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Abstract

BPMN (Business Process Model and Notation) is widely used for
modeling Business Processes by using BPMN Diagrams, but lacks in
some aspects. Representing execution-dependent and time-dependent
decisions in BPMN Diagrams may be a daunting challenge [10]. In
many cases such constraints are omitted in order to preserve the sim-
plicity and the readability of the process model. However, for purposes
such as compliance checking, process mining, and verification, formal-
izing such constraints could be very useful. In this paper, we propose
a novel approach for annotating BPMN Diagrams with Temporal Syn-
chronization Rules borrowed from the timeline-based planning field.
We discuss the expressivity of the proposed approach and show that it
is able to capture a lot of complex temporal-related constraints without
affecting the structure of the BPMN Diagram. Finally, we provide a
mapping from annotated BPMN Diagrams to timeline-based planning
problems that allows one to take advantage of the last twenty years of
theoretical and practical developments in the field.

1 Introduction

Nowadays Process-Aware Information Systems (PAISs) have become the
cornerstone for organizing activities in most realities ranging from large pri-
vate companies (operating in logistics, manufactoring, avionics, etc.) to
healthcare institutions. Business Process Management deals with many im-
portant aspects such as analysis, modeling, execution, and monitoring of
Business Processes [20].

In this context, BPMN (Business Process Model and Notation) [26] is
the standard for representing and managing business processes, but it lacks
in some aspects such as the specification of (i) temporal constraints [10, 27],
(ii) resources availability [11], and (iii) external data affecting decisions [29].

As pointed out by many applications, time-awareness is a crucial prop-
erty of business processes in most of the domains and especially in the health-
care one [19, 27]. However, BPMN does not directly allow the specification
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of time constraints in process diagrams, despite the fact that they affect
the real process flow in many aspects such as choices to be made at given
decision points, event handling, task durations, resource allocation and so
on. This limitation has been considered in the literature in different ways.
A possible approach is to extend BPMN with constructs borrowed from
workflows and simple temporal networks fields [10, 27]. Another approach
consists of translating BPMN diagrams into logical or automata-based for-
malisms [12, 21] and then expressing constraints by means of the considered
formalisms.

Moreover, BPMN does not allow the representation of resource availabil-
ity and external data affecting decisions, even if these aspects are crucial in
managing process execution and outcome. A further issue to be considered
is that resources and data values change over time. As an example, in the
healthcare domain, resource availability with respect to blood analysis may
be affected by the time of the day (i.e., morning, afternoon, evening, and
night) and the current load of the lab (i.e., the number of analysis in ex-
ecution). Time of the day and current load may influence the whole time
required for getting results of blood tests. An example taking into account
external data affecting decisions is related to shifts in the systolic blood
pressure values of a patient undergoing a surgical procedure. Significant
differences in pressure values in last 5 hours may force the anaesthetist to
administer a local sedation in place of a total one for safety reasons.

For the sake of clarity and conciseness of BPMN Diagrams, often the
formal specification of these aspects are intentionally neglected and left to
the following implementation with specific software tools.

In this paper, we propose an approach, residing in between the two
aforementioned ones, that allows the annotation of BPMN diagrams based
on Temporal Synchronization Rules of Timeline-based planning [25]. We
also show that this simple language may naturally express the specification
of (i) temporal constraints, (ii) resource availability, and (iii) external data
affecting decisions. Moreover, the proposed approach allows one to con-
strain the execution of the process (e.g., a decision in an exclusive-gateway)
according to the aforementioned specifications. Then, another contribution
of this work is a complete mapping of our timeline-annotated BPMN Dia-
grams into a timeline-based planning problem, that is, given a set of state
variables and a set of synchronization rules on them find a consistent exe-
cution where all the synchronization rules are satisfied [25]. The traslation
step suffices for our verification purpose, since various tools for satisfiability
of timeline-based planning have been proposed in the last decade [2, 5, 6].

Advantages of our proposal are manyfold:

1. The proposed approach allows us to express complex temporal con-
straints even if they involve some external data or resources.

2. The temporal behaviour of data and resources may be regulated with
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the same machinery (i.e., state variables).

3. Our approach favours composability. As a matter of fact, resources/data
may be updated/removed/inserted, as well as temporal constraints on
the execution of the business process, by simply modifying the relative
temporal synchronization rules/state variables.

4. The process diagram is not affected at all and it may be seen through
a layered perspective: (a) at the highest level, the original BPMN Dia-
gram provides a general idea of how activities are organized; (b) at an
intermediate level, temporal synchronization rules, possibly involving
one or more external entities, detail how the execution is temporally
constrained and how some decision points are affected by (the tem-
poral evolution of) data/resources and/or by some previous temporal
behavior of the process; (c) finally, at the lowest level, the state vari-
ables regulate the evolutions of the involved data/resources.

Power and generality of this approach come at the price that the defini-
tion of a set of temporal constraints in the form of temporal synchronization
rules and state variables that could be inconsistent (i.e., every possible legit
execution of the diagram combined with every possible consistent evolution
of data/resources violates at least one temporal synchronization rule).

In this paper, we will focus only on structured BPMN Diagrams, and
thus from now on we will call them just diagrams. A diagram is said to
be well-structured if every node with multiple outgoing edges, i.e., a split
node, has a corresponding node with multiple incoming edges, i.e., a join
node, such that the set of nodes delimited by the split and the join nodes
form a Single-Entry-Single-Exit (SESE) region, and these regions within the
process are properly nested [14, 18]. In this way a SESE region is any area
within a process delimited by a single entry edge and a single exit edge.

The paper is organized as follows. Sec. 2 gives an overall description of
the proposed approach. Sec. 3 provides an example of a real-world process
in the healthcare domain, which features non-trivial temporal constraints.
Sec. 4 recalls the basic concepts and notation of timelines and timeline-
based planning, together with some recent results in the field. Sec. 5 shows
some meaningful temporal constraints that may be enforced by means of
timeline annotations in BPMN Diagrams in a straightforward way, without
compromising the overall readability of the diagram. Sec. 6 describes how
the proposed approach allows the specification of constraints involving data,
resources, and decisions. Sec. 7 summarizes the contribution of the paper
and sketches some lines for future work.
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Figure 1: A pipeline for integrating timeline-based planning and BPMN
diagrams.
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2 Enriching BPMN with Timelines: the Big Pic-
ture

In this section we give an overview of the proposed approach which is graphi-
cally summarize in Fig. 1. Ideas and motivations behind our proposal are the
following. BPMN Diagrams are often used for modelling businesss processes
by considering time-critical, resource-critical, and data-critical situations
and usually they are underspecified w.r.t. such requirements for preserving
their readability and conciseness. In this simplified form they cannot be di-
rectly translated into a suitable algorithm for controlling the whole process
at runtime and/or for performing qualitative/quantitative static analysis.
On the other hand, forcing the representation of such requirements by en-
riching the diagram will compromise the readability of the diagram itself.

