
Switched Probabilistic I/O Automata

Ling Cheung1, Nancy Lynch2, Roberto Segala3, and Frits Vaandrager1

1 Nijmegen Institute for Computing and Information Sciences
University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{lcheung,fvaan}@cs.kun.nl?

2 MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

lynch@theory.csail.mit.edu??

3 Dipartimento di Informatica, Università di Verona
Strada Le Grazie 15, 37134 Verona , Italy

roberto.segala@univr.it? ? ?

Abstract. A switched probabilistic I/O automaton is a special kind of
probabilistic I/O automaton (PIOA), enriched with an explicit mech-
anism to exchange control with its environment. Every closed system
of switched automata satisfies the key property that, in any reachable
state, at most one component automaton is active. We define a trace-
based semantics for switched PIOAs and prove it is compositional. We
also propose switch extensions of an arbitrary PIOA and use these ex-
tensions to define a new trace-based semantics for PIOAs.

1 Introduction

Probabilistic automata [Seg95,Sto02] constitute a mathematical framework for
modeling and analyzing probabilistic systems, specifically, systems consisting of
asynchronously interacting components capable of nondeterministic and proba-
bilistic choices. This framework has been successfully adopted in the studies of
distributed algorithms [LSS94,PSL00,Agg94] and practical communication pro-
tocols [SV99].

An important part of such a framework is a notion of visible behavior of
system components. This is used to derive implementation and equivalence re-
lations among components. For example, one can define the visible behavior
of a nondeterministic automaton to be its set of traces (i.e., sequences of visi-
ble actions that arise during executions of the automaton [LT89]). This induces

? Supported by DFG/NWO bilateral cooperation project 600.050.011.01 Validation of
Stochastic Systems (VOSS).

?? Supported by DARPA/AFOSR MURI Award #F49620-02-1-0325, MURI AFOSR
Award #F49620-00-1-0327, NSF Award #CCR-0326277, and USAF, AFRL Award
#FA9550-04-1-0121.

? ? ? Supported by MURST project Constraint-based Verification of reactive systems
(CoVer).

an implementation (resp. equivalence) relation on nondeterministic automata,
namely inclusion (resp. equality) of sets of traces.

Perhaps the most important property of an implementation relation is com-
positionality : if P implements Q, then for every context R, one should be able to
infer that P‖R implements Q‖R. This property facilitates correctness proofs of
complex systems by reducing properties of a large system to properties of smaller
subsystems. In the setting of security analysis, for instance, compositionality en-
sures that plugging secure components into a security preserving context results
again in a secure component [Can01].

Generalizing the notion of traces, Segala [Seg95] defines the visible behavior
of a probabilistic automaton as its set of trace distributions , where each trace
distribution is induced by a probabilistic scheduler which resolves all nondeter-
ministic choices. This gives rise to implementation and equivalence relations as
inclusion and equality of sets of trace distributions, respectively. It turns out
that this notion of implementation relation is not compositional. A simple coun-
terexample is illustrated in Figure 1.

/.-,()*+��������
a

����������
a

��???????? /.-,()*+��������
a

��

/.-,()*+��������
��1

2

���������
==

1
2

��======

·
b

��

·
c

��

·
b

~~|||||||||
c

 BBBBBBBBB ·
d

��

·
e

��· · · · · ·

a

Fig. 1. Probabilistic automata Early, Late and Toss

As their names suggest, automaton Early forces its scheduler to choose be-
tween b and c as it chooses one of the two available a-transitions, whereas au-
tomaton Late allows its schedulers to make this decision after the a-transition.
Clearly, these two automata have the same set of trace distributions, but they
can be distinguished by the context Toss. The composed system Late ‖Toss has
a trace distribution D0 that assigns probability 1

2 to each of these traces: adb
and aec . Such total correlations between actions d and b, and between actions
e and c, cannot be achieved by the composite Early ‖Toss.

Inspired by this example, we establish in [LSV03] that the coarsest precon-
gruence refining trace distribution preorder coincides with the probabilistic sim-
ulation preorder. In other words, probabilistic contexts are capable of exposing
internal branching structures of other components.

Aside from its inspirational merits, this example reveals an unsatisfactory
aspect of the composition mechanism of probabilistic automata. Namely, nonde-
terministic choices are resolved after the two automata are composed, allowing
the global scheduler to make decisions in one component using state information
of the other. This phenomenon can be viewed as a form of “information leak-

age”: the global scheduler channels private information from one component to
the other, in particular, from Toss to Late.

In this paper, we present a composition mechanism where local scheduling
decisions are based on strictly local information. That is, (i) local nondetermin-
istic choices of each component are resolved by that component alone; (ii) global
nondeterministic choices (i.e., inter-component choices) are resolved by some in-
dependent means. To address the first issue, we introduce an input/output dis-
tinction to our model and pair each automaton with an input/output scheduler.
For the second, we introduce a control-passage1 mechanism, which eliminates
global scheduling conflicts.

Before describing our model in greater detail, we take a quick look at re-
lated proposals in the existing literature. (We refer to [SV04] for a comparative
study of various probabilistic models.) For purely synchronous, variable-based
models, global nondeterministic choices are resolved by “avoidance”: in each
transition of the global system, all components may take a step. This intrinsic
feature of synchronous models allows De Alfaro, Henzinger and Jhala [dAHJ01]
to successfully define a compositional, trace-based semantics for their model of
probabilistic reactive modules. For asynchronous models such as probabilistic
automata, global nondeterministic choices must be resolved explicitly in order
to assign a probability mass to each possible interleaving of actions. Wu, Smolka
and Stark [WSS94] propose a compositional model based on probabilistic in-
put/output automata. In that model, global nondeterminism is resolved by a
“race” among components: each component draws a delay from an exponential
distribution (thus leaving the realm of discrete distributions). Assuming inde-
pendence of these random draws, the probability of two components drawing the
same delay is zero, therefore there is almost always a unique winner.

