
Induction: in many forms

Massimo Merro

10 October 2017

Massimo Merro Induction 1 / 41



Induction as a proof technique

In the previous lecture we stated several “theorems”; but how can we
formally prove them?

Intuition is often wrong: we need formal proofs!

Formal proofs are also useful for strengthening our intuition about
subtle language features, and for debugging definitions: they help in
examining all possible cases.

Which proof technique technique should we adopt?

Most of our definitions are inductively defined. To prove properties
about them we need the use the adequate induction principle!

Massimo Merro Induction 2 / 41



What is induction for?

Induction is a formal technique for reasoning about and working with
collections of objects (things!) which are

structured in some well-defined way

finite but arbitrarily large and complex.

Induction exploits the finite, structured nature of these objects to
overcome the arbitrary complexity.

Structured and finite objects arise in many areas of computer science.
Data structures, but in fact programs themselves can be seen as structured
finite objects.

This means that induction can be used to prove facts about all programs
of a certain language.

Massimo Merro Induction 3 / 41



Three forms of induction

In the following we will focus on three different forms of induction.

Mathematical induction

Prove facts/properties about all natural numbers.

Structural induction

Prove facts/properties about things that have an inductively defined
structure: trees, lists, programs, etc.

Rule induction

Prove facts/things about all elements of a relation defined by means of
inference rules.

We will see that all three forms of induction boils down to induction over
certains trees.

Massimo Merro Induction 4 / 41



The natural numbers N

Two rules for constructing natural numbers

(a) base rule: 0 is in N
(b) inductive rule: if k is in N then so is its successor k + 1

Every natural number can be constructed using these two rules.

Use induction to define functions which operates on natural numbers.

Definition principle for N
To define a function f : N −→ X

(a) base rule: describe the result of applying f to 0

(b) inductive rule: assuming f (k) has already been defined, define
f (k + 1) in terms of f (k)

Result: with (a) and (b) function f is defined for every natural number.

Massimo Merro Induction 5 / 41



Examples

Summation:

sum : N −→ N is defined by:

(a) base rule: sum(0) = 0

(b) inductive rule: sum(k + 1) = sum(k) + (k + 1)

Factorial:

fac : N −→ N is defined by:

(a) base rule: fac(0) = 1

(b) inductive rule: fac(k + 1) = fac(k)× (k + 1)

Massimo Merro Induction 6 / 41



Example

Multi-step reductions in Exp:

red : Exp× N −→ Exp is defined by:

(a) base rule: red(E, 0) = E, for every espression E

(b) inductive rule: red(E, k + 1) = E′′

if there is E′ such that red(E, k) = E′ and E′ _ E′′.

Quite often, instead of writing red(E, k) = E′ we write, more intuitively,

E _k E′

The intuition is that after k steps the evaluation of the expression E
returns E′.

Are we sure the fuction red is correctly defined? Does it change anything
if we replace _ with _ch?

Massimo Merro Induction 7 / 41



Proof principle for N – Mathematical Induction

The simplest form of induction is mathematical induction, that is to say,
induction over natural numbers. The principle can be described as follows.

Given a property P(−) on natural numbers we want to prove that P(n)
holds for every natural number n:

(a) Base case: prove P(0) is true (using some known mathematical facts)

(b) Inductive case:

assume the inductive hypothesis, i.e., that P(k) is true
from the inductive hypothesis prove that P(k + 1) follows (using some
known mathematical fact)

If (a) and (b) are established then P(n) is true for every natural number n.

Mathematical induction is a valid principle because every natural number
can be “built” using 0 as a starting point and the operation of adding one
for building new numbers.

Massimo Merro Induction 8 / 41



It should be clear why this principle is valid: if we can prove (a) and (b).
then we know

P(0) holds

Since P(0) holds, P(1) holds

Since P(1) holds, P(2) holds

Since P(2) holds, P(3) holds

and so on...

Therefore P(n) holds for any n, regardeless of how big n is.

This conclusion can only be drawn because every natural number can be
reached by starting at zero and adding one repeatedly.

Massimo Merro Induction 9 / 41



Example 1

Lemma 1 sum(n) = n∗(n+1)
2 for every natural number n.

Property P(n) : sum(n) = n∗(n+1)
2

Proof We must show:

(a) Base case: sum(0) = 0 (it follows from the def. of sum(−))

(b) Inductive case:

Assume the inductive hypothesis (IH): sum(k) = k∗(k+1)
2

Use IH to deduce P(k + 1) : sum(k + 1) = (k+1)∗(k+2)
2 (use some

algebraic manipulations)

Result: sum(n) = n∗(n+1)
2 for every natural number n.