In order to overcome such trade-off, our proposal consists of keeping the
original diagram and annotating it by using a set of constraints, namely
temporal synchronization rules, borrowed from the timeline-based planning
domain. As we will detail in Sec. 5, such rules are able to express in a con-
cise and clear way temporal constraints that would otherwise be captured
by a complex combination of throw/catch events and event-based gateways
[10]. In Appendix B, we will provide a way to translate structured BPMN
processes into a set of rules representing all and only the possible correct
executions of the process. Such mapping is crucial because, as shown in
Fig. 1, it allows the representation of both requirements and process as a
set of rules.

In Fig. 1, we suppose to have a process that makes use of some data, and
constraints on such data must be taken into account. For instance, let us as-
sume that the diagram represents a medical guideline in which the decision
on the exclusive gateway is driven by the value of the patient blood pres-
sure. It is straightforward to see that such value cannot increase/decrease
too fast in a short amount of time and it would be desirable to force such
constraint in order to prune irrealistic behaviors of the process in subse-
quent analysis. In this paper, we assume that constraints on data may be
captured by a suitable set of temporal synchronization rules. As shown in
Fig. 1, as a first step, the diagram, temporal constraints, and data con-
straints are translated into sets of rules in an independent manner. The
union of such obtained rules (the Rule Set in Fig. 1) represents the whole
description of the considered process. As mentioned before, the translations
are pairwise independent but, as we will observe in Sec. 6, rules in different
sets may “communicate” via shared variables. For instance, rules represent-
ing the diagram may involve the variable representing the pressure, whose
behaviour is encoded by other rules coming from data constraints. Another
example may be represented by the fact that a given temporal constraint
imposes that the execution of two specific tasks must be non-overlapping
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(since they use the same shared resource), no matter how they are arranged
in the diagram (e.g., they may appear in parallel branches). It is easy to see
that such approach fosters modularity in the design of every component. As
a matter of fact, we may change constraints on the behavior of data, without
affecting the diagram, or we may change the diagram without impacting on
related temporal constraints.

As depicted in Fig. 1, the whole set of rules is translated into a Finite
State Machine (FSM), whose language represents all the possible correct
executions of the considered diagram w.r.t. to temporal/data constraints.
The FSM may be used for performing a plethora of process-related analysis.
In Fig. 1, we just provide three of them. (i) FSM may be translated into an
algorithm that may be used at runtime for monitoring the correct execution
of the process by means of alerts/execeptions pointing out the violation of
a given constraint [15]. (ii) On the FSM we may perform static verification
of qualitative/quantitative properties, expressed in temporal logics such as
LTL or CTL [17], by using one of the many well-established tools on the
market [8, 16]. (iii) Supposing to be in a scenario where some process ele-
ments are under the control of the environment (e.g., medical guidelines).
Then, by means of the FSM, we may synthesize, if it exists, a controller that
“drives” the system-controlled elements (i.e., the process elements which are
not controlled by the environment) in a way that the correct termination of
the process is ensured, no matter how the environment behaves on its set of
elements [24, 28].

3 A motivating example

In this section, we introduce a clinical process model and describe some
time-related decisions and constrains that can be considered. The Business
Process model, represented in Fig. 2 as a BPMN Diagram, is a process for the
treatment of Catheter-Related Bloodstream Infections (CR-BSIs). Vascular
catheters are vital for treating ill patients in critical situations. Their main
drawback is represented by the concrete possibility of a patogens colonization
of their injection site. This may lead patients to develop severe bloodstream
infections.

Clinical guidelines for preventing such infections have been proposed and
applied, most of them usually rely on temporal constraints for their appli-
cability [4]. The BPMN diagram in Fig. 2 shows the process for detecting
and treating CR-BSIs according to the well-known Infectious Diseases Soci-
ety of America (IDSA) practice guideline [22]. The guideline includes blood
and/or catheter cultures activities for supporting the diagnosis of CR-BSI.
In particular, clinicians first draw simultaneously two blood samples to be
cultured, one from the catheter suspected to be the source of the infection
and, the other, from a peripheral vein. We call the first sample LS (local
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Figure 2: A BPMN Diagram representing CR-BSIs treatment.

sample) and the second one PS (peripheral sample), respectively. These
operations are included in the first process activity of Fig. 2, i.e. Draw blood
samples. The considered activity takes a tdraw time to be completed.

After the first activity, physicians Administer an empirical therapy to
the patient until the diagnosis of CR-BSI is confirmed. Among the criteria
for confirming or not a CR-BSI, we considered the Differential Time to
Positivity (DTP), which measures the difference between the time when LS
becomes positive w.r.t. a certain micro-organism, and the time when PS
becomes positive for the same micro-organism. If such difference exceeds a
certain threshold (DTP), then the CR-BSI is confirmed.

In the process of Fig. 2, we considered only two of the possible micro-
organisms that may be detected in a CR-BSI infection: Coagulase-negative
Staphylococci and Enterococcus spp.
• In case of Coagulase-negative Staphylococci (CONS), patient is treated

with antibiotic or heparin lock therapy. Such therapy consists of al-
ternating between catheter locks and an antimicrobial therapy. In
general, such phases have equal duration in order to prevent clot for-
mations. These activities are represented in Fig. 2 by means of the
process region related to gateway p2, composed of Administer Antibi-
otic Treatment and Lock Catheter activities.
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• In case Enterococcus spp, patient is treated by administering Van-
comycin. Unfortunately this case is often associated with endocarditis.
This means that physicians may choose to perform a Trans-Esophageal
Echocardiography (TEE) for detecting the issue. TEE must be per-
formed not before five and up to seven days from the time when CR-
BSI has been confirmed. These activities are represented in Fig. 2 by
means of the process region related to gateway p3.

Summing up, even in this over-simplified representation of a real-world
clinical scenario, we need to specify time-related constraints, which can-
not be captured by using BPMN without compromising the process model
clarity.

Examples of these time-related constraints are:
• Duration-Induced-Decision (DID). Durations and interleaving of given

events/tasks preceding a decision point (i.e., an exclusive gateway),
determines the choice to be made, and thus the path to follow. In
process of Fig. 2, time durations LS and PS and their related DTP
determine which branch of CR-BSI confirmed? will be taken.
• Disjoint-Parallel-Tasks (DPT ). In this case, we consider tasks which

may be executed without a given order, but their execution needs
to be disjoint for some reasons (e.g., the preemption of a mutually
exclusive resource). In the treatment of CONS, Administer Antibiotic
Treatement and Lock Catheter must be executed in a non-overlapping
way. Moreover, since in Fig. 2, both activities belong to a loop, they
may be executed multiple times.
• Relative-Time-Constraint (RTC ). Time durations of two given tasks,

or the difference between their endpoints are constrained by specified
bounds. In process of Fig. 2, the difference between the beginning of
the TEE activity, and the end of the CR-BSI activity must be between
five and seven days.

4 A formal account of Timelines

In this section we introduce the basic concepts timelines and of timelines-
based planning [25]. Appendix A introduces an informal explanation, to-
gether with a little example, of how the whole timelines-based machinery
works. In the following, we use the notation introduced in [7]. We start by
introducing the notion of state variable.

