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Abstract. We consider a system of interacting diffusions which
is naturally associated to the ground state of the Hamiltonian of
a system of N pair-interacting bosons and we give a detailed de-
scription of the phenomenon of the ”localization of the relative
entropy”.The method is based on peculiar rescaling properties of
the mean energy functional.
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1. Introduction

The new state of matter known as Bose Einstein Condensate was
predicted from a theoretical point of view by Bose and Einstein in 1925
and it was confirmed in the experiment only in 1995. To be precise, it
was observed that if a large number of identical pair interacting bosons
is confined in a trap of macroscopic size at very low temperature, then
almost all particles belong to a ”condensed” cloud, where every particle
is in the same macroscopic one-body quantum state, called the ”wave
function of the condensate”. As far as the interacting case is concerned,
this phenomenon was firstly investigated by Bogolubov [4] and later
by Gross [5] and Pitaevskii [28]. In the Gross-Pitaevskii theory the
wave function of the condensate satisfies a cubic nonlinear Schrödinger
equation, in this context called Gross-Pitaevskii equation, where the
effect of the interactions gives rise to the non linear term. This model
has been widely confirmed by experimental results.

A completely rigorous derivation of the Bose-Einsten condensation,
for the case of the ground state of a diluted pair-interacting Bose gas in
a trap, was done quite recently by Lieb and Sieringer [22] , exploiting
a suitable scaling limit, consistent with the Gross-Pitaewskii theory,
with the number of particles going to infinity. In particular they can
prove that any finite order reduced density matrix converges in the
trace norm to the factorized one.

Stochastic tools have also been considered and in particular the in-
terest in stochastic descriptions has increased during the last decade.

For example boson random point processes (fields or general Cox
processes), have been exploited by many authors. For the ideal case we
quote [13], [12], [11],[7],[6] and [8]. In particular in [8] the random point
field describing the position distribution of the ideal boson gas in a state
of Bose-Einstein Condensation is obtained in the thermodynamic limit.
Limit theorems for this field, including a large deviation principle, are
established in [10].

For the interacting case interesting results were obtained in [14] and
in [9].

We also quote the work [3], where the authors exploit a model of spa-
tial random permutations, finding the occurrence of infinite cycles and
[2] where large deviation principles are obtained for a model consist-
ing of N mutually repellent Brownian Motions confined in a bounded
region.

The possibility offered by Nelson processes, that can be rigorously
associated to the quantum N-body Hamiltonians, was considered only
very recently[15] [32]. In this approach the N -body system is described
by a system of N interacting diffusions, the interaction being described
by the structure of the Mean Energy Functional. Under the assumption
of strictly positivity and continous differentiability of the many-body
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ground state wave function, all one-particle diffusions have the same
law. This allows to consider a generic one-particle process and to show
that, in a proper scaling limit, such a process continuously remains
outside a time dependent random interaction set with probability one
and that its stopped version converges, in a relative entropy sense,
toward a Markov diffusion whose drift is uniquely determined by wave
function of the condensate [32].

In this paper we focus our attention on the scaling properties of the
Mean Energy Functional which is associated to the system of the N
interacting diffusions and we describe in detail the phenomenon of the
concentration of relative entropy, which plays a fundamental role in
understanding the peculiarities of the stochastic motion of a particle
in the condensate.

2. Basics

We start by considering a single spinless quantum particle of mass
m in a potential V . Denoting by ψ its wave function, we know that it
is a solution of the Schrödinger equation

i~∂tψ = (− ~
2

2m
4+ V )ψ (2.1)

We also know that, if V is of Rellich class and the initial kinetic
energy is finite [15], then there exists a weak solution X to the three-
dimensional Stochastic Differential Equation

dXt =
~
m

(Re
∇ψ

ψ
+ Im

∇ψ

ψ
)(Xt, t)dt + (

~
m

)
1
2 dWt (2.2)

where dWt denotes the increment of a standard Brownian Motion.
Notably, the diffusion X satisfies the stochastic version of the second

Newton’s law

aN(Xt, t) = − 1

m
∇V (Xt.t) (2.3)

where aN denotes the natural mean stochastic acceleration as intro-
duced by Nelson in 1966 [27]. In addition, up to regularity assump-
tions, X is critical for the mean classical action functional [18] (see also
[16] for a recent review).