In this paper, we introduce the model of switched probabilistic I/O automata
(or switched automata for short). This augments the probabilistic I/O automata
model with some additional structures and axioms. In particular, we add a pred-
icate active on the set of states, indicating whether the automaton is active or
inactive. We require that locally controlled actions are enabled only if the au-
tomaton is active. In other words, an inactive automaton must be quiescent and
can only accept inputs from the environment.

A switched automaton changes its activity status by performing special con-
trol input and control output actions. Control inputs switch the machine from
inactive to active and vice versa for control outputs. All other actions must leave
the activity status unchanged. It is important that all control communications
are “handshakes”: at most two components may participate in a synchronization
labeled by a control action. Together with an appropriate initialization condition,
this ensures that at most one component is active at any point of an execution.
Intuitively, we model a network of processes passing a single token among them,

1 Throughout this paper, the term control is used in the spirit of “control flow” in
sequential programming: a component is said to possess the control of a system if it
is scheduled to actively perform the next action. This should not be confused with
the notion of controllers for plants, as in control theory.

with the property that a process enables a locally controlled transition if and
only if it possesses the token.

The main technical result of this paper is compositionality of a trace-based
semantics for switched probabilistic I/O automata (Section 6, Theorem 1). Sec-
tions 2 and 3 are devoted to the basic theory. There we introduce new technical
notions such as I/O schedulers, scheduled automata and parallel composition of
scheduled automata. In Section 4, we define pseudo probabilistic executions and
pseudo trace distributions for automata with open inputs, and prove important
projection and pasting results. Section 5 treats two standard operators: renaming
and hiding. In Section 7, we propose the notion of switch extensions for PIOAs,
which can be used to derive a new form of composition for the original PIOA
model. Concluding discussions follow in Section 8. Due to space constraints, we
have omitted many proofs. These can be found in a full version of this paper
available at
http://www.cs.kun.nl/ita/publications/papers/fvaan/switched.html.

2 Preliminaries

In this section, we define probabilistic I/O automata and some related notions.
This is a straightforward combination of the Input/Output Automata model
of Lynch and Tuttle [LT89] and the Simple Probabilistic Automata model of
Segala [Seg95].

A discrete probability (resp. sub-probability) measure over a setX is a measure
µ on (X, 2X) such that µ(X) = 1 (resp. µ(X) ≤ 1). With slight abuse of notation,
we write µ(x) for µ({x}). The set of all discrete probability measures over X is
denoted Disc(X); similarly for SubDisc(X). Moreover, we use Supp(µ) to denote
the support of a discrete measure µ: the set of elements in X to which µ assigns
nonzero measure. Given x ∈ X , the Dirac distribution on x is the unique measure
assigning probability 1 to x, denoted (x 7→ 1).

A probabilistic I/O automaton (PIOA) P consists of:

– a set States(P) of states and a start state s0 ∈ States(P);
– a set Act(P) of action symbols, partitioned into: I (input actions), O (output

actions) and H (hidden actions);
– a transition relation →⊆ States(P)×Act(P)× Disc(States(P)).

An action is visible if it is not hidden. It is locally controlled if it is non-input
(i.e., either output or hidden); we define L := O ∪ H . We write s

a→ µ for

〈s, a, µ〉 ∈→, and s
a→ s′ if there exists µ with s

a→ µ and s′ ∈ Supp(µ). A
state is quiescent if it enables only input actions. A PIOA is closed if its set of
input actions is empty. As with I/O automata, we always assume input enabling :

∀s ∈ States(P) ∀a ∈ I ∃µ : s
a→ µ.

An execution of P is a (possibly finite) sequence p = s0a1µ1s1a2µ2s2 . . . ,
such that:

– each si (resp., ai, µi) denotes a state (resp., action, distribution over states);

– s0 = s0 and, if p is finite, then p ends with a state;

– for each non-final i, si
ai+1→ µi+1 and si+1 ∈ Supp(µi+1).

In some literature, executions are defined to be sequences of states and actions in
alternating fashion, thus omitting the target distributions. We adopt the current
style for a more straightforward generalization to probabilistic executions.

Given a finite execution p, we use last(p) to denote the last state of p. A state
s is reachable if there exists a finite execution p such that last(p) = s. We write
Exec(P) for the set of all executions of P and Exec<ω(P) for the set of finite
executions. Given an execution p, the sequence of visible action symbols in p is
called the (visible) trace of p, denoted tr(p).

A finite set of PIOAs {P1, . . . , Pn} is said to be compatible if for all i 6= j,
Oi ∩ Oj = Act(Pi) ∩Hj = ∅. Such a set is closed if

⋃
1≤i≤n Ii ⊆

⋃
1≤i≤nOi. We

define P = ‖1≤i≤nPi as usual with synchronization of shared actions:

– States(P) :=
∏

1≤i≤n States(Pi) and the start state of P is 〈s0
1, . . . , s

0
n〉;

– I :=
⋃

1≤i≤n Ii \
⋃

1≤i≤n Oi, O :=
⋃

1≤i≤nOi, and H :=
⋃

1≤i≤nHi;
– given a state 〈s1, . . . , sn〉, an action a and a target distribution µ, there is a

transition 〈s1, . . . , sn〉 a→ µ if and only if µ is of the form µ1 × . . .× µn and
for all 1 ≤ i ≤ n,

• either a ∈ Act(Pi) and si
a→ µi,

• or a 6∈ Act(Pi) and µi = (si 7→ 1).

