvf GAdv

..

A1

k
A2

k
A3

k

Figure 2. The three levels of abstraction for
MAP1.

4.4 Our Correctness Proof

We now give an outline of the correctness proof of the
MAP1 protocol based on polynomially accurate simula-
tions. We describe the protocol at three levels of abstraction.
The lowest level description consists of the actual agents
that receive the secrets from a secret generator and receive
nonces from a device that generates random numbers. The
adversary is controlled by a generic probabilistic polyno-
mial time algorithm. At the intermediate level nonces are
generated by an ideal device that keeps track of what was
distributed earlier, while at the highest level the adversary is
purely nondeterministic and is not allowed to generate new
message authentication codes without obtaining them from
the agents. Figure 2 depicts the three levels of abstraction.

The highest level abstraction is similar in style to the
Dolev-Yao model where we assume perfect cryptography,
while the description in three levels is similar in style to the
game transformations proposed in [4, 5, 25]. The most ab-
stract system can be shown easily not to exhibit any attack
by employing ordinary well known techniques for purely
nondeterministic systems. The novel element here is the
use of simulation relations to relate the three levels.

We exhibit a polynomially accurate simulation for each
pair of neighbor abstractions, use transitivity to state that
there is a polynomially accurate simulation from the lowest
level to the highest level abstraction, use Theorem 1 to argue
that the probability of low level computations that do not
have corresponding high level computations is negligible,
and use the fact that at the highest level there are no attacks
to deduce that at the lowest level the probability of attack is
negligible. The crucial and interesting point is that at each
level the negation of the step condition is the negation of
the key property of nonces or the definition of a successful
forger for a message authentication scheme depending on
the simulation relation we are analyzing.

Now we give a more detailed description of the three lev-
els of the abstraction. The lowest level, depicted on the left
of Figure 2, consists of several automata, each one parame-
terized by a security parameterk (we don’t add such param-
eter to the automata names for clarity). The automatonG
is a secret generator that generates and provides the agents
with a secrets that is used as the key of the message au-
thentication scheme of MAP1 protocol. The automatonNR

models a real nonce generator. Whenever an agent needs a
nonce, it sends a request toNR and obtains a random value
taken from{0, 1}k as answer. The set{A1, A2, . . . } is a nu-
merable set of automata that describe end-points of sessions
of the protocol. That is, each automatonAi corresponds to
some oracleΠt

X,Y of [3], where oracleΠt
X,Y describes the

participantX trying to authenticate participantY in session
t, wheret is different for each authentication attempt. Com-
munication between agents and secret and nonce genera-
tors is private, while communication between agents is per-
formed using a network that is controlled by the adversary
RAdvf . The network keeps an history variable that contains
all previous messages sent and received by agents, which
is used to select the next action to perform (e.g., delivering
messages, casting new messages, blocking messages, . . .).
The choices of network should be computable in probabilis-
tic polynomial time. For this reason, the adversaryRAdvf is
parameterized by a probabilistic polynomial time function
f , so that the transition enabled from a states is f(s).

The intermediate level, depicted in the middle of Fig-
ure 2, differs from the lowest level only in the nonce gen-
erator automaton.NI models an ideal nonce generator that
guarantees that nonces are never repeated. This implies that
unicity of nonces chosen by agents is guaranteed by defini-
tion.

The highest level, depicted in the right of Figure 2, dif-
fers from the intermediate level only in the automaton that
controls the network. The new adversary, denoted byGAdv,
is a nondeterministic automaton that is allowed to perform
any action except for casting new message authentication
codes without obtaining them from the agents. More pre-
cisely, we define a functionNot Bad that, given a secrets
and a historyhistory, returns the set of messages where all
subparts that are tagged correctly with a message authen-
tication code relative tos are taken fromhistory. That is,
no new correct tag is cast. Then we requireGAdvto gener-
ate only those messages that are in the outcome of function
Not Bad. This implies that unforgeability of message au-
thentication scheme is warranted by definition.