The system we are considering consists of N pair interacting copies
of such a particle, with Hamiltonian

HN =
N∑

i=1

(− ~
2

2m
4i + V (ri)) +

∑
1≤i<j≤N

v(ri − rj) (2.4)

We adopt the following notations: bold letters denote vectors in R3,
capital letters stochastic processes and X̂ = (X1, ..., XN) arrays in R3N .
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Under suitable assumptions on V and v one can prove the existence
of the ground state ΨN of (2.4), which is unique up to a phase co-
efficient. We also assume that it is strictly positive and continuously
differentiable (see [29], Thm.XIII.46 and XIII.47, for the regularity con-
ditions on the potentials V and v implying the strictly positivity, and
(XIII.11) for those implying the differentiability of the ground state
wave function).

We denote by X̂ the corresponding 3N -dimensional Nelson’s diffu-
sion, whose generator is related to HN by a Doob’s transformation [17]
[30] (see also [31] for extensions).

X̂ is the N -body ground state process and it consists of a family of
N three dimensional one-particle interacting diffusions (X1, . . . , XN).

It satisfies the SDE, written in compact form,

dX̂t = b̂(X̂t)dt + (
~
m

)
1
2 dŴt (2.5)

where b̂ = (b1, . . . , bN), b̂i(X̂t) = ∇iΨN

ΨN
(X̂t) for i = 1, . . . , N , and Ŵ is

a 3N -dimensional standard Brownian Motion.

If Bose-Einstein condensation occurs, the condensate is usually de-
scribed by the order parameter φGP ∈ L2(R3), also called the wave
function of the condensate, which is the minimizer of the Gross-Pitaevskii
functional

EGP [φ] =

∫
(
~2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 + g|φ(r)|4)dr (2.6)

under the L2-normalization condition∫

R3

|φGP |2dr = 1

and where g > 0 is a parameter depending on the interaction potential
v (see also next assumption h2)). Therefore φGP solves the station-
ary cubic non-linear equation (in this context called Gross-Pitaevskii
equation)

− ~
2

2m
4φ + V φ + 2g|φ|2φ = λφ (2.7)

λ denoting the chemical potential.

3. Mean energy and rescaling

The basic mathematical object which contains all elements necessary
to prove, from first principles, the existence of BEC and its proper
stochastic description, is the quantum mechanical energy of the N -
body system in the ground state.

Its explicit expression, with ~ = m = 1, is
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E(ΨN) = 〈ΨN , HNΨN〉 =

=
N∑

i=1

∫

R3N

1

2
|∇iΨN |2dr1 · · · drN+

+
N∑

i=1

∫

R3N

V (ri)|ΨN |2dr1 ···drN +
N∑

1≤i<j≤N

∫
v(rj−ri)|ΨN |2dr1 ···drN

(3.1)

Exploiting the 3N -dimensional ground state process X̂, the kinetic
quantum mechanical energy turns to be the sum of the expectation
of the kinetic energies of the single particles at any time t and the
quantum energy takes the more compact form

E(ΨN) = E{
N∑

i=1

[
1

2
b2
i (X̂(t))+V (Xi(t))]+

N∑
1≤i<j≤N

[v(Xj(t)−Xi(t))]}

(3.2)

bi being the drift of the interacting i-th particle.

A possible rescaling which leads to the Gross-Pitaevskii description
of the condensate is defined as follows [21]

h1) V is locally bounded, positive and going to infinity when |ri| goes
to infinity. The interaction potential v is smooth, compactly supported,
non negative, spherically symmetric, with finite scattering length a ([23]
Appendix C).

h2) N −→ ∞ and the interaction potential v satisfies the Gross-
Pitaevskii scaling [21], that is

v(r) = v1(
r

a
)/a2

a =
g

4πN

where v1 has scattering length equal to 1. We notice that g is positive as
a consequence of our assumptions on v (see h1)) and it is kept constant
in the rescaling.

For given N and a we denote by Eo(N, a) the ground state energy
E(ΨN) of the N -body system and by EGP the minimum value of the
Gross-Pitaevskii functional (2.6).
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The following two therems, proved in [21] and [22], clarify the two
main properties of the rescaling procedure. The first is the important

Theorem 1. (Energy Theorem) [21] If N ↑ +∞ with Na fixed, then

lim
N→∞

E0(N, a)

N
= EGP (3.3)

and

lim
N→∞

∫
|ΨN |2dr2 · · · rN = |φGP |2 (3.4)

