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Abstract

In this technical report we describe some mesoscopic scales one can introduce
in order to investigate the phenomenon of Bose-Einstein condensation with
rigorous mathematical methods. We do this within the approach of stochastic
quantization.

Keywords: Stochastic Quantization, Scaling limits, Bose-Einstein conden-
sation
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1 Introduction

The interest in classical stochastic methods for investigating systems of inter-
acting Bosons from a theoretical point of view has been increasing in the last
years : see for example [2] where, for large systems in a trap, a model based
on path repelled brownian motions is proposed, and [31][3] , where interact-
ing spatial permutations are considered for a weakly interacting homogeneous
case. Moreover it was recently shown in [20] that an exact stochastic descrip-
tion is possible in terms of interacting diffusions, following the quantization
procedure via stochastic variational principles (see also [7] for applications).
The most challenging problem is of course to give a stochastic characteriza-
tion of the condensation phenomenon. To this purpose it could be useful to
get an exact stochastic description of the condensate at T" = 0 in a realistic
situation.

In this report we study some different scaling procedures which can be
introduced within the stochastic quantization approach [20].

2 Stochastic quantization

2.1 Canonical Quantization and basic notations

Let us consider a system of N identical interacting particles. We denote the
configuration of the system by t = (ry,...,7r3y) = (r1,...,ry) . r; denotes
the position of the i-th particle. We make use of the notation

ri, Ji€{3(i—1)+1,3(i—1)+2,3(i—1)+3}

for the corresponding components in the configuration space R3*". Let also
0; denote the partial derivative with respect to 7;, j = 1,...3N and put

~

V= (81,...,83N):(V1,...,VN)

where

Vi = (35(-1)+1, F3(i—1)+25 F3(i—1)+3)

Quantum Mechanics claims that, neglecting spin variables, the system is
completely described at time ¢ by a wave function ¥ € LZ(R3M,d7). The
time evolution of the wave function is uniquely determined by the classical
Hamiltonian, which in fact defines the Hamiltonian operator by canonical
quantization rules.
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The classical conserved Hamiltonian is, m denoting the mass of the par-
ticles and qf' € C* the classical lagrangian path of the i-th particle,

- z{ 0+ B(G0) b+ a0 o 0, 0)

® and ®;,,;, which are assumed to be sufficiently regular to insure the assump-
tion qf € C! is consistent, denote the external potential and the interaction
potential respectively. The parameter o > 0 is a coupling constant such that

@int = O(Oé)

Quantum Hamiltonian operator reads

H = i {——V2 + @(rl)} + Dy (11, o, Ty, @) (2.1)

=1

We will assume that ® and ®;,,; are such that H is bounded from below, so
that H has a selfadjoint extension, still denoted by H, which is the genera-
tor of the unitary group which describes the evolution in time of the wave
function through the equality

U, = exp’ @,

In differential form we have the 3/N-dimensional Schrodinger equation

0
Zha‘l’(l’l, LT, t) =H lI/(I'l, LI, TN, t) (22)

2.2 Stochastic Quantization by Lagrangian Variational
Principle

In this approach the configuration of the system is assumed to perform a
Markov diffusion ¢ with time dependent drift b and diffusion matrix equal to
LT T denoting the identity matrix in R*V.

We will also assume:

i) The drift b is smooth both as function of # and t € [0,7], T < co.
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i) ¢=(qi,...,qn) is a pathwise solution of the 3N-dimensional stochas-
tic differential equation

where W;, ¢ = 1,..., N are three-dimensional independent standard
Wiener processes and, for any time ¢t € R™,we put

q(t) = (qa(t), ..., an (1) = (au(t), ..., an(t))
b(é(ﬂa t) = (bl (qA(t), t)a ceey b3N(qA(t>= t) =
= (bl(Cj(t =t), <o ,bN(Cj(t% t)

iii) The finite energy condition [9] is satisfied.

