
Practical Foundations for Programming
Languages

Robert Harper
Carnegie Mellon University

[Version 1.32 of 05.15.2012.]



Copyright c© 2012 by Robert Harper.

All Rights Reserved.

The electronic version of this work is licensed under the Cre-
ative Commons Attribution-Noncommercial-No Derivative Works
3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/


Preface

Types are the central organizing principle of the theory of programming
languages. Language features are manifestations of type structure. The
syntax of a language is governed by the constructs that define its types, and
its semantics is determined by the interactions among those constructs. The
soundness of a language design—the absence of ill-defined programs—
follows naturally.

The purpose of this book is to explain this remark. A variety of pro-
gramming language features are analyzed in the unifying framework of
type theory. A language feature is defined by its statics, the rules govern-
ing the use of the feature in a program, and its dynamics, the rules defining
how programs using this feature are to be executed. The concept of safety
emerges as the coherence of the statics and the dynamics of a language.

In this way we establish a foundation for the study of programming
languages. But why these particular methods? The main justification is
provided by the book itself. The methods we use are both precise and in-
tuitive, providing a uniform framework for explaining programming lan-
guage concepts. Importantly, these methods scale to a wide range of pro-
gramming language concepts, supporting rigorous analysis of their prop-
erties. Although it would require another book in itself to justify this as-
sertion, these methods are also practical in that they are directly applicable to
implementation and uniquely effective as a basis for mechanized reasoning.
No other framework offers as much.

Being a consolidation and distillation of decades of research, this book
does not provide an exhaustive account of the history of the ideas that in-
form it. Suffice it to say that much of the development is not original, but
rather is largely a reformulation of what has gone before. The notes at the
end of each chapter signpost the major developments, but are not intended
as a complete guide to the literature. For further information and alterna-
tive perspectives, the reader is referred to such excellent sources as Con-
stable (1986), Constable (1998), Girard (1989), Martin-Löf (1984), Mitchell



(1996), Pierce (2002, 2004), and Reynolds (1998).

The book is divided into parts that are, in the main, independent of one
another. Parts I and II, however, provide the foundation for the rest of the
book, and must therefore be considered prior to all other parts. On first
reading it may be best to skim Part I, and begin in earnest with Part II,
returning to Part I for clarification of the logical framework in which the
rest of the book is cast.

Numerous people have read and commented on earlier editions of this
book, and have suggested corrections and improvements to it. I am particu-
larly grateful to Andrew Appel, Iliano Cervesato, Lin Chase, Derek Dreyer,
Zhong Shao, and Todd Wilson for their extensive efforts in reading and
criticizing the book. I also thank the following people for their sugges-
tions: Arbob Ahmad, Zena Ariola, Eric Bergstrome, Guy Blelloch, William
Byrd, Luis Caires, Luca Cardelli, Manuel Chakravarty, Richard C. Cobbe,
Karl Crary, Yi Dai, Daniel Dantas, Anupam Datta, Jake Donham, Favonia,
Matthias Felleisen, Kathleen Fisher, Dan Friedman, Peter Gammie, Maia
Ginsburg, Byron Hawkins, Kevin Hely, Justin Hsu, Cao Jing, Salil Joshi,
Gabriele Keller, Scott Kilpatrick, Danielle Kramer, Dan Kreysa, Akiva Lef-
fert, Ruy Ley-Wild, Dan Licata, Karen Liu, Dave MacQueen, Chris Martens,
Greg Morrisett, Tom Murphy, Aleksandar Nanevski, Georg Neis, David
Neville, Doug Perkins, Frank Pfenning, Jean Pichon, Benjamin Pierce, An-
drew M. Pitts, Gordon Plotkin, David Renshaw, John Reynolds, Carter
Schonwald, Dale Schumacher, Dana Scott, Robert Simmons, Pawel Sobocin-
ski, Daniel Spoonhower, Paulo Tanimoto, Peter Thiemann, Bernardo Ton-
inho, Michael Tschantz, Kami Vaniea, Carsten Varming, David Walker, Dan
Wang, Jack Wileden, Roger Wolff, Omer Zach, Luke Zarko, Yu Zhang. I am
grateful to the students of 15–312 and 15–814 at Carnegie Mellon who have
provided the impetus for the preparation of this book and who have en-
dured the many revisions to it over the last ten years.
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Part I

Judgments and Rules





Chapter 1

Syntactic Objects

Programming languages are languages, a means of expressing computa-
tions in a form comprehensible to both people and machines. The syntax of
a language specifies the means by which various sorts of phrases (expres-
sions, commands, declarations, and so forth) may be combined to form
programs. But what sort of thing are these phrases? What is a program
made of?

The informal concept of syntax may be seen to involve several distinct
concepts. The surface, or concrete, syntax is concerned with how phrases
are entered and displayed on a computer. The surface syntax is usually
thought of as given by strings of characters from some alphabet (say, ASCII
or Unicode). The structural, or abstract, syntax is concerned with the struc-
ture of phrases, specifically how they are composed from other phrases.
At this level a phrase is a tree, called an abstract syntax tree, whose nodes
are operators that combine several phrases to form another phrase. The
binding structure of syntax is concerned with the introduction and use of
identifiers: how they are declared, and how declared identifiers are to be
used. At this level phrases are abstract binding trees, which enrich abstract
syntax trees with the concepts of binding and scope.

We will not concern ourselves in this book with matters of concrete
syntax, but will instead work at the level of abstract syntax. To prepare
the ground for the rest of the book, we begin in this chapter by definin-
ing abstract syntax trees and abstract binding trees and some functions and
relations associated with them. The definitions are a bit technical, but are
absolutely fundamental to what follows. It is probably best to skim this
chapter on first reading, returning to it only as the need arises.



4 1.1 Abstract Syntax Trees

1.1 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is an ordered tree whose leaves are
variables, and whose interior nodes are operators whose arguments are its
children. Ast’s are classified into a variety of sorts corresponding to differ-
ent forms of syntax. A variable stands for an unspecified, or generic, piece
of syntax of a specified sort. Ast’s may be combined by an operator, which
has both a sort and an arity, a finite sequence of sorts specifying the num-
ber and sorts of its arguments. An operator of sort s and arity s1, . . . , sn
combines n ≥ 0 ast’s of sort s1, . . . , sn, respectively, into a compound ast of
sort s. As a matter of terminology, a nullary operator is one that takes no
arguments, a unary operator takes one, a binary operator two, and so forth.

The concept of a variable is central, and therefore deserves special em-
phasis. As in mathematics a variable is an unknown object drawn from some
domain, its range of signficance. In school mathematics the (often implied)
range of significance is the set of real numbers. Here variables range over
ast’s of a specified sort. Being an unknown, the meaning of a variable is
given by substitution, the process of “plugging in” an object from the do-
main for the variable in a formula. So, in school, we might plug in π for
x in a polynomial, and calculate the result. Here we would plug in an ast
of the appropriate sort for a variable in an ast to obtain another ast. The
process of substitution is easily understood for ast’s, because it amounts to
a “physical” replacement of the variable by an ast within another ast. We
will shortly consider a generalization of the concept of ast for which the
substitution process is somewhat more complex, but the essential idea is
the same, and bears repeating: a variable is given meaning by substitution.

For example, consider a simple language of expressions built from num-
bers, addition, and multiplication. The abstract syntax of such a language
would consist of a single sort, Exp, and an infinite collection of operators
that generate the forms of expression: num[n] is a nullary operator of sort
Exp whenever n ∈ N; plus and times are binary operators of sort Exp
whose arguments are both of sort Exp. The expression 2 + (3× x), which
involves a variable, x, would be represented by the ast

plus(num[2]; times(num[3]; x))

of sort Exp, under the assumption that x is also of this sort. Because, say,
num[4], is an ast of sort Exp, we may plug it in for x in the above ast to
obtain the ast

plus(num[2]; times(num[3]; num[4])),
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1.1 Abstract Syntax Trees 5

which is written informally as 2 + (3× 4). We may, of course, plug in more
complex ast’s of sort Exp for x to obtain other ast’s as result.

The tree structure of ast’s supports a very useful principle of reasoning,
called structural induction. Suppose that we wish to prove that some prop-
erty, P(a), holds of all ast’s, a, of a given sort. To show this it is enough
to consider all the ways in which a may be generated, and show that the
property holds in each case, under the assumption that it holds for each of
its constituent ast’s (if any). So, in the case of the sort Exp just described,
we must show

1. The property holds for any variable, x, of sort Exp: P(x).

2. The property holds for any number, num[n]: for every n ∈N,P(num[n]).

3. Assuming that the property holds for a1 and a2, show that it holds for
plus(a1; a2) and times(a1; a2): ifP(a1) andP(a2), thenP(plus(a1; a2))
and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are
assured that P(a) holds for any ast a of sort Exp.

For the sake of precision, and to prepare the ground for further develop-
ments, we will now give precise definitions of the foregoing concepts. Let
S be a finite set of sorts. Let {Os }s∈S be a sort-indexed family of operators,
o, of sort s with arity ar(o) = (s1, . . . , sn). Let { Xs }s∈S be a sort-indexed
family of variables, x, of each sort s. The familyA[X ] = {A[X ]s }s∈S of ast’s
of sort s is defined to be the smallest (with respect to containment) family
satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs, then x ∈ A[X ]s.

2. Operators combine ast’s: if o is an operator of sort s such that ar(o) =
(s1, . . . , sn), and if a1 ∈ A[X ]s1 , . . . , an ∈ A[X ]sn , then o(a1; . . . ;an) ∈
A[X ]s.

It follows from this definition that the principle of structural induction may
be used to prove that some property, P , holds of every ast. To show P(a)
holds for every a ∈ A[X ], it is enough to show:

1. If x ∈ Xs, then Ps(x).

2. If o ∈ Os and ar(o) = (s1, . . . , sn), then if Ps1(a1) and . . . and Psn(an),
then Ps(o(a1; . . . ;an)).
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6 1.1 Abstract Syntax Trees

For example, it is easy to prove by structural induction that if X ⊆ Y , then
A[X ] ⊆ A[Y ].

If X is a sort-indexed family of variables, we write X , x, where x is a
variable of sort s such that x /∈ Xs, to stand for the family of sets Y such
that Ys = Xs ∪ { x } and Ys′ = Xs′ for all s′ 6= s. The family X , x, where
x is a variable of sort s, is said to be the family obtained by adjoining the
variable x to the family X .

Variables are given meaning by substitution. If x is a variable of sort s,
a ∈ A[X , x]s′ , and b ∈ A[X ]s, then [b/x]a ∈ A[X ]s′ is defined to be the
result of substituting b for every occurrence of x in a. The ast a is called the
target, and x is called the subject, of the substitution. Substitution is defined
by the following equations:

1. [b/x]x = b and [b/x]y = y if x 6= y.

2. [b/x]o(a1; . . . ;an) = o([b/x]a1; . . . ;[b/x]an).

For example, we may check that

[num[2]/x]plus(x; num[3]) = plus(num[2]; num[3]).

We may prove by structural induction that substitution on ast’s is well-
defined.

Theorem 1.1. If a ∈ A[X , x], then for every b ∈ A[X ] there exists a unique
c ∈ A[X ] such that [b/x]a = c

Proof. By structural induction on a. If a = x, then c = b by definition,
otherwise if a = y 6= x, then c = y, also by definition. Otherwise, a =
o(a1, . . . , an), and we have by induction unique c1, . . . , cn such that [b/x]a1 =
c1 and . . . [b/x]an = cn, and so c is c = o(c1; . . . ;cn), by definition of sub-
stitution.

In most cases it is possible to enumerate all of the operators that gen-
erate the ast’s of a sort up front, as we have done in the foregoing exam-
ples. However, in some situations this is not possible—certain operators
are available only within certain contexts. In such cases we cannot fix the
collection of operators, O, in advance, but rather must allow it to be exten-
sible. This is achieved by considering families of operators that are indexed
by symbolic parameters that serve as “names” for the instances. For exam-
ple, in Chapter 34 we will consider a family of nullary operators, cls[u],
where u is a symbolic parameter drawn from the set of active parameters. It
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1.2 Abstract Binding Trees 7

is essential that distinct parameters determine distinct operators: if u and
v are active parameters, and u 6= v, then cls[u] and cls[v] are different
operators. Extensibility is achieved by introducing new active parameters.
So, if u is not active, then cls[u] makes no sense, but if u becomes active,
then cls[u] is a nullary operator.

Parameters are easily confused with variables, but they are fundamen-
tally different concepts. As we remarked earlier, a variable stands for an
unknown ast of its sort, but a parameter does not stand for anything. It is a
purely symbolic identifier whose only significance is whether it is the same
or different as another parameter. Whereas variables are given meaning
by substitution, it is not possible, or sensible, to substitute for a parameter.
As a consequence, disequality of parameters is preserved by substitution,
whereas disequality of variables is not (because the same ast may be sub-
stituted for two distinct variables).

To account for the set of active parameters, we will write A[U ;X ] for
the set of ast’s with variables drawn from X and with parameters drawn
from U . Certain operators, such as cls[u], are parameterized by parameters,
u, of a given sort. The parameters are distinguished from the arguments by
the square brackets around them. Instances of such operators are permitted
only for parameters drawn from the active set, U . So, for example, if u ∈ U ,
then cls[u] is a nullary operator, but if u /∈ U , then cls[u] is not a valid
operator. In the next section we will introduce the means of extending U to
make operators available within that context.

1.2 Abstract Binding Trees

Abstract binding trees, or abt’s, enrich ast’s with the means to introduce new
variables and parameters, called a binding, with a specified range of sig-
nificance, called its scope. The scope of a binding is an abt within which
the bound identifier may be used, either as a placeholder (in the case of a
variable declaration) or as the index of some operator (in the case of a pa-
rameter declaration). Thus the set of active identifiers may be larger within
a subtree of an abt than it is within the surrounding tree. Moreover, dif-
ferent subtrees may introduce identifiers with disjoint scopes. The crucial
principle is that any use of an identifier should be understood as a refer-
ence, or abstract pointer, to its binding. One consequence is that the choice
of identifiers is immaterial, so long as we can always associate a unique
binding with each use of an identifier.

As a motivating example, consider the expression let x be a1 in a2, which
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8 1.2 Abstract Binding Trees

introduces a variable, x, for use within the expression a2 to stand for the ex-
pression a1. The variable x is bound by the let expression for use within a2;
any use of x within a1 refers to a different variable that happens to have the
same name. For example, in the expression let x be 7 in x + x occurrences
of x in the addition refer to the variable introduced by the let. On the
other hand in the expression let x be x ∗ x in x + x, occurrences of x within
the multiplication refer to a different variable than those occurring within
the addition. The latter occurrences refer to the binding introduced by the
let, whereas the former refer to some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine
the same binding. So, for example, the expression let x be x ∗ x in x + x
could just as well have been written let y be x ∗ x in y + y without chang-
ing its meaning. In the former case the variable x is bound within the ad-
dition, and in the latter it is the variable y, but the “pointer structure” re-
mains the same. On the other hand the expression let x be y ∗ y in x + x
has a different meaning to these two expressions, because now the vari-
able y within the multiplication refers to a different surrounding variable.
Renaming of bound variables is constrained to the extent that it must not
alter the reference structure of the expression. For example, the expression
let x be 2 in let y be 3 in x + x has a different meaning than the expression
let y be 2 in let y be 3 in y + y, because the y in the expression y + y in the
second case refers to the inner declaration, not the outer one as before.

The concept of an ast may be enriched to account for binding and scope
of a variable. These enriched ast’s are called abstract binding trees, or abt’s
for short. Abt’s generalize ast’s by allowing an operator to bind any finite
number (possibly zero) of variables in each argument position. An argu-
ment to an operator is called an abstractor, and has the form x1, . . . , xk.a.
The sequence of variables x1, . . . , xk are bound within the abt a. (When k is
zero, we elide the distinction between .a and a itself.) Written in the form
of an abt, the expression let x be a1 in a2 has the form let(a1; x.a2), which
more clearly specifies that the variable x is bound within a2, and not within
a1. We often write ~x to stand for a finite sequence x1, . . . , xn of distinct vari-
ables, and write ~x.a to mean x1, . . . , xn.a.

To account for binding, the arity of an operator is generalized to con-
sist of a finite sequence of valences. The length of the sequence determines
the number of arguments, and each valence determines the sort of the ar-
gument and the number and sorts of the variables that are bound within
it. A valence of the form (s1, . . . , sk)s specifies an argument of sort s that
binds k variables of sorts s1, . . . , sk within it. We often write ~s for a finite
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1.2 Abstract Binding Trees 9

sequence s1, . . . , sn of sorts, and we say that ~x is of sort~s to mean that the
two sequences have the same length and that each xi is of sort si.

