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1 Introduction
During the research about temporal networks, we prepared some benchmarks
for testing some algorithms:

• CSTNBenchmark2016 and CSTNBenchmark2018: for testing Dynamic
Consistency (DC) checking algorithms for Conditional Simple Temporal
Networks (CSTNs).

• CSTNUBenchmark2018: for testing Dynamic Controllability (DC)
checking algorithms for Conditional Simple Temporal Networks with
Uncertainty (CSTNUs).

• STNUBenchmark2020: for testing DC checking algorithms for Simple
Temporal Networks with Uncertainty (STNUs).

• CSTNPSUBenchmarks2023: for testing DC checking algorithm and
Prototypal Link algorithm for Conditional Simple Temporal Networks
with Partially Shrinkable Uncertainty (CSTNPSUs) (a.k.a. FTNUs).

• OSTNUBenchmarks2024: for testing Agile Controllability algorithm for
Simple Temporal Networks with Uncertainty and Oracles (OSTNUs).

CSTNBenchmark2016 and CSTNBenchmark2018 benchmarks contain
CSTN instances, CSTNUBenchmark2018 contains CSTNU instances, STNUBench-
mark2020 contains STNU instances, CSTNPSUBenchmarks2023 contains
CSTNPSU instances, and OSTNUBenchmarks2024 constains OSTNU in-
stances.

All CSTN/CSTNU/CSTNPSU instances were determined transforming
random workflows generated by the ATAPI Toolset [1], while STNU ones
were determined using ad-hoc random generator present in the CSTN Tool
library.

The original version of this document can be download at http://profs.scienze.
univr.it/~posenato/software/cstnu/tex/benchmarks.pdf
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1.1 Temporal Networks From Random Workflows

We considered a random workflow generator as source of random CSTN((PS)U)
instances for having a closer approximation to real-world instances and also
for generating networks that are more difficult to check than those created
haphazardly.

The ATAPI toolset produces random workflows according to different
input parameters that govern the number of tasks, the probability of having
parallel (AND)/alternative (XOR) branches, the probability of inter-task
temporal constraints, and so on. In particular, the ATAPIS toolset builds a
workflow instance in two phases. In the first phase, it prepares the structure of
the network in a recursive way starting from a pool of N blocks representing
tasks. At each cycle, randomly it removes two blocks from the pool and
casually decides how to combine them using an AND/XOR/SEQUENTIAL
connector. The resulting block is then added to the pool. The generation
phase ends when there is only one block in the pool. The probability to
choose an AND or an XOR connector can be given as input (PA, and PC

parameters). Temporal constraints are added in the second phase considering
some parameters that can be given as input. The following parameter-values
were determined after some experiments where we tried to discover a good
mix of them to guarantee not trivial consistent/not consistent instances. The
chosen values were:

• each task duration is a subrange of [2, 30]; each bound is chosen
according to a beta distribution;

• each connector duration has always range [1, 10];

• each delay between sequential tasks is a subrange of [1, 25]; each bound
is according to a beta distribution;

• each delay between a connector and a task is fixed to [1, 100];

• the probability to have an inter-activity temporal constraint between
any pair of activities (i.e, tasks or connectors) was set to 0.2. In case
that an inter-activity temporal constraint is set, its range is a casual
subrange of the [mindistance, maxdistance] between the two activities,
where min and max distances were calculated by the tool.

For generating CSTN instances, the method consisted in two phases:

• Fixed the above parameters, workflow graphs were randomly generated
by varying the number of tasks (N), the probability for parallel branches
(PA), and the probability for alternative branches (PC) to determine
different blocks of instances;
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• each workflow graph was then translated into an equivalent CSTN
using the method proposed in [2]. Task durations were represented as
ordinary constraints in CSTN instances.

For generating the CSTNU instances, the method used was similar to
the above one for CSTN benchmarks. The only difference was that all
task durations were translated as contingent links in corresponding CSTNU
instances.

For generating the CSTNPSU instances, we considered the CSTNU ones
and we transformed each contingent link into a guarded one adding the two
external bounds to the contingent core. After some trials, we found that
it was sufficient to enlarge the contingent core of about 10% for having a
suitable guarded range.