Notice ‖ is commutative and associative for PIOAs (up to isomorphism).
The notion of (probabilistic) schedulers for a PIOA P is introduced as a

means to resolve all nondeterministic choices in P . Each scheduler consists of
an input component and an output component. Given a finite history of the
automaton, the output scheduler chooses probabilistically the next locally con-
trolled transition, whereas the input scheduler responds to inputs from the en-
vironment and chooses probabilistically a transition carrying the correct input
symbol.

Definition 1. An input scheduler σ for P is a function

σ : Exec<ω(P)× I −→ Disc(→)

such that for all 〈p, a〉 ∈ Exec<ω(P)×I and transitions (s
b→ µ) ∈ Supp(σ(p, a)),

we have s = last(p) and b = a. An output scheduler ρ for P is a function

ρ : Exec<ω(P) −→ SubDisc(→)

such that for all p ∈ Exec<ω(P) and transition (s
a→ µ) ∈ Supp(ρ(p)), we have

s = last(p) and a ∈ L. An I/O scheduler for P is then a pair 〈σ, ρ〉 where σ is
an input scheduler for P and ρ is an output scheduler for P .

Notice input schedulers must return a discrete probability distribution, re-
flecting the requirement that each input issued by the environment is received

with probability 1. (This is always possible because of the input enabling as-
sumption.) In contrast, output schedulers may choose to halt with an arbitrary
probability θ by returning a proper sub-distribution whose total probability mass
is 1− θ. Finally, we write σ(p, a)(µ) as a shorthand for σ(p, a)(last(p)

a→ µ) and

ρ(p)(a, µ) for ρ(p)(last(p)
a→ µ).

Consider a closed PIOA P . Obviously, any I/O scheduler for P has a triv-
ial input component (i.e., the empty function). Every output scheduler ρ thus
induces a purely probabilistic behavior, which is captured by the following no-
tion of probabilistic executions. The probabilistic execution induced by ρ is the
function Qρ : Exec<ω(P) −→ [0, 1] defined recursively by:

– Qρ(s
0) := 1, where s0 is the initial state of P ;

– Qρ(p
′) := Qρ(p) · ρ(p)(a, µ) · µ(s′), where p′ is of the form paµs′.

A probabilistic execution Qρ induces a probability space over the sample
space ΩP := Exec(P) as follows. Let v denote the prefix ordering on sequences.
Each p ∈ Exec<ω(P) generates a cone of executions: Cp := {p′ ∈ Exec(P) | p v
p′}. Let FP denote the smallest σ-field generated by the collection {Cp | p ∈
Exec<ω(P)}. There exists a unique measure mρ on FP with mρ[Cp] = Qρ(p) for
all p in Exec<ω(P); therefore Qρ gives rise to a probability space (ΩP ,FP ,mρ).

Trace distributions are obtained from probabilistic executions by removing
non-visible elements. In our case, these are states, hidden actions and distribu-
tions of states. To state this precisely, we need the notion of minimal executions:
a finite execution p of P is said to be minimal if every proper prefix of p has a
strictly shorter trace. Notice, the empty execution (i.e., the sequence containing
just the initial state) is minimal. Moreover, if p is nonempty and finite, then p
is minimal if and only if the last transition in p has a visible action label. For
each α ∈ Act(P)<ω , let tr-1

min(α) denote the set of minimal executions of P with
trace α.

Now we define a lifting of the trace operator tr : Exec<ω(P) −→ Act(P)<ω.
Given a function Q : Exec<ω(P) −→ [0, 1], define tr(Q) : Act(P)<ω −→ [0, 1] by

tr(Q)(α) :=
∑

p∈tr-1min(α)

Q(p).

Given an output scheduler ρ of a closed PIOA P , the trace distribution induced
by ρ (denoted Dρ) is simply the result of applying tr to the probabilistic exe-
cution Qρ. That is, Dρ := tr(Qρ). We often use variables D, D′, etc. for trace
distributions, thus leaving the scheduler ρ implicit.

Similar to the case of probabilistic executions, each Dρ induces a probability
measure on the sample space Ω := Act(P)≤ω. There the σ-field F is generated
by the collection {Cα | α ∈ Act(P)<ω}, where Cα := {α′ ∈ Ω | α v α′}. The
measure mρ on F is uniquely determined by the equations mρ[Cα] = Dρ(α) for
all α ∈ Act(P)<ω .

In the literature, most authors define probabilistic executions (resp. trace
distributions) to be the probability spaces 〈ΩP , FP , mρ〉 (resp. 〈Ω, F , mρ〉).
Here we find it more natural to reason with the functions Qρ and Dρ, rather

than the induced measures. We refer to [Seg95] for these alternative definitions
and proofs that they are equivalent to our versions.

3 Switched Probabilistic I/O Automata

As we argued in Section 1, one must distinguish between global and local nonde-
terministic choices and must resolve them separately. This section describes our
solution, namely, an explicit mechanism of control exchange among parallel com-
ponents. The presentation is organized as follows: (i) first we define pre-switched
automata, where we describe control action signatures and the Boolean-valued
state variable active; (ii) then we introduce the notion of input well-behaved ex-
ecutions of a pre-switched automaton and state four axioms defining switched
automata; (iii) finally, we introduce the notion of a scheduled automaton, essen-
tially a switched automaton paired with an I/O scheduler.