Moreover there exists s ∈ (0, 1], depending on the interaction poten-
tial v through the solution of the zero-energy scattering equation, such
that

lim
N↑∞

∫

R3N

|∇1ΨN(r1, ..., rN)|2dr1 · · · drN =

∫

R3

|∇φGP (r)|2dr+

+ gs

∫

R3

(φGP )4dr (3.5)

,

lim
N↑∞

∫

R3N

V (r)|ΨN(r1, X)|2dr1 · · · drN =

∫
V (r)|φGP |2dr (3.6)

and

lim
N↑∞

1

2

N∑
j=2

∫

R3N

v(|r1−rj|)|ΨN(r1, ..., rN)|2dr1···drN = (1−s)g

∫
|φGP |4dr

(3.7)

A second fundamental tool, originally called ”Localization of energy”
is the following

Theorem 2. (Localization Theorem) [22]. Defining

FN(r2, . . . , rN) := (
N⋃

i=2

BN(ri))
c (3.8)

where BN(r) denotes the open ball centered in r with radius N− 1
3
−δ

where 0 < δ ≤ 4
51

,

lim
N↑∞

∫

R3(N−1)

dr2 . . . drN

∫

F N (r2,...,rN )

(∇1
ΨN

φGP

)2(φGP )2dr1 = 0 (3.9)
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These ”quantum mechanical” theorems allow to prove that, in the
limit of N going to infinity, one has a complete condensation, in the
sense that any finite order reduced density matrix converges in the trace
norm to the factorized one [22]. Moreover they can be seen as analyt-
ical tools which are crucial in understanding the scaling properties of
the mean energy of the N -body interacting system represented by the
system of interacting diffusions (2.5), the interaction being defined by
the Mean Energy Functional E(ΨN) by (3.2). They also allow to study
the limit stochastic behavior of a single generic particle [32].

In particular the Localization Theorem is very interesting and gains
a clear meaning in the stochastic framework.

For this reason we report in the Appendix a synthesis of the main
analytical steps which lead to its proof.

4. Localization of relative entropy and the BEC process

We now turn to the stochastic description and notice that the fixed
time joint probability density of the N -body ground state process X̂ =
(X1, . . . , XN) is given by ρN := |ΨN |2, which is invariant under spatial
permutations. Moreover, as expected, if some smoothness conditions
are assumed for ΨN , the processes {Xi}i=1,...,N are equal in law. To be
more precise (see [32]), one can say that, if ΨN is the ground state of HN

and it is strictly positive and of class C1, then the three-dimensional
one-particle interacting diffusions {Xi}i=1,...,N are equal in law.

Motivated by the fact that the first part of Energy Theorem claims
that the one-particle marginal density of ρN converges to |φGP |2 in
L1(R3), we consider a three-dimensional process XGP with invariant
density ρGP := |φGP |2 and we compare it with the generic interacting
non markovian diffusion X1.

We assume that XGP is a solution of the SDE

dXGP
t := uGP (XGP

t )dt + (
~
m

)
1
2 dWt

where,

uGP :=
∇φGP

φGP

Then, since φGP is a solution to the stationary Gross-Pitaevkii equa-
tion (2.7), a standard calculation in Stochastic Mechanics shows that
Nelson acceleration of XGP reads, quite reasonably,

aN(XGP
t ) = − 1

m
∇{

V (XGP
t ) + g | φGP (XGP

t ) |2} (4.1)

(On the other side one could observe that now, by the non-linearity
of (2.7), Doob’s transformation is not expected to play any role.)

By the equality

| φGP |2 (∇ ΨN

φGP

)2 =| ΨN |2 (
∇ΨN

ΨN

− ∇φGP

φGP

)2
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we see that the L2 distance between the two drifts bN
1 and uGP , is given

by∫

R3N

‖bN
1 − uGP‖2ρNdr1 · · · drN =

∫

R3N

(∇1
ΨN

φGP

)2 | φGP |2 dr1 · · · drN

(4.2)
This can be exploited to show that the localization theorem is related to
the localization of the relative entropy between the generic one particle
non markovian interacting diffusion and the process XGP .

To do this we introduce a 3N -dimensional process X̂GP which satis-
fies a stochastic differential equation with the same diffusion coefficient
as X̂ and drift ûGP , defined by

ûGP (r1, · · · , rN) = (uGP (r1), · · · , uGP (rN))

We consider the measurable space (ΩN ,FN) where ΩN is C(R+ →
R3N), and FN is its Borel sigma-algebra. We denote by Ŷ := (Y1, . . . , YN)
the coordinate process and by FN

t the natural filtration.
We denote by PN and PGP the measures corresponding to the weak

solutions of the 3N - dimensional stochastic differential equations

Ŷt − X̂0 =

∫ t

0

b̂N(Ŷs)ds + Ŵt (4.3)

Ŷt − X̂0 =

∫ t

0

ûGP (Ŷs)ds + Ŵ ′
t (4.4)

where X̂0 is a random variable with probability density equal to | ΨN |2
while Ŵt and Ŵ ′

t are 3N -dimensional PN and PGP standard Brownian
Motions, respectively.