4.4.1 Automata Specification

We now provide the automata that describe the participants
and adversaries of the MAP1 protocol. We adopt the nota-
tion used by Lynch in [14] (cf. Figure 3). Each automaton

Gk(A)

Signature:
Output:

secrettX,Y (s), s ∈ {0, 1}k, X, Y ∈ A, t ∈ N
secretA(s), s ∈ {0, 1}k

State:
value∈ {0, 1}k, initially v ∈R {0, 1}k

Transitions:

Output secrettX,Y (s)

Precondition:
s = value

Effect:
none

Output secretA(s)
Precondition:

s = value
Effect:

none

Figure 3. The Secret Generator, Gk

is described by three parts: signature, states, and transitions.
The signature lists the actions of the automaton, partitioned
into input, output, and internal. Each action has a name, a
sequence of parameters, and a set of values each parameter
may assume. The states are described by a set of variables.
Each variable assumes values in a given set, and the start
state is given by the initial value of each variable. Transi-
tions specify, for each action, what is the effect of the action
on the state, that is, how the state evolves. Output and in-
ternal actions have also a precondition that specifies when
they are enabled. Input actions are assumed to be always
enabled, and thus no precondition is specified for them. We
use the symbol∈ to denote denote the fact that a value is
chosen arbitrarily from some set, and we use the symbol
∈R to denote the fact that a value is chosen randomly and
uniformly from a finite set.

Figure 3 depicts the secret generatorG. It starts with
a secrets, chosen randomly in{0, 1}k, which is then sent
to all agents via actions of the formsecrettX,Y . The secret
is sent also to the adversary via actionsecretA, though the
real adversary will discard the value received. The value of
the secret will be used by the good adversary to prevent the
generation of forged signatures.

Figure 4 shows the ideal and the real nonce genera-
tors NI and NR, respectively. The two automata are al-
most identical. Both automata keep a setfreshnonces
of fresh nonces, i.e., values that are not yet returned as
nonces, which is is initialized to the set of all possible
nonces, i.e.,{0, 1}k. When the automaton receives an in-
putnoncerequest, it chooses a new nonce, removes it from

Nk
I (A), Nk

R(A)

Signature:
Input:

noncerequesttX,Y , X, Y ∈ A, t ∈ N
Output:

nonceresponsetX,Y (n), n ∈ {0, 1}k, X, Y ∈ A, t ∈ N

State:
freshnonces⊆ {0, 1}k, initially {0, 1}k

valuetX,Y ∈ {0, 1}k ∪ {⊥}, initially ⊥, X, Y ∈ A, t ∈ N

Transitions:

Input noncerequesttX,Y

Effect:

valuetX,Y :=

{
v ∈R freshnonces for Nk

I (A)

v ∈R {0, 1}k for Nk
R(A)

freshnonces:= freshnonces\ {v}

Output nonceresponsetX,Y (n)

Precondition:
n = valuetX,Y

Effect:
valuetX,Y := ⊥

Figure 4. The Nonce Generators, Nk
I (A) and

Nk
R(A)

the set of fresh nonces, and assigns it to a local variable to
be used by the correspondingnonceresponseaction. The
difference between the two automata is on how the new
nonce is chosen: the ideal generator chooses it randomly
in freshnonces, while the real nonce generator chooses it
randomly in{0, 1}k. ThusNR always return fresh nonces,
while NI may generate repeated nonces. Observe that vari-
ablefreshnoncesis not needed inNR, but it is convenient
to keep it to simplify the formulation of the simulation rela-
tions.