For technical simplicity, we assume a universal set Act of action symbols
such that Act(P) ⊆ Act for every PIOA P . Moreover, Act is partitioned into
two sets: BAct (basic actions) and CAct (control actions). Both sets are assumed
to be countably infinite, so we can rename hidden actions using fresh symbols
whenever necessary (cf. Section 5).

Definition 2. A pre-switched automaton P is a PIOA endowed with a function
active : States(P) −→ {0, 1} and a set Sync ⊆ O∩CAct of synchronized control
actions.

We use variables P , Q, etc. to denote pre-switched automata. Given a pre-
switched automaton P , we further classify its action symbols:

– BI := I ∩ BAct (basic inputs);
– BO := O ∩ BAct (basic outputs);
– CI := I ∩ CAct (control inputs);
– CO := (O ∩ CAct) \ Sync (control outputs).

Essentially, we have a partition {BI ,BO , H,CI ,CO ,Sync} of Act(P). We say
that P is initially active if active(s0) = 1. Otherwise, it is initially inactive.

As described in Section 1, the Boolean-valued function active on the states
of P indicates whether P is active or inactive, while control actions allow P to
exchange control with its environment. The designation of synchronized control
actions helps to achieve the “handshake” condition on control synchronizations:
whenever we compose two automata, we classify the shared control actions as
“synchronized”, so that they are no longer available for further synchronization
with a third component. This is made precise in the definitions of compatibility
and composition for pre-switched automata.

A finite set of pre-switched automata {P1, . . . , Pn} is said to be compatible if
(i) {P1, . . . , Pn} is a compatible set of PIOAs; (ii) for all i 6= j, Act(Pi)∩Syncj =
CI i ∩CI j = ∅; (iii) at most one Pi is initially active. Notice that such a set is
compatible if and only if for all i 6= j, Pi and Pj are compatible. The paral-
lel composition of {P1, . . . , Pn}, denoted ‖1≤i≤nPi, is the result of composing
P1, . . . , Pn as PIOAs, together with:

– Sync :=
⋃

1≤i≤n Synci ∪
⋃

1≤i,j≤n(CI i ∩CO j);
– active(s1, . . . , sn) = 1 if and only if for some i, activei(si) = 1.

Clearly, the composite ‖1≤i≤nPi is again a pre-switched automaton. In the binary
case, we write P1‖P2 as shorthand for ‖1≤i≤2Pi. Observe that P1‖P2

∼= P2‖P1;
that is, composition of pre-switched automata is commutative up to isomor-
phism. Next we check that composition is also associative on the class of pre-
switched automata.

Lemma 1. Let P1, P2 and P3 be pre-switched automata. Assume P1 is compat-
ible with P2, and P3 is compatible with P1‖P2. Then P2 is compatible with P3,
and P1 is compatible with P2‖P3. Moreover, (P1‖P2)‖P3

∼= P1‖(P2‖P3).

Recall that switched automata are intended to be composed in such a way
that at most one component is active at any point of an execution. In particular,
any environment automaton must also follow the rules of control exchange; that
is, after activating some system component, the environment must itself become
inactive. This leads to the definition of input well-behavedness. Let P be a pre-
switched automaton. An input transition s

a→ µ is well-behaved if active(s) = 0.
An execution p of P is input well-behaved if all input transitions occurring in
p are well-behaved. Let Exec<ωiwb (P) denote the set of finite, input well-behaved
executions of P . Moreover, we say that a state s is input well-behaved reachable,
notation iwbr(s), if there exists an input well-behaved execution p such that
s = last(p). Clearly, the empty execution is input well-behaved and thus the
initial state is always input well-behaved reachable. If P is closed (i.e., I = ∅),
then every execution of P is trivially input well-behaved and every reachable
state is input well-behaved reachable. We are now prepared to define the notion
of switched probabilistic I/O automata.

Definition 3. A switched (probabilistic I/O) automaton is a pre-switched au-
tomaton P that satisfies the following axioms.

s
a→ µ ∧ active(s) = 0 ⇒ a ∈ I (1)

s
a→ s′ ∧ a ∈ CI ⇒ active(s′) = 1 (2)

s
a→ s′ ∧ a 6∈ CI ∪CO ⇒ active(s) = active(s′) (3)

iwbr(s) ∧ s
a→ s′ ∧ a ∈ CO ⇒ active(s′) = 0 (4)

These four axioms formalize our intuitions about control passage. Axiom (1)
requires all inactive states to be quiescent. Axioms (2) and (4) say that control
inputs lead to active states and control outputs to inactive states. Axiom (3)
says that non-control transitions and synchronized control transitions do not
change the activity status. Together, they describe an “activity cycle” for the
automaton P : (i) while in inactive mode, P does not enable locally controlled
transitions, although it may still receive inputs from its environment; (ii) when P
receives a control input it moves into active mode, where it may perform hidden
or output transitions, possibly followed by a control output; (iii) via this control
output P returns to inactive mode.

Notice that Axiom (4) is required for input well-behaved reachable states
only. Without this relaxation, the composition of two switched automata may
not satisfy Axiom (4).