1.2 Temporal Networks From a Random Generator

During the study of DC checking algorithm for STNU, we wanted to test
the different polynomial-time algorithms using instances having significant
size, i.e., a size much larger than the size of instances obtained in previous
benchmarks for CSTN or CSTNU. We verified that increasing the size of
random workflow instances built using ATAPI toolset to have bigger STNU
instances did not work because, for the characteristics of generated workflows,
the obtained instances were almost not DC and the generation of few DC
instances required a lot of computation.

Therefore, we decided to build a specific STNU random generator
(it.univr.di.cstnu.util.STNURandomGenerator) capable of building big-size
STNU instances. Our STNU generator can build random instances having a
chosen topology that can be tuned by a variety of input parameters. The
possible topologies are 1) no-topology, 2) tree, or 3) worker-lanes. After
some testing, we verified that the worker-lanes topology, which simulates
the swimming-pools (with one lane each) of business process modeling [3],
is the most interesting because it allows the generation of big random in-
stances where there could be circuits involving many constraints. In this
topology, the set of contingent links is partitioned into a given number of
lanes. Contingent links within each lane are interspersed with ordinary
constraints that specify delays between the end of one contingent link and
the start of the next. Finally, there are constraints between pairs of nodes
belonging to different lanes to represent temporal-coordination constraints
among time-points of different swimming-pools. Typically, such constraints
involve nodes on different lanes that are at a similar distance from the start
of their respective lanes.

As an example, Figure 1 depicts a portion of a random STNU having
500 nodes and 50 contingent links in a 5-worker-lane topology.
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Figure 1: An example of a randomly generated STNU

Many aspects of the worker-lanes topology can be tuned as input pa-
rameters; the number of nodes, the number of contingent links, the number
of lanes, the probability of a temporal constraint for a pair of nodes from
different lanes, the maximum weight of each contingent link, the maximum
weight of each ordinary constraint, and so on.

2 Benchmarks

2.1 CSTNBenchmark2016

This benchmark is composed of four sub-benchmarks (named as benchmarks
in papers [4, 5, 6, 7, 8, 9]). Each sub-benchmark is composed of two sets:
one set of DC CSTN instances and one set of NOT DC ones.

Each sub-benchmark, characterized by a number N , is called SizeN and
contains CSTN instances (DC/NOT DC) generated by random workflows
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having N tasks, k XOR connectors (= propositions in CSTN) and a variable
number of AND connectors. The probability for parallel branches PA was
fixed to 0.2 as well as the probability for alternative branches PC .

The following table summarizes the main characteristics of all sub-
benchmarks:

benchmark: size10 size20 size30 size40
#tasks: 10 20 30 40

k=#XOR: 3 5 7 9
#CSTN-nodes: 45-59 79-95 123-135 159-175

For each sub-benchmark, there are at least 60 dynamically consistent CSTNs
and 20 non-dynamically consistent CSTNs. Since the original ATAPIS
toolset allows one to fix only the probability of AND/XOR connectors, it
was necessary to run the toolset a huge number of times for obtaining the
instances with the above characteristics.

Different workflow graphs with the same number of tasks may translate
into CSTNs of different sizes due to different numbers of AND connectors in
the workflows. This fact represented the main weakness of this benchmark.
For example, even if for N = 10 and k = 3 there are 60 DC instances, such
instances are CSTN instances with different order (=#nodes). Few of them
have the same order and this fact represents a limitation when an evaluation
of DC execution time with respect of the CSTN order is required.

For this benchmark we do not report here the results obtained using
our algorithms because they are superseded by the results obtained with
CSTNBenchmark2018, presented in the next section.

2.2 CSTNBenchmark2018

The structure of this benchmark is equals to the CSTNBenchmark2016
benchmark one: four sub-benchmarks with two sets for each. The main
differences are the number of instances and the structure of the instances.