Massimo Merro Induction 10 / 41



Example 2

Lemma 2 For every E ∈ Exp, if E _k F then E + G _k F + G for any
expression G .

Property P(k): E1 _k E2 implies E1 + G _k E2 + G , for any E1,E2,G .

Proof We must show:

(a) Base case: P(0) is true. For if E1 _0 E2 then E2 = E1 and therefore
trivially E1 + G _0 E2 + G

(b) Inductive case: prove P(k + 1) by assuming P(k).

Let E1
k+1−−−−→ E2.

There must be E3 s.t. E1 _ E3 _k E2.

By IH, E3 + G _k E2 + G .

By an application of rule (S-Left), E1 + G _ E3 + G .

It follows that E1 + G _k+1 E2 + G .

Massimo Merro Induction 11 / 41



Inductively defined structures: Natural numbers

We said that mathematical induction is a valid principle because every
natural number can be “built” using zero as a starting point and the
operation of adding one for building new numbers.

Example: Natural numbers as inductive objects

We can turn mathematical induction into a form of structural induction by
viewing natural numbers as elements of the following BNF grammar:

N ::= zero
∣∣ succ(N)

Here, succ(−), short for successor, should be thought as the operation of
adding one to its argument. Therefore, zero respresents 0 and, 3, for
instance, is represented by succ(succ(succ(zero))).

Numbers, when thought of like this, are finite, structured objects.

Massimo Merro Induction 12 / 41



Functions on natural numbers, revisited

The principle of defining functions by induction works for this
representation of the natural numbers in exactly the same way as before:

Summation:

sum : N −→ N is defined by:

(a) base rule: sum(zero) = zero

(b) inductive rule: sum(succ(N)) = succn+1(sum(N))
if N = succ(. . . succ(zero)) = succn(zero), for some natural number
n.

Factorial:

fac : N −→ N is defined by:

(a) base rule: fac(zero) = succ(zero)

(b) inductive rule: fac(succ(N)) = ... That’s a good exercise!

Massimo Merro Induction 13 / 41



Structural induction for natural numbers

The principle of induction now says that in order to prove P(N) for all
numbers N, it suffices to do two things:

(a) Base case: Prove that P(zero) holds.

(b) Inductive case: Prove that P(succ(K )) follows by assuming as IH
that P(K ) holds for some number K .

Note that when trying to prove P(succ(K )), the inductive hypothesis tells
us that we may assume the propery holds for the substructure of succ(K ),
that is, we can assume P(K ) holds.

This structural viewpoint, and the associated form of induction, called
structural induction, is widely applicable.

Massimo Merro Induction 14 / 41



It should be clear why this principle is valid: if we can prove (a) and (b).
then we know

P(zero) holds

Since P(zero) holds, P(succ(zero)) holds

Since P(succ(zero)) holds, P(succ(succ(zero))) holds

Since P(succ(succ(zero))) holds, P(succ(succ(succ(zero)))) holds

and so on...

That is to say, we have shown that every way of building a number
preserves the property P, and that if P is true of the basic building block
zero, so P is true of every number.

Massimo Merro Induction 15 / 41



Inductive structures: Binary Trees

Example: Binary trees

Each node is either

a leaf:

or a node with two siblings
Massimo Merro Induction 16 / 41



Constructing binary trees

(a) Base case: is a binary tree

(b) Inductive case: If L and R are binary trees then so is L R

T =

T

Massimo Merro Induction 17 / 41



Syntax over binary trees

T ∈ bTree ::= leaf
∣∣ tree(T ,T )

Construction rules:

(a) Base case: leaf is a binary tree

(b) Inductive case: if L and R are binary trees then so is tree(L,R)

Examples

tree(leaf, tree(leaf, leaf))
tree(tree(leaf, tree(leaf, leaf)), tree(leaf, leaf))

Massimo Merro Induction 18 / 41



Definition principle for binary trees

The principle of defining functions by induction works for this
representation of the binary trees in exactly the same way as for natural
numbers:

To define a function f : bTree −→ X :

(a) Base rule: describe the result of applying f to the terminal leaf

(b) Inductive rule: assuming f (T1) and f (T2) have already been defined,
describe the result of applying f to the binary tree tree(T1,T2).

Result: with (a) and (b) we know that function f is defined for every
binary tree.

Massimo Merro Induction 19 / 41



Example definitions

Number of leaves in a tree:

leaves : bTree −→ N define by:

(a) Base case: leaves(leaf) = 1

(b) Inductive case: leaves(tree(T1,T2)) = leaves(T1) + leaves(T2)

Number of branches in a tree:

branches : bTree −→ N define by:

(a) Base case: branches(leaf) = 0

(b) Inductive case:
branches(tree(T1,T2)) = branches(T1) + branches(T2) + 1

Massimo Merro Induction 20 / 41



Structural induction for binary trees

To prove a property P(T ) for every binary tree T ∈ bTree.