Definition 1. (state variable) A state variable sv is a triple sv = (Vsv,∆sv,
Dsv) where:
• Vsv is the finite domain of the state variable sv;
• ∆sv : Vsv → 2Vsv is the transition function, which maps each value
v ∈ Vsv to the set of values that may be taken by sv immediately after
sv has taken value v;
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• Dsv : Vsv → N× N ∪ {+∞} is a function that maps each v ∈ Vsv to
an interval, i.e., a pair of values [dsv=v

min , dsv=v
max ] with 0 < dsv=v

min ≤ dsv=v
max ,

which represent respectively the minimum and the maximum duration
of an interval over which sv takes value v.

Given a state variable sv a timeline for sv is a sequence Tsv of pairs
called tokens which respect functions ∆sv and Dsv. Formally:

Definition 2. (token) A token for a state variable sv = (Vsv,∆sv,Dsv)
is a tuple τ = 〈v, d〉 where v ∈ Vsv and d ∈ Dsv(v).

Definition 3. (timeline) A timeline for a state variable sv = (Vsv,∆sv,
Dsv) is a finite sequence Tsv = 〈τ1, . . . τk〉 of tokens for sv such that for
every 1 ≤ i < k we have vi+1 ∈∆sv(vi).

Given a token τ = 〈v, d〉 we denote with value(τ) its value (i.e., value(τ) =
v). Notice that the value of sv in two consecutive tokens within a timeline
do not need to be different, it depends on how ∆sv is defined. Given a time-
line Tsv we denote with |Tsv| its length. Moreover we will use an array-like
notation for specific tokens in the sequence, formally, if Tsv = 〈τ1, . . . τk〉 we
have Tsv[i] = τi for every 1 ≤ i ≤ k. In a timeline Tsv = 〈τ1, . . . τk〉 for sv
for every 1 ≤ i ≤ k we define s time(Tsv, i) as s time(Tsv, i) =

∑
1≤j<i dj

and e time(Tsv, i) as e time(Tsv, i) =
∑

1≤j≤i dj . In the following we will
often refer to specific sets of timelines instead of single ones. To this pur-
pose, given a set of timelines Γ = {Tsv1 , . . . ,Tsvn}, we will say that Γ is
repetition-free if and only if svi 6= svj for every 1 ≤ i 6= j ≤ n. From now on
we will assume every set of timelines to be repetition-free. Synchronization
among timelines in the same set is given by means of a set of Temporal Syn-
chronization Rules, TS-RULES for short. TS-RULES relate tokens, possibly
belonging to different timelines, through temporal relations among intervals
called atoms. Let Σ = {x, y, z, . . .} a set of token names (i.e., variables
ranging over tokens):

Definition 4. (atom) An atom is a clause of the form x ≤◦,•I y where
◦, • ∈ {s, e} and I ∈ {[l, u], [l,+∞) : l, u ∈ N, l ≤ u}.

In the above definition s (resp., e) refers to the start (resp., end) time
of tokens x and/or y. By means of conjuctions of atoms we may express
all the possible Allen’s interval relations [1] between two tokens, and some
disjunctions of them. In particular, we will use the shorthands reported in
Fig. 3. Tokens appear in conjunctions which are existentially closed for all
but one distinguished variable.

Definition 5. (existential x-free conjunction) Given a token name x
an existential x-free conjunction is a formula E of the form

E = ∃x1[sv1 = v1] . . . ∃xh[svh = vh](A1 ∧ . . . ∧Am)
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shorthand meaning translation

x〈M〉y x meets y x ≤e,s
[0,0] y

x〈B〉y x begins y x ≤s,s
[0,0] y ∧ x ≤

e,e
[1,+∞) y

x〈D〉y x during y y ≤s,s
[1,+∞) x ∧ x ≤

e,e
[1,+∞) y

x〈F 〉y x finishes y y ≤s,s
[1,+∞) x ∧ x ≤

e,e
[0,0] y

x〈O〉y x overlaps y x ≤s,s
[1,+∞) y ∧ x ≤

e,e
[1,+∞) y ∧ y ≤

s,e
[1,+∞) x

x ⊂BD y (x begins y) ∨ (x during y) y ≤s,s
[0,+∞) x ∧ x ≤

e,e
[1,+∞) y

x ⊆ y (x begins y) ∨ (x finishes y)
∨(x during y) ∨ (x = y)

y ≤s,s
[0,+∞) x ∧ x ≤

e,e
[0,+∞) y

x ∩BMO y
(x begins y) ∨ (x meets y)

∨(x overlaps y)
x ≤s,s

[0,+∞) y ∧ y ≤
s,e
[0,+∞) x ∧ x ≤

e,e
[1,+∞) y

x = y x = y x ≤s,s
[0,0] y ∧ x ≤

e,e
[0,0] y

Figure 3: A set of useful atoms conjunctions and their interval based inter-
pretation.

where for every 1 ≤ i ≤ h we have vi ∈ Vsvi and xi 6= x, moreover for
every 1 ≤ j ≤ m Aj is an atom of the form x1j ≤

◦j ,•j
Ij

x2j where x1j , x
2
j ∈

{x1, . . . , xh} ∪ {x}.

Informally, in an existential x-free conjunction, a variable in the atom is
existentially closed or equal to the unique free variable x. Moreover, we will
say that an existential x-free conjunction E is an existentially closed conjunc-
tion if and only if for every 1 ≤ j ≤ m, Aj is an atom of the form x1j ≤

◦j ,•j
Ij

x2j
where x1j , x

2
j ∈ {x1, . . . , xh} (i.e., E does not feature any free-variable). From

now on we will treat the case of x-free conjunction which are not existen-
tially closed. Existentially closed conjunctions may be seen as a special case
of x-free ones so we will omit them for the sake of brevity. Moreover, given
an x-free conjunction E = ∃x1[sv1 = v1] . . . ∃xh[svh = vh](A1 ∧ . . . ∧ Am)
we define SV ar(E) = {sv1, . . . , svh} as the set of state variables in its exis-
tential preamble. Analogously, we define TNames(E) = {x1, . . . , xh, xh+1}
assuming without loss of generality that xh+1 is the free variable x.

Since the token names TNames(E) are exactly h+1 (all the existentially
quantified ones plus the free one x), we may have that SV ar(E) ≤ h because
it is absolutely legit that two distinct token names are bound to the same
state variable.

Semantics for x-free conjunctions E = ∃x1[sv1 = v1] . . . ∃xh[svh = vh](A1∧
. . . ∧ Am) is given in terms of a set of timelines Γ = {Tsv1 , . . . ,Tsvn} such
that SV ar(E) ⊆ {sv1, . . . , svn}, a state variable svh+1 in {sv1, . . . , svn}
(i.e, Tsvh+1

is the timeline that will be associated to x), and a function
f : TNames(E) → N. In such setting we will have that Γ, svh+1, f |= E if
and only if the following conditions hold:
• for every 1 ≤ i ≤ h+ 1 we have |Tsvi | ≥ f(xi);
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• for every 1 ≤ i ≤ h we have value(Tsvi [f(xi)]) = vi
• for every 1 ≤ j ≤ m let Aj = xij ≤

◦j ,•j
[lj ,uj ]

xi′j
(resp., Aj = xij ≤

◦j ,•j
[lj ,+∞) xi′j ) for some 1 ≤ ij , i′j ≤ h+ 1, then

lj ≤ •j time(Ti′j
, f(xi′j ))− ◦j time(Tij , f(xij )) ≤ uj

(resp., lj ≤ •j time(Ti′j
, f(xi′j ))− ◦j time(Tij , f(xij ))).