We will assume that uGP is bounded.
We recall that under our hypothesis on the potentials v and V , φGP

is strictly positive and in C1(R3)
⋂

L∞(R3) and therefore uGP ∈ L2(R3)
(see [21], Thm 2.1). Then, since ΨN is the minimizer of EN [Ψ] and
uGP is bounded, the following finite energy conditions hold (with the

shorthand notation b̂N
s =: b̂N(Ŷs) and ûN

s =: ûGP (Ŷs)):

EPN

∫ t

0

‖b̂N
s ‖2ds < ∞ (4.5)

EPN

∫ t

0

‖ ûGP
s ‖2ds < ∞, (4.6)

Then, by Girsanov theorem, we have, for all t > 0,

dPN

dPGP

|Ft = exp{−
∫ t

0

(b̂N
s − ûGP

s ) · dŴs +
1

2

∫ t

0

‖b̂N
s − ûGP

s ‖2ds} (4.7)

where |.| denotes the Euclidean norm in R3N . The relative entropy
restricted to Ft reads
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H(PN ,PGP )|Ft =: EPN
[log

dPN

dPGP

|Ft ] =
1

2
EPN

∫ t

0

‖b̂N
s −ûGP

s ‖2ds (4.8)

Since under PN the 3N -dimensional process Ŷ is a solution of (4.3)
with invariant probability density | ΨN |2 , we can write, recalling also
(4.5) and (4.6),

1

2
EPN

∫ t

0

‖b̂N
s − ûGP

s ‖2ds =

=
1

2

∫ t

0

EPN
‖b̂N

s − ûGP
s ‖2ds =

=
1

2
t

∫

R3N

‖b̂N(r1, . . . , rN)− ûGP (r1, . . . , rN)‖2ρNdr1 . . . drN (4.9)

so that, the symbol ‖ . ‖ now denoting the euclidean norm in R3, we
get

H(PN ,PGP )|Ft =

=
1

2
t

∫

R3N

N∑
i=1

‖bN
i (r1, . . . , rN)− uGP (ri)‖2ρNdr1 . . . drN =

=
1

2
Nt

∫

R3N

‖bN
1 (r1, . . . , rN)− uGP (r1)‖2ρNdr1 . . . drN =

=
1

2
NEPN

∫ t

0

‖bN
1 (Ŷs)− uGP (Y1(s))‖2ds (4.10)

where the symmetry of b̂N and ΨN has been exploited.
Finally we get the sum of N identical one-particle relative entropies,

each of them being defined by

H̄(PN ,PGP )|Ft =:
1

N
H(PN ,PGP )|Ft =

=
1

2
EPN

∫ t

0

‖bN
1 (Ŷs)− uGP (Y1(s))‖2ds (4.11)

Recalling (3.5) in Energy Theorem and (4.2), we can write

lim
N↑∞

∫

R3N

‖bN
1 − uGP‖2ρNdr1 · · · drN = gs

∫

R3

(φGP )4dr (4.12)

As a consequence, for all t > 0, the one particle relative entropy is
asymptotically finite but it does not go to zero in the scaling limit. This
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means that the process XGP is not trivially the stochastic description
of the generic particle in the condensate.

But the key point is that, for great N , the one particle process con-
tinously ”lives” outside a properly defined ”random interaction-set”
DN(t).

We define it by the equality

DN(t) :=
N⋃

i=2

BN(Xi(t)) (4.13)

where BN(r) is again the ball with radius N−1/3−δ, 0 < δ ≤ 4/51
centered in r. We also introduce the stopping time

τN := inf{t ≥ 0 : X1(t) ∈ DN(t)} (4.14)

The following Proposition claims that, in the scaling limit, a generic
particle remains outside the interaction-set, for any finite time interval,
with probability one.

Notice that the result is not obvious: even in dimension d = 3, where
the Lebesgue measure of DN(t) goes to zero for all t, it could happen
that, asymptotically, such a set takes the form of a very complicated
surface, dividing the physical three-dimensional space into smaller and
smaller non connected regions.