(a) Base case: prove P(leaf) is true (using known mathematical facts)

(b) Inductive case:

– assume the inductive hypothesis: P(T1) and P(T2) are both true

– from this hypothesis prove that P(tree(T1,T2)) follows (using
known mathematical facts)

If (a) and (b) are established it follows that P(T ) is true for every binary
tree T .

Massimo Merro Induction 21 / 41



Example proof

Let us prove

leaves(T ) = branches(T ) + 1 for every binary tree T

Property P(T ) is: leaves(T ) = branches(T ) + 1

(a) Base case:
P(leaf): leaves(leaf) = branches(leaf) + 1 (follows by definition)

(b) Inductive case:
assume P(T1) and P(T2) are true (IH). From IH prove
P(tree(T1,T2)) follows:

leaves(tree(T1,T2)) = leaves(T1) + leaves(T2)
= branches(T1) + 1 + branches(T2) + 1 (IH)
= (branches(T1) + branches(T2) + 1) + 1
= branches(tree(T1,T2)) + 1

Massimo Merro Induction 22 / 41



Inductive structures: Arithmetic espressions

Also arithmetic expressions were defined in terms of inductive definitions.

E ∈ Exp ::= n
∣∣ E + E

∣∣ E × E

Constructing arithmetic expressions:

(a) Base case: n is an arithmetic expression for every numeral n ∈ Num

(b) Inductive case: if E1 and E2 are aritmethic expressions so are

E1 + E2

E1 × E2

an infinite number of base cases

two inductive cases.

Massimo Merro Induction 23 / 41



Abstract syntax 1/2

Here, we want to stress a bit that when proving properties on expressions
defined by a grammar we are actually interested in the abstract syntax!
Q: Is the expression (2 + 3)× 5:

1 a list of characters?

2 or, a list of tokens?

3 or, an abstract syntax tree?

x

+

2 3

5

A: An abstract syntax tree!

Massimo Merro Induction 24 / 41



Abstract syntax 2/2

Notice that parentheses are not part of the grammar: they are only
used for disambiguation!

The expression 1 + 2 + 3 is ambiguous.

In fact (1 + 2) + 3 6= 1 + (2 + 3): their corresponding abstract syntax
trees are different!

+

+

1 2

3

+

1 +

2 3

For semantics purposes it’s easier to work with abstract syntax and
abstract syntax trees rather than concrete syntax!

Massimo Merro Induction 25 / 41



Definition principle for arithmetic expressions

To define a function f : Exp −→ X :

(a) Base case: describe the result of applying f to n, for every n ∈ Num.

(b) Inductive case: assuming f (E1) and f (E2) have both already been
defined, describe the result of

applying f to E1 + E2

applying f to E1 × E2

Result: with (a) (b) we know function f is defined for every arithmetic
expression.

Massimo Merro Induction 26 / 41



Structural induction over arithmetic expression

To prove a property P(E ) for every arithmetic expression E ∈ Exp.

(a) Base case: prove P(n) is true for every numeral n ∈ Num (using
known mathematical facts)

(b) Inductive case:

– assume the inductive hypothesis: P(E1) and P(E2) are both true

– from this hypothesis prove that

– P(E1 + E2) follows (using known mathematical facts)

– P(E1 × E2) follows (using known mathematical facts)

If (a) and (b) are established it follows that P(E ) is true for every
arithmetic expression E .

Massimo Merro Induction 27 / 41



Example: normalisation of big-step semantics

Property: ”For every arithmetic expression E there exists some numeral k
such that E ⇓ k.”

This property says that all programs in our Exp language have a final
answer or so-called “normal form”.

Formally, the property P(E ) is: E ⇓ k for some numeral k

Proof by structural induction:

(a) Base case: We have to show P(n) for every numeral n

(b) Inductive case: Assume P(E1) and P(E2) are true. We have to show

– P(E1 + E2) is true

– P(E1 × E2) is true.

Massimo Merro Induction 28 / 41



Example: small-step semantics

Property: “E _ F implies E _ch F for all arithmetic expressions E and
F”

Formally, P(E ) is: E _ F implies E _ch F

Proof by induction on the structure of E :

(a) Base case: We have to show n _ F implies n _ch F , for every
numeral n

(b) Inductive case: Assume the inductive hypothesis (IH)

E1 _ F1 implies E1 _ch F1

E2 _ F2 implies E2 _ch F2

From (IH) we have to show

E1 + E2 _ F implies E1 + E2 _ch F
E1 × E2 _ F implies E1 × E2 _ch F .