Now we are ready to introduce TS-RULES.

Definition 6. (temporal synchronization rule) A temporal synchro-
nization rule R is a formula which has one of the following two forms:
• (trigger rule) R = x[sv = v]→ E1∨ . . .∨En, where for every 1 ≤ i ≤ n

we have that Ei is an existential x-free conjunction;
• (triggerless rule) R = E1 ∨ . . . ∨ En where for every 1 ≤ i ≤ n we have

that Ei is an existentially closed conjunction.

For the sake of clarity we will provide only the semantics of trigger rule
since triggerless ones are a simplified version of them. Given a trigger rule
R = x[sv = v] → E1 ∨ . . . ∨ Eh its semantics is given by means of a set of

timelines Γ = {Tsv1 , . . . ,Tsvn} such that {sv1, . . . , svn} ⊇
h⋃

i=1
SV ar(Ei) ∪

{sv}, in such a case we say that Γ is a candidate for R.

Definition 7. (semantics of trigger rules) Given a trigger rule R =
x[sv = v] → E1 ∨ . . . ∨ Eh and a candidate Γ = {Tsv1 , . . . ,Tsvn} for it. We
that Γ satisfies R, written Γ |= R, if and only if for every 1 ≤ i ≤ |Tsv| if
Tsv[i] = v then there exist 1 ≤ j ≤ h and a function f : TNames(Ej)→ N,
for which f(x) = i and Γ, sv, f |= Ej.

The timelines-based planning problem is defined as follows.

Definition 8. (timelines-based planning problem) Given a set of TS-
RULES R = {R1, . . . ,Rp} the timelines-based planning problem, TPP for
short, for R consists of determining whether or not there exists a set of
timelines Γ = {Tsv1 , . . . ,Tsvn} such that Γ |= Ri for every 1 ≤ i ≤ p.

5 Annotating BPMN Diagrams with Timelines

In this section we describe in more details our approach which consists of
annotating BPMN diagrams with temporal synchronization rules. The pro-
posed annotation is able to enrich the description of process execution by
maintaining the diagram as simple as possible. In our proposal, we use a
synchronization rule based notation which allows us to easily handle tem-
poral constraints represented by means of timelines. We would like to point
out that in our approach each set Γ is associated with a possible instance of
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the process (i.e., Γ may be seen as the whole process log for a given process
instance) while state variables together with TS-RULES abstract away from
single instances and represent constraints on such instances exactly as the
corresponding BPMN process diagram does.

As an example, we consider the BPMN diagram reported in Fig. 2, which
is annotated by means of timelines. Appendix B provides a formal mapping
from diagrams to timelines-based planning problems. It is easy to prove that
such mapping guarantees the existence of a bijection between the solutions
of the target planning problem and the correct executions of the related
process model. In Fig. 4 we show an instance execution of the considered
process. The execution is represented as a set of timelines, one for each
BPMN element.
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. . . |
16
|

17
|

18
|

19
|

20
|

21
|

22
|

23
|

10 Jan 2018 1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

. . .|

s

tdraw

p1 + +

tempirical

e1 × ×

tgrow

tread

tCR-BSI

econfirmed? × ×

eorganism? × ×

p2 + +

eloop1 × × × ×
tCONS

eloop2 × × ×
tlock

Figure 4: Example of an execution of the business process of Fig. 2, repre-
sented as timeline (for the sake of brevity only timelines related to elements
involved in the considered execution are shown).

Tokens on timelines may take two values, active, denoted by >, and not
active, denoted by ⊥, this means that each token can be seen as an on/off
switch. The meaning of these two values is straightforward, active means
that the process element is currently executed and its duration is represented
by means of the duration of the token, and not active means that the process
element is not executed in the interval of time corresponding to the token. In
Fig. 4, when a token is active, it is represented by using the BPMN notation
related to the considered element, otherwise, when the token is not active,
it is represented by means of a dashed line. For example, the execution of
task Administer an Empirical Therapy has a duration of 4 hours and half,
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as represented in Fig. 4 by using a task-like shape on the tempirical line from
19.00 to 23.30. The execution of task Administer the Antibiotic Therapy
related to line tCONS is not executed in the 2-hours interval starting at
10 Jan 2018 3:00.

In our proposal, we take advantage from the fact that the BPMN diagram
is structured, and associate a timeline to each SESE region. The beginning
of an active token represents the entry node (gateway) of the SESE region
associated to the timeline, and the ending of such token represents its exit
gateway. For instance, in Fig. 4 the two executions related to gateway eloop2
are represented by the active tokens [10 Jan 2018 2:00, 10 Jan 2018 5:00]
and [10 Jan 2018 5:00, 10 Jan 2018 9:00] on the relative timeline. In Fig. 4,
an example of execution of the BPMN Process Diagram of Fig. 2 is reported.
In this example tasks and gateway blocks are correctly interleaved.

In Appendix B, we will give more details about the way the described
tokens can be properly constrained for representing correct executions of
gateways and tasks, and about the way interleaving may be forced by means
of suitable synchronization rules.

In the following examples we will assume that the presented scenario
is taken from timelines representing correct executions of the considered
BPMN process. For example in Fig. 2, a timeline having a token tlook which
is active before an active token tgrow is not allowed since the correct execu-
tion of the process requires that the execution of task Look for Other Sources
of Infection related to tlook is after the execution of task Grow Blood Culture
related to tgrow. Before providing the rules for the constraints related to the
example of Sec. 3, we introduce a (more human-readable) variation on the
syntax for TS-RULES. In our opinion such syntax is more suitable for anno-
tating BPMN diagrams. First, instead of anonymous state variable names
like x, y, . . . we will use the element type associated to the state variable,
then we will write something like task, task′, . . . when the state variable is
associated to a task, exclusive, exclusive′, . . . when the state variable is as-
sociated to a region delimited by an exclusive gateway, and so on. Moreover,
we replace state-variable = token-value in the quantifications with either
element-name or its overlined version element-name where element-name
is the subscript of the BPMN element associated to state-variable. We will
write element-name if token-value = > and element-name if token-value =
⊥, respectively. For instance, rule x[tCONS = >] → ∃y[tlock = ⊥](x ⊆ y)
turns out to be rule task[CONS] → ∃task′[lock](task ⊆ task′) in the new
syntax. The DID, DPT and RTC constraints related to the example of
Sec. 3 may be expressed as follows:
• Duration-Induced-Decision (DID):

C1) task[grow]→ ∃exclusive[organism?]