Under the above stated assumptions one can prove in particular that, denot-
ing by p the time dependent probability density of the configuration, there
exists a smooth time dependent current velocity field V' such that

The quantization procedure needs the classical Lagrangian. Still denoting by
G the classical lagrangian path, we have

L[¢ = Z {%m(qgl)Q(t) - @(qfl(t))} — Pine(af' (1), ..., a (1), @)

i=1

The discretized mean classical action, as a functional of a smooth 3/N-dimensional
diffusion, ¢, is, denoting by £ the mathematical expectation,
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A il = i L ACLS) FNCX)
where
B (6:1) =D @ (ai(t)) + Pint(ar (1), -y A (), )
i=1
and, for any finite time interval [t,,¢,] and positive integer M, we put

tb_ta

A = i

A+Q(ts> = q(ter) — qlts)

The Stochastic Lagrangian Variational Principle introduced in [19], [21] and
[22] claims that the actual motion is described by a Markov diffusion which
makes extremal the mean discretized classical action among smooth diffusions
which satisfy a system of stochastic differential equations of type (2.3) with
the same fixed Brownian Motion and such that the initial current velocity
and the final configuration are fixed as random variables.

In the limit of the discretization going to infinity the necessary and suf-
ficient condition is that the drift of the actual diffusion is given by

3=V+iV1np

2m

where, for k=1,...,3N,

@ﬁ:-@-@?) (2.5)
(e e (VR
@V+QAV)V—%#V<Aﬂ5)k+
po3N A A
45—;;%mﬁ+%Mm%—%w)= (2.6)

L, o

= —— 005"

m,

So, in case Visa gradient-field we get the familiar Madelung equations
for the N-particle system. Indeed, putting, for some differentiable scalar field
S,

~

V =VS
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and

A~

¥ = pren’
we get the 3N-dimensional Schrodinger equation
. T h2 =2 a,N \ F
1 h@t\If = —%V + cI)tot 1\
Otherwise for general initial data the rotational terms, of the first order
in %, induce dissipation.
Indeed if (5, V) is a smooth solution of (2.5) and (2.6) such that %é is finite
at infinity', we have

3N 3N
L ptp 0= L [ZZ A ARk
k=1 p=1

with

E[p,V] = / Lal? 4 Smi? + N ) pdr
R3N 2 2
and U = %@ In p (3N-dimensional osmotic velocity).

This Energy Theorem was proved in [19] for N = 1 and d = 3. The gener-
alization to a configurational space with higher dimension is straightforward.

Therefore irrotational solutions conserve the energy, which turns to be
the usual quantum mechanical expectation of the observable energy, that is

E =<V HY >

where <, > denotes the L2(R3*",df') scalar product.

For generic initial data, being H bounded from below, Schrodinger so-
lutions act as an attracting set. In this case the constructed quantization
procedure approaches the canonical one after a relaxation, in some analogy
with Parisi-Wu approach [29].

3 Interacting diffusions

In the following we will assume that p has support in a compact set for t = 0,
and that the support remains in a given bounded domain for all ¢ € [0,T].
We recall that, by i), both p and V' are smooth.

1We stress that the above mentioned condition at infinity is only sufficient. Actually
there is at least one example, namely the gaussian solutions for the bidimensional harmonic
oscillator [24], such that the condition is not satisfied and the Energy Theorem still holds.
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We will need in particular that p is of class C} as function of t and C? as
function of the configuration variable 7, while the current Vﬁ is assumed of
class C! as functions of 7.

We make use of the following notations

~ -

V = (‘/17‘/2, ‘/jgN) - (Vla VN) y 15 = ezR

For the i-th particle we define the “one-particle current velocity field”

vi(r,t) = Eqy=r Vilai(t), ..., adi(t), ..., an(t), 1) (3.1)

where Eq,()=r denotes the conditional expectation, given q;(t) = r.

R

Let us introduce the two scalar fields R and R by putting p := €2# and

p = 2. We define & and Z by the equalities

fi(rl, RIPI o7 PPN I'N) = Vi(rl, RPN (PSRN I'N) — V,‘(I’i, t)) (32)

and
N

E(r1, ...ty 1) = R(ry, ..ty 1) = Y R(rj, ) (3.3)

J=1

One can prove that [20] , in case of identical particles, under assumptions i)
and ii) and those stated at the beginning of this section, the motion of the
1-th particle is described by a non-Markovian diffusion q; with probability
density p := e*® and current velocity vy, which satisfies the equality

dqi(t) = (V1 (ai(t),t) + %VlR (a1 (), t)) dt +

1/2
+ G (au(t), aa(t), ..., an(t), ) dt + <E> dW,(t)

m

where "
G:=& + =V =
m

&1 and = being defined by (3.2), (3.3) respectively, and Eg, 1)=r (1 = 0.[20]
Then one can prove the following
Proposition 1