Figures 5 and 6 depict theMAP1t
X,Y automaton that

describes an agentX trying to authenticate to another agent
Y in sessiont. AgentX may play either as a sender or as
a receiver, and the role ofX is determined by the first input
received by the automaton: if the first input is astart init
action, thenX acts as sender (or initiator) agent; if the
first input is areceive1action, thenX acts as a receiver
agent. The state of the automaton has two variablesRX ,
RY that store local copies of the nonces ofX andY , re-
spectively; a variablesecretthat stores the secret key of the
message authentication scheme; a variableacceptthat as-
sumes value true when the automaton accepts the authenti-
cation; anoncerequestedvariables that is used to remem-
ber when a nonce request is pending; and a program counter
pc that keeps track of the current position in the flow of the
MAP1 protocol. The automaton switches to an error state

MAP1k,t
X,Y

Signature:
Input:

start inittX,Y

receive1tX,Y (m), m ∈ {0, 1}k

receive2tX,Y (m), m ∈ {0, 1}5k

receive3tX,Y (m), m ∈ {0, 1}3k

nonceresponsetX,Y (n), n ∈ {0, 1}k

secrettX,Y (s), s ∈ {0, 1}k

Output:
noncerequesttX,Y

send1tX,Y (m), m ∈ {0, 1}k

send2tX,Y (m), m ∈ {0, 1}5k

send3tX,Y (m), m ∈ {0, 1}3k

State:
RX , RY ∈ {0, 1}k ∪ {⊥}, initially ⊥
secret∈ {0, 1}k ∪ {⊥}, initially ⊥
pc∈ {error, end, wait1, wait2, wait3,

send1, send2, send3}, initially wait1

noncerequested∈ {T, F}, initially F
accept∈ {T, F}, initially F

Transitions:

Input secrettX,Y (s)

Effect:
secret:= s

Output noncerequesttX,Y

Precondition:
pc∈ {send1, send2} ∧RX = ⊥ ∧ ¬noncerequested

Effect:
noncerequested:= T

Input nonceresponsetX,Y (n)

Effect:
if ¬noncerequestedthen
pc := error

else
RX := n
noncerequested:= F

fi

Input start inittX,Y

Effect:
if pc = wait1 then
pc := send1

else
pc := error

fi

Figure 5. The MAP1 Agent, MAP1k,t
X,Y , Part I

(pc = error) as soon as an unexpected input or a badly
formatted message is received. From the error state the au-
tomaton does not perform any output action and ignores the
effects of all input actions. The sequence of actions follows
the MAP1 protocol as proposed in [3].

Figures 7 and 8 show the good adversary. First of all the

Transitions:

Output send1tX,Y (m)

Precondition:
pc = send1 ∧m = RX 6= ⊥ ∧ secret6= ⊥

Effect:
pc := wait2

Input receive2tX,Y (m)

Effect:
if pc = wait2 ∧
∃r ∈ {0, 1}k.m = [y.x.RX .r]secretthen

RY := r
pc := send3

else
pc := error

fi

Output send3tX,Y (m)

Precondition:
pc = send3 ∧m = [x.RY]secret

Effect:
pc := end

accept:= T

Input receive1tX,Y (m)

Effect:
if pc = wait1 then
pc := send2

RY := m
else
pc := error

fi

Output send2tX,Y (m)

Precondition:
pc = send2 ∧RX 6= ⊥ ∧ secret6= ⊥ ∧

m = [x.y.RY .RX]secret
Effect:

pc := wait3

Input receive3tX,Y (m)

Effect:
if pc = wait3 ∧m = [y.RX]secretthen
pc := end

accept:= T
else
pc := error

fi

Figure 6. The MAP1 Agent, MAP1k,t
X,Y , Part II

adversary waits for the secret from the secret generatorG.
Then it alternates internal generation of messages according
to functionNot Bad, which guarantees no forging of signa-
tures, and delivery of messages to agents. All inputs from
the agents are simply added to the history.