Thus, for example, the arity of the operator let is (Exp, (Exp)Exp), which
indicates that it takes two arguments described as follows:

1. The first argument is of sort Exp and binds no variables.

2. The second argument is of sort Exp and binds one variable of sort Exp.

The definition expression let x be 2 + 2 in x× x is represented by the abt

let(plus(num[2]; num[2]); x.times(x; x)).

Let O be a sort-indexed family of operators, o, with arities, ar(o). For a
given sort-indexed family, X , of variables, the sort-indexed family of abt’s,
B[X ], is defined similarly to A[X ], except that the set of active variables
changes for each argument according to which variables are bound within
it. A first cut at the definition is as follows:

1. If x ∈ Xs, then x ∈ B[X ]s.

2. If ar(o) = ((~s1)s1, . . . , (~sn)sn), and if, for each 1 ≤ i ≤ n, ~xi is of sort~si
and ai ∈ B[X ,~xi]si , then o(~x1.a1; . . . ;~xn.an) ∈ B[X ]s.

The bound variables are adjoined to the set of active variables within each
argument, with the sort of each variable determined by the valence of the
operator.

This definition is almost correct, but fails to properly account for the
behavior of bound variables. An abt of the form let(a1; x.let(a2; x.a3))

is ill-formed according to this definition, because the first binding adjoins
x to X , which implies that the second cannot also adjoin x to X , x without
causing confusion. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names. This is
achieved by altering the second clause of the definition using renaming as
follows:1

If ar(o) = ((~s1)s1, . . . , (~sn)sn), and if, for each 1 ≤ i ≤ n and for
each renaming πi : ~xi ↔ ~x′i , where ~x′i /∈ X , we have πi · ai ∈
B[X ,~x′i ], then o(~x1.a1; . . . ;~xn.an) ∈ B[X ]s.

1The action of a renaming extends to abt’s in the obvious way by replacing every occur-
rence of x by π(x), including any occurrences in the variable list of an abstractor as well as
within its body.
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10 1.2 Abstract Binding Trees

The renaming ensures that when we encounter nested binders we avoid
collisions. This is called the freshness condition on binders because it ensures
that all bound variables are “fresh” relative to the surrounding context.

The principle of structural induction extends to abt’s, and is called struc-
tural induction modulo renaming. It states that to show thatP(a)[X ] holds for
every a ∈ B[X ], it is enough to show the following:

1. if x ∈ Xs, then P [X ]s(x).

2. For every o of sort s and arity ((~s1)s1, . . . , (~sn)sn), and if for each 1 ≤
i ≤ n, we have P [X ,~x′i ]si(πi · ai) for every renaming πi : ~xi ↔ ~x′i ,
then P [X ]s(o(~x1.a1; . . . ;~xn.an)).

The renaming in the second condition ensures that the inductive hypothe-
sis holds for all fresh choices of bound variable names, and not just the ones
actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to
mean that x occurs free in a. Informally, this means that x is bound some-
where outside of a, rather than within a itself. If x is bound within a, then
those occurrences of x are different from those occurring outside the bind-
ing. The following definition ensures that this is the case:

1. x ∈ x.

2. x ∈ o(~x1.a1; . . . ;~xn.an) if there exists 1 ≤ i ≤ n such that for every
fresh renaming π : ~xi ↔ ~zi we have x ∈ π · ai.

The first condition states that x is free in x, but not free in y for any vari-
able y other than x. The second condition states that if x is free in some
argument, independently of the choice of bound variable names in that ar-
gument, then it is free in the overall abt. This implies, in particular, that x
is not free in let(zero; x.x).

The relation a =α b of α-equivalence (so-called for historical reasons), is
defined to mean that a and b are identical up to the choice of bound variable
names. This relation is defined to be the strongest congruence containing
the following two conditions:

1. x =α x.

2. o(~x1.a1; . . . ;~xn.an) =α o(~x′1.a′1; . . . ;~x′n.a′n) if for every 1 ≤ i ≤ n,
πi · ai =α π′i · a′i for all fresh renamings πi : ~xi ↔ ~zi and π′i : ~x′i ↔ ~zi.
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The idea is that we rename ~xi and ~x′i consistently, avoiding confusion, and
check that ai and a′i are α-equivalent. If a =α b, then a and b are said to be
α-variants of each other.

Some care is required in the definition of substitution of an abt b of sort s
for free occurrences of a variable x of sort s in some abt a of some sort, writ-
ten [b/x]a. Substitution is partially defined by the following conditions:

1. [b/x]x = b, and [b/x]y = y if x 6= y.

2. [b/x]o(~x1.a1; . . . ;~xn.an) = o(~x1.a′1; . . . ;~xn.a′n), where, for each 1 ≤
i ≤ n, we require that ~xi 6∈ b, and we set a′i = [b/x]ai if x /∈ ~xi, and
a′i = ai otherwise.

If x is bound in some argument to an operator, then substitution does not
descend into its scope, for to do so would be to confuse two distinct vari-
ables. For this reason we must take care to define a′i in the second equation
according to whether or not x ∈ ~xi. The requirement that ~xi 6∈ b in the
second equation is called capture avoidance. If some xi,j occurred free in b,
then the result of the substitution [b/x]ai would in general contain xi,j free
as well, but then forming ~xi.[b/x]ai would incur capture by changing the
referent of xi,j to be the jth bound variable of the ith argument. In such
cases substitution is undefined because we cannot replace x by b in ai with-
out incurring capture.

One way around this is to alter the definition of substitution so that the
bound variables in the result are chosen fresh by substitution. By the prin-
ciple of structural induction we know inductively that, for any renaming
πi : ~xi ↔ ~x′i with ~x′i fresh, the substitution [b/x](πi · ai) is well-defined.
Hence we may define

[b/x]o(~x1.a1; . . . ;~xn.an) = o(~x′1.[b/x](π1 · a1); . . . ;~x′n.[b/x](πn · an))

for some particular choice of fresh bound variable names (any choice will
do). There is no longer any need to take care that x /∈ ~xi in each argument,
because the freshness condition on binders ensures that this cannot occur,
the variable x already being active. Noting that

o(~x1.a1; . . . ;~xn.an) =α o(~x′1.π1 · a1; . . . ;~x′n.πn · an),

another way to avoid undefined substitutions is to first choose an α-variant
of the target of the substitution whose binders avoid any free variables in
the substituting abt, and then perform substitution without fear of incur-
ring capture. In other words substitution is totally defined on α-equivalence
classes of abt’s.
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12 1.3 Notes

To avoid all the bureaucracy of binding, we adopt the following identi-
fication convention throughout this book:

Abstract binding trees are always to be identified up to α-equivalence.

That is, we implicitly work with α-equivalence classes of abt’s, rather than
abt’s themselves. We tacitly assert that all operations and relations on abt’s
respect α-equivalence, so that they are properly defined on α-equivalence
classes of abt’s. Whenever we examine an abt, we are choosing a repre-
sentative of its α-equivalence class, and we have no control over how the
bound variable names are chosen. On the other hand experience shows that
any operation or property of interest respects α-equivalence, so there is no
obstacle to achieving it. Indeed, we might say that a property or operation
is legitimate exactly insofar as it respects α-equivalence!

Parameters, as well as variables, may be bound within an argument of
an operator. Such binders introduce a “new,” or “fresh,” parameter within
the scope of the binder wherein it may be used to form further abt’s. To
allow for parameter declaration, the valence of an argument is generalized
to indicate the sorts of the parameters bound within it, as well as the sorts
of the variables, by writing (~s1; ~s2)s, where ~s1 specifies the sorts of the pa-
rameters and ~s2 specifies the sorts of the variables. The sort-indexed family
B[U ;X ] is the set of abt’s determined by a fixed set of operators using the
parameters, U , and the variables, X . We rely on naming conventions to
distinguish parameters from variables, reserving u and v for parameters,
and x and y for variables.

1.3 Notes

The concept of abstract syntax has its orgins in the pioneering work of
Church, Turing, and Gödel, who first considered the possibility of writing
programs that act on representations of programs. Originally programs
were represented by natural numbers, using encodings, now called Gödel-
numberings, based on the prime factorization theorem. Any standard text
on mathematical logic, such as Kleene (1952), contains a thorough account
of such representations. The Lisp language (McCarthy, 1965; Allen, 1978)
introduced a much more practical and direct representation of syntax as
symbolic expressions. These ideas were developed further in the language
ML (Gordon et al., 1979), which featured a type system capable of express-
ing abstract syntax trees. The AUTOMATH project (Nederpelt et al., 1994)
introduced the idea of using Church’s λ notation (Church, 1941) to account
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for the binding and scope of variables. These ideas were developed further
in LF (Harper et al., 1993).
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Chapter 2

Inductive Definitions

Inductive definitions are an indispensable tool in the study of program-
ming languages. In this chapter we will develop the basic framework of
inductive definitions, and give some examples of their use. An inductive
definition consists of a set of rules for deriving judgments, or assertions, of
a variety of forms. Judgments are statements about one or more syntactic
objects of a specified sort. The rules specify necessary and sufficient condi-
tions for the validity of a judgment, and hence fully determine its meaning.

2.1 Judgments

We start with the notion of a judgment, or assertion, about a syntactic object.
We shall make use of many forms of judgment, including examples such as
these:

n nat n is a natural number
n = n1 + n2 n is the sum of n1 and n2
τ type τ is a type
e : τ expression e has type τ
e ⇓ v expression e has value v

A judgment states that one or more syntactic objects have a property or
stand in some relation to one another. The property or relation itself is
called a judgment form, and the judgment that an object or objects have that
property or stand in that relation is said to be an instance of that judgment
form. A judgment form is also called a predicate, and the objects constituting
an instance are its subjects. We write a J for the judgment asserting that J
holds of a. When it is not important to stress the subject of the judgment,
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we write J to stand for an unspecified judgment. For particular judgment
forms, we freely use prefix, infix, or mixfix notation, as illustrated by the
above examples, in order to enhance readability.

2.2 Inference Rules

An inductive definition of a judgment form consists of a collection of rules of
the form

J1 . . . Jk
J

(2.1)

in which J and J1, . . . , Jk are all judgments of the form being defined. The
judgments above the horizontal line are called the premises of the rule, and
the judgment below the line is called its conclusion. If a rule has no premises
(that is, when k is zero), the rule is called an axiom; otherwise it is called a
proper rule.

An inference rule may be read as stating that the premises are suffi-
cient for the conclusion: to show J, it is enough to show J1, . . . , Jk. When
k is zero, a rule states that its conclusion holds unconditionally. Bear in
mind that there may be, in general, many rules with the same conclusion,
each specifying sufficient conditions for the conclusion. Consequently, if
the conclusion of a rule holds, then it is not necessary that the premises
hold, for it might have been derived by another rule.

For example, the following rules constitute an inductive definition of
the judgment a nat:

zero nat
(2.2a)

a nat
succ(a) nat

(2.2b)

These rules specify that a nat holds whenever either a is zero, or a is
succ(b) where b nat for some b. Taking these rules to be exhaustive, it
follows that a nat iff a is a natural number.

Similarly, the following rules constitute an inductive definition of the
judgment a tree:

empty tree
(2.3a)

a1 tree a2 tree

node(a1; a2) tree
(2.3b)

These rules specify that a tree holds if either a is empty, or a is node(a1; a2),
where a1 tree and a2 tree. Taking these to be exhaustive, these rules state
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2.3 Derivations 17

that a is a binary tree, which is to say it is either empty, or a node consisting
of two children, each of which is also a binary tree.

The judgment a = b nat defining equality of a nat and b nat is induc-
tively defined by the following rules:

zero= zero nat
(2.4a)

a = b nat
succ(a)= succ(b) nat

(2.4b)

In each of the preceding examples we have made use of a notational
convention for specifying an infinite family of rules by a finite number of
patterns, or rule schemes. For example, Rule (2.2b) is a rule scheme that
determines one rule, called an instance of the rule scheme, for each choice
of object a in the rule. We will rely on context to determine whether a
rule is stated for a specific object, a, or is instead intended as a rule scheme
specifying a rule for each choice of objects in the rule.

A collection of rules is considered to define the strongest judgment that
is closed under, or respects, those rules. To be closed under the rules sim-
ply means that the rules are sufficient to show the validity of a judgment: J
holds if there is a way to obtain it using the given rules. To be the strongest
judgment closed under the rules means that the rules are also necessary: J
holds only if there is a way to obtain it by applying the rules. The suffi-
ciency of the rules means that we may show that J holds by deriving it by
composing rules. Their necessity means that we may reason about it using
rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit
a derivation of it. A derivation of a judgment is a finite composition of rules,
starting with axioms and ending with that judgment. It may be thought
of as a tree in which each node is a rule whose children are derivations of
its premises. We sometimes say that a derivation of J is evidence for the
validity of an inductively defined judgment J.

We usually depict derivations as trees with the conclusion at the bot-
tom, and with the children of a node corresponding to a rule appearing
above it as evidence for the premises of that rule. Thus, if

J1 . . . Jk
J
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18 2.3 Derivations

is an inference rule and ∇1, . . . ,∇k are derivations of its premises, then

∇1 . . . ∇k
J

is a derivation of its conclusion. In particular, if k = 0, then the node has no
children.

For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.

(2.5)

Similarly, here is a derivation of node(node(empty; empty); empty) tree:

empty tree empty tree

node(empty; empty) tree empty tree

node(node(empty; empty); empty) tree
.

(2.6)

To show that an inductively defined judgment is derivable we need
only find a derivation for it. There are two main methods for finding
derivations, called forward chaining, or bottom-up construction, and backward
chaining, or top-down construction. Forward chaining starts with the axioms
and works forward towards the desired conclusion, whereas backward
chaining starts with the desired conclusion and works backwards towards
the axioms.

More precisely, forward chaining search maintains a set of derivable
judgments, and continually extends this set by adding to it the conclusion
of any rule all of whose premises are in that set. Initially, the set is empty;
the process terminates when the desired judgment occurs in the set. As-
suming that all rules are considered at every stage, forward chaining will
eventually find a derivation of any derivable judgment, but it is impossible
(in general) to decide algorithmically when to stop extending the set and
conclude that the desired judgment is not derivable. We may go on and
on adding more judgments to the derivable set without ever achieving the
intended goal. It is a matter of understanding the global properties of the
rules to determine that a given judgment is not derivable.

Forward chaining is undirected in the sense that it does not take account
of the end goal when deciding how to proceed at each step. In contrast,
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2.4 Rule Induction 19

backward chaining is goal-directed. Backward chaining search maintains
a queue of current goals, judgments whose derivations are to be sought.
Initially, this set consists solely of the judgment we wish to derive. At each
stage, we remove a judgment from the queue, and consider all rules whose
conclusion is that judgment. For each such rule, we add the premises of
that rule to the back of the queue, and continue. If there is more than one
such rule, this process must be repeated, with the same starting queue, for
each candidate rule. The process terminates whenever the queue is empty,
all goals having been achieved; any pending consideration of candidate
rules along the way may be discarded. As with forward chaining, back-
ward chaining will eventually find a derivation of any derivable judgment,
but there is, in general, no algorithmic method for determining in general
whether the current goal is derivable. If it is not, we may futilely add more
and more judgments to the goal set, never reaching a point at which all
goals have been satisfied.

2.4 Rule Induction

Because an inductive definition specifies the strongest judgment closed un-
der a collection of rules, we may reason about them by rule induction. The
principle of rule induction states that to show that a property P holds of a
judgment J whenever J is derivable, it is enough to show that P is closed un-
der, or respects, the rules defining J. Writing P(J) to mean that the property
P holds of the judgment J, we say that P respects the rule

J1 . . . Jk
J

if P(J) holds whenever P(J1), . . . , P(Jk). The assumptionsP(J1), . . . , P(Jk)
are called the inductive hypotheses, and P(J) is called the inductive conclusion
of the inference.

The principle of rule induction is simply the expression of the definition
of an inductively defined judgment form as the strongest judgment form
closed under the rules comprising the definition. This means that the judg-
ment form defined by a set of rules is both (a) closed under those rules, and
(b) sufficient for any other property also closed under those rules. The for-
mer means that a derivation is evidence for the validity of a judgment; the
latter means that we may reason about an inductively defined judgment
form by rule induction.
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20 2.4 Rule Induction

When specialized to Rules (2.2), the principle of rule induction states
that to show P(a nat) whenever a nat, it is enough to show:

1. P(zero nat).

2. for every a, if a nat andP(a nat), then (succ(a) nat and)P(succ(a) nat).

This is just the familiar principle of mathematical induction arising as a spe-
cial case of rule induction.