After an important modification of ATAPI Toolset source code, it was
possible to give as input also the number of XOR/AND connectors that a
random workflow instance must have. Therefore, it was possible to build
sets of more uniform instances where the randomness could decide how to
mix components and constraints but not their quantities. It is possible to
show that the relation between workflow component quantities and CSTN
order is 5 + 2N + 6k + 4j, where N is the number of tasks, k the number
of XOR connectors, and j the number of AND connectors. Therefore, for
each possible planned combinatios of #task-#XOR-#AND, it was possible
to generate randomly 50 DC and 50 NOT DC instances. The following table
summarizes the characteristics of each sub-benchmark.
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Group Bench
mark

instance
indexes

# ac-
tivities

#XOR #AND CSTN
order

Size010-3 B10-3-0 000-049 10 3 0 43
B10-3-1 050-099 10 3 1 47
B10-3-2 100-149 10 3 2 51
B10-3-3 150-199 10 3 3 55
B10-3-4 200-249 10 3 4 59

Size020-5 B20-5-0 000-029 20 5 0 75
B20-5-1 030-059 20 5 1 79
B20-5-2 060-099 20 5 2 83
B20-5-3 090-119 20 5 3 87
B20-5-4 120-149 20 5 4 91

Size030-7 B30-7-0 000-029 30 7 0 107
B30-7-1 030-059 30 7 1 111
B30-7-2 060-089 30 7 2 115
B30-7-3 090-119 30 7 3 119
B30-7-4 120-149 30 7 4 123

Size040-9 B40-9-0 000-029 40 9 0 139
B40-9-1 030-059 40 9 1 143
B40-9-2 060-089 40 9 2 147
B40-9-3 090-119 40 9 3 151
B40-9-4 120-149 40 9 4 155

The total number of CSTN instances is 2000, 1000 DC and 1000 not DC,
divided in 4 main groups, in turn divided in other 4 groups having 50 DC
and 50 NOT DC instances.

2.2.1 Experimental Evaluation

We used CSTNBenchmark2018 for testing 10 different DC checking algo-
rithms for CSTN:

1. Std: it checks the DC property considering the standard semantics [5].

2. Std-woNL: it checks the DC property considering the standard se-
mantics on the equivalent CSTN where there is no node labels [6].

3. ϵ: it checks the DC property considering the ϵ semantics [5].

4. ϵ-woNL: it checks the DC property considering the ϵ semantics on
the equivalent CSTN where there is no node labels [6].

5. ϵ-3R: it checks the DC property considering the ϵ semantics and using
only rules LP, qR0, and qR∗

3.

6. ϵ-3R-woNL: it checks the DC property considering the ϵ semantics
on equivalent CSTN where there is no node labels and using only rules
LP, qR0, and qR∗

3.
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7. IR: it checks the DC property considering the instantaneous reaction
semantics [5].

8. IR-woNL: it checks the DC property considering the instantaneous
reaction semantics on the equivalent CSTN where there is no node
labels [6].

9. IR-3R: it checks the DC property considering the instantaneous reac-
tion semantics and using only rules LP, qR0, and qR∗

3.

10. IR-3R-woNL: it checks the DC property considering the instantaneous
reaction semantics on the equivalent CSTN where there is no node
labels and using only rules LP, qR0, and qR∗

3.

11. π-3R-woNL: it checks the DC property considering the fixed instan-
taneous reaction semantics (π) on the equivalent CSTN where there is
no node labels [7].

12. Potential: it checks the DC property considering the fixed instanta-
neous reaction semantics (π) and using the potential function [9].

In the following we propose two diagrams that show the comparison of
such algorithms using the CSTNBenchmark2018 benchmark.

We executed the algorithm implementations present in CSTNU Tool
library using an Oracle JVM 8 in a Linux machine with an AMD Opteron
4334 CPU (12 cores) and 64GB of RAM.

The execution times were collected by a Java program (Checker, present
in CSTNU Tool) that allows one to determine the average execution time—
and its standard deviation—of one DC checking algorithm applied to a set of
CSTN instances. Moreover, Checker allows one to require to the operating
system to allocate one or more CPU cores for executing the algorithm in
sequential/parallel way on files without the rescheduling of threads in different
cores during the execution. We experienced that even if AMD Opteron 4334
has 12 cores, the best performances were obtained only when all checks are
made by only one core. We verified that the memory-accesses by cores
represent a bottleneck that limits the overall performance. Therefore, all the
data presented in this section were obtained using only one core (parameter
-nCPUs 1).

The parameters for the Oracle Java Virtual Machine 1.8.0_144 were:
-d64, -Xmx6g, -Xms6g, -XX:NewSize=3g, -XX:MaxNewSize=3g, -XX:+UseG1GC,
-Xnoclassgc, and -XX:+AggressiveOpts.