Figures 9 and 10 depict the real adversary. Also in this
case the adversary waits for the secret fromG, but the actual
value of the secret is discarded. After that, the adversary be-
haves sequentially: it generates internally a new message,
including the destination, according to a probabilistic poly-

GAdvk(A)

Signature:
Input:

secretA(s), s ∈ {0, 1}k

send1tX,Y (m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
send2tX,Y (m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
send3tX,Y (m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Output:
start inittX,Y , X, Y ∈ A, t ∈ N
receive1tX,Y (m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
receive2tX,Y (m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
receive3tX,Y (m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Internal:
createmessage

State:
history∈ Sequences(Actions(A)×M), initially ∅,

M = {0, 1}k ∪ {0, 1}3k ∪ {0, 1}5k

message∈ {0, 1}k ∪ {0, 1}3k ∪ {0, 1}5k

secret∈ {0, 1}k ∪ {⊥}, initially ⊥

Transitions:

Input secretA(s)
Effect:

secret:= s

Internal createmessage
Precondition:

secret6= ⊥
Effect:

message:= m ∈ Not Bad(secret, history)

Figure 7. The Good Adversary, GAdvk(A),
Part I

nomial time functionf , it forwards the generated message
to the chosen destination, and, if specified in the MAP1 pro-
tocol, waits for the answer. Then the cycle is repeated. The
correctness of the cycle is guaranteed by a boolean variable
enableaction creation, which is true only when a new mes-
sage can be generated.

4.4.2 Some Considerations on the Automata

We have been very careful in the definition of the real ad-
versary, and in particular we have ensured that its behavior
is sequential. One reason for doing this is that in the defi-
nition of correct message authentication schemas the forger
is a sequential process, and thus, if we want the negation
of the step condition to become the definition of a forger,
we need to make sure that we will deal with a sequential
process.

It would be desirable to be able to reason with a more
general, non-sequential, adversary, but unfortunately it is
not possible to do it in the current setting. Suppose we allow

Transitions:

Output start inittX,Y

Precondition:
secret6= ⊥

Effect:
history := history` (start inittX,Y , message)

Input send1tX,Y (m)

Effect:
history := history` (send1tX,Y , m)

Output receive1tX,Y (m)

Precondition:
m = message

Effect:
history := history` (receive1tX,Y , m)

Input send2tX,Y (m)

Effect:
history := history` (send2tX,Y , m)

Output receive2tX,Y (m)

Precondition:
m = message

Effect:
history := history` (receive2tX,Y , m)

Input send3tX,Y (m)

Effect:
history := history` (send3tX,Y , m)

Output receive3tX,Y (m)

Precondition:
m = message

Effect:
history := history` (receive3tX,Y , m)

Figure 8. The Good Adversary, GAdvk(A),
Part II

the real adversary to generate messages according tof in
any order, without necessarily waiting for the answers from
the agents. Then we can build a scheduler, and an appro-
priate functionf , where the adversary initializesk sessions
of the MAP1 protocol, sayS1, ..., Sk, and make sure that
sessionSi responds only if theith bit of the secret is1. In
this way the adversary knows the value of the secret and is
therefore able sign messages. In other words we can resolve
nondeterminism to create a covert channel that communi-
cates the secret to the adversary. Solutions to this problem
are studied already in the literature [8,18,21] and it is worth
investigating how polynomially accurate simulations can be
adapted to such frameworks. Here we have chosen to avoid
restrictions to the schedulers to keep the treatment simple
and to show that it is also possible to remove dangerous
nondeterminism and work with unrestricted schedulers.