Similarly, rule induction for Rules (2.3) states that to show P(a tree)
whenever a tree, it is enough to show

1. P(empty tree).

2. for every a1 and a2, if a1 tree andP(a1 tree), and if a2 tree andP(a2 tree),
then (node(a1; a2) tree and) P(node(a1; a2) tree).

This is called the principle of tree induction, and is once again an instance of
rule induction.

We may also show by rule induction that the predecessor of a natural
number is also a natural number. Although this may seem self-evident, the
point of the example is to show how to derive this from first principles.

Lemma 2.1. If succ(a) nat, then a nat.

Proof. It suffices to show that the property, P(a nat) stating that a nat and
that a = succ(b) implies b nat is closed under Rules (2.2).

Rule (2.2a) Clearly zero nat, and the second condition holds vacuously,
because zero is not of the form succ(−).

Rule (2.2b) Inductively we know that a nat and that if a is of the form
succ(b), then b nat. We are to show that succ(a) nat, which is imme-
diate, and that if succ(a) is of the form succ(b), then b nat, and we
have b nat by the inductive hypothesis.

This completes the proof.

Using rule induction we may show that equality, as defined by Rules (2.4)
is reflexive.

Lemma 2.2. If a nat, then a = a nat.

Proof. By rule induction on Rules (2.2):
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Rule (2.2a) Applying Rule (2.4a) we obtain zero= zero nat.

Rule (2.2b) Assume that a = a nat. It follows that succ(a)= succ(a) nat
by an application of Rule (2.4b).

Similarly, we may show that the successor operation is injective.

Lemma 2.3. If succ(a1)= succ(a2) nat, then a1 = a2 nat.

Proof. Similar to the proof of Lemma 2.1.

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive defi-
nition builds on top of another. In an iterated inductive definition the
premises of a rule

J1 . . . Jk
J

may be instances of either a previously defined judgment form, or the judg-
ment form being defined. For example, the following rules define the judg-
ment a list stating that a is a list of natural numbers.

nil list
(2.7a)

a nat b list
cons(a; b) list

(2.7b)

The first premise of Rule (2.7b) is an instance of the judgment form a nat,
which was defined previously, whereas the premise b list is an instance of
the judgment form being defined by these rules.

Frequently two or more judgments are defined at once by a simultane-
ous inductive definition. A simultaneous inductive definition consists of a set
of rules for deriving instances of several different judgment forms, any of
which may appear as the premise of any rule. Because the rules defining
each judgment form may involve any of the others, none of the judgment
forms may be taken to be defined prior to the others. Instead we must un-
derstand that all of the judgment forms are being defined at once by the
entire collection of rules. The judgment forms defined by these rules are, as

REVISED 05.15.2012 VERSION 1.32
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before, the strongest judgment forms that are closed under the rules. There-
fore the principle of proof by rule induction continues to apply, albeit in a
form that requires us to prove a property of each of the defined judgment
forms simultaneously.

For example, consider the following rules, which constitute a simulta-
neous inductive definition of the judgments a even, stating that a is an even
natural number, and a odd, stating that a is an odd natural number:

zero even
(2.8a)

a odd
succ(a) even

(2.8b)

a even
succ(a) odd (2.8c)

The principle of rule induction for these rules states that to show simul-
taneously that P(a even) whenever a even and P(a odd) whenever a odd, it
is enough to show the following:

1. P(zero even);

2. if P(a odd), then P(succ(a) even);

3. if P(a even), then P(succ(a) odd).

As a simple example, we may use simultaneous rule induction to prove
that (1) if a even, then a nat, and (2) if a odd, then a nat. That is, we define
the property P by (1) P(a even) iff a nat, and (2) P(a odd) iff a nat. The
principle of rule induction for Rules (2.8) states that it is sufficient to show
the following facts:

1. zero nat, which is derivable by Rule (2.2a).

2. If a nat, then succ(a) nat, which is derivable by Rule (2.2b).

3. If a nat, then succ(a) nat, which is also derivable by Rule (2.2b).

2.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an
inductive definition of its graph relating inputs to outputs, and then show-
ing that the relation uniquely determines the outputs for given inputs. For
example, we may define the addition function on natural numbers as the
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relation sum(a; b; c), with the intended meaning that c is the sum of a and b,
as follows:

b nat
sum(zero; b; b) (2.9a)

sum(a; b; c)
sum(succ(a); b; succ(c))

(2.9b)

The rules define a ternary (three-place) relation, sum(a; b; c), among natural
numbers a, b, and c. We may show that c is determined by a and b in this
relation.

Theorem 2.4. For every a nat and b nat, there exists a unique c nat such that
sum(a; b; c).

Proof. The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a; b; c).

2. (Uniqueness) If sum(a; b; c), and sum(a; b; c′), then c = c′ nat.

For existence, let P(a nat) be the proposition if b nat then there exists c nat
such that sum(a; b; c). We prove that if a nat then P(a nat) by rule induction
on Rules (2.2). We have two cases to consider:

Rule (2.2a) We are to show P(zero nat). Assuming b nat and taking c to
be b, we obtain sum(zero; b; c) by Rule (2.9a).

Rule (2.2b) Assuming P(a nat), we are to show P(succ(a) nat). That is,
we assume that if b nat then there exists c such that sum(a; b; c), and
are to show that if b′ nat, then there exists c′ such that sum(succ(a); b′; c′).
To this end, suppose that b′ nat. Then by induction there exists c such
that sum(a; b′; c). Taking c′ = succ(c), and applying Rule (2.9b), we
obtain sum(succ(a); b′; c′), as required.

For uniqueness, we prove that if sum(a; b; c1), then if sum(a; b; c2), then c1 = c2 nat
by rule induction based on Rules (2.9).

Rule (2.9a) We have a = zero and c1 = b. By an inner induction on the
same rules, we may show that if sum(zero; b; c2), then c2 is b. By
Lemma 2.2 we obtain b = b nat.

Rule (2.9b) We have that a = succ(a′) and c1 = succ(c′1), where sum(a′; b; c′1).
By an inner induction on the same rules, we may show that if sum(a; b; c2),
then c2 = succ(c′2) nat where sum(a′; b; c′2). By the outer inductive hy-
pothesis c′1 = c′2 nat and so c1 = c2 nat.
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2.7 Modes

The statement that one or more arguments of a judgment is (perhaps uniquely)
determined by its other arguments is called a mode specification for that judg-
ment. For example, we have shown that every two natural numbers have
a sum according to Rules (2.9). This fact may be restated as a mode spec-
ification by saying that the judgment sum(a; b; c) has mode (∀, ∀, ∃). The
notation arises from the form of the proposition it expresses: for all a nat
and for all b nat, there exists c nat such that sum(a; b; c). If we wish to fur-
ther specify that c is uniquely determined by a and b, we would say that the
judgment sum(a; b; c) has mode (∀, ∀, ∃!), corresponding to the proposition
for all a nat and for all b nat, there exists a unique c nat such that sum(a; b; c). If
we wish only to specify that the sum is unique, if it exists, then we would
say that the addition judgment has mode (∀, ∀, ∃≤1), corresponding to the
proposition for all a nat and for all b nat there exists at most one c nat such that
sum(a; b; c).

As these examples illustrate, a given judgment may satisfy several dif-
ferent mode specifications. In general the universally quantified arguments
are to be thought of as the inputs of the judgment, and the existentially
quantified arguments are to be thought of as its outputs. We usually try to
arrange things so that the outputs come after the inputs, but it is not es-
sential that we do so. For example, addition also has the mode (∀, ∃≤1, ∀),
stating that the sum and the first addend uniquely determine the second
addend, if there is any such addend at all. Put in other terms, this says that
addition of natural numbers has a (partial) inverse, namely subtraction.
We could equally well show that addition has mode (∃≤1, ∀, ∀), which is
just another way of stating that addition of natural numbers has a partial
inverse.

Often there is an intended, or principal, mode of a given judgment,
which we often foreshadow by our choice of notation. For example, when
giving an inductive definition of a function, we often use equations to indi-
cate the intended input and output relationships. For example, we may
re-state the inductive definition of addition (given by Rules (2.9)) using
equations:

a nat
a + zero= a nat (2.10a)

a + b = c nat
a + succ(b)= succ(c) nat

(2.10b)

When using this notation we tacitly incur the obligation to prove that the
mode of the judgment is such that the object on the right-hand side of the
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equations is determined as a function of those on the left. Having done so,
we abuse notation, writing a + b for the unique c such that a + b = c nat.

2.8 Notes

Aczel (1977) provides a thorough account of the theory of inductive defi-
nitions. The formulation given here is strongly influenced by Martin-Löf’s
development of the logic of judgments (Martin-Löf, 1983, 1987).
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Chapter 3

Hypothetical and General
Judgments

A hypothetical judgment expresses an entailment between one or more hy-
potheses and a conclusion. We will consider two notions of entailment,
called derivability and admissibility. Both enjoy the same structural proper-
ties, but they differ in that derivability is stable under extension with new
rules, admissibility is not. A general judgment expresses the universality, or
genericity, of a judgment. There are two forms of general judgment, the
generic and the parametric. The generic judgment expresses generality with
respect to all substitution instances for variables in a judgment. The para-
metric judgment expresses generality with respect to renamings of sym-
bols.

3.1 Hypothetical Judgments

The hypothetical judgment codifies the rules for expressing the validity of
a conclusion conditional on the validity of one or more hypotheses. There
are two forms of hypothetical judgment that differ according to the sense in
which the conclusion is conditional on the hypotheses. One is stable under
extension with additional rules, and the other is not.

3.1.1 Derivability

For a given set, R, of rules, we define the derivability judgment, written
J1, . . . , Jk `R K, where each Ji and K are basic judgments, to mean that
we may derive K from the expansion R[J1, . . . , Jk] of the rules R with the
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additional axioms

J1
. . .

Jk
.

We treat the hypotheses, or antecedents, of the judgment, J1, . . . , Jn as “tempo-
rary axioms”, and derive the conclusion, or consequent, by composing rules
in R. Thus, evidence for a hypothetical judgment consists of a derivation
of the conclusion from the hypotheses using the rules inR.

We use capital Greek letters, frequently Γ or ∆, to stand for a finite col-
lection of basic judgments, and write R[Γ] for the expansion of R with an
axiom corresponding to each judgment in Γ. The judgment Γ `R K means
that K is derivable from rules R[Γ], and the judgment `R Γ means that
`R J for each J in Γ. An equivalent way of defining J1, . . . , Jn `R J is to say
that the rule

J1 . . . Jn

J
(3.1)

is derivable from R, which means that there is a derivation of J composed
of the rules inR augmented by treating J1, . . . , Jn as axioms.

For example, consider the derivability judgment

a nat `(2.2) succ(succ(a)) nat (3.2)

relative to Rules (2.2). This judgment is valid for any choice of object a, as
evidenced by the derivation

a nat
succ(a) nat

succ(succ(a)) nat
(3.3)

which composes Rules (2.2), starting with a nat as an axiom, and ending
with succ(succ(a)) nat. Equivalently, the validity of (3.2) may also be
expressed by stating that the rule

a nat
succ(succ(a)) nat

(3.4)

is derivable from Rules (2.2).
It follows directly from the definition of derivability that it is stable un-

der extension with new rules.

Theorem 3.1 (Stability). If Γ `R J, then Γ `R∪R′ J.

Proof. Any derivation of J fromR[Γ] is also a derivation from (R∪R′)[Γ],
because any rule inR is also a rule inR∪R′.
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Derivability enjoys a number of structural properties that follow from its
definition, independently of the rules,R, in question.

Reflexivity Every judgment is a consequence of itself: Γ, J `R J. Each
hypothesis justifies itself as conclusion.

Weakening If Γ `R J, then Γ, K `R J. Entailment is not influenced by
unexercised options.

Transitivity If Γ, K `R J and Γ `R K, then Γ `R J. If we replace an ax-
iom by a derivation of it, the result is a derivation of its consequent
without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening
follows directly from the definition of derivability. Transitivity is proved
by rule induction on the first premise.

3.1.2 Admissibility

Admissibility, written Γ |=R J, is a weaker form of hypothetical judgment
stating that `R Γ implies `R J. That is, the conclusion J is derivable from
rules R whenever the assumptions Γ are all derivable from rules R. In
particular if any of the hypotheses are not derivable relative to R, then the
judgment is vacuously true. An equivalent way to define the judgment
J1, . . . , Jn |=R J is to state that the rule

J1 . . . Jn

J (3.5)

is admissible relative to the rules in R. This means that given any deriva-
tions of J1, . . . , Jn using the rules in R, we may construct a derivation of J
using the rules inR.

For example, the admissibility judgment

succ(a) nat |=(2.2) a nat (3.6)

is valid, because any derivation of succ(a) nat from Rules (2.2) must con-
tain a sub-derivation of a nat from the same rules, which justifies the con-
clusion. The validity of (3.6) may equivalently be expressed by stating that
the rule

succ(a) nat
a nat (3.7)

is admissible for Rules (2.2).
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In contrast to derivability the admissibility judgment is not stable under
extension to the rules. For example, if we enrich Rules (2.2) with the axiom

succ(junk) nat
(3.8)

(where junk is some object for which junk nat is not derivable), then the
admissibility (3.6) is invalid. This is because Rule (3.8) has no premises,
and there is no composition of rules deriving junk nat. Admissibility is as
sensitive to which rules are absent from an inductive definition as it is to
which rules are present in it.

The structural properties of derivability ensure that derivability is stronger
than admissibility.

Theorem 3.2. If Γ `R J, then Γ |=R J.

Proof. Repeated application of the transitivity of derivability shows that if
Γ `R J and `R Γ, then `R J.

To see that the converse fails, observe that there is no composition of
rules such that

succ(junk) nat `(2.2) junk nat,

yet the admissibility judgment

succ(junk) nat |=(2.2) junk nat

holds vacuously.

Evidence for admissibility may be thought of as a mathematical func-
tion transforming derivations ∇1, . . . ,∇n of the hypotheses into a deriva-
tion ∇ of the consequent. Therefore, the admissibility judgment enjoys the
same structural properties as derivability, and hence is a form of hypothet-
ical judgment:

Reflexivity If J is derivable from the original rules, then J is derivable from
the original rules: J |=R J.

Weakening If J is derivable from the original rules assuming that each of
the judgments in Γ are derivable from these rules, then J must also be
derivable assuming that Γ and also K are derivable from the original
rules: if Γ |=R J, then Γ, K |=R J.
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Transitivity If Γ, K |=R J and Γ |=R K, then Γ |=R J. If the judgments in Γ
are derivable, so is K, by assumption, and hence so are the judgments
in Γ, K, and hence so is J.

Theorem 3.3. The admissibility judgment Γ |=R J enjoys the structural proper-
ties of entailment.

Proof. Follows immediately from the definition of admissibility as stating
that if the hypotheses are derivable relative toR, then so is the conclusion.

If a rule, r, is admissible with respect to a rule set, R, then `R,r J is
equivalent to `R J. For if `R J, then obviously `R,r J, by simply disre-
garding r. Conversely, if `R,r J, then we may replace any use of r by its
expansion in terms of the rules in R. It follows by rule induction on R, r
that every derivation from the expanded set of rules, R, r, may be trans-
formed into a derivation from R alone. Consequently, if we wish to show
that P(J) whenever `R,r J, it is sufficient to show that P is closed under
the rules R alone. That is, we need only consider the rules R in a proof by
rule induction to derive P(J).

3.2 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to permit rules
with derivability judgments as premises and conclusions. Doing so per-
mits us to introduce local hypotheses that apply only in the derivation of a
particular premise, and also allows us to constrain inferences based on the
global hypotheses in effect at the point where the rule is applied.

A hypothetical inductive definition consists of a collection of hypothetical
rules of the following form:

Γ Γ1 ` J1 . . . Γ Γn ` Jn

Γ ` J
. (3.9)

The hypotheses Γ are the global hypotheses of the rule, and the hypotheses
Γi are the local hypotheses of the ith premise of the rule. Informally, this rule
states that J is a derivable consequence of Γ whenever each Ji is a derivable
consequence of Γ, augmented with the additional hypotheses Γi. Thus, one
way to show that J is derivable from Γ is to show, in turn, that each Ji is
derivable from Γ Γi. The derivation of each premise involves a “context
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switch” in which we extend the global hypotheses with the local hypothe-
ses of that premise, establishing a new set of global hypotheses for use
within that derivation.

In most cases a rule is stated for all choices of global context, in which
case it is said to be uniform. A uniform rule may be given in the implicit
form

Γ1 ` J1 . . . Γn ` Jn

J
(3.10)

which stands for the collection of all rules of the form (3.9) in which the
global hypotheses have been made explicit.