The first diagram shows the average execution times of all algorithms
with respect to the order of dynamic consistent CSTN instances. Each drawn
value is the sample average X̄50 of execution times obtained considering the
fifty instances of the relative benchmark. In details, X̄50 =

∑50
i=1 Xi

50 where Xi

is the average execution time obtained executing 3 times the algorithm on
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instance having index i1. The error bar of each drawn value represents 2.010
times the standard error of the mean, S50√

50 , where S50 is the corrected sample

standard deviation, S50 =
√∑50

i=1(Xi−X̄50)2

49 . Value 2.010 is the Student’s
t distribution value with 49 degrees of freedom. Therefore, the error bar
represents a 95% confidence interval for the average execution time of the
algorithm on instances having the main characteristics of the considered
benchmark.
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Figure 2: Consistent Instances
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Although the diagram is quite crowded, it is possible to see (and data
confirm) that the DC checking algorithm has the worst performance when it
has to apply IR semantics without node labels while the fastest DC checking
can be done using the Potential algorithm. The outstanding performance
of Potential algorithm can be justified observing that this algorithm does
not add constraints to the network but only potential values to nodes and
that the quantity of such values is, in general, lower than the number of new
constraints added by other algorithms.

We noted that the experimental data contain outliers, instances for which
the execution time is quite far from the average execution time. Outliers
represent hard instances for the DC checking problem (the problem was
shown to be PSPACE-complete).

The following figures show the distribution of execution time of IR-3R
in terms of quartiles in the groups Size030-7 and Size040-9. Each box has
the lower edge equal to the first quartile (Q1) while the upper edge equal to
the third one (Q3). The edge inside each box represents the median of the
sample. Horizontal edges outside a box represent the whiskers. The lower
whisker value is the smallest data value which is larger than Q1 − 1.5 · IQR,

1The determination of all values required to execute the DC checking for 24 000 times
for a total of 83.18 hours.
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where IQR is the inter–quartile–range, i.e., Q3 − Q1. The upper whisker
is the largest data value which is smaller than Q3 + 1.5 · IQR. Diamonds
above the upper whisker represent the data value outliers. The diamond in
the highest position in each set of data represents the worst case value of
the benchmark. Diamond inside a box represents the average value of the
benchmark.
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Figure 3: Execution time distribution of IR-3R in Size030 group
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Figure 4: Execution time distribution of IR-3R in Size040 group

The previous two diagrams show clearly that there are few instances that
bias the value of sample average in a relevant way.

The following diagram shows the average execution times of some checking
algorithms when CSTN instances are not consistent.
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Figure 5: Not Consistent Instances
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Again, even if the diagram is quite crowded, it is evident that Std-woNL
shows the worst performance while IR-3R requires the minimum execution
time for almost of the group of instances. Algorithm Potential has not
an outstanding performance like for DC instances because the presence of
negative circuits is, in general, determined promptly and, therefore, the
execution time cannot be different significantly. The most important fact
about these results is that, in general, checking NON DC instances requires
less than an order of magnitude of execution time required for checking DC
instances.

2.3 CSTNUBenchmark2018

The structure of this benchmark is similar to the CSTNBenchmark2018 one
with two differences: the duration of each task is converted as contingent
link and the number of instances is smaller.

Due to the internal building function of ATAPIS Toolset, the relation
between workflow component quantities and CSTNU order is 5+2N +6k+6j,
where N is the number of tasks, k the number of XOR connectors, and
j the number of AND connectors. The following table summarizes the
characteristics of each sub-benchmark.
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Group Bench
mark

instance
indexes

#tasks #XOR #AND CSTNU
order

Size010-3 B10-3-0 000-049 10 3 0 43
B10-3-1 050-099 10 3 1 49
B10-3-2 100-149 10 3 2 55
B10-3-3 150-199 10 3 3 61
B10-3-4 200-249 10 3 4 67

Size010-4 B10-4-0 000-049 10 4 0 49
B10-4-1 050-099 10 4 1 55
B10-4-2 100-149 10 4 2 61
B10-4-3 150-199 10 4 3 67
B10-4-4 200-249 10 4 4 73

Size010-5 B10-5-0 000-049 10 5 0 55
B10-5-1 050-099 10 5 1 62
B10-5-2 100-149 10 5 2 67
B10-5-3 150-199 10 5 3 73
B10-5-4 200-249 10 5 4 79

The total number of CSTNU instances is 1500, 750 DC and 750 not
DC, divided in 3 main groups—Size010-3, Size010-4, and Size010-5—in turn
divided in other 5 groups having 50 DC instances each and in other 5 groups
having 50 NOT DC instances each.