We proceed to confirm that the class of switched automata is closed under the
parallel composition operator for pre-switched automata. A set {P1, . . . , Pn} of
switched automata is compatible if the set of underlying pre-switched automata
is compatible. Define the composite, ‖1≤i≤nPi, to be the result of composing
the switched automata as pre-switched automata. The first three axioms can
be verified by unfolding the definition of active in a composition and applying
appropriate axioms for the components. Axiom (4) follows from Lemma 2 below.
The proof is by induction on the length of executions and relies heavily on
invariant-style reasoning based on the definition of input well-behaved executions
and the axioms of switched automata.

Lemma 2. Let {P1, . . . , Pn} be a compatible set of switched automata. For each
finite, input well-behaved execution p of ‖1≤i≤nPi, we have:

(i) for all i, πi(p) is also input well-behaved;
(ii) there is at most one i such that activei(πi(last(p))) = 1.

To summarize, ‖1≤i≤n is a well-defined n-ary operator for switched automata
and, in the binary case, associativity of ‖ follows from Lemma 1.

Next we turn to scheduling decisions. The notion of I/O schedulers for
switched automata is inherited from that of its underlying PIOA.

Definition 4. A scheduled automaton is a triple 〈P, σ, ρ〉 such that P is a
switched automaton and 〈σ, ρ〉 is an I/O scheduler for P .

We use letters S, T , etc. to denote scheduled automata. For each 1 ≤ i ≤ n,
let Si denote a scheduled automaton 〈Pi, σi, ρi〉. The set {Si | 1 ≤ i ≤ n} is said
to be compatible if {Pi | 1 ≤ i ≤ n} is compatible as a set of switched automata.
Given such a compatible set of scheduled automata, we obtain its composite by
combining the I/O schedulers {〈σi, ρi〉 | 1 ≤ i ≤ n} into an I/O scheduler 〈σ, ρ〉
for the switched automaton ‖1≤i≤nPi.

Definition 5. Suppose {Si | 1 ≤ i ≤ n} is a compatible set of scheduled au-
tomata, where Si = 〈Pi, σi, ρi〉 for each i. We construct from this set a com-
posite scheduled automaton ‖1≤i≤nSi := 〈P, σ, ρ〉 as follows.

– P := ‖1≤i≤nPi.
– For every finite execution p of P with last(p) = s and for every a ∈ I,

• σ(p, a)(t
b→ µ) := 0 if t 6= s or b 6= a;

• otherwise, σ(p, a)(s
a→ µ0 × . . .× µn) := Πici, where ci equals

∗ σi(πi(p), a)(µi), if a ∈ Ii;
∗ 1, otherwise.

– For every finite execution p of P with last(p) = s,

• ρ(p)(t
a→ µ) := 0 if p is not input well-behaved, t 6= s, or a 6∈ L;

• otherwise, ρ(p)(s
a→ µ0 × . . .× µn) := Πici, where ci equals

∗ ρi(πi(p))(a, µi), if a ∈ Li;
∗ σi(πi(p), a)(µi) if a ∈ Ii;
∗ 1, otherwise.

It is routine to check that σ(p, a) is a discrete distribution for all p ∈
Exec<ω(P) and a ∈ I . Lemma 2 guarantees that, at the end of every input
well-behaved finite execution p, there is at most one i such that component i
enables a locally controlled transition. This allows us to conclude that ρ(p) is a
discrete sub-distribution for all p ∈ Exec<ω(P).

As usual, we write S1‖S2 for ‖1≤i≤2Si, provided S1 and S2 are compati-
ble. Associativity of ‖ for scheduled automata follows from that for switched
automata and a routine check on the I/O schedulers. Finally, the notions of
probabilistic executions and trace distributions for closed scheduled automata
are inherited from those of PIOAs. In particular, we write QS (respectively, DS)
for the probabilistic execution (respectively, trace distribution) induced by the
output scheduler of a closed scheduled automaton S.

4 Projection and Pasting

In this section, we study projection and pasting of probabilistic behaviors. Such
results are essential elements in constructing a compositional modeling frame-
work. We begin by introducing the notion of regular executions, which will be
used to define pseudo trace distributions for automata with open inputs. In
Lemma 5, we prove that the pseudo distribution of a composite is uniquely de-
termined by those of its components. Finally, we prove the main pasting lemma
for closed automata (Lemma 7), which plays a crucial role in the proof of our
main compositionality theorem (Theorem 1).

Given an execution p of a switched automaton P , we say that p is regular if
it is both minimal and input well-behaved. Given a finite sequence α of visible
actions in P , let tr-1

reg(α) denote the set of regular executions of P with trace α.
Notice that regularity coincides with minimality in case P is closed.

Lemma 3 states that, given a fixed trace, there is a bijective correspondence
between the set of regular executions of the composite and the Cartesian product
of the sets of regular executions of the two components.

Lemma 3. Let X denote tr-1
reg(α) in P1‖P2. Let Y and Z denote tr-1

reg(π1(α)
in P1 and tr-1

reg(π2(α)) in P2, respectively. There exists an isomorphism zip :
Y × Z −→ X whose inverse is 〈π1, π2〉.

Next we introduce a notion of pseudo probabilistic execution for automata
with open inputs. The definition itself is completely analogous to probabilistic
executions for closed automata; however, a pseudo probabilistic execution does
not always induce a probability measure, because it does not take into account
the probabilities with which inputs are provided by the environment.