A hypothetical inductive definition is to be regarded as an ordinary in-
ductive definition of a formal derivability judgment Γ ` J consisting of a finite
set of basic judgments, Γ, and a basic judgment, J. A collection of hypo-
thetical rules, R, defines the strongest formal derivability judgment that
is structural and closed under rules R. Structurality means that the formal
derivability judgment must be closed under the following rules:

Γ, J ` J
(3.11a)

Γ ` J
Γ, K ` J

(3.11b)

Γ ` K Γ, K ` J
Γ ` J

(3.11c)

These rules ensure that formal derivability behaves like a hypothetical judg-
ment. By a slight abuse of notation we write Γ `R J to indicate that Γ ` J is
derivable from rulesR.

The principle of hypothetical rule induction is just the principle of rule
induction applied to the formal hypothetical judgment. So to show that
P(Γ ` J) whenever Γ `R J, it is enough to show that P is closed under
both the rules of R and under the structural rules. Thus, for each rule of
the form (3.10), whether structural or inR, we must show that

if P(Γ Γ1 ` J1) and . . . and P(Γ Γn ` Jn), then P(Γ ` J).

This is just a restatement of the principle of rule induction given in Chap-
ter 2, specialized to the formal derivability judgment Γ ` J.

In practice we usually dispense with the structural rules by the method
described in Section 3.1.2. By proving that the structural rules are admis-
sible any proof by rule induction may restrict attention to the rules in R
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alone. If all of the rules of a hypothetical inductive definition are uniform,
the structural rules (3.11b) and (3.11c) are readily seen to be admissible.
Usually, Rule (3.11a) must be postulated explictly as a rule, rather than
shown to be admissible on the basis of the other rules.

3.3 General Judgments

General judgments codify the rules for handling variables in a judgment.
As in mathematics in general, a variable is treated as an unknown ranging
over a specified collection of objects. A generic judgment expresses that a
judgment holds for any choice of objects replacing designated variables in
the judgment. Another form of general judgment codifies the handling of
parameters. A parametric judgment expresses generality over any choice
of fresh renamings of designated parameters of a judgment. To keep track
of the active variables and parameters in a derivation, we write Γ `U ;X

R J
to indicate that J is derivable from Γ according to rules R, with objects
consisting of abt’s over parameters U and variables X .

Generic derivability judgment is defined by

~x | Γ `XR J iff ∀π : ~x ↔ ~x′ π · Γ `X ,~x′
R π · J,

where the quantification is restricted to variables ~x′ not already active in
X . Evidence for generic derivability consists of a generic derivation, ∇, in-
volving the variables ~x such that for every fresh renaming π : ~x ↔ ~x′, the
derivation π · ∇ is evidence for π · Γ `X ,~x′

R π · J. The renaming ensures that
the variables in the generic judgment are fresh (not already declared in X ),
and that the meaning of the judgment is not dependent on the choice of
variable names.

For example, the generic derivation, ∇,

x nat
succ(x) nat

succ(succ(x)) nat

is evidence for the judgment,

x | x nat `X(2.2) succ(succ(x)) nat.

This is because every fresh renaming of x to y in∇ results in a valid deriva-
tion of the corresponding renaming of the indicated judgment.

The generic derivability judgment enjoys the following structural prop-
erties governing the behavior of variables:

REVISED 05.15.2012 VERSION 1.32



34 3.4 Generic Inductive Definitions

Proliferation If ~x | Γ `XR J, then ~x, x | Γ `XR J.

Renaming If ~x, x | Γ `XR J, then ~x, x′ | [x ↔ x′] · Γ `XR [x ↔ x′] · J for any
x′ /∈ X ,~x.

Substitution If ~x, x | Γ `XR J and a ∈ B[X ,~x], then ~x | [a/x]Γ `XR [a/x]J.

(It is left implicit in the principle of substitution that sorts are to be re-
spected in that the substituting object must be of the same sort as the vari-
able which is being substituted.) Proliferation is guaranteed by the inter-
pretation of rule schemes as ranging over all expansions of the universe.
Renaming is built into the meaning of the generic judgment. Substitution
holds as long as the rules themselves are closed under substitution. This
need not be the case, but in practice this requirement is usually met.

Parametric derivability is defined analogously to generic derivability,
albeit by generalizing over parameters, rather than variables. Parametric
derivability is defined by

~u;~x | Γ `U ;X
R J iff ∀ρ : ~u↔ ~u′ ∀π : ~x ↔ ~x′ ρ · π · Γ `U ,~u′;X ,~x′

R ρ · π · J.

Evidence for parametric derivability consists of a derivation ∇ involving
the parameters~u and variables~x each of whose fresh renamings is a deriva-
tion of the corresponding renaming of the underlying hypothetical judg-
ment.

Recalling from Chapter 1 that parameters admit disequality, we cannot
expect any substitution principle for parameters to hold of a parametric
derivability. It does, however, validate the structural properties of prolif-
eration and renaming, because the presence of additional parameters does
not affect the formation of an abt, and parametric derivability is defined to
respect all fresh renamings of parameters.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the
premises of rules, with the effect of augmenting the variables, as well as the
rules, within those premises. A generic rule has the form

~x~x1 | Γ Γ1 ` J1 . . . ~x~xn | Γ Γn ` Jn

~x | Γ ` J
. (3.12)

The variables~x are the global variables of the inference, and, for each 1 ≤ i ≤
n, the variables ~xi are the local variables of the ith premise. In most cases a
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rule is stated for all choices of global variables and global hypotheses. Such
rules may be given in implicit form,

~x1 | Γ1 ` J1 . . . ~xn | Γn ` Jn

J
. (3.13)

A generic inductive definition is just an ordinary inductive definition of
a family of formal generic judgments of the form ~x | Γ ` J. Formal generic
judgments are identified up to renaming of variables, so that the latter judg-
ment is treated as identical to the judgment ~x′ | π · Γ ` π · J for any renam-
ing π : ~x ↔ ~x′. If R is a collection of generic rules, we write ~x | Γ `R J to
mean that the formal generic judgment ~x | Γ ` J is derivable from rulesR.

When specialized to a collection of generic rules, the principle of rule
induction states that to show P(~x | Γ ` J) whenever~x | Γ `R J, it is enough
to show that P is closed under the rules R. Specifically, for each rule in R
of the form (3.12), we must show that

if P(~x~x1 | Γ Γ1 ` J1) . . . P(~x~xn | Γ Γn ` Jn) then P(~x | Γ ` J).

By the identification convention (stated in Chapter 1) the property P must
respect renamings of the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judg-
ment, we must always ensure that the following structural rules are admis-
sible:

~x | Γ, J ` J
(3.14a)

~x | Γ ` J
~x | Γ, J′ ` J

(3.14b)

~x | Γ ` J
~x, x | Γ ` J

(3.14c)

~x, x′ | [x ↔ x′] · Γ ` [x ↔ x′] · J
~x, x | Γ ` J

(3.14d)

~x | Γ ` J ~x | Γ, J ` J′

~x | Γ ` J′
(3.14e)

~x, x | Γ ` J a ∈ B[~x]
~x | [a/x]Γ ` [a/x]J

(3.14f)

The admissibility of Rule (3.14a) is, in practice, ensured by explicitly in-
cluding it. The admissibility of Rules (3.14b) and (3.14c) is assured if each
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of the generic rules is uniform, because we may assimilate the additional
parameter, x, to the global parameters, and the additional hypothesis, J,
to the global hypotheses. The admissibility of Rule (3.14d) is ensured by
the identification convention for the formal generic judgment. Rule (3.14f)
must be verified explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judg-
ments as well. Briefly, rules are defined on formal parametric judgments of
the form ~u;~x | Γ ` J, with parameters ~u, as well as variables, ~x. Such formal
judgments are identified up to renaming of its variables and its parameters
to ensure that the meaning is independent of the choice of variable and
parameter names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and
programming languages. The formulation given here builds on Martin-Löf
(1983, 1987) and Avron (1991). Hypothetical and general reasoning are con-
solidated into a single concept in the AUTOMATH languages (Nederpelt
et al., 1994) and in the LF Logical Framework (Harper et al., 1993). These
systems permit arbitrarily nested combinations of hypothetical and general
judgments, whereas the present account considers only general hypotheti-
cal judgments over basic judgment forms.

The failure to distinguish parameters from variables is the source of
many errors in language design. The crucial distinction is that whereas it
makes sense to distinguish cases based on whether two parameters are the
same or distinct, it makes no sense to do so for variables, because disequal-
ity is not preserved by substitution. Adhering carefully to this distinction
avoids much confusion and complication in language design (see, for ex-
ample, Chapter 41).
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Chapter 4

Statics

Most programming languages exhibit a phase distinction between the static
and dynamic phases of processing. The static phase consists of parsing
and type checking to ensure that the program is well-formed; the dynamic
phase consists of execution of well-formed programs. A language is said
to be safe exactly when well-formed programs are well-behaved when exe-
cuted.

The static phase is specified by a statics comprising a collection of rules
for deriving typing judgments stating that an expression is well-formed of a
certain type. Types mediate the interaction between the constituent parts
of a program by “predicting” some aspects of the execution behavior of the
parts so that we may ensure they fit together properly at run-time. Type
safety tells us that these predictions are accurate; if not, the statics is con-
sidered to be improperly defined, and the language is deemed unsafe for
execution.

In this chapter we present the statics of the language L{num str} as an
illustration of the methodology that we shall employ throughout this book.

4.1 Syntax

When defining a language we shall be primarily concerned with its abstract
syntax, specified by a collection of operators and their arities. The abstract
syntax provides a systematic, unambiguous account of the hierarchical and
binding structure of the language, and is therefore to be considered the
official presentation of the language. However, for the sake of clarity, it is
also useful to specify minimal concrete syntax conventions, without going
through the trouble to set up a fully precise grammar for it.
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We will accomplish both of these purposes with a syntax chart, whose
meaning is best illustrated by example. The following chart summarizes
the abstract and concrete syntax of L{num str}.

Typ τ ::= num num numbers
str str strings

Exp e ::= x x variable
num[n] n numeral
str[s] ”s” literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition

This chart defines two sorts, Typ, ranged over by τ, and Exp, ranged over
by e. The chart defines a collection of operators and their arities. For exam-
ple, the operator let has arity (Exp, (Exp)Exp), which specifies that it has
two arguments of sort Exp, and binds a variable of sort Exp in the second
argument.

4.2 Type System

The role of a type system is to impose constraints on the formations of
phrases that are sensitive to the context in which they occur. For exam-
ple, whether or not the expression plus(x; num[n]) is sensible depends on
whether or not the variable x is restricted to have type num in the surround-
ing context of the expression. This example is, in fact, illustrative of the
general case, in that the only information required about the context of an
expression is the type of the variables within whose scope the expression
lies. Consequently, the statics of L{num str} consists of an inductive defi-
nition of generic hypothetical judgments of the form

~x | Γ ` e : τ,

where ~x is a finite set of variables, and Γ is a typing context consisting of
hypotheses of the form x : τ, one for each x ∈ X . We rely on typographical
conventions to determine the set of variables, using the letters x and y for
variables that serve as parameters of the typing judgment. We write x /∈
dom(Γ) to indicate that there is no assumption in Γ of the form x : τ for any
type τ, in which case we say that the variable x is fresh for Γ.
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The rules defining the statics of L{num str} are as follows:

Γ, x : τ ` x : τ (4.1a)

Γ ` str[s] : str (4.1b)

Γ ` num[n] : num (4.1c)

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1; e2) : num

(4.1d)

Γ ` e1 : num Γ ` e2 : num
Γ ` times(e1; e2) : num

(4.1e)

Γ ` e1 : str Γ ` e2 : str
Γ ` cat(e1; e2) : str

(4.1f)

Γ ` e : str
Γ ` len(e) : num

(4.1g)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1; x.e2) : τ2
(4.1h)

In Rule (4.1h) we tacitly assume that the variable, x, is not already declared
in Γ. This condition may always be met by choosing a suitable representa-
tive of the α-equivalence class of the let expression.

It is easy to check that every expression has at most one type by induc-
tion on typing, which is rule induction applied to Rules (4.1).

Lemma 4.1 (Unicity of Typing). For every typing context Γ and expression e,
there exists at most one τ such that Γ ` e : τ.

Proof. By rule induction on Rules (4.1), making use of the fact that variables
have at most one type in any typing context.

The typing rules are syntax-directed in the sense that there is exactly one
rule for each form of expression. Consequently it is easy to give necessary
conditions for typing an expression that invert the sufficient conditions ex-
pressed by the corresponding typing rule.

Lemma 4.2 (Inversion for Typing). Suppose that Γ ` e : τ. If e = plus(e1; e2),
then τ = num, Γ ` e1 : num, and Γ ` e2 : num, and similarly for the other
constructs of the language.

Proof. These may all be proved by induction on the derivation of the typing
judgment Γ ` e : τ.

In richer languages such inversion principles are more difficult to state
and to prove.
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4.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judg-
ment.

Lemma 4.3 (Weakening). If Γ ` e′ : τ′, then Γ, x : τ ` e′ : τ′ for any x /∈
dom(Γ) and any type τ.

Proof. By induction on the derivation of Γ ` e′ : τ′. We will give one case
here, for rule (4.1h). We have that e′ = let(e1; z.e2), where by the conven-
tions on parameters we may assume z is chosen such that z /∈ dom(Γ) and
z 6= x. By induction we have

1. Γ, x : τ ` e1 : τ1,

2. Γ, x : τ, z : τ1 ` e2 : τ′,

from which the result follows by Rule (4.1h).

Lemma 4.4 (Substitution). If Γ, x : τ ` e′ : τ′ and Γ ` e : τ, then Γ ` [e/x]e′ :
τ′.

Proof. By induction on the derivation of Γ, x : τ ` e′ : τ′. We again con-
sider only rule (4.1h). As in the preceding case, e′ = let(e1; z.e2), where z
may be chosen so that z 6= x and z /∈ dom(Γ). We have by induction and
Lemma 4.3 that

1. Γ ` [e/x]e1 : τ1,

2. Γ, z : τ1 ` [e/x]e2 : τ′.

By the choice of z we have

[e/x]let(e1; z.e2) = let([e/x]e1; z.[e/x]e2).

It follows by Rule (4.1h) that Γ ` [e/x]let(e1; z.e2) : τ, as desired.

From a programming point of view, Lemma 4.3 allows us to use an ex-
pression in any context that binds its free variables: if e is well-typed in
a context Γ, then we may “import” it into any context that includes the
assumptions Γ. In other words the introduction of new variables beyond
those required by an expression, e, does not invalidate e itself; it remains
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well-formed, with the same type.1 More significantly, Lemma 4.4 expresses
the concepts of modularity and linking. We may think of the expressions
e and e′ as two components of a larger system in which the component e′

is to be thought of as a client of the implementation e. The client declares
a variable specifying the type of the implementation, and is type checked
knowing only this information. The implementation must be of the spec-
ified type in order to satisfy the assumptions of the client. If so, then we
may link them to form the composite system, [e/x]e′. This may itself be
the client of another component, represented by a variable, y, that is re-
placed by that component during linking. When all such variables have
been implemented, the result is a closed expression that is ready for execu-
tion (evaluation).

The converse of Lemma 4.4 is called decomposition. It states that any
(large) expression may be decomposed into a client and implementor by
introducing a variable to mediate their interaction.

Lemma 4.5 (Decomposition). If Γ ` [e/x]e′ : τ′, then for every type τ such
that Γ ` e : τ, we have Γ, x : τ ` e′ : τ′.

Proof. The typing of [e/x]e′ depends only on the type of e wherever it oc-
curs, if at all.

This lemma tells us that any sub-expression may be isolated as a sepa-
rate module of a larger system. This is especially useful when the variable
x occurs more than once in e′, because then one copy of e suffices for all
occurrences of x in e′.

The statics of L{num str} given by Rules (4.1) exemplifies a recurrent
pattern. The constructs of a language are classified into one of two forms,
the introductory and the eliminatory. The introductory forms for a type de-
termine the values, or canonical forms, of that type. The eliminatory forms
determine how to manipulate the values of a type to form a computation
of another (possibly the same) type. In L{num str} the introductory forms
for the type num are the numerals, and those for the type str are the literals.
The eliminatory forms for the type num are addition and multiplication, and
those for the type str are concatenation and length.

The importance of this classification will become apparent once we have
defined the dynamics of the language in Chapter 5. Then we will see that

1This may seem so obvious as to be not worthy of mention, but, suprisingly, there are
useful type systems that lack this property. Because they do not validate the structural
principle of weakening, they are called sub-structural type systems.
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the eliminatory forms are inverse to the introductory forms in that they
“take apart” what the introductory forms have “put together.” The coher-
ence of the statics and dynamics of a language expresses the concept of type
safety, the subject of Chapter 6.