Another observation about our definition of the adver-

RAdvkf (A)

Signature:
Input:

secretA(s), s ∈ {0, 1}k

send1tX,Y (m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
send2tX,Y (m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
send3tX,Y (m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Output:
start inittX,Y , X, Y ∈ A, t ∈ N
receive1tX,Y (m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
receive2tX,Y (m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
receive3tX,Y (m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Internal:
createaction

State:
history∈ Sequences(Actions(A)×M), initially ∅,

M = {0, 1}k ∪ {0, 1}3k ∪ {0, 1}5k

action∈ Actions(A) ∪ {⊥}, initially ⊥
message∈ {0, 1}k ∪ {0, 1}3k ∪ {0, 1}5k

enableaction creation∈ {T, F}, initially T
run enabled∈ {T, F}, initially F

Transitions:

Input secretA(s)
Effect:

run enabled:= T

Internal createaction
Precondition:

run enabled∧ enableaction creation
Effect:

enableaction creation:= F
(action, message) := f(history)

Figure 9. The Real Adversary, RAdvkf (A), Part I

saries is that we have separated message generation from
message delivery. We could easily avoid this separation,
but in this case we would be forced to use probabilistic
automata with generative transitions [23] to describe the
real adversary, which have a more complex theory. Once
again, our choice is to keep the presentation simple and fo-
cus on the ideas behind polynomially accurate simulations.
Finally, we could easily remove the internal generation of
messages from the good adversary and yet avoid generative
transitions. However, in this case we would need to use
weak simulations to deal with the internal moves of the real
adversary. In this paper we have chosen to focus only on
strong relations, again for the sake of simplicity.

4.4.3 The Correctness Proof

Now we are ready to show the correctness of the MAP1
protocol.

Transitions:

Output start inittX,Y

Precondition:
action= start inittX,Y

Effect:
action := ⊥
history := history` (start inittX,Y , message)

Input send1tX,Y (m)

Effect:
history := history` (send1tX,Y , m)

enableaction creation:= T

Output receive1tX,Y (m)

Precondition:
action= receive1tX,Y ∧m = message

Effect:
history := history` (receive1tX,Y , m)

action := ⊥

Input send2tX,Y (m)

Effect:
history := history` (send2tX,Y , m)

enableaction creation:= T

Output receive2tX,Y (m)

Precondition:
action= receive2tX,Y ∧m = message

Effect:
history := history` (receive2tX,Y , m)

action := ⊥

Input send3tX,Y (m)

Effect:
history := history` (send3tX,Y , m)

enableaction creation:= T

Output receive3tX,Y (m)

Precondition:
action= receive3tX,Y ∧m = message

Effect:
history := history` (receive3tX,Y , m)

enableaction creation:= T
action := ⊥

Figure 10. The Real Adversary, RAdvkf (A),
Part II

Proposition 6. {A1
k}k∈K . {A2

k}k∈K

Proof. Define the relation family{Rk}k∈K as the family
of identity relations.

The condition on start states is trivially true. Suppose
that the step condition does not hold. This means that there
exist c ∈ N, p ∈ Poly such that for all̄k ∈ N there exist
k > k̄, ν1, ν2, γ and η1 such thatν1 is reached byA1

k

within p(k) steps,ν1 L(Rk, γ) ν2, ν1 −→ η1 and there is
noη2 such thatν2 −→ η2 andη1 L(Rk, γ + k−c) η2.

Figure 11 gives a graphical representation of the transi-

(1− γ) (1− γ)
ǫ

γ

(1− γ − ǫ)

s̄

η

s̄

γ γ

ν ν

Figure 11. Graphical representation of the
transition ν −→ η.

tion ν1 −→ η1 whereε represents the part of the transition
that can not be emulated fromν2; henceε > k−c.

SinceA1
k, A2

k differ only in the nonce generators, and
sinceNI may return any nonce except for repeated nonces,
the ε fraction above corresponds to generation of repeated
nonces. That is, the right side of Figure 11 represents a com-
putation ofA1

k of length at mostp(k) + 1 where a repeated
nonce is generated with probability at leastk−c. Summing
up, there existc ∈ N, p ∈ Polysuch that for all̄k ∈ N there
existk > k̄ andη1 such thatη1 has length at mostp(k) + 1
and the probability of repeated nonces inη1 is at leastk−c.
This contradicts the fact thatNR is a real nonce generator
since the statement above is the negation of Claim 1 after
using a polynomialp′(k) to denotep(k) + 1 and observing
that at mostp′(k) nonces are generated withinp′(k) steps.