Q: Does E _ch F imply E _ F for all arithmetic expressions E and F?

Massimo Merro Induction 29 / 41



More properties

Normalisation goes hand in hand with determinacy .

Determinacy for big-step semantics

E ⇓ m and E ⇓ n implies m = n

Determinacy for small-step semantics

(strong) E _ F and E _ G implies F = G

(weak) E _∗ m and E _∗ n implies m = n.

Any relation between the weak and the strong form?

Any idea on how to prove these properties?

What about by induction on the structure of E?

Massimo Merro Induction 30 / 41



Rule induction

The behaviour of an arithmetic expression E is completely determined
by the behaviour of its components

For this reason structural induction is sufficiently powerful to prove
properties for the different semantics of Exp

However, in more complicated languages, with recursive or inductive
control operators, we need more sophisticated instruments

Idea: The basic idea of rule induction is to ignore the structure of
objects and instead concentrate on the size of the derivations of
judgements.

Massimo Merro Induction 31 / 41



What is the size of a derivation?

For example, consider the following pair of rules , defining an infix binary
relation D between numbers in N.

(Ax)
−

n Div 0
(Plus)

n Div m

n Div (m + n)

Derivations:

(Plus)
(Plus)

(Plus)
(Ax)

−
7 Div 0

7 Div 7

7 Div 14

7 Div 21

(Plus)
(Plus)

(Ax)
−

2 Div 0

2 Div 2

2 Div 4

Size of the derivation of 2 Div 4 is smaller that that of 7 Div 21.

Massimo Merro Induction 32 / 41



Example of rule induction 1/3

Suppose we want to prove a statement of the form

n Div m implies P(n,m)

then we can use induction on the size of the derivation of n Div m.

As an example, suppose P(n,m) be: m = n × k for some natural
number k

This actually means that the rules (Ax) and (Plus) correctly capture
the notion of division

So, let us prove

n Div m implies P(n,m)

by mathematical induction on the size of derivation of the judgement
n Div m from the rules (Ax) and (Plus).

Massimo Merro Induction 33 / 41



Example of rule induction 2/3

Suppose we have a derivation of n Div m

Using mathematical induction means that we have as inductive
hypothesis saying that P(k1, k2) is true for any k1, k2 for which there
is a derivation k1 Div k2 whose size is less than the size of the
derivation for n Div m.

n Div m can be derived only using axioms (Ax) and (Plus).

What does this derivation look like? There are only two possibilities:

(a) It is an application of axiom (Ax): (Ax)
−

n Div 0
.

Only if m is actually 0. P(n, 0) is trivially true, the required k being 0.

Massimo Merro Induction 34 / 41



Example of rule induction 3/3

(b) It is an application of rule (Plus):

(Plus)
(. . . )

. . .

n Div m1

n Div (m1 + n)

where m = m1 + n.

But this means that the judgement n Div m1 also has a derivation
from the rules.

Moreover, the size of this derivation is strictly less than that of
n Div m.

So, (IH) applies and we know there is k1 such that m1 = n × k1.

Now, P(n,m) is an immediate consequence as m = n × (k1 + 1).

Massimo Merro Induction 35 / 41



Formally, Rule induction

To prove a property P(D) for every derivation D, it is enough to do the
following.

(a) Base case: prove P(A) is true for every axiom A (using known
mathematical facts)

(b) Inductive case:

for each rule of the form

(rule)
h1 . . . hn

c

prove that any derivation ending with a use of this rule satisfies the
property. Such derivation has subderivations D1, . . . ,Dn with
conclusions h1, . . . , hn. By inductive hypothesis we assume that
P(Di ) holds for each subderivation Di , 1≤i≤n.

Massimo Merro Induction 36 / 41



Proving Progress (Outline)

Theorem 3 (Progress) If Γ ` e : T and dom(Γ) ⊆ dom(s) then either e
is a value or there exist e ′, s ′ such that 〈e, s〉 _ 〈e ′, s ′〉.
Proof Let φ be the ternary relation defined as follows:

φ(Γ, e,T )
def
= ∀s. dom(Γ) ⊆ dom(s) ⇒ value(e)∨(∃e ′, s ′.〈e, s〉 _ 〈e ′, s ′〉)

We prove that for all

Γ, e,T , if Γ ` e : T then φ(Γ, e,T )

by rule induction on why Γ ` e : T .
This means that we do a case analysis on the “last” typing rule applied to
derive Γ ` e : T . There are
4 base cases: axioms (int), (bool), (deref), (skip);
6 inductive cases: rules (op +), (op ≥), (if), (assign), (seq) and (while).
Let us see in detail a few of them. �

Massimo Merro Induction 37 / 41



(int): then e = n ∈ Z and T = int; this implies φ(Γ, n, int).