4.4 Notes

The concept of the static semantics of a programming language was histori-
cally slow to develop, perhaps because the earliest languages had relatively
few features and only very weak type systems. The concept of a static se-
mantics in the sense considered here was introduced in the definition of
the Standard ML programming language (Milner et al., 1997), building on
much earlier work by Church and others on the typed λ-calculus (Baren-
dregt, 1992). The concept of introduction and elimination, and the asso-
ciated inversion principle, was introduced by Gentzen in his pioneering
work on natural deduction (Gentzen, 1969). These principles were applied
to the structure of programming languages by Martin-Löf (1984, 1980).
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Chapter 5

Dynamics

The dynamics of a language is a description of how programs are to be ex-
ecuted. The most important way to define the dynamics of a language is
by the method of structural dynamics, which defines a transition system that
inductively specifies the step-by-step process of executing a program. An-
other method for presenting dynamics, called contextual dynamics, is a vari-
ation of structural dynamics in which the transition rules are specified in
a slightly different manner. An equational dynamics presents the dynamics
of a language equationally by a collection of rules for deducing when one
program is definitionally equal to another.

5.1 Transition Systems

A transition system is specified by the following four forms of judgment:

1. s state, asserting that s is a state of the transition system.

2. s final, where s state, asserting that s is a final state.

3. s initial, where s state, asserting that s is an initial state.

4. s 7→ s′, where s state and s′ state, asserting that state s may transition
to state s′.

In practice we always arrange things so that no transition is possible from
a final state: if s final, then there is no s′ state such that s 7→ s′. A state from
which no transition is possible is sometimes said to be stuck. Whereas all
final states are, by convention, stuck, there may be stuck states in a tran-
sition system that are not final. A transition system is deterministic iff for



46 5.1 Transition Systems

every state s there exists at most one state s′ such that s 7→ s′, otherwise it
is non-deterministic.

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial,
and si 7→ si+1 for every 0 ≤ i < n. A transition sequence is maximal iff there
is no s such that sn 7→ s, and it is complete iff it is maximal and, in addition,
sn final. Thus every complete transition sequence is maximal, but maximal
sequences are not necessarily complete. The judgment s ↓means that there
is a complete transition sequence starting from s, which is to say that there
exists s′ final such that s 7→∗ s′.

The iteration of transition judgment, s 7→∗ s′, is inductively defined by
the following rules:

s 7→∗ s (5.1a)

s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′
(5.1b)

When applied to the definition of iterated transition, the principle of
rule induction states that to show that P(s, s′) holds whenever s 7→∗ s′, it is
enough to show these two properties of P:

1. P(s, s).

2. if s 7→ s′ and P(s′, s′′), then P(s, s′′).

The first requirement is to show that P is reflexive. The second is to show
that P is closed under head expansion, or closed under inverse evaluation. Using
this principle, it is easy to prove that 7→∗ is reflexive and transitive.

The n-times iterated transition judgment, s 7→n s′, where n ≥ 0, is induc-
tively defined by the following rules.

s 7→0 s (5.2a)

s 7→ s′ s′ 7→n s′′

s 7→n+1 s′′
(5.2b)

Theorem 5.1. For all states s and s′, s 7→∗ s′ iff s 7→k s′ for some k ≥ 0.

Proof. From left to right, by induction on the definition of multi-step tran-
sition. From right to left, by mathematical induction on k ≥ 0.
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5.2 Structural Dynamics

A structural dynamics for L{num str} is given by a transition system whose
states are closed expressions. All states are initial. The final states are the
(closed) values, which represent the completed computations. The judgment
e val, which states that e is a value, is inductively defined by the following
rules:

num[n] val (5.3a)

str[s] val (5.3b)

The transition judgment, e 7→ e′, between states is inductively defined
by the following rules:

n1 + n2 = n nat

plus(num[n1]; num[n2]) 7→ num[n] (5.4a)

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

(5.4b)

e1 val e2 7→ e′2
plus(e1; e2) 7→ plus(e1; e′2)

(5.4c)

s1 ˆ s2 = s str

cat(str[s1]; str[s2]) 7→ str[s]
(5.4d)

e1 7→ e′1
cat(e1; e2) 7→ cat(e′1; e2)

(5.4e)

e1 val e2 7→ e′2
cat(e1; e2) 7→ cat(e1; e′2)

(5.4f)

[ e1 7→ e′1
let(e1; x.e2) 7→ let(e′1; x.e2)

]
(5.4g)

[e1 val]

let(e1; x.e2) 7→ [e1/x]e2
(5.4h)

We have omitted rules for multiplication and computing the length of a
string, which follow a similar pattern. Rules (5.4a), (5.4d), and (5.4h) are in-
struction transitions, because they correspond to the primitive steps of eval-
uation. The remaining rules are search transitions that determine the order
in which instructions are executed.

The bracketed rule, Rule (5.4g), and bracketed premise on Rule (5.4h),
are to be included for a by-value interpretation of let, and omitted for a
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by-name interpretation. The by-value intepretation evaluates an expression
before binding it to the defined variable, whereas the by-name interpreta-
tion binds it in unevaluated form. The by-value interpretation saves work
if the defined variable is used more than once, but wastes work if it is not
used at all. Conversely, the by-name interpretation saves work if the de-
fined variable is not used, and wastes work if it is used more than once.

A derivation sequence in a structural dynamics has a two-dimensional
structure, with the number of steps in the sequence being its “width” and
the derivation tree for each step being its “height.” For example, consider
the following evaluation sequence.

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
7→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
7→ plus(plus(num[3]; num[3]); num[4])
7→ plus(num[6]; num[4])
7→ num[10]

Each step in this sequence of transitions is justified by a derivation accord-
ing to Rules (5.4). For example, the third transition in the preceding exam-
ple is justified by the following derivation:

plus(num[3]; num[3]) 7→ num[6]
(5.4a)

plus(plus(num[3]; num[3]); num[4]) 7→ plus(num[6]; num[4])
(5.4b)

The other steps are similarly justified by a composition of rules.

The principle of rule induction for the structural dynamics ofL{num str}
states that to show P(e 7→ e′) whenever e 7→ e′, it is sufficient to show that
P is closed under Rules (5.4). For example, we may show by rule induction
that structural dynamics of L{num str} is determinate, which means that
an expression may make a transition to at most one other expression. The
proof requires a simple lemma relating transition to values.

Lemma 5.2 (Finality of Values). For no expression e do we have both e val and
e 7→ e′ for some e′.

Proof. By rule induction on Rules (5.3) and (5.4).

Lemma 5.3 (Determinacy). If e 7→ e′ and e 7→ e′′, then e′ and e′′ are α-
equivalent.
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Proof. By rule induction on the premises e 7→ e′ and e 7→ e′′, carried out
either simultaneously or in either order. It is assumed that the primitive
operators, such as addition, have a unique value when applied to values.

Rules (5.4) exemplify the inversion principle of language design, which
states that the eliminatory forms are inverse to the introductory forms of a
language. The search rules determine the principal arguments of each elimi-
natory form, and the instruction rules specify how to evaluate an elimina-
tory form when all of its principal arguments are in introductory form. For
example, Rules (5.4) specify that both arguments of addition are principal,
and specify how to evaluate an addition once its principal arguments are
evaluated to numerals. The inversion principle is central to ensuring that
a programming language is properly defined, the exact statement of which
is given in Chapter 6.

5.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes
useful. There is no fundamental difference between contextual and struc-
tural dynamics, rather one of style. The main idea is to isolate instruction
steps as a special form of judgment, called instruction transition, and to for-
malize the process of locating the next instruction using a device called an
evaluation context. The judgment, e val, defining whether an expression is a
value, remains unchanged.

The instruction transition judgment, e1 → e2, for L{num str} is de-
fined by the following rules, together with similar rules for multiplication
of numbers and the length of a string.

m + n = p nat

plus(num[m]; num[n])→ num[p] (5.5a)

s ˆ t = u str
cat(str[s]; str[t])→ str[u] (5.5b)

let(e1; x.e2)→ [e1/x]e2 (5.5c)

The judgment E ectxt determines the location of the next instruction to
execute in a larger expression. The position of the next instruction step is
specified by a “hole”, written ◦, into which the next instruction is placed, as
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we shall detail shortly. (The rules for multiplication and length are omitted
for concision, as they are handled similarly.)

◦ ectxt (5.6a)

E1 ectxt

plus(E1; e2) ectxt
(5.6b)

e1 val E2 ectxt

plus(e1; E2) ectxt
(5.6c)

The first rule for evaluation contexts specifies that the next instruction may
occur “here”, at the point of the occurrence of the hole. The remaining rules
correspond one-for-one to the search rules of the structural dynamics. For
example, Rule (5.6c) states that in an expression plus(e1; e2), if the first
argument, e1, is a value, then the next instruction step, if any, lies at or
within the second argument, e2.

An evaluation context is to be thought of as a template that is instanti-
ated by replacing the hole with an instruction to be executed. The judgment
e′ = E{e} states that the expression e′ is the result of filling the hole in the
evaluation context E with the expression e. It is inductively defined by the
following rules:

e = ◦{e} (5.7a)

e1 = E1{e}
plus(e1; e2) = plus(E1; e2){e}

(5.7b)

e1 val e2 = E2{e}
plus(e1; e2) = plus(e1; E2){e}

(5.7c)

There is one rule for each form of evaluation context. Filling the hole with
e results in e; otherwise we proceed inductively over the structure of the
evaluation context.

Finally, the contextual dynamics for L{num str} is defined by a single
rule:

e = E{e0} e0 → e′0 e′ = E{e′0}
e 7→ e′

(5.8)

Thus, a transition from e to e′ consists of (1) decomposing e into an evalua-
tion context and an instruction, (2) execution of that instruction, and (3) re-
placing the instruction by the result of its execution in the same spot within
e to obtain e′.

The structural and contextual dynamics define the same transition re-
lation. For the sake of the proof, let us write e 7→s e′ for the transition
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relation defined by the structural dynamics (Rules (5.4)), and e 7→c e′ for
the transition relation defined by the contextual dynamics (Rules (5.8)).

Theorem 5.4. e 7→s e′ if, and only if, e 7→c e′.

Proof. From left to right, proceed by rule induction on Rules (5.4). It is
enough in each case to exhibit an evaluation context E such that e = E{e0},
e′ = E{e′0}, and e0 → e′0. For example, for Rule (5.4a), take E = ◦, and
observe that e → e′. For Rule (5.4b), we have by induction that there exists
an evaluation context E1 such that e1 = E1{e0}, e′1 = E1{e′0}, and e0 → e′0.
Take E = plus(E1; e2), and observe that e = plus(E1; e2){e0} and e′ =
plus(E1; e2){e′0} with e0 → e′0.

From right to left, observe that if e 7→c e′, then there exists an evaluation
context E such that e = E{e0}, e′ = E{e′0}, and e0 → e′0. We prove by induc-
tion on Rules (5.7) that e 7→s e′. For example, for Rule (5.7a), e0 is e, e′0 is e′,
and e → e′. Hence e 7→s e′. For Rule (5.7b), we have that E = plus(E1; e2),
e1 = E1{e0}, e′1 = E1{e′0}, and e1 7→s e′1. Therefore e is plus(e1; e2), e′ is
plus(e′1; e2), and therefore by Rule (5.4b), e 7→s e′.

Because the two transition judgments coincide, contextual dynamics
may be seen as an alternative way of presenting a structural dynamics.
It has two advantages over structural dynamics, one relatively superficial,
one rather less so. The superficial advantage stems from writing Rule (5.8)
in the simpler form

e0 → e′0
E{e0} 7→ E{e′0}

. (5.9)

This formulation is superficially simpler in that it does not make explicit
how an expression is to be decomposed into an evaluation context and
a reducible expression. The deeper advantage of contextual dynamics is
that all transitions are between complete programs. One need never con-
sider a transition between expressions of any type other than the ultimate
observable type. This simplifies certain arguments, notably the proof of
Lemma 48.16.

5.4 Equational Dynamics

Another formulation of the dynamics of a language is based on regard-
ing computation as a form of equational deduction, much in the style of
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elementary algebra. For example, in algebra we may show that the polyno-
mials x2 + 2 x + 1 and (x + 1)2 are equivalent by a simple process of calcu-
lation and re-organization using the familiar laws of addition and multipli-
cation. The same laws are sufficient to determine the value of any polyno-
mial, given the values of its variables. So, for example, we may plug in 2 for
x in the polynomial x2 + 2 x + 1 and calculate that 22 + 2× 2+ 1 = 9, which
is indeed (2 + 1)2. This gives rise to a model of computation in which we
may determine the value of a polynomial for a given value of its variable by
substituting the given value for the variable and proving that the resulting
expression is equal to its value.

Very similar ideas give rise to the concept of definitional, or computa-
tional, equivalence of expressions in L{num str}, which we write as X | Γ `
e ≡ e′ : τ, where Γ consists of one assumption of the form x : τ for each
x ∈ X . We only consider definitional equality of well-typed expressions,
so that when considering the judgment Γ ` e ≡ e′ : τ, we tacitly assume
that Γ ` e : τ and Γ ` e′ : τ. Here, as usual, we omit explicit mention
of the parameters, X , when they can be determined from the forms of the
assumptions Γ.

Definitional equality of expressions in L{num str} under the by-name
interpretation of let is inductively defined by the following rules:

Γ ` e ≡ e : τ (5.10a)

Γ ` e′ ≡ e : τ
Γ ` e ≡ e′ : τ

(5.10b)

Γ ` e ≡ e′ : τ Γ ` e′ ≡ e′′ : τ
Γ ` e ≡ e′′ : τ

(5.10c)

Γ ` e1 ≡ e′1 : num Γ ` e2 ≡ e′2 : num
Γ ` plus(e1; e2) ≡ plus(e′1; e′2) : num

(5.10d)

Γ ` e1 ≡ e′1 : str Γ ` e2 ≡ e′2 : str
Γ ` cat(e1; e2) ≡ cat(e′1; e′2) : str

(5.10e)

Γ ` e1 ≡ e′1 : τ1 Γ, x : τ1 ` e2 ≡ e′2 : τ2

Γ ` let(e1; x.e2) ≡ let(e′1; x.e′2) : τ2
(5.10f)

n1 + n2 = n nat

Γ ` plus(num[n1]; num[n2]) ≡ num[n] : num (5.10g)

s1 ˆ s2 = s str

Γ ` cat(str[s1]; str[s2]) ≡ str[s] : str
(5.10h)

Γ ` let(e1; x.e2) ≡ [e1/x]e2 : τ (5.10i)

VERSION 1.32 REVISED 05.15.2012



5.4 Equational Dynamics 53

Rules (5.10a) through (5.10c) state that definitional equality is an equiva-
lence relation. Rules (5.10d) through (5.10f) state that it is a congruence re-
lation, which means that it is compatible with all expression-forming con-
structs in the language. Rules (5.10g) through (5.10i) specify the mean-
ings of the primitive constructs of L{num str}. For the sake of concision,
Rules (5.10) may be characterized as defining the strongest congruence closed
under Rules (5.10g), (5.10h), and (5.10i).

Rules (5.10) are sufficient to allow us to calculate the value of an expres-
sion by an equational deduction similar to that used in high school algebra.
For example, we may derive the equation

let x be 1 + 2 in x + 3 + 4 ≡ 10 : num

by applying Rules (5.10). Here, as in general, there may be many different
ways to derive the same equation, but we need find only one derivation in
order to carry out an evaluation.

Definitional equality is rather weak in that many equivalences that we
might intuitively think are true are not derivable from Rules (5.10). A pro-
totypical example is the putative equivalence

x : num, y : num ` x1 + x2 ≡ x2 + x1 : num, (5.11)

which, intuitively, expresses the commutativity of addition. Although we
shall not prove this here, this equivalence is not derivable from Rules (5.10).
And yet we may derive all of its closed instances,

n1 + n2 ≡ n2 + n1 : num, (5.12)

where n1 nat and n2 nat are particular numbers.
The “gap” between a general law, such as Equation (5.11), and all of its

instances, given by Equation (5.12), may be filled by enriching the notion
of equivalence to include a principle of proof by mathematical induction.
Such a notion of equivalence is sometimes called semantic equivalence, be-
cause it expresses relationships that hold by virtue of the dynamics of the
expressions involved. (Semantic equivalence is developed rigorously for a
related language in Chapter 47.)

Definitional equality is sometimes called symbolic evaluation, because it
allows any subexpression to be replaced by the result of evaluating it ac-
cording to the rules of the dynamics of the language.