Let assumptions i), ii) and those stated at the beginning of this section hold.
Then the one-particle marginal density p and the one-particle current velocity
vi of the 1-th particle in a system of N identical bosons satisfy the couple of
PDEs, for k= 1,2, 3,
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[Op+V - (pv1)] (r,t) =0

[Opvi+ (V1 - V) vy — ;ZQV (V\/\gﬁ> + % (Vinp+ V) A (VA vy)|p(r,t) =

o R CEPACHO NN )] SN )

where

h2
WBQ} (a? Na r, t)

k

' h
Bk(a, N, r, t) = |:Bt"m6 + Bcorw + —/BrOt n
2m

and

Btime(a, N, r, t) = qu(t):r [8tV1 - atvl]
6conv(a’ N, r, t) = qu (t)=r {(V V)Vl ( V)VI}
rot( N r t)

{EN: (OpInp+0p) <5k‘7,,—c9p‘7k> —[(Vlnp—i—V)/\(V/\Vl)]k}
. VAVEY o (VP
B9, N, 1, ) = gy {v1<ﬁ> vl(ﬁ)}

For any solution T to Schrodinger equation we have, by construction,
that p is symmetric w.r. to permutation of positions of two generic particles.
One can also prove that in this case, at dynamical equilibrium, all particles
have the same velocity field.

Moreover all the associated one-particle processes are equal in law.

Proposition 2 Let ¥V be any solution of the 3N-dimensional equation
(2. 2) and assume it is of class C'. Then the three-dimensional processes

.....
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Proof

By the symmetry of UV the joint probability density pV = (¥V)? is
also symmetric. This implies that all marginals are identical and sym-
metric. Moreover, for all £ = 2,..., N and ¢t > 0, the permutations of
(XN (t),..., X[ (1)) are identically distributed random elements.

Let us also observe that, if ¥¥ is of class C*, putting ¥ := exp RY and
i < j, we have (see for example proof of proposition 4 in [20])

N N
V:RY(r1,...,Ti,...,Tj,...,rn) = V;R (r1,...,15,. .., T4, ..., TN)
then

V(XN XY) = VRN (XY XN

R '7',...

=V, RN(XY, XN XN X)) =

y“rg
N(yN N N N
%VJR (Xl,...,X,L',...,Xj,...,XN):
=) (X{, ..., X))
where ~ denotes the equality in law and V; denotes the gradient with respect
to the variable in the j-th position.

Denoting by (XN, WN)(QN, FN PN)(FN )0 a weak solution to the 3N —
dimensional SDE, we define, for any ¢ = 1,..., N the adapted process
BY(E) = 0 (X (1), XN (1))

Then, for any i, X satisfy the stochastic differential equation

XN =XV + [ B s+ (W)

So, varying i from 1 to N, we get a family of three-dimensional non
markovian diffusions on (QV, F¥, PV) with diffusion coefficient equal to 1
and identically distributed drifts. o

4 The ground state and the Yngvason-Lieb-
Seiringer scaling

In this section we consider the important case of the limit for N going to
infinity via the Lieb-Yngvason-Seiringer scaling [15] [18]. Such a rescaling
is consistent with the Gross-Pitaevskii approximation [10][30] and allows a
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theoretical and rigorous proof from first principles of BEC for interacting
trapped gases, in terms of factorization of the reduced density matrix [17] (see
[13] and [1] for the study of the free evolution from the ground or factorized
initial state and [16] for the extension to rotating condensates ).

We consider the particular hamiltonian

N

HY =3 (g f + V) + Y vl

i=1 1<i<j<N

where V' is assumed locally bounded, positive and going to infinity when |r;]
goes to infinity. The interaction potential v is smooth, compactly supported.,
non negative, spherically symmetric, with fnite scattering length a.

The Lieb-Yngvason-Seiringer scaling [15], leaves N to go to infinity with
the rule

a X —

where v; has scattering length equal to 1.