Proposition 7. {A2
k}k∈K . {A3

k}k∈K

Proof. Define the relation family{Rk}k∈K as the family
of identity relations.

The condition on start states is trivially true. Suppose
that step condition does not hold. This means that there
exist c ∈ N, p ∈ Poly such that for all̄k ∈ N there exist
k > k̄, ν2, ν3, γ and η2 such thatν2 is reached byA2

k

within p(k) steps,ν2 L(Rk, γ) ν3, ν2 −→ η2 and there is
noη3 such thatν3 −→ η3 andη2 L(Rk, γ + k−c) η3.

Figure 11 gives a graphical representation of the transi-
tion ν2 −→ η2 whereε represents the part of the transition
that can not be emulated fromν3; henceε > k−c.

SinceA2
k, A3

k differ only in the adversaries, and since
GAdvmay perform any action except for casting new mes-
sage authentication codes without obtaining them from the
agents, theε fraction above corresponds to generation of
new message authentication codes. That is, the right side
of Figure 11 represents a computation ofA2

k of length at
mostp(k) + 1 where a new message authentication code is
generated with probability at leastk−c. Summing up, there
exist c ∈ N, p ∈ Poly such that for all̄k ∈ N there ex-
ist k > k̄ andη2 such thatη2 has length at mostp(k) + 1

and the probability to generate new message authentication
codes inη2 is at leastk−c. This contradicts the fact that the
message authentication scheme used by MAP1 is a secure
message authentication scheme since the statement above
is the negation of the negligible probability of successful
forger after using a polynomialp′(k) to denotep(k)+1 and
observing that at mostp′(k) message authentication codes
are requested withinp′(k) steps.

As we can see, in both proofs the negation of the step
condition leads to a negation of properties of underlying
cryptographic primitives. In the first proof we have negated
the unicity of nonces, in the second we have negated the
security of the used message authentication scheme.

5 Conclusion

We have proposed a new notion of polynomially accurate
simulation relation for probabilistic automata with the aim
of adapting the simulation method to the analysis of proto-
cols that involve cryptographic elements. The new simula-
tion relations permit transitions to be matched up to some
error that is bounded by any polynomial provided that com-
putations are of polynomial length. In this way, the global
property of matching polynomial computations up to some
negligible probability can be reduced to a local property of
single transitions.

We have applied our simulation relations to a simple case
study taken from the literature on cryptography, showing
how the failure of the step condition can be turned immedi-
ately into the definition of an attack against an underlying
cryptographic primitive. In this way we obtain proofs that
are more rigorous than those based on semi-formal argu-
ments.

We expect that the potentials of polynomially accurate
simulations illustrated above can have positive impacts on
several other scenarios. In particular, we are interested in
studying how our approach may be beneficial to the work in
[2,4, 5,25] and how polynomially accurate simulations can
be used to express more precisely the connections between
the symbolic and computational models of security.

The definitions given in this paper do not distinguish be-
tween visible and invisible actions, that is, they arestrong
simulations. It is not difficult to extend our definitions to
the weak case; however, we have some degrees of freedom
in imposing conditions on the complexity of matching tran-
sitions, and we prefer to use more case studies as guidelines
for choosing the most adequate definition.

In the case study of this paper we have been very careful
on the use of nondeterminism so that unrestricted sched-
ulers do not have the possibility to create undesired covert
channels. Another line of research prevents covert channels
by restricting the power of nondeterminism [8, 18, 21]. It

is worth investigating how polynomially accurate simula-
tions can be adapted to such frameworks, and in particular
whether polynomially accurate simulations could be used
as a sound proof technique for the approximated language
inclusion relations of [8].

References

[1] M. Abadi and P. Rogaway. Reconciling two views of cryp-
tography (the computational soundness of formal encryp-
tion). In IFIP TCS, LNCS2000, pages 3–22. Springer, 2000.