Definition 6. Let S = 〈P, σ, ρ〉 be a scheduled automaton. Define the pseudo
probabilistic execution Q of S as follows: for all finite executions p′ of S,

– if p′ is of the form s0, where s0 is the initial state of S, then Q(p′) := 1;
– if p′ is of the form paµs′ with a ∈ I, then Q(p′) := Q(p) · σ(p, a)(µ) · µ(s′);
– if p′ is of the form paµs′ with a ∈ L, then Q(p′) := Q(p) · ρ(p)(a, µ) · µ(s′).

Similarly, we define pseudo trace distributions.

Definition 7. Let S = 〈P, σ, ρ〉 be a scheduled automaton. The pseudo trace
distribution D of S is the function from (Act(S) \ HS)<ω to [0, 1] given by
D(α) :=

∑
p∈tr-1reg(α)Q(p), where Q is the pseudo probabilistic execution of S.

Notice that, if S is closed, then the pseudo probabilistic execution of S co-
incides with the probabilistic execution of S. Moreover, an execution of a closed
automaton S is regular if and only if it is minimal, thus the pseudo trace distri-
bution of S coincides with the trace distribution of S.

For the rest of this section, let S and T be a pair of compatible scheduled
automata. Let QS‖T , QS and QT denote the pseudo probabilistic executions of
S‖T , S and T , respectively. Similarly for pseudo trace distributions DS‖T , DS

and DT . Lemma 4 below says we can project a pseudo probabilistic execution
of the composite to yield pseudo probabilistic executions of the components.
The proof is routine, by induction on the length of executions. Lemma 5 then
combines Lemma 3 and Lemma 4 to show the analogous projection result for
pseudo trace distributions.

Lemma 4. For all finite executions p of S‖T , we have QS‖T (p) = QS(π1(p)) ·
QT (π2(p)).

Lemma 5. Let α be a finite sequence of visible action symbols of S‖T . Then
DS‖T (α) = DS(π1(α)) ·DT (π2(α)).

To prove the main pasting lemma, we need yet another technical result;
namely, inputs must be received with probability 1. This can be viewed as “input
enabling” in the probabilistic sense and it follows from basic properties of target
distributions and input schedulers.

Lemma 6. Let α be a finite sequence of visible action symbols of S‖T and let
a ∈ Act(S‖T) be given. If a is not locally controlled by T , then DT (π2(α)) =
DT (π2(αa)).

Two switched/scheduled automata are said to be comparable if they have the
same visible signature and their start states have the same status. We are now
ready for the main pasting lemma.

Lemma 7 (Pasting). Let S1, S2, T1 and T2 be scheduled automata satisfying
(i) S1 and S2 are comparable; (ii) {S1, T1}, {S2, T2} and {S1, T2} are compatible
sets; (iii) the pseudo trace distributions DS1‖T1

and DS2‖T2
coincide (denoted D).

Then D also coincides with the pseudo trace distribution DS1‖T2
.

5 Renaming and Hiding

In this section, we consider the standard renaming and hiding operators. We
start with an equivalence relation on switched automata: P1 ≡R P2 just in case
there exists a bijection f : H1 −→ H2 such that P2 can be obtained from
P1 by replacing every hidden action symbol a ∈ H1 by f(a) ∈ H2 (notation:
P2 = f(P1)).

It is routine to check this is in fact an equivalence relation. If P1 ≡R P2, we say
that P2 can be obtained from P1 by renaming of hidden actions. This operation
also induces an equivalence relation on scheduled automata: 〈P1, σ1, ρ1〉 ≡R
〈P2, σ2, ρ2〉 just in case there exists a renaming function f such that P1 ≡R P2

via f and 〈σ2, ρ2〉 is obtained from 〈σ1, ρ1〉 via f and f -1 (notation: S2 = f(S1)).
The following lemma says, as long as the renaming operation does not intro-

duce incompatibility of signatures, it does not affect the behavior of an automa-
ton in a closing context.

Lemma 8. Let S and C be compatible scheduled automata with S‖C closed.
Suppose S ≡R S′ via the renaming function f : H −→ H ′ with H ′ disjoint from
Act(C). Then {S′, C} is closed and compatible and DS‖C = DS′‖C.

Next we consider the issue of hiding output actions. Let Hide denote the stan-
dard hiding operator for PIOA. This is also an operator for switched automata,
provided we hide only basic outputs and synchronized control actions.

Lemma 9. Let P be a switched automaton and let Ω ⊆ BO ∪Sync be given.
Then HideΩ(P) is again a switched automaton.

Notice that every I/O scheduler for P is an I/O scheduler for HideΩ(P).
Therefore Hide can be extended to scheduled automata:

HideΩ〈P, σ, ρ〉 := 〈HideΩ(P), σ, ρ〉.

In the rest of this section we investigate the effect of HideΩ on (pseudo)
trace distributions. Let S = 〈P, σ, ρ〉 be a scheduled automaton with signature
〈I, O, H〉. For convenience, write P ′ for HideΩ(P), O′ for O \Ω, and tr′ for the
trace operator for HideΩ(P). (If we view HideΩ as an operator on traces, then
tr′ is precisely HideΩ ◦ tr.)

Moreover, for all β′ ∈ (I∪O′)<ω, letMβ′ denote the set of all minimal (w.r.t.
v) traces in HideΩ

-1(β′). That is, if β′ is empty, then Mβ′ is the singleton set
containing the empty trace ε; otherwise,

Mβ′ := {β ∈ (I ∪O)<ω | HideΩ(β) = β′ and the last symbol on β is not in Ω.}

We make a simple observation about minimal executions of P and those of P ′.