A key tool in the proof of BEC given in [17] is a "localization of energy”
lemma, which in synthesis claims the following: let ¥ denotes the ground
state of HY, that is the minimizer of the total energy functional

EN[U] = / U (HNW)dr,...dry

(withr; € R3 i =1...N), and let $“F be the minimizer of the GP functional
(which is unique up to a phase, which will be assumed equal to zero)

hZ

E0] = [ (G0 + V(o) + Lot ar

2
with g = 47r ® Na. Then if N goes to infinity and the interaction follows the

Y-L-S scahng, then, with X := (ro,...,Txn),

Fx(r) =9(r, X) /6" (r)

has the property that, for great N, its gradient is almost zero outside small
balls centered at the points of X.

Let UV be the ground state of HY in L}(R*" — C,dx), z € R*. We
assume that UV is real, and dz-a.s. positive. We denote by AY the corre-
sponding eigenvalue.
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The associated process XV can be seen as the family of three-dimensional
non Markovian diffusions (X%, ....X¥), which satisfy, withi = 1,..., N, the
equalities

t
XN = [0S, XN 6)ds + Wi
0
where the drift is defined , with (r; e R3,i=1,...,N) , as

V., UV
N
and {W;},—1 _n are i.i.d. three-dimensional Brownian Motions, whose com-
ponents have variance equal to 2¢ in the assumed unities.
We now study the behavior of X%V for N going to infinity via the Y-
L-S scaling. To this purpose we introduce the oco-product probability space
(Q, F,P) and the filtration (F;);>0, naturally generated by ((Q~, FV, PV), (FN)i>0) ven-
Assume now there exists a process X“* which, for some adapted brownian
Motion W7, satisfies the stochastic differential equation

b (ri,...,rN) = ( JIE ST 99

XE(t) == XT(0) + / t u“t (X ())ds + Wi(t)

cp v¢GP

Let X%F(0) be distributed accordingly to the probability density p“f :=
(¢9F)2 : then X 9P (1) has the probability density p“* for all t. By the results
in [15][17] we know that p“*" is in fact the L' limit of the one particle marginal

of (IM)2, So we expect there is some relationship between asymptotics of
XN and XEF,

remark 1 We observe that

VA AVAVR B v
PV ) = (U g —

so that, being U¥ is of class C'! by assumption, the distance of the two drifts
bY and u®f in L2(R® — R, (¥M)%dry,...,dry) is given by the following
equality

\I/N
/ ||bi\/ o UGP||2(\IJN)2dr1, s 7drN = / (V1W)2(¢GP)2CZI'17 R drN
R33N R3N ¢
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Following [17] we have

Lemma 1 Let UV be of class C! and let assumptions above stated on V'
and v hold. Then if N goes to infinity via the L-Y-S scaling with ¢ = 47 Na
we have

a) There exists s € (0, 1] such that

lima 1 50 / 1Y — wCP[2(UN 2dry . dry = gs / (69P) dr
R3N R3

b) Defining

FN(ry, ... ry) = (U BN (r)))°

where BY(r) denotes the open ball centered in r with radius N~ 1,

,,,,

Proof
The proof is an immediate consequence of remark 1 and of results given
in [17]: see (7) for a) and Lemma 1 for b). ©

In the following we simply denote XN (¢), BN (¢), XEF(t), Wi(t) and
uCP (X)) by XN, BN, XEP, W, and uff" respectively. Moreover we
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augment (F;);>o so that it satisfies the usual conditions and X&¥ is F,-
measurable. Then, on the filtered probability space (2, F,P), (Fi)i>0 , we
consider the two S.D.E. ( with h =m = 1)

t
XN xN = / 8ds + W, (A1)
0

and

t
XOP - XOF = / uSds + W, (4.2)

0

where X has probability density equal to (¢%F)? and the solution of the
second equation is assumed to hold in strong sense. This means that we can
choose in the second equation the same Brownian Motion giving a solution
to the first.

remark 2 Both 8V and u©" satisfy the finite energy condition, that is,
forallt € R

t
Er / 18Y|ds < oo
0

and

t
Ep/ | uSP|ds < oo
0

which follows from the fact that U is the minimizer of EN[¥] and ¢“F of
ESF[g).