(deref): then e = !l , for some l , Γ(l) = intref and T = int; this
implies φ(Γ, !l , int).

(op +): then e = e1 + e2, T = int, Γ ` e1 : int and Γ ` e2 : int; by
inductive hypothesis φ(Γ, e1, int) and φ(Γ, e2, int). Thus,

if not value(e1) then 〈e1, s〉 progresses and hence, by an application of
the small-step rule (op1), we have φ(Γ, e1 + e2, int);
if value(e1) and value(e2) then, by an application of the small-step rule
(op +), we have φ(Γ, e1 + e2, int);
if value(e1) and not value(e2) then 〈e2, s〉 progresses and hence, by an
application of the small-step rule (op2), we have φ(Γ, e1 + e2, int).

(seq): then e = e1; e2, T = unit, Γ ` e1 : unit and Γ ` e2 : unit; by
inductive hypothesis φ(Γ, e1, unit) and φ(Γ, e2, unit). Thus,

if not value(e1) then 〈e1, s〉 progresses and hence, by an application of
the small-step rule (Seq), we have φ(Γ, e1; e2, unit);
if value(e1) then by an application of the small-step rule (Seq.Skip), we
have φ(Γ, e1; e2, unit).

. . . do the remaining 2 base cases and 4 inductive cases.

Massimo Merro Induction 38 / 41



Example

As an example, if Γ ⊇ {(l , intref)}, then Γ ` (!l + 2) + 3 : int implies
φ(Γ, (!l + 2) + 3, int). In fact

(op +)
(op +)

(deref)
−

Γ!l : int
(int)

−
2 : int

Γ ` (!+2) : int

(int)
−

Γ ` 3 : int

Γ ` (!l + 2) + 3 : int

Massimo Merro Induction 39 / 41



Proving Type Preservation (Outline)

Lemma 4 If 〈e, s〉 _ 〈e ′, s ′〉 then dom(s) = dom(s ′).

Proof By rule induction on why 〈e, s〉 _ 〈e ′, s ′〉. Let Φ(e, s, e ′, s ′) =
(dom(s) = dom(s ′)). All rules are immediate uses of the inductive
hypothesis, except rule (assign1), for which we note that if l ∈ dom(s) then
dom)(s[l 7→ n]) = dom(s). �

Theorem 4 (Type Preservation) If Γ ` e : T and dom(Γ) ⊆ dom(s) and
〈e, s〉 _ 〈e ′, s ′〉 then Γ ` e ′ : T and dom(Γ) ⊆ dom(s ′).

Proof By Lemma 4 we only prove the first part. The proof is by rule
induction on why 〈e, s〉 _ 〈e ′, s ′〉. Let

Φ(e, s, e ′, s ′) = ∀Γ,T . (Γ ` e : T ∧ dom(Γ) ⊆ dom(s)) ⇒ Γ ` e ′ : T .

This means that we do a case analysis on the semantics rule applied to
derive 〈e, s〉 _ 〈e ′, s ′〉. There are
8 base cases: (op +), (op ≥), (deref), (assign1), (seq1), (if1), (if2), (while);
5 inductive cases: rules (op 1), (op 2), (assign2), (seq2), (if3).
Let us see in detail a few of them. �

Massimo Merro Induction 40 / 41



(op +):

(op +)
−

〈n1 + n2, s〉 _ 〈n, s〉 if n = add(n1, n2)

Take arbitrary Γ,T . Suppose Γ ` n1 + n2 : T and dom(Γ) ⊆ dom(s).
The last rule applied in the type derivation must be (op+), so must
have T = int. Then we use the typing rule (int) to derive Γ ` n : int.

(op 1):

(op 1)
〈e1, s〉 _ 〈e ′

1, s
′〉

〈e1 op e2, s〉 _ 〈e ′
1 op e2, s

′〉

By induction Φ(e1, s, e
′
1, s

′). Take arbitrary Γ,T . Suppose
Γ ` e1 op e2 : T and dom(Γ) ⊆ dom(s). There are 2 cases:

op = +. Must have T = int, Γ ` e1 : int, Γ ` e2 : int. By induction
Γ ` e′

1 : int, and by applying rule (op+) we have Γ ` e′
1 + e2 : T .

op =≥. Similar.

Massimo Merro Induction 41 / 41