2.3.1 Experimental Evaluation

There are three implementations of CSTNU DC checking algorithm:

1. STD: it implements the CSTNU DC checking rules assuming instan-
taneous reaction in a streamlined CSTNU. The CSTNU DC checking
rules are zqR0, zqR3, zlabeledLetterRemovalRule, labeledLetterRe-
movalRule, labeledPropagationqLP, and labeledCrossLowerCaseRule.

2. STD OnlyToZ: it is similar to STD version but it limits the prop-
agation to edges heading to node Z. Therefore, it applies rules zqR0,
zqR3, zlabeledLetterRemovalRule, zlabeledPropagationqLP, and zla-
beledCrossLowerCaseRule.

3. CSTNU2CSTN: it determines the CSTNU DC status transforming
the given CSTNU into an equivalent CSTN and checking the DC of
this last one.

In the following we propose some diagrams that show the execution times of
all versions in the CSTNUBenchmark2018 benchmark.

The implementations were developed in Java 8 and run on an Oracle
JVM 8 in a Linux machine with an Intel(R) Xeon(R) CPU E5-2637 v4
3.50GHz and 503GB of RAM.
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The execution times were collected by a Java program (Checker, proposed
in our package) that allows one to determine the average execution time—
and its standard deviation—of a DC checking algorithm applied to a set of
instances.

The parameters for the Oracle Java Virtual Machine 1.8.0_144 were:
-d64, -Xmx6g, -Xms6g, -XX:NewSize=3g, -XX:MaxNewSize=3g, -XX:+UseG1GC,
-Xnoclassgc, and -XX:+AggressiveOpts.

All average execution times were determined considering only DC in-
stances in benchmarks of groups Size010-3, Size010-4, and Size010-5. Each
drawn value is the sample average X̄50 of execution times obtained consider-
ing fifty instances of the relative benchmark. In details, X̄50 =

∑50
i=1 Xi

50 where
Xi is the average execution time obtained executing 3 times the algorithm on
instance having index i2. The error bar of each drawn value represents 2.010
times the standard error of the mean, S50√

50 , where S50 is the corrected sample

standard deviation, S50 =
√∑50

i=1(Xi−X̄50)2

49 . Value 2.010 is the Student’s
t distribution value with 49 degrees of freedom. Therefore, the error bar
represents a 95% confidence interval for the average execution time of the
algorithm on instances of the considered benchmark.

In more details, Figure 6 shows the performances of the three implemen-
tations in benchmarks of group Size010-3. Each printed value corresponds to
the average value determined considering the corresponding sub-benchmark
B10-3-*. We verified some run time-out (45 minutes) for STD and STD
OnlyToZ algorithm. The average execution time was determined consid-
ering also such time-outs and, therefore, it represents a lower bound to the
real average.

All three implementations require, in average, a smaller execution time as
the order of instances increases. This is due to the fact the bigger instances
are obtained increasing the number of parallel connectors in the generated
workflows (the number of contingent links and the number of observation
node are fixed). Increasing the number of parallel connectors, there are more
parallel branches and, therefore, more contingent links must be put in the
same scenario. This makes a network easier to be checked.

From the experimental results, it emerges that CSTNU2CSTN has the
best performance and the worst performance for all the implementations is
in the sub benchmark B10-*-0 where all generated workflows have no parallel
branches.

2The determination of all values required to execute the DC checking for 24 000 times,
83.18 hours.
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Figure 6: Controllable Instances in group Size010
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Figure 7 shows a detail about the worst-case execution time. For each
sub-benchmark Size10-*-0, i.e., instances derived by workflows without par-
allel flows, we report the average execution-time to show how the average
execution-time increases as the number of the choices increases.
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Figure 7: Worst Controllable Instances in group Size010
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Again, it is clear that the CSTNU2CSTN has the best performance.
Figure 8 shows the average execution-time obtained when instances are

not DC. The algorithms have a worse performance checking non-DC instances
than the one checking DC ones. In average, each algorithm require an average
execution time that can be 8 times greater than the average execution time
required for checking positive instances having the same order.
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2.4 STNUBenchmark2020

This benchmark is composed of five sub-benchmarks (named as Test 1
benchmarks in [10]). Each sub-benchmark is composed of two sets: one set
of DC STNU instances and one set of non-DC ones.