Theorem 5.5. e ≡ e′ : τ iff there exists e0 val such that e 7→∗ e0 and e′ 7→∗ e0.
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Proof. The proof from right to left is direct, because every transition step is
a valid equation. The converse follows from the following, more general,
proposition. If x1 : τ1, . . . , xn : τn ` e ≡ e′ : τ, then whenever e1 : τ1, . . . , en :
τn, if

[e1, . . . , en/x1, . . . , xn]e ≡ [e1, . . . , en/x1, . . . , xn]e′ : τ,

then there exists e0 val such that

[e1, . . . , en/x1, . . . , xn]e 7→∗ e0

and
[e1, . . . , en/x1, . . . , xn]e′ 7→∗ e0.

This is proved by rule induction on Rules (5.10).

5.5 Notes

The use of transition systems to specify the behavior of programs goes back
to the early work of Church and Turing on computability. Turing’s ap-
proach emphasized the concept of an abstract machine consisting of a finite
program together with unbounded memory. Computation proceeds by
changing the memory in accordance with the instructions in the program.
Much early work on the operational semantics of programming languages,
such as the SECD machine (Landin, 1965), emphasized machine models.
Church’s approach emphasized the language for expressing computations,
and defined execution in terms of the programs themselves, rather than in
terms of auxiliary concepts such as memories or tapes. Plotkin’s elegant
formulation of structural operational semantics (Plotkin, 1981), which we
use heavily throughout this book, was inspired by Church’s and Landin’s
ideas (Plotkin, 2004). Contextual semantics, which was introduced by Felleisen
and Hieb (1992), may be seen as an alternative formulation of structural se-
mantics in which “search rules” are replaced by “context matching”. Com-
putation viewed as equational deduction goes back to the early work of
Herbrand, Gödel, and Church.
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Chapter 6

Type Safety

Most contemporary programming languages are safe (or, type safe, or strongly
typed). Informally, this means that certain kinds of mismatches cannot arise
during execution. For example, type safety forL{num str} states that it will
never arise that a number is to be added to a string, or that two numbers
are to be concatenated, neither of which is meaningful.

In general type safety expresses the coherence between the statics and
the dynamics. The statics may be seen as predicting that the value of an
expression will have a certain form so that the dynamics of that expression
is well-defined. Consequently, evaluation cannot “get stuck” in a state for
which no transition is possible, corresponding in implementation terms to
the absence of “illegal instruction” errors at execution time. This is proved
by showing that each step of transition preserves typability and by showing
that typable states are well-defined. Consequently, evaluation can never
“go off into the weeds,” and hence can never encounter an illegal instruc-
tion.

More precisely, type safety for L{num str}may be stated as follows:

Theorem 6.1 (Type Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

The first part, called preservation, says that the steps of evaluation pre-
serve typing; the second, called progress, ensures that well-typed expres-
sions are either values or can be further evaluated. Safety is the conjunction
of preservation and progress.

We say that an expression, e, is stuck iff it is not a value, yet there is no
e′ such that e 7→ e′. It follows from the safety theorem that a stuck state is
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necessarily ill-typed. Or, putting it the other way around, that well-typed
states do not get stuck.

6.1 Preservation

The preservation theorem for L{num str} defined in Chapters 4 and 5 is
proved by rule induction on the transition system (rules (5.4)).

Theorem 6.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. We will consider two cases, leaving the rest to the reader. Consider
rule (5.4b),

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

.

Assume that plus(e1; e2) : τ. By inversion for typing, we have that τ =
num, e1 : num, and e2 : num. By induction we have that e′1 : num, and hence
plus(e′1; e2) : num. The case for concatenation is handled similarly.

Now consider rule (5.4h),

let(e1; x.e2) 7→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion lemma 4.2, e1 : τ1 for some
τ1 such that x : τ1 ` e2 : τ2. By the substitution lemma 4.4 [e1/x]e2 : τ2, as
desired.

It is easy to check that the primitive operations are all type-preserving;
for example, if a nat and b nat and a + b = c nat, then c nat.

The proof of preservation is naturally structured as an induction on the
transition judgment, because the argument hinges on examining all possi-
ble transitions from a given expression. In some cases we may manage to
carry out a proof by structural induction on e, or by an induction on typ-
ing, but experience shows that this often leads to awkward arguments, or,
in some cases, cannot be made to work at all.

6.2 Progress

The progress theorem captures the idea that well-typed programs cannot
“get stuck”. The proof depends crucially on the following lemma, which
characterizes the values of each type.
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Lemma 6.3 (Canonical Forms). If e val and e : τ, then

1. If τ = num, then e = num[n] for some number n.

2. If τ = str, then e = str[s] for some string s.

Proof. By induction on rules (4.1) and (5.3).

Progress is proved by rule induction on rules (4.1) defining the statics
of the language.

Theorem 6.4 (Progress). If e : τ, then either e val, or there exists e′ such that
e 7→ e′.

Proof. The proof proceeds by induction on the typing derivation. We will
consider only one case, for rule (4.1d),

e1 : num e2 : num
plus(e1; e2) : num

,

where the context is empty because we are considering only closed terms.
By induction we have that either e1 val, or there exists e′1 such that

e1 7→ e′1. In the latter case it follows that plus(e1; e2) 7→ plus(e′1; e2), as
required. In the former we also have by induction that either e2 val, or there
exists e′2 such that e2 7→ e′2. In the latter case we have that plus(e1; e2) 7→
plus(e1; e′2), as required. In the former, we have, by the Canonical Forms
Lemma 6.3, e1 = num[n1] and e2 = num[n2], and hence

plus(num[n1]; num[n2]) 7→ num[n1 + n2].

Because the typing rules for expressions are syntax-directed, the progress
theorem could equally well be proved by induction on the structure of e,
appealing to the inversion theorem at each step to characterize the types of
the parts of e. But this approach breaks down when the typing rules are not
syntax-directed, that is, when there may be more than one rule for a given
expression form. No difficulty arises if the proof proceeds by induction on
the typing rules.

Summing up, the combination of preservation and progress together
constitute the proof of safety. The progress theorem ensures that well-typed
expressions do not “get stuck” in an ill-defined state, and the preservation
theorem ensures that if a step is taken, the result remains well-typed (with
the same type). Thus the two parts work hand-in-hand to ensure that the
statics and dynamics are coherent, and that no ill-defined states can ever be
encountered while evaluating a well-typed expression.
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6.3 Run-Time Errors

Suppose that we wish to extend L{num str}with, say, a quotient operation
that is undefined for a zero divisor. The natural typing rule for quotients is
given by the following rule:

e1 : num e2 : num
div(e1; e2) : num

.

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have
two options to correct this situation:

1. Enhance the type system, so that no well-typed program may divide
by zero.

2. Add dynamic checks, so that division by zero signals an error as the
outcome of evaluation.

Either option is, in principle, viable, but the most common approach is the
second. The first requires that the type checker prove that an expression be
non-zero before permitting it to be used in the denominator of a quotient.
It is difficult to do this without ruling out too many programs as ill-formed.
This is because we cannot reliably predict statically whether an expression
will turn out to be non-zero when executed (because this is an undecidable
property). We therefore consider the second approach, which is typical of
current practice.

The general idea is to distinguish checked from unchecked errors. An
unchecked error is one that is ruled out by the type system. No run-time
checking is performed to ensure that such an error does not occur, because
the type system rules out the possibility of it arising. For example, the
dynamics need not check, when performing an addition, that its two argu-
ments are, in fact, numbers, as opposed to strings, because the type system
ensures that this is the case. On the other hand the dynamics for quotient
must check for a zero divisor, because the type system does not rule out the
possibility.

One approach to modelling checked errors is to give an inductive def-
inition of the judgment e err stating that the expression e incurs a checked
run-time error, such as division by zero. Here are some representative rules
that would appear in a full inductive definition of this judgment:

e1 val

div(e1; num[0]) err
(6.1a)
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e1 err

plus(e1; e2) err
(6.1b)

e1 val e2 err

plus(e1; e2) err
(6.1c)

Rule (6.1a) signals an error condition for division by zero. The other rules
propagate this error upwards: if an evaluated sub-expression is a checked
error, then so is the overall expression.

Once the error judgment is available, we may also consider an expres-
sion, error, which forcibly induces an error, with the following static and
dynamic semantics:

Γ ` error : τ
(6.2a)

error err
(6.2b)

The preservation theorem is not affected by the presence of checked er-
rors. However, the statement (and proof) of progress is modified to account
for checked errors.

Theorem 6.5 (Progress With Error). If e : τ, then either e err, or e val, or there
exists e′ such that e 7→ e′.

Proof. The proof is by induction on typing, and proceeds similarly to the
proof given earlier, except that there are now three cases to consider at each
point in the proof.

6.4 Notes

The concept of type safety as it is understood today was first formulated
by Milner (1978), who invented the slogan “well-typed programs do not
go wrong.” Whereas Milner relied on an explicit notion of “going wrong”
to express the concept of a type error, Wright and Felleisen (1994) observed
that we can instead show that ill-defined states cannot arise in a well-typed
program, giving rise to the slogan “well-typed programs do not get stuck.”
However, their formulation relied on an analysis showing that no stuck
state is well-typed. This analysis is replaced by the progress theorem given
here, which relies on the concept of canonical forms introduced by Martin-
Löf (1980).
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Chapter 7

Evaluation Dynamics

In Chapter 5 we defined the evaluation of expressions in L{num str} using
the method of structural dynamics. This approach is useful as a foundation
for proving properties of a language, but other methods are often more
appropriate for other purposes, such as writing user manuals. Another
method, called evaluation dynamics presents the dynamics as a relation be-
tween a phrase and its value, without detailing how it is to be determined
in a step-by-step manner. Evaluation dynamics suppresses the step-by-step
details of determining the value of an expression, and hence does not pro-
vide any useful notion of the time complexity of a program. Cost dynamics
rectifies this by augmenting evaluation dynamics with a cost measure. Var-
ious cost measures may be assigned to an expression. One example is the
number of steps in the structural dynamics required for an expression to
reach a value.

7.1 Evaluation Dynamics

An evaluation dynamics, consists of an inductive definition of the evalua-
tion judgment, e ⇓ v, stating that the closed expression, e, evaluates to the
value, v. The evaluation dynamics of L{num str} is defined by the follow-
ing rules:

num[n] ⇓ num[n] (7.1a)

str[s] ⇓ str[s] (7.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 = n nat

plus(e1; e2) ⇓ num[n]
(7.1c)
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e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s str

cat(e1; e2) ⇓ str[s]
(7.1d)

e ⇓ str[s] |s| = n nat

len(e) ⇓ num[n]
(7.1e)

[e1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.1f)

The value of a let expression is determined by substitution of the bind-
ing into the body. The rules are therefore not syntax-directed, because the
premise of Rule (7.1f) is not a sub-expression of the expression in the con-
clusion of that rule.

Rule (7.1f) specifies a by-name interpretation of definitions. For a by-
value interpretation the following rule should be used instead:

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.2)

Because the evaluation judgment is inductively defined, we prove prop-
erties of it by rule induction. Specifically, to show that the propertyP(e ⇓ v)
holds, it is enough to show that P is closed under Rules (7.1):

1. Show that P(num[n] ⇓ num[n]).

2. Show that P(str[s] ⇓ str[s]).

3. Show thatP(plus(e1; e2) ⇓ num[n]), ifP(e1 ⇓ num[n1]),P(e2 ⇓ num[n2]),
and n1 + n2 = n nat.

4. Show thatP(cat(e1; e2) ⇓ str[s]), ifP(e1 ⇓ str[s1]),P(e2 ⇓ str[s2]),
and s1 ˆ s2 = s str.

5. Show that P(let(e1; x.e2) ⇓ v2), if P([e1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e itself,
because the evaluation rules are not syntax-directed.

Lemma 7.1. If e ⇓ v, then v val.

Proof. By induction on Rules (7.1). All cases except Rule (7.1f) are imme-
diate. For the latter case, the result follows directly by an appeal to the
inductive hypothesis for the premise of the evaluation rule.
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7.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for L{num str}. It is nat-
ural to ask whether they are equivalent, but to do so first requires that we
consider carefully what we mean by equivalence. The structural dynamics
describes a step-by-step process of execution, whereas the evaluation dy-
namics suppresses the intermediate states, focusing attention on the initial
and final states alone. This suggests that the appropriate correspondence
is between complete execution sequences in the structural dynamics and the
evaluation judgment in the evaluation dynamics. (We will consider only
numeric expressions, but analogous results hold also for string-valued ex-
pressions.)

Theorem 7.2. For all closed expressions e and values v, e 7→∗ v iff e ⇓ v.

How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 7.3. If e ⇓ v, then e 7→∗ v.

Proof. By induction on the definition of the evaluation judgment. For ex-
ample, suppose that plus(e1; e2) ⇓ num[n] by the rule for evaluating addi-
tions. By induction we know that e1 7→∗ num[n1] and e2 7→∗ num[n2]. We
reason as follows:

plus(e1; e2) 7→∗ plus(num[n1]; e2)

7→∗ plus(num[n1]; num[n2])

7→ num[n1 + n2]

Therefore plus(e1; e2) 7→∗ num[n1 + n2], as required. The other cases are
handled similarly.

For the converse, recall from Chapter 5 the definitions of multi-step
evaluation and complete evaluation. Because v ⇓ v whenever v val, it suf-
fices to show that evaluation is closed under converse evaluation:1

Lemma 7.4. If e 7→ e′ and e′ ⇓ v, then e ⇓ v.

Proof. By induction on the definition of the transition judgment. For ex-
ample, suppose that plus(e1; e2) 7→ plus(e′1; e2), where e1 7→ e′1. Sup-
pose further that plus(e′1; e2) ⇓ v, so that e′1 ⇓ num[n1], e2 ⇓ num[n2],
n1 + n2 = n nat, and v is num[n]. By induction e1 ⇓ num[n1], and hence
plus(e1; e2) ⇓ num[n], as required.

1Converse evaluation is also known as head expansion.
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7.3 Type Safety, Revisited

Theorem 6.1 states that a language is safe iff it satisfies both preservation
and progress. This formulation depends critically on the use of a transition
system to specify the dynamics. But what if we had instead specified the
dynamics as an evaluation relation, instead of using a transition system?
Can we state and prove safety in such a setting?

The answer, unfortunately, is that we cannot. Although there is an ana-
logue of the preservation property for an evaluation dynamics, there is no
clear analogue of the progress property. Preservation may be stated as say-
ing that if e ⇓ v and e : τ, then v : τ. This can be readily proved by induction
on the evaluation rules. But what is the analogue of progress? We might
be tempted to phrase progress as saying that if e : τ, then e ⇓ v for some
v. Although this property is true for L{num str}, it demands much more
than just progress — it requires that every expression evaluate to a value! If
L{num str} were extended to admit operations that may result in an error
(as discussed in Section 6.3), or to admit non-terminating expressions, then
this property would fail, even though progress would remain valid.

One possible attitude towards this situation is to simply conclude that
type safety cannot be properly discussed in the context of an evaluation
dynamics, but only by reference to a structural dynamics. Another point of
view is to instrument the dynamics with explicit checks for dynamic type
errors, and to show that any expression with a dynamic type fault must be
statically ill-typed. Re-stated in the contrapositive, this means that a stat-
ically well-typed program cannot incur a dynamic type error. A difficulty
with this point of view is that we must explicitly account for a form of er-
ror solely to prove that it cannot arise! Nevertheless, we will press on to
show how a semblance of type safety can be established using evaluation
dynamics.

The main idea is to define a judgment e⇑ stating, in the jargon of the
literature, that the expression e goes wrong when executed. The exact defi-
nition of “going wrong” is given by a set of rules, but the intention is that
it should cover all situations that correspond to type errors. The following
rules are representative of the general case:

plus(str[s]; e2)⇑ (7.3a)

e1 val

plus(e1; str[s])⇑ (7.3b)

These rules explicitly check for the misapplication of addition to a string;
similar rules govern each of the primitive constructs of the language.
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Theorem 7.5. If e⇑, then there is no τ such that e : τ.

Proof. By rule induction on Rules (7.3). For example, for Rule (7.3a), we
observe that str[s] : str, and hence plus(str[s]; e2) is ill-typed.

Corollary 7.6. If e : τ, then ¬(e⇑).