(
task ≤s,e

[2 hours,+∞) task∧
task ≤s,s

[0,+∞] exclusive

)
∨

(task ≤s,e
[0,2 hours] task)

13



Fig. 5 shows examples of four partial evolutions of timelines tgrow, eorganism?

and tlook. These considered scenarios are triggered by the presence of
the execution of the task related to tgrow (i.e., the rounded rectangle
on the bottom dashed line).
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Figure 5: (a), (b), and (c) are examples of executions that fulfill the Duration
Induced Decision constraint C1. (d) does not fulfill C1.

Fig. 5.(a) represents the case in which the duration of tgrow is more
than two hours and thus, according to the specified constraint, the
Y ES branch of econfirmed?, and the block eorganism?, must be executed.
In this scenario the first disjunction in C1 is fulfilled. When the du-
ration of tgrow is less than 2 hours, either Y ES branch or NO branch
of econfirmed? is executed, as depicted in Fig. 5.(b) and Fig. 5.(c), re-
spectively. In the latter case task related to tlook must be executed as
correctly depicted in Fig. 5.(c).
Example in Fig. 5.(d) represents a way to violate constraint C1. In
this case, the duration of tgrow is greater than 2 hours and the branch
NO of econfirmed? is taken by executing tlook. This situation violates
both disjunction of C1.
• Disjoint-Parallel-Tasks (DPT):

C2) task[CONS]→ ∃task′[lock](task ⊆ task′)

Fig. 6 reports examples of two partial evolutions of tlock and tCONS

timelines. The intuition behind rule C2 is that if a token on the
timeline tCONS is active, then it is contained in a not active token
on the timeline tlock.
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5
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6
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7
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8
|

9
|

tCONS

tlock

(b)

Figure 6: (a) is an example of execution that fulfills the Disjoint-Parallel-
Tasks constraint C2. (b) does not fulfill C2.

In Fig. 6.(a) an interleaving of tokens in tlock and tCONS that respects
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2018

9 Jan
2018

tCR-BSI

tTEE
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Figure 7: (a) and (b) are examples of executions that fulfill the Relative-
Time-Constraint C3. (c) does not fulfill C3.

rule C2 is depicted. In Fig. 6.(b) a scenario that violates rule C2 is
reported. In this latter case, token [9 Jan 2018 4:00, 9 Jan 2018 6:
00] on timeline tCONS contains the overlap of tokens [9 Jan 2018 3:
30, 9 Jan 2018 5:00] and [9 Jan 2018 5:00, 9 Jan 2018 6:30] on tlock,
and thus it cannot be contained in any token on timeline tlock.
• Relative-Time-Constraint (RTC):

C3) task[CR-BSI]→
∃task′[TEE]∃task′′[TEE](task ⊆ task′
∧task′〈M〉task′′ ∧ task ≤e,s

[5 days,7 days] task
′′)

∨∃task′[TEE](task〈M〉task′ ∧ task′ ≤s,e
(+∞,+∞) task

′)

Fig. 7 shows examples of three partial evolutions involving tTEE , tCR-BSI

and tCONS timelines. Scenario reported in Fig. 7.(a) fulfills rule C3
since an active token on timeline tCR-BSI is present, and the next ac-
tive token on tTEE happens after 6 days. Also Fig. 7.(b) represents
a scenario satisfying C3. Assuming that timelines respect the correct
execution of the process diagram, in this case there is an active token
on the timeline tlook then, the NO branch of econfirmed? has been cho-
sen, and thus there are no active tokens on timeline tTEE . This means
that second conjunction of C3 is fulfilled.
Finally, Fig. 7.(c) shows a scenario violating rule C3, since there exists
an active token τ on tTEE which happens after an active token τ ′ on
tCR-BSI , but the distance between the end of τ ′ and the beginning of
τ is less than five days.

TS-RULESallow us to capture different kind of constraints For example,
the described temporal constraints may be achieved by suitably adding
throw/catch events and event-based gateways to the diagram. However,
there are two main drawbacks in this approach: (i) enforcing such con-
straints in the diagram may easily render it unreadable (e.g., see [10] for an
example); (ii) modularity is lost forever since some changes in the diagram
may change how the constraints are enforced in it.

Moreover, some constraints expressible via TS-RULES may be defined by
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Figure 8: An example of History-driven gateway.
using Decision Model and Notation (DMN) [23]. DMN is a standard nota-
tion for modeling decisions, and it is complementary to BPMN. DMN is able
to specify conditions on the elements that may change the flow of execution
(e.g., exclusive gateways). Our approach can capture DMN sematics in a
natural way by introducing additional state variables for data affecting the
choice (more on that in Sec. 6) and the relative TS-RULES thus providing
a way to check consistency properties between the DMN logic and the pro-
cess. However, if the choices are inherently dependent from the evolution
of the data and/or the flow of the process TS-RULES explicit such relation
in a more direct and concise way; Finally, TS-RULES are more general since
they constrain the flow of execution without the need to be bound to some
element in the diagram, for instance, they can force parallel tasks to follow
specific patterns as shown by rule C2.

6 Data, Resources, and History-driven gateways

In this section, we illustrate how the proposed approach can be used for
expressing data and resource synchronization constraints. Moreover, we
introduce a decision gateway, based on timelines, for specifying the decision
rule about the branch to execute.

In Fig. 8, we report an example of a healthcare process for taking care
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of severely injured patients. The process of Fig. 8 involves three actors:
paramedics, nurses, and operating room staff. Each actor is represented
as a swimlane within the pool. Paramedics reach the patient and provide
transport for her. Nurses take care of the patient when she arrives at the
hospital, and operating room staff (i.e., surgeon and anesthetist), alerted in
critical situations, provide emergency surgery.

This simple example allows us to introduce the following constraints on
data, resources and decisions that may be naturally captured by means of
timelines:
• Enforce parallelization: this constraint allows us to enforce the simul-

taneosly execution of two activities beloging to a parallel block. As an
example, for specifying that if block blloc is chosen, then the execution
of its internal loop blcalm must be performed for the whole duration of
the surgery, we can use the rule: x[blcalm = >]→ ∃y[tsur = >](y ⊆ x).
This kind of constraint is symmetrical with respect to the Disjoint
Parallel Task constraint described in Sec. 5.
• Message passing: BPMN elements like messages, with their possible

different semantics, may be easily integrated in our formalism. In this
paper, for the sake of space, we only sketch an idea of this kind of
constraints, without giving a detailed description and analysis. As an
example, during the transport of the patient, paramedics may alert
the operation room staff in case the patient situation is getting worse.
The aim of the notification alert is requiring the preparation of the
operating room. This mechanism is managed by the event-based gate-
way eg in Fig. 8 in the following way: (notice that we consider the
messages attached to the gateway as part of it):

x[eg = >]→

∃z[sep = >]∃z[smop = ⊥]∃y[tcare = >]∃ŷ[tcare = ⊥]∃y̌[tcare = ⊥]∃y[blroom = ⊥](
z ∩BMO x ∧ z ≤s,s

[0,+∞) x ∧ z ≤
e,e
[0,+∞) z ∧ ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ ∩BMO x ∧ x ∩BMO y̌ ∧ y ⊆ x ∧ x ⊆ y