Then, by Girsanov Theorem [14] , there exist two measures @~ and Q”
on (Q, F), absolutely continous with respect to P, such that X~ — XV and
XGP — XEP are, respectively, two Brownian Motions on the considered fil-
tered measurable space.O

remark 3 We have, P and Q°F a.s.,

t
XN XY = / (BN — uSP)ds + XEF — XCF
0

so that, again by Girsanov Theorem, given any stopping time 7

dQ~N

dQGP

AT N GP N 1 AT N GP|12
e = el [ (Y <y ax g [ Y < g Pas)
0 0
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We denote by H(QYN, Q") the relative entropy between QV and Q%7
that is, for any sub c-algebra G

N

|gdQ"

d
Q" Qs = [ tog i

Then, if the right side is finite, we can write, for any stopping time 7,

1

tAT
QY QM = 5B [ 18) Tl (@3)

To exploit lemma 1 we introduce the following time dependent random
subset, of R?

Dy(t) = BY(XN (1)) (4.4)

i=2
where BY(r) is again the ball with radius N ~17 centered in r, and the stop-
ping time

™ =inf{t: X} € Dy(t)} (4.5)

Then we can prove the following partial result

Proposition 3 Let the same assumptions of lemma 1 hold and let the
solution of (4.2) be in strong sense.
Defined

G, = [1BY = uST P Iixveps (o))

assume that, for any ¢ > 0, f(f Gy sds is bounded by a positive integrable

functions and limy_ f(f Gy sds is equal to some time dependent random
variable g;, P-a.s..
Then, if 7V is defined by (4.5) and (4.4), we have

1 tAT
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Proof
By remark 2 we have

t t t
Ep/ 182 —ulP||Pds < Ep[/ ||5§V||2ds+/ [uCP ||2ds] < oo
0 0 0
Recalling the definitions of Dy (s) and of G s we get

t t
E]p/ G sds < E]p/ 18 — uSP||?ds < oo
0 0

so that by Fubini theorem and Lemma 1,

t t
limNTooE]p/ GN73d8 = limNToo/ E]p[GNys]dS =
0 0

.....

As a consequence, in our assumptions on Gy s, we get

t
Ep[limNToo/ GNyst] =0
0
so that .
P{lszToo/ GN7Sd8 = O} =1
0

Moreover, for any N € N, being QV absolutely continous with respect to
P, we also have

7 t
QN{limNToo/ GN7Sd8 = O} =1
0

Thus we can write, for all N € N,

t t
0= E@N [lszToo/ GN7SdS] = limNTOOEQN / GN’SdS
0 0

and

t
limNToolimNTooEQN/ Gnsds =0
0

Concluding we have

1 t/\TN
lim lim —EQN/ 18N — uSP|ds =
0

Nloo NToo
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.o 1 !
2]{[1&]{,1%}}0 5F N/o 18 = udT P Ienpyds <

1 t
< lim lim §EQN/0 Gnsds =0

Nloo NToo

For d = 3 the Lebesgue measure of DV goes to zero in the limit of N
going to infinity. Moreover, since the radius of each ball constituting D is
O(N~7) and the mean distance between two particles is O(N~3), for great
N the gas behaves as diluite on the scale of the small balls, so that the mean
field contribution to the random motion is the relevant one on this scale.

5 Mesoscopic scales

For the Hamiltonian already considered in the preceding section, the general
setting introduced in [20] allows in principle to study more general situations
and in particular to formulate a novel set of assumptions, in particular con-
cerning the initial state, the number of particles, the time scale and so on,
which are necessary in order the Gross-Pitaevskii approximation to hold in
the stochastic approach.

1) Irrotationality: this gets rid of the rotational terms % (37, Notice that
this is equivalent to coming back to the canonical quantization or
to the considering the system, when described within the Lagrangian
Variational Principle, only at dynamical equilibrium. It is important
to stress that in this case we have vi = vy = -+ = v := V.

2) N is finite but sufficiently large to approximate % with 1 in equation
(5.2) and to neglect 5™ (cf 4).

3) Btme = 0: this is approximately true if we choose a time scale where
O [Vi(ry,...,rn, t) — v(r,t)], i = 1,..., N is negligible.

4) peomv = (: starting from the definition of 5™ we can see that, using
the properties of conditional expectation

N
[ = qu(t):r {(Vl . Vl)Vl + Z(Vz : Vz)vl} - (Vl : VI)Vl (I', t) =

=2
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N

= 0(a?) + Eq=r » (Vi Vi) V1.
2

1=

Using standard vector calculus and assumption 1), we get
alg]
Bconv — O(a2) —+ qu(t):rvi ZQ: §|Vz|2

As a consequence, under assumption c¢1), the condition 3" = 0 is
equivalent to assume, up to O(a?) terms,

| 1
dim Eq Vi) 5[V,P =0
J#i

This looks reasonable in general from a physical point of view. In fact
we expect that, in case of a great number of particles, the total kinetic
energy due to current velocity contribution is not sensitive to variations
of the position of a single particle.