Lemma 10. For all β′ ∈ (I ∪ O′)<ω, the following two sets are equal:

– X :=
⋃
β∈Mβ′

{p ∈ Exec<ω(P) | tr(p) = β and p minimal w.r.t. tr};

– Y := {p ∈ Exec<ω(P ′) | tr′(p) = β′ and p minimal w.r.t. tr′}.

Now consider the pseudo trace distribution DS . Define the effect of HideΩ on
DS to be the following function from O′<ω to [0, 1]:

HideΩ(DS)(β′) :=
∑

β∈Mβ′

DS(β).

We have the following corollary of Lemma 10.

Corollary 1. The pseudo trace distribution of HideΩ(S) is precisely HideΩ(DS).
That is, DHideΩ(S) = HideΩ(DS).

Finally, we consider the effect of hiding in a parallel composition. We claim
that the act of hiding in one component does not affect the behavior of the other,
as long as the actions being hidden in the first component are not observable
by the second component. This idea is captured in the following lemma, which
follows from Corollary 1 and Lemma 5.

Lemma 11. Let S1, S2, T be scheduled automata satisfying: (i) S1 and S2 are
comparable and (ii) T is compatible with S1 and S2. Let Ω ⊆ OT be given and
let T ′ denote HideΩ(T). If T ′ is compatible with S1 (and thus with S2), then

DS1‖T = DS2‖T ⇔ DS1‖T ′ = DS2‖T ′ .

6 Probabilistic Systems

In this section, we give a formal definition of our implementation preorder and
prove compositionality. The basic approach is to model a system as a switched
PIOA together with a set of I/O schedulers. Observable behavior is then defined
in terms of trace distributions induced by the prescribed schedulers.

Formally, a probabilistic system P is a set of scheduled automata that share
a common underlying switched automaton. (Equivalently, a probabilistic system
is a pair 〈P, S〉 where P is a switched automaton and S is a set of I/O schedulers
for P .) Such a system is full if S is the set of all possible I/O schedulers for P .

Two probabilistic systems P1 = 〈P1, S1〉 and P2 = 〈P2, S2〉 are compatible
just in case P1 is compatible with P2. The parallel composite of P1 and P2,
denoted P1‖P2, is the probabilistic system: {S1‖S2 | S1 ∈ P1 and S2 ∈ P2}.
Notice the underlying automaton of the composite is P1‖P2.

Let S be a scheduled automaton. A context for S is a scheduled automaton C
such that (i) C is compatible with S; (ii) S and C have complementary signatures
(i.e., IC = OS and IS = OC). Given probabilistic system P = 〈P, S〉, we say
that D is a trace distribution of P just in case there exist scheduled automata
S ∈ P and context C for S such that D = DS‖C . We write td(P) for the set of
trace distributions of P .

Two probabilistic systems are comparable whenever the underlying switched
automata are comparable. Given comparable systems P1 and P2, we define the

trace distribution preorder by: P1 ≤td P2 whenever td(P1) ⊆ td(P2). We are now
ready to present our main theorem, namely, that the trace distribution preorder
for probabilistic systems is compositional.

Theorem 1. Let P1 and P2 be comparable probabilistic systems with P1 ≤td P2.
Suppose P3 is compatible with both P1 and P2. Then P1‖P3 ≤td P2‖P3.

7 PIOA Revisited

Before concluding, we give an example in which switched automata are used to
obtain a new trace-based semantics for general PIOAs. The idea is to convert
a general PIOA to a switched PIOA by adding control actions and activity
classification. We then hide all control actions in trace distributions generated by
the resulting switched PIOA. In many cases, this yields a set of trace distributions
strictly smaller than that considered by Segala [Seg95].

Let P be a PIOA and assume Act(P) ⊆ BAct . Let go, done ∈ CAct be fresh
symbols and let b0 be a Boolean value. The switch extension of P with go, done
and initialization b0 (notation: E(P, go, done, b0)), is the switched automaton P ′

constructed as follows:

– States(P ′) = States(P)× {0, 1} and the start state of P ′ is 〈s0, b0〉;
– I ′ = I ∪ {go}, O′ = O ∪ {done}, and Sync ′ = ∅;
– active′(〈s, b〉) = b for b ∈ {0, 1};
– the transition relation is the union of the following:

• {〈〈s, 1〉, a, µ1〉 | s a→ µ in P},
• {〈〈s, 0〉, a, µ0〉 | s a→ µ in P and a ∈ I},
• {〈〈s, b〉, go, (〈s, 1〉 7→ 1)〉 | s ∈ States(P) and b ∈ {0, 1}},
• {〈〈s, 1〉, done, (〈s, 0〉 7→ 1)〉 | s ∈ States(P)},

where µb denotes the distribution that assigns probability µ(t) to 〈t, b〉 and
0 to 〈t, 1− b〉.

Roughly speaking, P ′ is obtained from P by (i) adding a Boolean flag active′

to each state; (ii) enabling locally controlled transitions only if active′ = 1; and
(iii) adding go and done transitions which update active′ appropriately. It is
not hard to check that P ′ satisfies all axioms of switched automata. Moreover,
the pair 〈go, done〉 can be easily generalized to a pair of disjoint sets of control
actions.