[2] M. Backes, B. Pfitzmann, and M. Waidner. A univer-
sally composable cryptographic library. Cryptology ePrint
Archive, Report 2003/015, 2003.

[3] M. Bellare and P. Rogaway. Entity authentication and key
distribution. In CRYPTO ’93, pages 232–249. Springer,
1994.

[4] B. Blanchet. A computationally sound mechanized prover
for security protocols. Cryptology ePrint Archive, Report
2005/401, 2005.

[5] B. Blanchet and D. Pointcheval. Automated security proofs
with sequences of games. Cryptology ePrint Archive, Re-
port 2006/069, 2006.

[6] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. InThe 42nd Annual
Symposium on Foundations of Computer Science, pages
136–145, 2001.

[7] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch,
O. Pereira, and R. Segala. Using Probabilistic I/O Automata
to analyze an oblivious transfer protocol. Technical Report
2005/452, Cryptology ePrint Archive, 2005.

[8] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch,
O. Pereira, and R. Segala. Time-bounded task-PIOAs: A
framework for analyzing security protocols. InDISC 2006,
LNCS4167, pages 238–253. Springer, 2006.

[9] D. Dolev and A. Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, 2(29),
1983.

[10] O. Goldreich.Foundations of Cryptography: Volume 1, Ba-
sic Tools. Cambridge University Press, 2001.

[11] O. Goldreich.Foundations of Cryptography: Volume 2, Ba-
sic Applications. Cambridge University Press, 2004.

[12] R. Janvier, Y. Lakhnech, and L. Mazare. Completing the
picture: Soundness of formal encryption in the presence of
active adversaries. Technical Report TR-2004-19, Verimag,
2005.

[13] P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Sce-
drov. Probabilistic polynomial-time equivalence and se-
curity analysis. InFM ’99, LNCS1708, pages 776–793.
Springer, 1999.

[14] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, 1996.

[15] N. A. Lynch and M. R. Tuttle. Hierarchical correctness
proofs for distributed algorithms. InPODC ’87, pages 137–
151. ACM Press, 1987.

[16] D. Micciancio and B. Warinschi. Completeness theorems for
the Abadi-Rogaway logic of encrypted expressions.Journal
of Computer Security, 12(1):99–129, 2004.

[17] R. Milner. Communication and Concurrency. Prentice-Hall
International, Englewood Cleiffs, 1989.

[18] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague.
A probabilistic polynomial-time process calculus for the
analysis of cryptographic protocols.Theoretical Computer
Science, 353(1):118–164, 2006.

[19] S. Mitra and N. Lynch. Approximate simulations for task-
structured Probabilistic I/O Automata. InPAuL06, 2006.

[20] B. Pfitzmann and M. Waidner. Composition and integrity
preservation of secure reactive systems. InCCS ’00, pages
245–254. ACM Press, 2000.

[21] B. Pfitzmann and M. Waidner. A model for asynchronous
reactive systems and its application to secure message trans-
mission. InSP ’01, pages 184–200. IEEE Computer Society,
2001.

[22] R. Segala.Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, Department of
Electrical Engineering and Computer Science, MIT, 1995.
Also appears as technical report MIT/LCS/TR-676.

[23] R. Segala. Probability and nondeterminism in operational
models of concurrency. InCONCUR 2006 - Concurrency
Theory, LNCS4137, pages 64–78. Springer, 2006.

[24] R. Segala and N. Lynch. Probabilistic simulations for prob-
abilistic processes.Nordic Journal of Computing, 2(2):250–
273, 1995.

[25] V. Shoup. A tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004.

[26] A. Sokolova and E. P. de Vink. Probabilistic automata: Sys-
tem types, parallel composition and comparison. InValida-
tion of Stochastic Systems: A Guide to Current Research,
LNCS2925, pages 1–43. Springer, 2004.