Proposition 1. [32] Let h1) and h2) hold and the ground state ΨN be
of class C1. Then in dimension d = 3, for all t > 0, we have

lim
N→∞

P(τN > t | X1(0) /∈ DN(0)) = 1 (4.15)

and τN has an exponential distribution.

This allows to apply the Localization Theorem to the stopped one-
particle process,

Theorem 3. Let h1) and h2) hold. Assume also that ΨN is of class
C1 and that uGP is bounded. Then, with τN defined as in (4.14), we
have

lim
N↑∞

H̄(PN ,PGP ) |F
t∧τN

= 0 (4.16)

Proof. [32]
Recalling (4.5) and (4.6) we can write
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H̄(PN ,PGP )|F
t∧τN

=
1

2
EPN

∫ t∧τN

0

‖bN
1 (Ŷs)− uGP (Y1(s))‖2ds ≤

≤ 1

2

∫ t

0

EPN
{‖bN

1 (Ŷs)− uGP (Y1(s))‖2I{Y1 /∈DN
s }}ds =

=
1

2
tEPN

{‖bN
1 (Ŷs)− uGP (Y1(s))‖2I{Y1 /∈DN

s }} =

=
1

2
t

∫

R3N

‖bN
1 (r1, . . . , rN)−uGP (r1)‖2IF N (r2,...,rN ) (r1)ρ

2
Ndr1 · · ·drN

(4.17)

Thus, by (4.2) and the Localization Theorem, we finally get

lim
N↑∞

H̄(PN ,PGP )|F
t∧τN

=

=
1

2
t lim

N↑∞

∫

R3(N−1)

dr2 . . . drN

∫

F N (r2,...,rN )

‖bN
1 −uGP‖2ρ2

Ndr1···drN = 0

(4.18)

¤

Concluding, for great N , Xt∧τN is close in the sense of relative en-
tropy to the ”BEC process” XGP

t∧τN , whenever at an arbitrary time-
origine the particle is not in the random interacting set, while the
probability that the particle hits such a set in a finite time becomes
negligible.

5. Appendix

In this section we put ~2
2m

= 1
The proof of Localization Theorem is essentially devoted to establish

a proper lower bound for the Energy Functional (3.1) and it is based
on two results concerning the following interacting Hamiltonian for the
homogeneous case

HI
N = −

N∑
i=1

∆i +
∑

1≤i≤j≤N

v(|xi − xj|) (5.1)

Lemma 1. (Smoothing Lemma). Let v be non negative with finite
range R0 and let U be any non negative function satisfying,

∫
U(r)r2dr ≤ 1 U(r) = 0 r < R0

then, a being the scattering length and ε ∈ (0, 1),
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HI
N ≥ εTN + (1− ε)aWR (5.2)

where

TN = −
∑

i

∆i, WR =
N∑
i

U(ti)

with

ti = ti(x1, x2, ..., xN) := min
j,j 6=i

|xi − xj| (5.3)

Moreover one can take

U(r) = 3(R3 −R3
0)
−1 R0 < r < R

and otherwise equal to zero, where R represents the range of the po-
tential U .

We can observe that in the lower bound operator, only a part of the
kinetic energy survives and the interaction potential is softer than v,
but with a larger range.

The proof is based on a generalization of a Dyson’s Lemma [25] due
to Lieb and Yngvason [24].

Lemma 2. (Lower Bound Theorem in a finite box) [24] Let (5.1) the
Hamiltonian for N interacting bosons in a cubic box Λ with side length
L, where v is a spherically symmetric pair potential having finite scat-
tering length a. Then there exists λ > 0 such that, denoting by E0(N, L)
the ground state energy of HI

N , with Neumann boundary conditions, one
has

E0(N,L)

N
≥ 4πρa(1− CY 1/17) (5.4)

where ρ = N
L3 is the particle density, Y = 4πρa3

3
is the number of

particles in the ball of radius a and L is such that Y < λ and L
a

>

C1Y
− 6

17 .
Moreover C and C1 are positive constants independent of N and L.

For the proof see [23] Thm. 2.4.