)
∨

∃z[smop = >]∃z[sep = >]∃y[blroom = >]∃ŷ[blroom = ⊥]∃y̌[blroom = ⊥]∃y[tcare = ⊥](
z ⊆ x ∧ z ≤s,s

[0,+∞) x ∧ z ≤
e,e
[0,+∞) z ∧ ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ ∩BMO x ∧ x ∩BMO y̌ ∧ y ⊆ x ∧ x ⊆ y

)
This proposal is similar to an exclusive gateway with the addition, by
means of the z/z variables, of a constraint regarding the preemptive-
ness of messages determining which block will be executed. Managing
end events and intermediate message events is slightly different, since
the former can be seen as the end of the related block. For example,
in Fig. 8, patient arrives is the end of the block sep. The duration of
smop must be constrained to 1 unit, in order to make it istantaneous by
means of rule x[smop = >] → x ≤s,e

[1,1] x. Finally, when an intermedi-
ate message does not appear as a successor of an event-based gateway,
its semantics must be explicitly encoded. This is the case of mpa in
Fig. 8 which is mapped to rule x[mpa = >]→ ∃y[sep = >](x ≤e,e

[0,0] y).
• Resources and roles management: a very important aspect to consider

in managing Business Processes is related to the definition of roles
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that are involved in the process execution. BPMN provides swimlanes
(within pools) for representing roles (within organizations).
In the process of Fig. 8 tasks must be performed by the related roles
(represented by means of swimlanes), this means that a paramedic
cannot perform the surgery, and an anesthetist cannot drive the am-
bulance. However both a paramedic and an anesthetist may per-
form task tassess. To force such constraint the rule x[tassess = >] →
∃y[Paramedic = >](x = y) ∨ ∃y[Anesthetist = >](x = y) can be
specified. In this case paramedics and anesthetists represent sets
of timelines, one for each resource available in the considered in-
stance. Each of such timelines represents how the specific resource
is allocated to each task. The mutual exclusion in the use of re-
sources is guaranteed by the non-overlapping nature of the intervals
on the same timeline. The described notation allows us to abstract
the number of available resources, since corresponding numbers are
inserted at verification time. For example, by instantiating the above
rule by using 2 paramedics and 3 anesthetists, we obtain x[tassess =
>] → ∃y[paramedic1 = >](x = y) ∨ ∃y[paramedic2 = >](x = y) ∨
∃y[anesthetist1 = >](x = y)∨∃y[anesthetist2 = >](x = y)∨∃y[anesthetist3 =
>](x = y). This allows us to verify quantitative properties related to
durations even in presence of multiple instances of the same process,
that access the same resources [11].
• Data driven decisions: the described timeline-based approach is able

to provide a preliminary integration of processes and data. Other pro-
posals presented in literature [9, 13] are more focused on integrating
existing formalisms (e.g., Entity-Relation data model), for represent-
ing data in BPMN process models.
The timeline-based approach should not be considered as an alterna-
tive for such approaches, but as an annotation working well along with
them, by helping in clarifying and verifying properties of data at the
time execution of processes.
As an example, let us suppose that the decision about which branch
of egstable? has to be chosen, is determined by both patient blood
pressure (pBP ), and patient body temperature (pBT ). Let us as-
sume that pBP and pBT are represented by means of the differ-
ent timelines (VpBP ,∆pBP ,DpBP ) and (VpBT ,∆pBT ,DpBT ), respec-
tively. More precisely, VpBP = {70, . . . , 190,⊥}, i.e., on the time-
line pBP all the possible ranges of blood pressures plus a disabled
value when the pressure is not measured, are represented. The same
holds for the body temperature, i.e., VpBT = {29, . . . 41,⊥}. In this
case, data may be available only when task tassess is performed, thus
the rules x[tassess = ⊥] → ∃y[pBP = ⊥](y = x), x[tassess = >] →∨
v∈{70,...,190}

∃y[pBP = v](x = y) model this constraint. Similar rules
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can be specified for constraining pBT .
Finally, for constraining the gateway smop to be executed whenever
the values of BT and BP exceed certain thresholds, this set of rules
can be specified:

y[BP = v]→ ∃x[egstable? = >]∃z[smop = >](y ⊆ x ∧ z ⊆ x) ∨ ∃x[egstable? = ⊥](y ⊆ x), with v > 150
y[BT = v]→ ∃x[egstable? = >]∃z[smop = >](y ⊆ x ∧ z ⊆ x) ∨ ∃x[egstable? = ⊥](y ⊆ x), with v > 39

.

This approach favours the compositionality in the addition of data to
process. The described example is able to represent the way in which,
by means of timeline-based annotation, it is possible to enrich pro-
cesses with constraints on temporal aspects, roles and data. Process
model are equipped both with the constraints on their execution and
how they affect the process in both decisions and durations, without
burden the process model.
• Special behaviors for gateways: in this work we show how to ex-

press BPMN diagram semantics and complex temporal constraints
that would involve, if integrated directly in the diagram, complex pat-
terns of throw/catch events as well as event-based gateways. We in-
tentionally did not extend BPMN with some new element in order to
stay within the boundaries of BPMN semantics. However, it is possi-
ble to use TS-RULES for extending the standard BPMN notation, by
expressing the behavior of complex new elements in a straightforward
way. As an example, let us consider gateway fg in Fig. 8. If it is
the case that an instance of the process reaches fg, we expect that the
patient has to be sedated, either totally or locally, while surgery has to
be performed. Thus, in this case, we expect that branch tsur is anyway
executing, while choosing exactly one between the branches ttot and
blloc. Moreover, the choice between ttot and blloc will be dictated by
recent results of measurements related to the patient condition. For
example, in case that pBP > 150 at some time point between 3 hours
and the beginning of the surgery, a partial sedation has to be admin-
istered, otherwise it is possible to administer the total one. Rules for
specifying these expectations are the following:

x[fg = >]→ ∃y[tsur = >]∃z[ttot = >]∃w[blloc = ⊥](y ⊆ x ∧ z ⊆ x ∧ x ⊆ w)∨
∃y[tsur = >]∃z[blloc = >]∃w[ttot = ⊥](y ⊆ x ∧ z ⊆ x ∧ x ⊆ w)

,

x[pBP = v]→
∃y[fg = >]∃z[blloc = >](x ≤e,s

[0,3 hours] y ∧ z ⊆ y)∨
∃y[fg = ⊥](x ≤e,e

[3 hours,+∞) y ∧ y ≤
s,s
[0,+∞) x)

, with v > 150

.