Apart from the inconvenience of having to define the judgment e⇑ only
to show that it is irrelevant for well-typed programs, this approach suffers a
very significant methodological weakness. If we should omit one or more
rules defining the judgment e⇑, the proof of Theorem 7.5 remains valid;
there is nothing to ensure that we have included sufficiently many checks
for run-time type errors. We can prove that the ones we define cannot arise
in a well-typed program, but we cannot prove that we have covered all
possible cases. By contrast the structural dynamics does not specify any
behavior for ill-typed expressions. Consequently, any ill-typed expression
will “get stuck” without our explicit intervention, and the progress theorem
rules out all such cases. Moreover, the transition system corresponds more
closely to implementation—a compiler need not make any provisions for
checking for run-time type errors. Instead, it relies on the statics to ensure
that these cannot arise, and assigns no meaning to any ill-typed program.
Execution is therefore more efficient, and the language definition is simpler.

7.4 Cost Dynamics

A structural dynamics provides a natural notion of time complexity for pro-
grams, namely the number of steps required to reach a final state. An eval-
uation dynamics, on the other hand, does not provide such a direct no-
tion of complexity. Because the individual steps required to complete an
evaluation are suppressed, we cannot directly read off the number of steps
required to evaluate to a value. Instead we must augment the evaluation
relation with a cost measure, resulting in a cost dynamics.

Evaluation judgments have the form e ⇓k v, with the meaning that e
evaluates to v in k steps.

num[n] ⇓0 num[n] (7.4a)

e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]

plus(e1; e2) ⇓k1+k2+1 num[n1 + n2]
(7.4b)

str[s] ⇓0 str[s] (7.4c)
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e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1; e2) ⇓k1+k2+1 str[s1 ˆ s2]
(7.4d)

[e1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k2+1 v2
(7.4e)

For a by-value interpretation of let, Rule (7.4e) should be replaced by the
following rule:

e1 ⇓k1 v1 [v1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k1+k2+1 v2
(7.5)

Theorem 7.7. For any closed expression e and closed value v of the same type,
e ⇓k v iff e 7→k v.

Proof. From left to right proceed by rule induction on the definition of the
cost dynamics. From right to left proceed by induction on k, with an inner
rule induction on the definition of the structural dynamics.

7.5 Notes

The structural similarity between evaluation dynamics and typing rules
was first developed in the definition of Standard ML (Milner et al., 1997).
The advantage of evaluation semantics is that it directly defines the relation
of interest, that between a program and its outcome. The disadvantage is
that it is not as well-suited to metatheory as structural semantics, precisely
because it glosses over the fine structure of computation. The concept of
a cost dynamics was introduced by Blelloch and Greiner (1996b) in their
study of parallelism (discussed further in Chapter 39).
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Function Types





Chapter 8

Function Definitions and
Values

In the language L{num str} we may perform calculations such as the dou-
bling of a given expression, but we cannot express doubling as a concept
in itself. To capture the general pattern of doubling, we abstract away from
the particular number being doubled using a variable to stand for a fixed,
but unspecified, number, to express the doubling of an arbitrary number.
Any particular instance of doubling may then be obtained by substituting a
numeric expression for that variable. In general an expression may involve
many distinct variables, necessitating that we specify which of several pos-
sible variables is varying in a particular context, giving rise to a function of
that variable.

In this chapter we will consider two extensions of L{num str} with
functions. The first, and perhaps most obvious, extension is by adding func-
tion definitions to the language. A function is defined by binding a name to
an abt with a bound variable that serves as the argument of that function. A
function is applied by substituting a particular expression (of suitable type)
for the bound variable, obtaining an expression.

The domain and range of defined functions are limited to the types nat
and str, because these are the only types of expression. Such functions
are called first-order functions, in contrast to higher-order functions, which
permit functions as arguments and results of other functions. Because the
domain and range of a function are types, this requires that we introduce
function types whose elements are functions. Consequently, we may form
functions of higher type, those whose domain and range may themselves be
function types.



70 8.1 First-Order Functions

Historically the introduction of higher-order functions was responsible
for a mistake in language design that subsequently was re-characterized as
a feature, called dynamic binding. Dynamic binding arises from getting the
definition of substitution wrong by failing to avoid capture. This makes the
names of bound variables important, in violation of the fundamental prin-
ciple of binding stating that the names of bound variables are unimportant.

8.1 First-Order Functions

The language L{num str fun} is the extension of L{num str} with function
definitions and function applications as described by the following gram-
mar:

Exp e ::= call[ f](e) f(e) call
fun[τ1; τ2](x1.e2; f.e) fun f(x1:τ1):τ2 = e2 in e definition

The expression fun[τ1; τ2](x1.e2; f.e) binds the function name f within
e to the pattern x1.e2, which has parameter x1 and definition e2. The do-
main and range of the function are, respectively, the types τ1 and τ2. The
expression call[ f](e) instantiates the binding of f with the argument e.

The statics of L{num str fun} defines two forms of judgment:

1. Expression typing, e : τ, stating that e has type τ;

2. Function typing, f(τ1) : τ2, stating that f is a function with argument
type τ1 and result type τ2.

The judgment f(τ1) : τ2 is called the function header of f ; it specifies the
domain type and the range type of a function.

The statics of L{num str fun} is defined by the following rules:

Γ, x1 : τ1 ` e2 : τ2 Γ, f(τ1) : τ2 ` e : τ

Γ ` fun[τ1; τ2](x1.e2; f.e) : τ
(8.1a)

Γ ` f(τ1) : τ2 Γ ` e : τ1

Γ ` call[ f](e) : τ2
(8.1b)

Function substitution, written [[x.e/ f ]]e′, is defined by induction on the
structure of e′ much like the definition of ordinary substitution. However,
a function name, f , is not a form of expression, but rather can only occur in
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a call of the form call[ f](e). Function substitution for such expressions is
defined by the following rule:

[[x.e/ f ]]call[ f](e′) = let([[x.e/ f ]]e′; x.e)
(8.2)

At call sites to f with argument e′, function substitution yields a let expres-
sion that binds x to the result of expanding any further calls to f within e′.

Lemma 8.1. If Γ, f(τ1) : τ2 ` e : τ and Γ, x1 : τ1 ` e2 : τ2, then Γ `
[[x1.e2/ f ]]e : τ.

Proof. By induction on the structure of e.

The dynamics of L{num str fun} is defined using function substitution:

fun[τ1; τ2](x1.e2; f.e) 7→ [[x1.e2/ f ]]e
(8.3)

Because function substitution replaces all calls to f by appropriate let ex-
pressions, there is no need to give a rule for function calls.

The safety of L{num str fun} may, with some effort, be derived from
the safety theorem for higher-order functions, which we discuss next.

8.2 Higher-Order Functions

The syntactic and semantic similarity between variable definitions and func-
tion definitions in L{num str fun} is striking. This suggests that it may be
possible to consolidate the two concepts into a single definition mechanism.
The gap that must be bridged is the segregation of functions from expres-
sions. A function name f is bound to an abstractor x.e specifying a pattern
that is instantiated when f is applied. To consolidate function definitions
with expression definitions it is sufficient to reify the abstractor into a form
of expression, called a λ-abstraction, written lam[τ1](x.e). Correspond-
ingly, we must generalize application to have the form ap(e1; e2), where e1
is any expression, and not just a function name. These are, respectively, the
introduction and elimination forms for the function type, arr(τ1; τ2), whose
elements are functions with domain τ1 and range τ2.

The languageL{num str→} is the enrichment ofL{num str}with func-
tion types, as specified by the following grammar:

Typ τ ::= arr(τ1; τ2) τ1 → τ2 function
Exp e ::= lam[τ](x.e) λ (x:τ) e abstraction

ap(e1; e2) e1(e2) application
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Functions are now “first class” in the sense that a function is an expression
of function type.

The statics of L{num str→} is given by extending Rules (4.1) with the
following rules:

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(8.4a)

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(8.4b)

Lemma 8.2 (Inversion). Suppose that Γ ` e : τ.

1. If e = lam[τ1](x.e2), then τ = arr(τ1; τ2) and Γ, x : τ1 ` e2 : τ2.

2. If e = ap(e1; e2), then there exists τ2 such that Γ ` e1 : arr(τ2; τ) and
Γ ` e2 : τ2.

Proof. The proof proceeds by rule induction on the typing rules. Observe
that for each rule, exactly one case applies, and that the premises of the rule
in question provide the required result.

Lemma 8.3 (Substitution). If Γ, x : τ ` e′ : τ′, and Γ ` e : τ, then Γ ` [e/x]e′ :
τ′.

Proof. By rule induction on the derivation of the first judgment.

The dynamics of L{num str→} extends that of L{num str} with the
following additional rules:

lam[τ](x.e) val
(8.5a)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(8.5b)[
e1 val e2 7→ e′2

ap(e1; e2) 7→ ap(e1; e′2)

]
(8.5c)

[e2 val]

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
(8.5d)

The bracketed rule and premise are to be included for a call-by-value inter-
pretation of function application, and excluded for a call-by-name interpre-
tation.1

1Although the term “call-by-value” is accurately descriptive, the origin of the term “call-
by-name” remains shrouded in mystery.
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Theorem 8.4 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. The proof is by induction on Rules (8.5), which define the dynamics
of the language.

Consider Rule (8.5d),

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
.

Suppose that ap(lam[τ2](x.e1); e2) : τ1. By Lemma 8.2 we have e2 : τ2 and
x : τ2 ` e1 : τ1, so by Lemma 8.3 [e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 8.5 (Canonical Forms). If e : arr(τ1; τ2) and e val, then e = λ (x:τ1) e2
for some variable x and expression e2 such that x : τ1 ` e2 : τ2.

Proof. By induction on the typing rules, using the assumption e val.

Theorem 8.6 (Progress). If e : τ, then either e val, or there exists e′ such that
e 7→ e′.

Proof. The proof is by induction on Rules (8.4). Note that because we con-
sider only closed terms, there are no hypotheses on typing derivations.

Consider Rule (8.4b) (under the by-name interpretation). By induction
either e1 val or e1 7→ e′1. In the latter case we have ap(e1; e2) 7→ ap(e′1; e2).
In the former case, we have by Lemma 8.5 that e1 = lam[τ2](x.e) for some
x and e. But then ap(e1; e2) 7→ [e2/x]e.

8.3 Evaluation Dynamics and Definitional Equality

An inductive definition of the evaluation judgment e ⇓ v for L{num str→}
is given by the following rules:

lam[τ](x.e) ⇓ lam[τ](x.e)
(8.6a)

e1 ⇓ lam[τ](x.e) [e2/x]e ⇓ v
ap(e1; e2) ⇓ v

(8.6b)

It is easy to check that if e ⇓ v, then v val, and that if e val, then e ⇓ e.

Theorem 8.7. e ⇓ v iff e 7→∗ v and v val.
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Proof. In the forward direction we proceed by rule induction on Rules (8.6),
following along similar lines as the proof of Theorem 7.2.

In the reverse direction we proceed by rule induction on Rules (5.1).
The proof relies on an analogue of Lemma 7.4, which states that evalua-
tion is closed under converse execution, which is proved by induction on
Rules (8.5).

Definitional equality for the call-by-name dynamics of L{num str→} is
defined by a straightforward extension to Rules (5.10).

Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ2
(8.7a)

Γ ` e1 ≡ e′1 : τ2 → τ Γ ` e2 ≡ e′2 : τ2

Γ ` ap(e1; e2) ≡ ap(e′1; e′2) : τ
(8.7b)

Γ, x : τ1 ` e2 ≡ e′2 : τ2

Γ ` lam[τ1](x.e2) ≡ lam[τ1](x.e′2) : τ1 → τ2
(8.7c)

Definitional equality for call-by-value requires a small bit of additional
machinery. The main idea is to restrict Rule (8.7a) to require that the ar-
gument be a value. However, to be fully expressive, we must also widen
the concept of a value to include all variables that are in scope, so that
Rule (8.7a) would apply even when the argument is a variable. The justifi-
cation for this is that in call-by-value, the parameter of a function stands for
the value of its argument, and not for the argument itself. The call-by-value
definitional equality judgment has the form

Γ ` e1 ≡ e2 : τ,

where Γ consists of paired hypotheses x : τ, x val stating, for each variable
x in scope, its type and that it is a value. We write Γ ` e val to indicate that
e is a value under these hypotheses, so that, for example, x : τ, x val ` x val.
(The typing hypothesis is irrelevant, but harmless, to the value judgment.)

8.4 Dynamic Scope

The dynamics of function application given by Rules (8.5) is defined only
for expressions without free variables. When a function is called, the ar-
gument is substituted for the function parameter, ensuring that the result
remains closed. Moreover, because substitution of closed expressions can
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never incur capture, the scopes of variables are not disturbed by the dy-
namics, ensuring that the principles of binding and scope described in
Chapter 1 are respected. This treatment of variables is called static scoping,
or static binding, to contrast it with an alternative approach that we now
describe.

Another approach, called dynamic scoping, or dynamic binding, is some-
times advocated as an alternative to static binding. Evaluation is defined
for expressions that may contain free variables. Evaluation of a variable is
undefined; it is an error to ask for the value of an unbound variable. Func-
tion call is defined similarly to static binding, except that when a function is
called, the argument replaces the parameter in the body, possibly incurring,
rather than avoiding, capture of free variables in the argument. (As we will
explain shortly, this behavior is considered to be a feature, not a bug!)

The difference between replacement and substitution may be illustrated
by example. Let e be the expression λ (x:str) y + |x| in which the variable
y occurs free, and let e′ be the expression λ (y:str) f(y) with free variable
f . If we substitute e for f in e′ we obtain an expression of the form

λ (y′:str) (λ (x:str) y + |x|)(y′),

where the bound variable, y, in e has been renamed to some fresh variable
y′ so as to avoid capture. If we instead replace f by e in e′ we obtain

λ (y:str) (λ (x:str) y + |x|)(y)

in which y is no longer free: it has been captured during replacement.
The implications of this seemingly small change to the dynamics of

L{→} are far-reaching. The most obvious implication is that the language
is not type safe. In the above example we have that y : nat ` e : str→ nat,
and that f : str→ nat ` e′ : str→ nat. It follows that y : nat ` [e/ f ]e′ :
str→ nat, but it is easy to see that the result of replacing f by e in e′ is
ill-typed, regardless of what assumption we make about y. The difficulty,
of course, is that the bound occurrence of y in e′ has type str, whereas the
free occurrence in e must have type nat in order for e to be well-formed.

One way around this difficulty is to ignore types altogether, and rely
on run-time checks to ensure that bad things do not happen, despite the
evident failure of safety. (See Chapter 18 for a full exploration of this ap-
proach.) But even if we ignore worries about safety, we are still left with
the serious problem that the names of bound variables matter, and cannot
be altered without changing the meaning of a program. So, for example,
to use expression e′, we must bear in mind that the parameter, f , occurs
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within the scope of a binder for y, a fact that is not revealed by the type of
e′ (and certainly not if we disregard types entirely!) If we change e′ so that it
binds a different variable, say z, then we must correspondingly change e to
ensure that it refers to z, and not y, in order to preserve the overall behavior
of the system of two expressions. This means that e and e′ must be devel-
oped in tandem, violating a basic principle of modular decomposition. (For
more on dynamic scope, please see Chapter 33.)

8.5 Notes

Nearly all programming languages provide some form of function defini-
tion mechanism of the kind illustrated here. The main point of the present
account is to demonstrate that a more natural, and more powerful, ap-
proach is to separate the generic concept of a definition from the specific
concept of a function. Function types codify the general notion in a system-
atic manner that encompasses function definitions as a special case, and
moreover, admits passing functions as arguments and returning them as
results without special provision. The essential contribution of Church’s λ-
calculus (Church, 1941) was to take the notion of function as primary, and
to demonstrate that nothing more is needed to obtain a fully expressive
programming language.
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Chapter 9

Gödel’s T

The language L{nat→}, better known as Gödel’s T, is the combination of
function types with the type of natural numbers. In contrast to L{num str},
which equips the naturals with some arbitrarily chosen arithmetic primi-
tives, the language L{nat→} provides a general mechanism, called prim-
itive recursion, from which these primitives may be defined. Primitive re-
cursion captures the essential inductive character of the natural numbers,
and hence may be seen as an intrinsic termination proof for each program
in the language. Consequently, we may only define total functions in the
language, those that always return a value for each argument. In essence
every program in L{nat→} “comes equipped” with a proof of its termi-
nation. While this may seem like a shield against infinite loops, it is also
a weapon that can be used to show that some programs cannot be written
in L{nat→}. To do so would require a master termination proof for every
possible program in the language, something that we shall prove does not
exist.
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9.1 Statics

The syntax of L{nat→} is given by the following grammar:

Typ τ ::= nat nat naturals
arr(τ1; τ2) τ1 → τ2 function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
rec(e; e0; x.y.e1) rec e {z⇒ e0 | s(x) with y⇒ e1}

recursion
lam[τ](x.e) λ (x:τ) e abstraction
ap(e1; e2) e1(e2) application

We write n for the expression s(. . . s(z)), in which the successor is ap-
plied n ≥ 0 times to zero. The expression rec(e; e0; x.y.e1) is called primi-
tive recursion. It represents the e-fold iteration of the transformation x.y.e1
starting from e0. The bound variable x represents the predecessor and the
bound variable y represents the result of the x-fold iteration. The “with”
clause in the concrete syntax for the recursor binds the variable y to the
result of the recursive call, as will become apparent shortly.