Given any two compatible PIOAs, we can always extend them with comple-
mentary control actions and initialization statuses, resulting in a pair of com-
patible switched automata. As an example, we consider the automata Late and
Toss in Figure 1. Actions a, b and c are considered outputs of Late, whereas
action a is an input of Toss and actions e and f are outputs of Toss. The follow-
ing diagrams illustrate E(Late, go, done, 1) and E(Toss, done, go, 0). For a clearer
picture, we have omitted the probabilities on the input a-transition in Toss, as
well as all nonessential input loops. The active region, which is identical to the

original PIOA, is drawn in the foreground. The inactive region, in which all lo-
cally controlled transitions are removed, is in the background. Each two-headed
arrow indicates a control output from active to inactive and a control input from
inactive to active./.-,()*+��������

a!

��

���

��������
;;;

��;;;;;;

·
b!

~~|||||||||
c!

 BBBBBBBBB ·
d!

��

·
e!

��· · · ·

a?

·22rreeeee /.-,()*+��������22rreeeeee
��

��

�����

==

��======

·22rreeeeee ·22rreeeeee ·22rrddddddd

·22rrddddddd ·22rreeeeee ·22rreeeeee ·22rrddddddd

a?

Now consider the problematic trace distribution D0 of Late ‖Toss, as de-
scribed in Section 1. Let P1 and P2 denote the full probabilistic systems on
E(Late, go, done, 1) and E(Toss, done, go, 0), respectively. As we compose these
two systems, D0 is no longer a trace distribution of P1‖P2 (even after hiding go
and done), because I/O schedulers in P1 have no way of knowing whether action
d or action e was performed by P2, thus they cannot establish the correlations
between actions d and b, and between actions e and c.

This leads to our proposal of a new notion of visible behaviors for PIOA. Let
P be a PIOA and let P be the full probabilistic system on E(P, go, done, 0). A
PIOA E is a context for P if IE = OP , OE = IP , and E is compatible with P .
For each such E, write PE for the full probabilistic system on E(E, done, go, 1).
We say that D is a trace distribution of P if there exists a context E for P such
that D ∈ td(Hide{go,done}(P‖PE)), where Hide is lifted from scheduled automata
to probabilistic systems.

8 Conclusions and Further Work

Our ultimate goal, of course, is to obtain a compositional semantics for PIOAs.
The notion of switch extensions opens up an array of new options for that end.
A promising approach is to model each system as a finite set of PIOAs, rather
than a single PIOA. Composition is taken to be set union, representing the act
of placing two sets of processes in the same computing environment. Behavior
is then defined in terms of switch extensions, which instantiate the system with
a particular network topology for control passage. In that case, a behavior of a
finite set F is determined by (i) a context E for F ; (ii) a combination of switch
extensions of F ∪ {E}; (iii) a combination of I/O schedulers for these switch ex-
tensions. By ranging over all contexts and all extension-scheduler combinations,
we capture all possible behaviors of the system represented by F .

In other future work, we plan to apply our theory of composition for PIOAs to
the task of verifying security protocols. For example, we will try to model typical
Oblivious Transfer protocols within the PIOA framework and verify correctness
in the style of Canetti’s Universal Composability [Can01]. We will also explore
the use of PIOAs as a semantic model for the probabilistic polynomial time
process calculus of Lincoln, Mitchell, Mitchell and Scedrov [LMMS98].

References

[Agg94] S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Mas-
ter’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 1994. Available as Technical
Report MIT/LCS/TR-632.

[Can01] R. Canetti. Universally composable security: a new paradigm for crypto-
graphic protocols. In Proceedings of the 42nd IEEE Symposium on Foun-
dations of Computing, pages 136–145, 2001.

[dAHJ01] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for
probabilistic systems. In K.G. Larsen and M. Nielsen, editors, Proceed-
ings CONCUR 01, Aalborg, Denmark, August 20-25, 2001, volume 2154 of
Lecture Notes in Computer Science, pages 351–365. Springer, 2001.

[LMMS98] P. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In ACM Conference on Computer and
Communications Security, pages 112–121, 1998.

[LSS94] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized
distributed algorithms. In Proceedings of the 13th Annual ACM Symposium
on the Principles of Distributed Computing, pages 314–323, Los Angeles,
CA, August 1994.

[LSV03] N.A. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for prob-
abilistic automata. In R. Amadio and D. Lugiez, editors, Proceedings 14th
International Conference on Concurrency Theory (CONCUR 2003), Mar-
seille, France, volume 2761 of Lecture Notes in Computer Science, pages
208–221. Springer-Verlag, September 2003.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2(3):219–246, September 1989.

[PSL00] A. Pogosyants, R. Segala, and N.A. Lynch. Verification of the random-
ized consensus algorithm of Aspnes and Herlihy: a case study. Distributed
Computing, 13(3):155–186, 2000.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, June 1995. Available as
Technical Report MIT/LCS/TR-676.

[Sto02] M.I.A. Stoelinga. An introduction to probabilistic automata. Bulletin of
the European Association for Theoretical Computer Science, 78:176–198,
October 2002.

[SV99] M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In
J.-P. Katoen, editor, Proceedings 5th International AMAST Workshop on
Formal Methods for Real-Time and Probabilistic Systems, Bamberg, Ger-
many, volume 1601 of Lecture Notes in Computer Science, pages 53–74.
Springer-Verlag, 1999.

[SV04] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, par-
allel composition and comparison. In C. Baier et al., editor, Validation
of Stochastic Systems, volume 2925 of Lecture Notes in Computer Science,
pages 1–43. Springer-Verlag, 2004.

[WSS94] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors
of probabilistic i/o automata. In B. Jonsson and J. Parrow, editors, Pro-
ceedings CONCUR 94, Uppsala, Sweden, volume 836 of Lecture Notes in
Computer Science, pages 513–528. Springer-Verlag, 1994.