Summing up, by means of timelines we are able to introduce a BPMN
element that behaves like a conditional parallel gateway, that is, a
parallel gateway which runs all and only the branches that satisfy a
certain condition at the precise moment of its execution.
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7 Conclusion

In this paper we dealt with issues related to the specification of different
kinds of constraints on process models represented by means of BPMN di-
agrams. We provided a timelines-based approach for expressing admissible
executions of a process. Timelines allow us to give complex constraints pos-
sibly related to time, data, and resources, by annotating the BPMN process
diagram, without overburden the process diagram itself. Some of the ad-
vantages of our proposal are (i) providing a means for specifying complex
constraints without extending BMPN; (ii) applying the existing tools for
timeline-based planning [2, 5, 6] for verifying qualitative properties at de-
sign time; (iii) supporting resources optimization in the style of [11], and
(iv) checking quantitative properties such as interplay between the number
of mutually exclusive resources and the number of process instances that
may be completed in a given amount of time. For future work, we plan to
apply synchronization rules for querying running processes and monitoring
business process activities (Business Activity Monitoring (BAM)[3]).
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Figure 9: An example of formalization for laptop energy consumption using
the timelines-based formalism.

A Timelines by Example

In this section we introduce the basic concepts of timelines and of timelines-
based planning [25] by means of an example. Since formal description of
timeline-based formalisms may be found in literaure (as an example see [7])
and, briefly, in Sec. 4.

Let us suppose that we want to model the energy consumption esti-
mation for a battery of a laptop computer. In such a scenario we have the
following components: (i) the battery B of the laptop having a level of charge
going from 0% to 100%; (ii) the power supply P of the laptop that may be
unplugged or plugged to the laptop, in this latter case we always assume
that the laptop is charging the battery; (iii) the laptop has three possible
states, it may be used by someone, may be put in sleep for energy saving,
or may be turned off .

For the sake of simplicity and compactness, we measure time into ab-
stract time units (e.g., you may see a single time unit as minutes), then time
domain is isomorphic to N. In this context the constraints on the battery
level can be: (i) if the power supply is plugged and the laptop is turned
off then the battery gets an increment (clearly if it is not already at level
100%) of its level by 1% every minute, if the laptop is in sleep state it gets
an increment of its level by 1% every 2 minutes, and every 3 minutes if
the laptop is used; (ii) if the power supply is unplugged and the laptop is
turned off the level of the battery stays stationary, while if it is sleep it
gets a decrement of 1% every minutes, and a decrement of 2% every minute
if laptop is used; (iii) a laptop with battery at 0% cannot be neither used
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nor in sleep (i.e., it is turned off).
In this case, we do not consider fractions in the time of charge. For

instance, if the computer is plugged and used for 1 or 2 minutes before we
put it on stand by we simply did not consider the increment. In such a
way we have a conservative estimation of the battery level, that is, due to
residuals the battery may be really charged more than how it is modelled
but never less than it.

If we focus on the single components, namely battery, power supply, and
laptop, we associate to every of such components a state variable which is
a triple sv = (Vsv,∆sv,Dsv), where Vsv is the finite domain of the state
variable sv, ∆sv : Vsv → 2Vsv is a transition function, and Dsv : Vsv →
N× N ∪ {+∞} is a duration function.

In our example we associate each state variable with every component,
thus we have state variablesB,P and L. Then, we have VB = {1%, . . . , 100%},VP =
{plugged, unplugged}, and VL = {off, sleep, used}. Transition functions
for the state variables determine the set of values that are allowed after
a certain value has been taken. In our example we have that the bat-
tery may stay stationary, decrease of 1/2 units or increase by one unit,

thus its transition function is ∆B(v) =


{v − 2, v − 1, v, v + 1} 1% < v < 100%

{v − 1, v, v + 1} v = 1%

{v, v + 1} v = 0%

{v − 1, v} v = 100%

, while

the transitions fuctions for state variables P and L are ∆P (plugged) =
{unplugged},∆P (unplugged) = {plugged}, ∆L(used) = {sleep, off}, ∆L(sleep) =
{used, off}, and ∆L(off) = {used, sleep}.

The duration function associates to each value in the domain of the
state variable a subinterval [l, u] of [1,+∞) which represents the bounds of
duration of the given value. In our example we do not have such constraints,
thus D∗(v) = [1,+∞) for every ∗ ∈ {B,P,L} and every v ∈ V∗. For
instance, for expressing the fact that laptop may not be used consecutively
more than 5 hours straight in order to preserve monitor life, we should have
put DL(used) = [1, 300].

A timeline for a state variable sv is a sequence of tokens. A token for a
state variable sv is a pair (v, d) where v ∈ Vsv and d ∈ Dsv(v). In Fig. 9.(a)
an example of timelines for the state variables of our example is reported.
For instance, forB the timeline is 〈(3%, 1), (4%, 1), (5%, 3), (6%, 2), (5%, 1), (4%, 1),
(3%, 1), (2%, 1), (0%, 3), (1%, 1), (2%, 3), (3%, 2)(4%, 2), (5%, 1)〉 while for P
the timeline is 〈(plugged, 7), (unplugged, 7), (plugged, 9)〉.

Synchronization between timelines is provided by a set of temporal syn-
chronization rules. The structure of a temporal synchronization rule is
shown in Fig. 9.(b). In particular, in Fig. 9.(b) the rule that constrains
the case in which the battery has level 3% is described. Similar rules may
be written using an analogous template. A temporal synchronization rule
has the form of an implication. The tail of such implication is formed by
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a variable, called trigger variable, (x in Fig. 9.(b)) and an assignment to a
state variable (B = 3% in Fig. 9.(b)). The variable ranges over the tokens
in the timeline of its state variable and whenever the value associated to
a token is the same to the one of the assignment the body of the rule is
triggered. In other words, the variable in the tail of the implication is uni-
versally quantified. In Fig. 9.(a), we may observe that the rule in Fig. 9.(b)
is triggered three times (i.e., there are three tokens on the B timeline with
value 3%). The head of the rule is a disjunctions of possible scenarios repre-
sented by a set of existentially closed conjunctive clauses of atoms in which
the only free variable may be the triggered one. An atom is a binary rela-
tion between the intervals represented by the two tokens associated to two
variables. For instance, the first clause in Fig. 9.(b) says that, if there exists
a token in the timeline of power with value unplugged (variable y), and a
token on the timeline of laptop with value sleep (variable z), both contain-
ing the token associated to x (atoms x ⊆ y and x ⊆ z), then the token
associated to x has length 1 (atom x ≤s,e

[1,1] x) and there exists a token for

the battery (variable x′) that follows the token for x (atom x ≤[e,s]
[0,0] x

′) with

value 2%. This is exactly the situation that occurs at the second occurrence
of 3% on the timeline for B in Fig. 9.(a) and thus the rule is satisfied for
that token. It is easy to see, by means of different disjuncts, that all the
occurrences of 3% are fulfilled by the timelines in Fig. 9.(b), and thus the
rule is satisfied by the timelines. Given a set of temporal synchronization
rules, a timeline-based planning problem consists of determining whether or
not there exists a set of timelines that satisfies all of them.
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B Structured BPMNDiagrams semantics via Time-
lines
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Figure 10: The set BlocksD relative
to the structured diagram represented
of Fig. 2.

In this section, first we provide a
timeline-based semantics for struc-
tured BPMN Diagrams, then we
provide how the annotations pro-
posed in Section 5 are mapped at
this level of detail. For space reason
we will consider only significant set
of BPMN core elements (the trans-
lation of the missing BPMN ele-
ments will addressed in an extended
version of the paper).