Each sub-benchmark, characterized by a number n ∈ {500, 1000, 1500, 2000, 2500}
contains STNU instances (DC/NOT DC) generated randomly using
it.univr.di.cstnu.util.STNURandomGenerator (see Section 1.2) with the fol-
lowing parameters

Number of nodes, n n ∈ {500, 1000, 1500, 2000, 2500}
Number of lanes 5
Number of contingent links, k k = n/10 (hence, k = O(n))
Max absolute weight of ordinary edges 150
Max contingent range [0, 20]
Probability of constraint among nodes
in different lanes

0.40

For these parameter choices, each node (but the first and the last one of
each lane) has two incoming edges and two outgoing edges in the same
lane, as well as an average of 2.56 incident edges representing temporal-
coordination constraints with nodes in other lanes. Activation time-points
have no temporal constraint with nodes of other lanes because we preferred
to derived them from the constraints incident to their contingent time-points.
Temporal-coordination constraints are set in a way that avoids introducing
negative circuits among a pair of nodes. Therefore, the number of edges
is, on average, 3.28n − 1.28k − 10; hence, m = O(n). For each value of
n ∈ {500, 1000, 1500, 2000, 2500}, the benchmark contains 200 DC networks
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and 200 non-DC networks for a total of 2000 instances distributed in ten
sub-benchmarks.

Moreover, in each sub-benchmark of DC instances there are 100 instances
that are a copy of the first DC instances of the benchmark but where the
number of contingent links is reduced to

√
n.

2.4.1 Experimental Evaluation

In CSTNU Tool library there are three different STNU DC checking algo-
rithms:

1. RUL20: is the main algorithm presented in [10] as Algorithm 10.

2. RUL−: is the algorithm presented in [11].

3. Morris14: is the algorithm presented in [12].

All such implementations are available as DC checking option in the class
it.univr.di.cstnu.algorithms.STNU in CSTNU Tool library.

In the following we propose two diagrams that show the performances of
the three algorithm using the STNUBenchmark2020 benchmark.

We used an Oracle JVM 8 having 8GB of heap memory on a Linux box
with one Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz. The parameters
for the Oracle Java Virtual Machine 1.8.0_144 were: -Xmx8g, and -Xms8g.

The execution times were collected by a Java program (Checker, proposed
in our package) that allows one to determine the average execution time—
and its standard deviation—of a DC checking algorithm applied to a set of
instances.

Figure 9 and 10 display the average execution times of the three algorithms
across all ten sub-benchmarks.
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Figure 10: Benchmarks with non-DC Instances

Morris14
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RUL20

Each plotted point represents average execution time over 200 instances

Each plotted point represents the average execution time for a given
algorithm on the 200 instances of the given size, and the error bar for
each point represents the 95% confidence interval. For example, over the
200 DC instances having n = 2500 time-points and k = 250 contingent
links, the average execution time (in seconds) of the Morris14algorithm lies
within the interval [246.24, 248.56] with 95% confidence, while the average
execution time of the RUL20algorithm lies within the interval [17.26, 17.36]
with 95% of confidence. These results demonstrate that the RUL20algorithm
performs significantly better than the other two algorithms, especially over
DC instances, but also over non-DC instances. For non-DC instances, the
95%-confidence intervals tend to be larger than those for the corresponding
DC instances because for some non-DC instances the negative cycle can be
detected immediately (e.g., by an initial run of Bellman-Ford or during the
processing of the first contingent link or negative node), while others may
require significant amounts of propagation.

One of our principal motivating hypotheses was that our new algorithm
would be significantly faster than the RUL−algorithm because it inserts
significantly fewer new edges into the input STNU graph. In particular,
whereas the RUL−algorithm computes and inserts new edges arising from
all three of the RUL−rules, the RUL20algorithm only inserts edges arising
from the length-preserving case of one rule.