5) (Z—Z)ﬁQ = 0: this is meaningful only if the initial state is not entangled
when o goes to zero. Indeed only in this case 39 goes to zero when
the coupling parameter v goes to zero. If this is the case, the condition
means that we neglect a term of order O(%)O(a).

In particular one can consider the interaction potential

K N
@int(rla TN, Oé) = 5 Z h'Ba(l'i) (PJ)

i=1 j=1,j7#i

where K is a constant which can be positive or negative, B%(r) is the open
sphere centered in r, with volume «, and hpa() satisfies the following as-
sumptions

1) 0 S h’Ba(ri) (I’j) = h’Ba(rj)(r’i)
i) hpew € CL, supp  hpa) = B*(r)

iit) 0 < [os (Ipoqy)(r) = hpag,)(r)) dr = O(a?),

where Ipa(y) denotes the function which takes value 1 on B*(r) and 0 outside.
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Further assumptions are, Vt € [0, T,

CL) 1im(¥—>0 [)(rl, - Iy, t) = Hij\;lp(ria t),

b) hma_,o V,ﬁ(rl, Iy, t) = V,H;vzlp(r,, t), Vi = 1, ey N

Introducing the expected number of particles in any finite volume 0V C
R?, that is the random variable

Nsy (t) := Z Isv (ai(t))

with expectation

ENsy (t) =/ N p(r,t)d’r
%

we can see that p(r,t) := Np(r,t),r € R3, is the expected density of particles
in the physical space.

It is not trivial that the couple (p,v) is a true state of a physical fluid
with density p and velocity field v=v;, Vi=1,---, N.

One can show [20] that the dynamical equations, independently of the
choice of the particle, become

00+ V - (pv)] =0 (5.1)

v+ (v-V)v — ;ZN <V\2/\7f5> —

1 N-1

_ —%V(I) — —K=——{NO(a*) + V [a7+ N O(a?))]} (5.2)

Then, approximating % to 1 and neglecting terms of order O(a?). the

“fuid wave function” v := ﬁ% exp %S , where %VS = v, satisfies the Gross-
Pitaevskii equation:

2
ihop) = {—h—VQ + &+ KOMF} Y
2m
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This is the equation for the coherent part of one-particle dynamics. The
main interest of this result comes from introducing approximations as func-
tion of both v and %, for finite N.

In the following appendix 1 and appendix 2 we report some preliminary
results concerning the structure of the dynamical perturbation for the ground
state and some analysis for the weakly interacting case.

6 Appendix 1

Dynamical perturbation of the ground-state
The quantum dynamical perturbation can be written as

N
BQ - qu(t):r1V1{Z V?E +2VR(qgi(t),t) - ViE + (viE)z}
1
Exploilting regularities we can write:
N
Vi) [Ep=n[VIE + 2VR(gi(t), 1) - ViE + V;2°]}
1

We can prove that all terms are identical.Putting N = 3 for simplicity we
must prove that:

Eqg(5)=r [V2E + 2V R(qa(t), 1) - Vo= + (V22)]
= Eg)=r [V3’Z + 2V R(q5(t), 1) - V5= + (V52)?] (1)
We know that :
VoE(r1, 79, 73, 1) = Vo R(ry,79,73,1) — VR(ro, 1)

Vi3=(ry,mo,73,1) = V3R(7”1, r2,73,t) — VR(r3,1)
We observe that:

. R , h,rs, t) — jf{ ,To, T3, 1
82R(r17r27r37t) = limh_>0 (Tl T2+ '3 }2 (7"1 2,73 ) _

R h,t) — R t .
l’[;mh_>0 (T1,T3,T2 + ’ }3 (Tl,TS,T2, ) - aSR(TI,T?);T?,t) (2)
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where the invariance of R = (1/2)log(p) with respect to permutations of ro
and r3 is exploited. By (2) we get:
Va2E(r1,r2,75,t) = VaR(r1,712,73,t) = VR(ry, t) =
= VgR(Tl, T3, To, t) - VR(TQ, t) = VgE(’Fl, T3, T9, t) (3)