Proof of the Localization Theorem ([23], Lemma 7.3 and [22])
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It is sufficient to show that, when N ↑ ∞
∫

R3(N−1)

dr2 · · · drN

∫

F c
N (r2,...,rN )

(∇1
ΨN

φGP

)2(φGP )2dr1+

+

∫

R3(N−1)

dr2 · · · drN

∫
|ΨN |2[1

2

∑

k≥2

v(|r− rk|)− 2gφGP
2]

≥ −g

∫
|φGP |4dr− o(1) (5.5)

This implies the thesis because (5.5) can be written as

∫

R3(N−1)

dr2 · · · drN

∫
(∇1

ΨN

φGP

)2(φGP )2dr1+

+

∫

R3(N−1)

dr2 · · · drN

∫
|ΨN |2[1

2

∑

k≥2

v(|r− rk|)− 2gφGP
2]

−
∫

R3(N−1)

dr2 · · · drN

∫

F N (r2,...,rN )

(∇1
ΨN

φGP

)2(φGP )2dr1

≥ −g

∫
|φGP |4dr− o(1) (5.6)

and then, by (3.5), (3.6) and (3.7) in Energy Theorem, with the external
potential V particularized to 2g|φGP |2 in (3.6), one obtains the thesis
(3.9).

To prove (5.5) one introduces a function F such that

ΨN

φGP (r1)
:=

∏

k≥2

φGP (rk)F (r1, . . . , rN) (5.7)

Using the fact that F is symmetric in the particle coordinates, one can
see that (5.5) is equivalent to

Qδ(F )

N
≥ −g

∫
|φGP |4dr− o(1) (5.8)

where Qδ has the following definition

Qδ :=
N∑

i=1

∫

Γc
i

|∇iF |2
N∏

k=1

|φGP (rk)|2drk

+
∑

1≤i≤j≤N

∫
v(|ri − rj|)|F |2

N∏

k=1

|φGP (rk)|2drk+

− 2g
N∑

i=1

∫
|φGP (ri)|2|F |2

N∏

k=1

|φGP (rk)|2drk (5.9)
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with

Γc
i = {(r1, ..., rN) ∈ R3N |min

k 6=i
|ri − rk| ≤ R′}

where R′ = N− 1
3
−δ.

To handle the expression of Qδ one applies the ”cell-method”, con-
sidering the space as divided into cells of width L, and then minimizing
over all possible distributions of the particles in the different cells. Since
one is looking for a lower bound and v is positive, the interactions due
to particles in different cells can be ignored. Finally one leaves the
width of the cells going to zero.

Labeling cells with the index α, one has,

inf
F

Qδ(F ) ≥ inf
nα

∑
α

inf
Fα

Qα
δ (Fα)

where Qα
δ is defined as Qδ but with the integrations limited to the cell

α. Fα is defined as F but with N replaced by nα. The infimum is taken
over all distributions such that

∑
α nα = N .

One now fixes some M > 0 and considers only cells inside a cube ΛM

of side length M . For the cells belonging to ΛM one can evaluate the
maximum and minimum value of ρGP . For the cell α those are denoted
by ρα,max and ρα,min, respectively.

One then can observe that, if the range R of the smoothing potential
U is sufficiently small, one can apply Smoothing Lemma ”in the cell α”
and restrict all integrations to Γc

i .
This at the end leads to the inequality

Qα
δ (Fα) ≥ ρα,min

ρα,max

EU
0 (nα, L)− 8πaNρα,maxnα − εCMnα (5.10)

where EU
0 (nα, L) is the ground state energy of

nα∑
i=1

(−1

2
ε4i + (1− ε)aU(ti)) (5.11)

with CM = supr∈ΛM
|∇φGP (r)|2, independent of N .

To minimize (5.10) with respect to nα one takes advantage of Lower
Bound Theorem and of Lemma 6.4 in [23], p.55.

One finds after some manipulations that n̄α is at least of the order
of NL3.

If one takes L ∼ N− 1
10 , the range of smoothing potential U can be

shown to be well estimated as R ∼ N− 1
17 and the assumption on δ is

sufficient to guarantee that R remains lower or equal to R′, allowing
the application of Smoothing Lemma in constructing the lower bound
for Qα

δ .
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Further standard manipulations then give rise, Co denoting a positive
constant independent of N , to the following inequality:

Qδ(F ) ≥

≥ 4πaN2

∫
|φGP |4[1+Co·N−1/10]−Y 1/17NCM−8πaN2 sup

r/∈ΛM

|φGP |2(r)
(5.12)

Dividing by N , taking N ↑ ∞ and then M ↑ ∞, one obtains the
result. In fact, since φGP decreases more than exponentially at infinity
([21], Lemma A.5 ), the last term is arbitrarily small for M large. This
proves (5.8), which is equivalent to (5.5).
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