As we told before we restrict
ourselves to structured diagrams
[14]. Structured diagrams D may
be partitioned into a set of Single-
Entry-Single-Exit (SESE) blocks
BlocksD = {b1, . . . , bn} such that
its blocks are pairwise contained or
disjoint. Fig. 10 it is represented
the set BlocksD = {b1, . . . , b26} rel-
ative to the structured diagram D
of Fig. 2.

Given a SESE block b we define
its entry point (resp., exit point),

denoted by
−→
b (resp. b−→), as the

BPMN element receiving its incom-
ing (resp. outgoing) flow edge.

Now we provide a translation of
a structured BPMN diagram D into
a set of TS-RULES via a function
RulesD : D → 2TS−RULES. All the
TS-RULES in the image of RulesD
will speak about a subset of state
variables b1, . . . , bn (i.e., one state
variable for each block). For each
1 ≤ i ≤ n we have Vbi = {>,⊥},

where > (resp., ⊥) labels token in which bi is (resp., is not) currently being
executed, ∆x(>) = {⊥}, ∆x(>) = {⊥}, and Dx(>) = Dx(⊥) = (1,+∞).
Informally speaking, each state variable of type bi is an >/⊥ switch where
> (resp. ⊥) tokens may take any duration different from 0.
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Let us now introduce a classification on the possible types of SESE blocks
together with the set TS-RULES intoduced by mapping RulesD:
TASK blocks sorrounding single tasks like the blocks b6, b7, b9, b11, b12, b14, b20,

b22, b23, b25, and b26 in Fig. 10. They are the basic starting blocks
and their presence do not introduce any TS-RULE in RulesD (i.e.,
RulesD(b) = ∅ for every b ∈ BlocksD which is of type TASK);

FLOW these blocks are blocks which enclose maximal paths of blocks bi1 , . . . , bim
with m > 1, such that there exists a flow edge between bij−→

and
−−→
bij+1

for every 1 ≤ j < m. In Fig. 10 we have that initial block b1 as well as
blocks b8 and b10 are of type FLOW. If b is of type FLOW we denote
with Pathb the sequence of blocks it encloses, i.e., Pathb = bi1 . . . bim .
In Fig. 10 we have Pathb1 = b2b3b12b13, Pathb8 = b6b9 and Pathb10 =
b7b11. For every FLOW b ∈ BlocksD let path(b) = bi1 , . . . , bim we
define RulesD(b) as the following set of TS-RULES:

a)
{
x[b = >]→ ∃y[bij = >]∃ŷ[bij = ⊥]∃y̌[bij = ⊥] (ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ〈O〉x ∧ y〈D〉x ∧ x〈O〉y̌) : 1 < j < m

}
∪

b)
{
x[b = >]→ ∃y[bi1 = >]∃ŷ[bi1 = ⊥]∃y̌[bi1 = ⊥] (ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ〈O〉x ∧ y〈D〉x ∧ x〈O〉y̌)∨

∃y[bi1 = >]∃y̌[bi1 = ⊥](y〈M〉y̌ ∧ y〈B〉x ∧ x〈O〉y̌)

}
∪

c)
{
x[b = >]→ ∃y[bim = >]∃ŷ[bim = ⊥]∃y̌[bim = ⊥] (ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ〈O〉x ∧ y〈D〉x ∧ x〈O〉y̌)∨

∃y[bim = >]∃ŷ[bim = ⊥](ŷ〈M〉y ∧ y〈E〉x ∧ y̌〈O〉x)

}
∪

d)
{
x[b = >]→ ∃y[bij = >]∃y′[bij+1 = >](y〈D〉x ∧ y′〈D〉x ∧ y ≤e,s

[0,+∞) y
′) : 1 ≤ j < m

}
EXCLUSIVE these blocks are blocks b whose entry point (resp., exit point)−→

b (resp., b−→) is an exclusive split gateway (resp. exclusive join gate-

way). For instance in Fig. 10 we have that blocks b5, b13, b15, b21, and
b24 are of type EXCLUSIVE. For every EXCLUSIVE b let b1 and b2 be

the two maximal blocks contained in b and connected to
−→
b , we define

RulesD(b) as the following (singleton) set of TS-RULES:

x[b = >]→
∃y[b1 = >]∃ŷ[b1 = ⊥]∃y̌[b1 = ⊥]∃y[b2 = ⊥](ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ ∩BMO x ∧ x ∩BMO y̌ ∧ y ⊆ x ∧ x ⊆ y)

∨
∃y[b2 = >]∃ŷ[b2 = ⊥]∃y̌[b2 = ⊥]∃y[b1 = ⊥](ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ ∩BMO x ∧ x ∩BMO y̌ ∧ y ⊆ x ∧ x ⊆ y)


LOOP these blocks are blocks b whose entry point (resp., exit point)

−→
b

(resp., b−→) is an exclusive join gateway (resp. exclusive split gateway).
For instance in Fig. 10 we have that blocks b22 and b23 are of type
LOOP. For every LOOP let b1 be the maximal block contained in b
and connected to b−→ we define RulesD(b) as the following (singleton)
set of TS-RULES:

{
x[b = >]→ ∃ŷ[b1 = ⊥]∃y[b1 = >]∃y′[b1 = >]∃y̌[b1 = ⊥]

(
ŷ ≤s,s

[0,+∞) x ∧ x ≤
s,e
[0,+∞) ŷ ∧ ŷ〈M〉y ∧ y ⊆ x∧

y̌ ≤s,e
[0,+∞) x ∧ x ≤

e,e
[0,+∞) y̌ ∧ y′〈M〉y̌ ∧ y′ ⊆ x

)}

28



PARALLEL these blocks are blocks b whose entry point (resp., exit point)−→
b (resp., b−→) is an parallel split gateway (resp., parallel join gateway).

For instance in Fig. 10 we have that blocks be, b13, b15, b21, and b24
are of type PARALLEL. For every PARALLEL b let b1 and b2 be the

two maximal blocks contained in b and connected to
−→
b , we define

RulesD(b) as the following (singleton) set of TS-RULES:

x[b = >]→
∃y[b1 = >]∃ŷ[b1 = ⊥]∃y̌[b1 = ⊥]∃y′[b2 = >]∃ŷ′[b2 = ⊥]∃y̌′[b2 = ⊥](
ŷ〈M〉y ∧ y〈M〉y̌ ∧ ŷ ≤s,s

[0,+∞) x ∧ x ≤
s,e
[0,+∞) ŷ ∧ y ⊆ x ∧ y̌ ≤

s,e
[0,+∞) x ∧ x ≤

e,e
[0,+∞) y̌∧

ŷ′〈M〉y′ ∧ y′〈M〉y̌′ ∧ ŷ′ ≤s,s
[0,+∞) x ∧ x ≤

s,e
[0,+∞) ŷ

′ ∧ y′ ⊆ x ∧ y̌′ ≤s,e
[0,+∞) x ∧ x ≤

e,e
[0,+∞) y̌

′

) 
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