Moreover we have:
82R<T17 ro + h’> rs, t) - aQR(Tla 2,73, t)

Oa(0a R (11,79, 73, 1)) = limy,_o A =

OsR (11,753,790 + h,t) — O3 R(r1, 13,79, 1)
h

limp—o = 0303 R(r1, 73,72, 1)(4)

where (2) is again exploited.Taking conditional expectations and recalling
(4) we have

. < p(ry,ro, T .
Lo (ty=rs [aQa?R] = /82821%% = Eg(t)=r, [8383R]

We can write:

(/rla T2, T3)

dradrs =
p(r1) o

EnnlV°R = [ V*R(ra )"
/VQR 7’3, Tl,(rzsrg)d QdTg
E =ry [VQH = 41(15):7”1 [ng] (5)

Epon (Vo)) = / (7,2 LT g

—op(ri,ro,r _
[ s = B (952 ©

Eventually we find:
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T1,7”2,7”3)

_ r =) ry, 1o, 1 [)(
_/VR( 2, 1) (V2E) (11, 72,73, 1) o(r1)

_ o(ri, 73,7
:/VR(TQ,t)(Vg\:)(’Fl,’Fg,Tg,t)%d

= Eg(0=r [VER(g3(t), 1)(V5E)] (7)
Concluding (5),(6) e (7) prove equality (1).

d’f‘gd’f‘g =

’f‘gd’f‘gz

7 appendix 2
Weak interaction
We define
N
@mt(rl, ey TN K) = KZV(T’L _ /rj)

i<j
where K is a non negative constant, V' is a smooth symmetric function. We
assume:

N
a)U(ry, ..y, t) — H\Ifi(ri7t) = O(K)
=1
. N
DVIU(ry,..ry,t) = VI [ ] Wilri,t) = O(K)
i=1

fori=1,...,N and p = 1,2, where |¥;|? = p.
We can prove that the interaction term can be calculated to give:

E¢11(t)=r1 [V1‘Dmt](CI1 (t), sy CIN(t)> K) =

= K(N = DVA[K | V(ry—r)olry)dr)) + O(K) (1)

R3
Being V' simmetric:

K N
@int(rl, oy I'N, K) = 5 ZV(TZ _ T_])
i#]

Because of V1, only terms containing r survive giving:

N
Vl@mt(rl, . I'N, K) = KZV(TI — Tj)
J#1
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Therefore:
E, (t)=r1 [vl@int](Q1 (t)a sy C_IN(t)a K) =
=Y Ep=n EViV(qi(t) = ¢;(t)] (e (1))
J#1
Eqy=r [KV1V(@1(t) — ¢;(1))] =
=K Vl[V(’f‘l —’l“j)]—p(rl,mrN)dS’f‘g 'd3’f‘j 'dS’f‘N =
R3(N-1) p(r1)
=K Vl[V(Tl — Tj)w]dg)?”g . d3’l"j . dsTN—
R3(N—1) p(r1)
(7“1, ...’I“N) 3 3 3
_ _ PO N By - d3rs - d
/V(’/’l rj)Vl[ o) |dPry - d°rj - dPry
Now:
vl[ﬁ(rl,...’l“N) _ ﬁ(Tl,...’l“N) Vlﬁ(rl,...rN) B le(rl) _
p(r1) p(r1) p(r1) p(r1)
_ 2ﬁ(7‘1, ...TN) VlE
p(r1)
So we have:
Ey, (t)=r1 [Kvl ( ( ) — gy (t))]
ViEg = KV (q:(t) — ¢;(t)]—
2K V(r = ) Va2 oy o oy
R3(N-1) (7“1)
Now:

Eq t)=r, [KV(q:(t) — C.Ij(t))] =

P(r1, - TN) 3 3
- K Vi, — )N B By d
o (ry —rj) ey ro - d’rj - dory
N
=K Vi(ry — ;) Hp(rk)d3r2 . d37“j - dPry + O(K?)
R3(N-1) P

=K [ V(ri—7r)p(r))d®r; - d*r; + O(K?)

R3
using the factorization property (a). Finally (1) holds if:

Vi{K Vir )vlz—p(“" TN)

ABry - dr; - dPr
RSOV p(r1) 2y

is an O(K?). But this is true if V;V,Z is an O(K), i.e. if (b) holds.

21
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