2.5 CSTNPSUBenchmark2023

The structure of this benchmark is similar to the CSTNUBenchmark2020
one with two differences: the duration of each task is converted as guarded
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adding two external bounds to the core. The external bounds enlarge the
core of about 10% to each side. In particular, each contingent link (A, x, y,
C) was replaced by the guarded link (A,

[
[x′, x][y, y′]

]
, C), where x′ was set

to (1 − r)x while y′ was set to (1 + r)y, where r = .1.
Since the scope of this benchmarks was to check the performance of the

PrototypalLink algorithm, that is significant only for DC instances, the
benchmarks contain only DC instances.

The following table summarizes the characteristics of each sub-benchmark.

Group Bench
mark

instance
indexes

#tasks #XOR #AND CSTNPSU
order

Size010-3 B10-3-0 000-049 10 3 0 43
B10-3-1 050-099 10 3 1 49
B10-3-2 100-149 10 3 2 55
B10-3-3 150-199 10 3 3 61
B10-3-4 200-249 10 3 4 67

The total number of CSTNPSU instances is 250 DC, divided in 5 groups
having 50 DC instances each.

2.5.1 Experimental Evaluation

This section presents an empirical evaluation of the performance of the FTNU
DC-checking algorithm and of the getPrototypalLink procedure.

We recall that the getPrototypalLink procedure, given a DC instance
as input, has to determine the completion of the instance and the path
contingency span of each node to calculate the prototypal link.

The comparison of the two algorithm performances should give an idea of
the computational cost for having a compact representation of a (sub)process
versus the cost of determining its controllability only.

The tests were executed using a Java Virtual Machine 17 on an Apple
PowerBook (M1 Pro processor) configured to use 8 GB memory as heap
space.

Figure 11 displays the average execution times of the two algorithms over
all five sub-benchmarks in B3, B4, and B5.
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Figure 11: Benchmarks with DC Instances
FTNU DC-Checking on B3
FTNU DC-Checking on B4
FTNU DC-Checking on B5

getPrototypal on B3
getPrototypal on B4
getPrototypal on B5

Each data point value is the sample average X̄50 =
∑50

i=1 Xi

50 of average
execution times Xi obtained considering the fifty instances of the relative sub
benchmark. Indeed, each Xi is the average execution time obtained executing
five times the algorithm on instance having index i in the considered sub
benchmark. The error bar represents a 95% confidence interval for the
average execution time of the algorithm on instances of the considered
sub-benchmark.

As concerns the FTNU DC checking performance, from the data in Figure
11, it results that the performance is similar to the one obtained for the
CSTNU DC checking algorithm in [13] although here the average times are
one-order of magnitude smaller (thanks to the M1 processor). The more
difficult instances are associated with workflows without parallel gateways
(i.e., instances in the first sub-benchmark of each main benchmark) and the
algorithm performs better as the number of AND gateways increases, but
in B5. As stated in [14], such behavior is due to how the ATAPIS random
generator works when the number of AND gateways is small (i.e., less than
5). Increasing the number of AND gateways (till 5), fewer XOR gateways
are set in sequence and, therefore, there are fewer possible scenarios. In
B54, where the number of AND gateways is 4, this pattern didn’t occur.
The sub-benchmark contains many instances with three-four observation
timepoints over five in sequence, determining a greater number of possible
scenarios and, hence, a greater execution time for the checking.

As concerns the getPrototypalLink procedure, its execution times are
much lower than those of the DC checking algorithm (see Figure 11). Figure
12 shows the average execution time of getPrototypalLink of Figure 11 in
linear y-scale. Once a network is checked DC, the completion phase updates
the values of the original guarded and requirements links in the network
while the building of the path contingency span graph creates and fills a
vector of labeled distances from Z to each node. Such phases require visiting
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each original edge of the network two times, each time considering all the
labeled values associated with the edge. We verified that the average node
degree is less than 5 in all benchmarks, hence the instances are sparse graphs.
In these benchmarks, the quantity of labeled values present in each edge
is not relevant as the number of edges/nodes in the determination of the
computation time. Therefore, the getPrototypalLink-performance results
to be quasi-linear with respect to the number of nodes.
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Figure 12: getPrototypalLink Average Execution Time detail
getPrototypal on B3
getPrototypal on B4
getPrototypal on B5
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