Sometimes iteration, written iter(e; e0; y.e1), is considered as an alter-
native to primitive recursion. It has essentially the same meaning as prim-
itive recursion, except that only the result of the recursive call is bound
to y in e1, and no binding is made for the predecessor. Clearly iteration
is a special case of primitive recursion, because we can always ignore the
predecessor binding. Conversely, primitive recursion is definable from it-
eration, provided that we have product types (Chapter 11) at our disposal.
To define primitive recursion from iteration we simultaneously compute
the predecessor while iterating the specified computation.

The statics of L{nat→} is given by the following typing rules:

Γ, x : τ ` x : τ
(9.1a)

Γ ` z : nat
(9.1b)

Γ ` e : nat
Γ ` s(e) : nat

(9.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` rec(e; e0; x.y.e1) : τ
(9.1d)
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Γ, x : ρ ` e : τ

Γ ` lam[ρ](x.e) : arr(ρ; τ)
(9.1e)

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(9.1f)

As usual, admissibility of the structural rule of substitution is crucially
important.

Lemma 9.1. If Γ ` e : τ and Γ, x : τ ` e′ : τ′, then Γ ` [e/x]e′ : τ′.

9.2 Dynamics

The closed values of L{nat→} are defined by the following rules:

z val
(9.2a)

[e val]

s(e) val
(9.2b)

lam[τ](x.e) val
(9.2c)

The premise of Rule (9.2b) is to be included for an eager interpretation of
successor, and excluded for a lazy interpretation.

The transition rules for the dynamics of L{nat→} are as follows:[
e 7→ e′

s(e) 7→ s(e′)

]
(9.3a)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(9.3b)

[
e1 val e2 7→ e′2

ap(e1; e2) 7→ ap(e1; e′2)

]
(9.3c)

[e2 val]

ap(lam[τ](x.e); e2) 7→ [e2/x]e
(9.3d)

e 7→ e′

rec(e; e0; x.y.e1) 7→ rec(e′; e0; x.y.e1)
(9.3e)

rec(z; e0; x.y.e1) 7→ e0
(9.3f)
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s(e) val

rec(s(e); e0; x.y.e1) 7→ [e, rec(e; e0; x.y.e1)/x, y]e1
(9.3g)

The bracketed rules and premises are to be included for an eager successor
and call-by-value application, and omitted for a lazy successor and call-
by-name application. Rules (9.3f) and (9.3g) specify the behavior of the
recursor on z and s(e). In the former case the recursor reduces to e0, and in
the latter case the variable x is bound to the predecessor, e, and y is bound
to the (unevaluated) recursion on e. If the value of y is not required in the
rest of the computation, the recursive call will not be evaluated.

Lemma 9.2 (Canonical Forms). If e : τ and e val, then

1. If τ = nat, then e = s(s(. . . z)) for some number n ≥ 0 occurrences of
the successor starting with zero.

2. If τ = τ1 → τ2, then e = λ (x:τ1) e2 for some e2.

Theorem 9.3 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′

9.3 Definability

A mathematical function f : N→ N on the natural numbers is definable in
L{nat→} iff there exists an expression e f of type nat → nat such that for
every n ∈N,

e f(n) ≡ f (n) : nat. (9.4)

That is, the numeric function f : N → N is definable iff there is an ex-
pression e f of type nat → nat such that, when applied to the numeral
representing the argument n ∈N, the application is definitionally equal to
the numeral corresponding to f (n) ∈N.

Definitional equality forL{nat→}, written Γ ` e ≡ e′ : τ, is the strongest
congruence containing these axioms:

Γ ` ap(lam[τ1](x.e2); e1) ≡ [e1/x]e2 : τ
(9.5a)

Γ ` rec(z; e0; x.y.e1) ≡ e0 : τ
(9.5b)
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Γ ` rec(s(e); e0; x.y.e1) ≡ [e, rec(e; e0; x.y.e1)/x, y]e1 : τ
(9.5c)

For example, the doubling function, d(n) = 2×n, is definable inL{nat→}
by the expression ed : nat→ nat given by

λ (x:nat) rec x {z⇒ z | s(u) with v⇒ s(s(v))}.

To check that this defines the doubling function, we proceed by induction
on n ∈N. For the basis, it is easy to check that

ed(0) ≡ 0 : nat.

For the induction, assume that

ed(n) ≡ d(n) : nat.

Then calculate using the rules of definitional equality:

ed(n + 1) ≡ s(s(ed(n)))

≡ s(s(2× n))

= 2× (n + 1)

= d(n + 1).

As another example, consider the following function, called Ackermann’s
function, defined by the following equations:

A(0, n) = n + 1
A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m, A(m + 1, n)).

This function grows very quickly. For example, A(4, 2) ≈ 265,536, which is
often cited as being much larger than the number of atoms in the universe!
Yet we can show that the Ackermann function is total by a lexicographic
induction on the pair of arguments (m, n). On each recursive call, either m
decreases, or else m remains the same, and n decreases, so inductively the
recursive calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat → nat

that is defined using primitive recursion, but without using any higher or-
der functions. Ackermann’s function is defined so that it is not first-order
primitive recursive, but is higher-order primitive recursive. The key to
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showing that it is definable in L{nat→} is to observe that A(m + 1, n) it-
erates n times the function A(m,−), starting with A(m, 1). As an auxiliary,
let us define the higher-order function

it : (nat→ nat)→ nat→ nat→ nat

to be the λ-abstraction

λ ( f:nat→ nat)λ (n:nat) rec n {z⇒ id | s( ) with g⇒ f ◦ g},

where id = λ (x:nat) x is the identity, and f ◦ g = λ (x:nat) f(g(x)) is
the composition of f and g. It is easy to check that

it( f)(n)(m) ≡ f (n)(m) : nat,

where the latter expression is the n-fold composition of f starting with m.
We may then define the Ackermann function

ea : nat→ nat→ nat

to be the expression

λ (m:nat) recm {z⇒ s | s( ) with f ⇒ λ (n:nat) it( f)(n)( f(1))}.

It is instructive to check that the following equivalences are valid:

ea(0)(n) ≡ s(n) (9.6)

ea(m + 1)(0) ≡ ea(m)(1) (9.7)

ea(m + 1)(n + 1) ≡ ea(m)(ea(s(m))(n)). (9.8)

That is, the Ackermann function is definable in L{nat→}.

9.4 Undefinability

It is impossible to define an infinite loop in L{nat→}.

Theorem 9.4. If e : τ, then there exists v val such that e ≡ v : τ.

Proof. See Corollary 47.15.
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Consequently, values of function type in L{nat→} behave like mathe-
matical functions: if f : ρ→ τ and e : ρ, then f(e) evaluates to a value of
type τ. Moreover, if e : nat, then there exists a natural number n such that
e ≡ n : nat.

Using this, we can show, using a technique called diagonalization, that
there are functions on the natural numbers that are not definable inL{nat→}.
We make use of a technique, called Gödel-numbering, that assigns a unique
natural number to each closed expression of L{nat→}. This allows us
to manipulate expressions as data values in L{nat→}, and hence permits
L{nat→} to compute with its own programs.1

The essence of Gödel-numbering is captured by the following simple
construction on abstract syntax trees. (The generalization to abstract bind-
ing trees is slightly more difficult, the main complication being to ensure
that all α-equivalent expressions are assigned the same Gödel number.) Re-
call that a general ast, a, has the form o(a1, . . . , ak), where o is an operator
of arity k. Fix an enumeration of the operators so that every operator has
an index i ∈ N, and let m be the index of o in this enumeration. Define the
Gödel number paq of a to be the number

2m 3n1 5n2 . . . pnk
k ,

where pk is the kth prime number (so that p0 = 2, p1 = 3, and so on), and
n1, . . . , nk are the Gödel numbers of a1, . . . , ak, respectively. This assigns a
natural number to each ast. Conversely, given a natural number, n, we may
apply the prime factorization theorem to “parse” n as a unique abstract
syntax tree. (If the factorization is not of the appropriate form, which can
only be because the arity of the operator does not match the number of
factors, then n does not code any ast.)

Now, using this representation, we may define a (mathematical) func-
tion funiv : N → N → N such that, for any e : nat→ nat, funiv(peq)(m) =
n iff e(m) ≡ n : nat.2 The determinacy of the dynamics, together with The-
orem 9.4, ensure that funiv is a well-defined function. It is called the universal
function for L{nat→} because it specifies the behavior of any expression
e of type nat → nat. Using the universal function, let us define an auxil-
iary mathematical function, called the diagonal function, d : N→ N, by the
equation d(m) = funiv(m)(m). This function is chosen so that d(peq) = n iff

1The same technique lies at the heart of the proof of Gödel’s celebrated incompleteness
theorem. The undefinability of certain functions on the natural numbers within L{nat→}
may be seen as a form of incompleteness similar to that considered by Gödel.

2The value of funiv(k)(m) may be chosen arbitrarily to be zero when k is not the code of
any expression e.
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e(peq) ≡ n : nat. (The motivation for this definition will become apparent
in a moment.)

The function d is not definable in L{nat→}. Suppose that d were de-
fined by the expression ed, so that we have

ed(peq) ≡ e(peq) : nat.

Let eD be the expression

λ (x:nat) s(ed(x))

of type nat→ nat. We then have

eD(peDq) ≡ s(ed(peDq))

≡ s(eD(peDq)).

But the termination theorem implies that there exists n such that eD(peDq) ≡
n, and hence we have n ≡ s(n), which is impossible.

We say that a language L is universal if it is possible to write an inter-
preter for L in L itself. It is intuitively evident that funiv is computable in
the sense that we can define it in a sufficiently powerful programming lan-
guage. But the preceding argument shows thatL{nat→} is not sufficiently
powerful for this task. That is, L{nat→} is not universal. By demanding
termination we sacrifice expressiveness. The preceding argument shows
that this is an inescapable tradeoff. If you want universality, you have to
give up termination, and if you want termination, then you must give up
universality. There is no alternative.

9.5 Notes

L{nat→}was introduced by Gödel in his study of the consistency of arith-
metic (Gödel, 1980). Gödel showed how to “compile” proofs in arithmetic
into well-typed terms of the language L{nat→}, and to reduce the consis-
tency problem for arithmetic to the termination of programs in L{nat→}.
This was perhaps the first programming language whose design was di-
rectly influenced by the verification (of termination) of its programs.
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Chapter 10

Plotkin’s PCF

The language L{nat⇀}, also known as Plotkin’s PCF, integrates functions
and natural numbers using general recursion, a means of defining self-referential
expressions. In contrast to L{nat→} expressions in L{nat⇀} might not
terminate when evaluated: its definable functions are, in general, partial
rather than total. Informally, the difference betweenL{nat⇀} andL{nat→}
is that the former moves the proof of termination for an expression from
the expression itself into the mind of the programmer. The type system no
longer ensures termination, which permits a wider range of functions to be
defined in the system, but at the cost of admitting infinite loops when the
termination proof is either incorrect or absent.

The crucial concept embodied in L{nat⇀} is the fixed point characteri-
zation of recursive definitions. In ordinary mathematical practice we may
define a function f by recursion equations such as these:

f (0) , 1

f (n + 1) , (n + 1)× f (n).

These may be viewed as simultaneous equations in the variable, f , ranging
over functions on the natural numbers. The function we seek is a solution to
these equations—a function f : N→ N such that the above conditions are
satisfied. We must, of course, show that these equations have a unique so-
lution, which is easily shown by mathematical induction on the argument
to f .

The solution to such a system of equations may be characterized as
the fixed point of an associated functional (operator mapping functions to
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functions). To see this, let us re-write these equations in another form:

f (n) ,

{
1 if n = 0
n× f (n′) if n = n′ + 1.

Re-writing yet again, we seek f given by

n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1.

Now define the functional F by the equation F( f ) = f ′, where f ′ is given by

n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1.

Note well that the condition on f ′ is expressed in terms of the argument, f ,
to the functional F, and not in terms of f ′ itself! The function f we seek is
then a fixed point of F, which is a function f : N→N such that f = F( f ). In
other words f is defined to the fix(F), where fix is an operator on functionals
yielding a fixed point of F.

Why does an operator such as F have a fixed point? Informally, a
fixed point may be obtained as the limit of a series of approximations of
the desired solution obtained by iterating the functional F. This is where
partial functions come into the picture. Let us say that a partial func-
tion, φ on the natural numbers, is an approximation to a total function, f ,
if φ(m) = n implies that f (m) = n. Let ⊥: N ⇀ N be the totally unde-
fined partial function—⊥(n) is undefined for every n ∈N. Intuitively, this
is the “worst” approximation to the desired solution, f , of the recursion
equations given above. Given any approximation, φ, of f , we may “im-
prove” it by considering φ′ = F(φ). Intuitively, φ′ is defined on 0 and on
m + 1 for every m ≥ 0 on which φ is defined. Continuing in this manner,
φ′′ = F(φ′) = F(F(φ)) is an improvement on φ′, and hence a further im-
provement on φ. If we start with ⊥ as the initial approximation to f , then
pass to the limit

lim
i≥0

F(i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈N,
and hence is the function f itself. Turning this around, if the limit exists, it
must be the solution we seek.

This fixed point characterization of recursion equations is taken as a
primitive concept in L{nat⇀}—we may obtain the least fixed point of any
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functional definable in the language. Using this we may solve any set of
recursion equations we like, with the proviso that there is no guarantee
that the solution is a total function. Rather, it is guaranteed to be a partial
function that may be undefined on some, all, or no inputs. This is the price
we pay for expressive power—we may solve all systems of equations, but
the solution may not be as well-behaved as we might like. It is our task as
programmers to ensure that the functions defined by recursion are total—
all of our loops terminate.

10.1 Statics

The abstract binding syntax of L{nat⇀} is given by the following gram-
mar:

Typ τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
ifz(e; e0; x.e1) ifz e {z⇒ e0 | s(x)⇒ e1} zero test
lam[τ](x.e) λ (x:τ) e abstraction
ap(e1; e2) e1(e2) application
fix[τ](x.e) fix x:τ is e recursion

The expression fix[τ](x.e) is called general recursion; it is discussed in
more detail below. The expression ifz(e; e0; x.e1) branches according to
whether e evaluates to z or not, binding the predecessor to x in the case
that it is not.

The statics of L{nat⇀} is inductively defined by the following rules:

Γ, x : τ ` x : τ
(10.1a)

Γ ` z : nat
(10.1b)

Γ ` e : nat
Γ ` s(e) : nat

(10.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` e1 : τ

Γ ` ifz(e; e0; x.e1) : τ
(10.1d)
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Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : parr(τ1; τ2)
(10.1e)

Γ ` e1 : parr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(10.1f)

Γ, x : τ ` e : τ

Γ ` fix[τ](x.e) : τ
(10.1g)

Rule (10.1g) reflects the self-referential nature of general recursion. To show
that fix[τ](x.e) has type τ, we assume that it is the case by assigning that
type to the variable, x, which stands for the recursive expression itself, and
checking that the body, e, has type τ under this very assumption.

The structural rules, including in particular substitution, are admissible
for the static semantics.

Lemma 10.1. If Γ, x : τ ` e′ : τ′, Γ ` e : τ, then Γ ` [e/x]e′ : τ′.

10.2 Dynamics

The dynamic semantics of L{nat⇀} is defined by the judgments e val,
specifying the closed values, and e 7→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(10.2a)

[e val]

s(e) val
(10.2b)

lam[τ](x.e) val
(10.2c)

The bracketed premise on Rule (10.2b) is to be included for the eager inter-
pretation of the sucessor operation, and omitted for the lazy interpretation.
(See Chapter 37 for a further discussion of laziness.)

The transition judgment e 7→ e′ is defined by the following rules:[
e 7→ e′

s(e) 7→ s(e′)

]
(10.3a)

e 7→ e′

ifz(e; e0; x.e1) 7→ ifz(e′; e0; x.e1)
(10.3b)

ifz(z; e0; x.e1) 7→ e0
(10.3c)
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s(e) val

ifz(s(e); e0; x.e1) 7→ [e/x]e1
(10.3d)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(10.3e)

[
e1 val e2 7→ e′2

ap(e1; e2) 7→ ap(e1; e′2)

]
(10.3f)

[e val]

ap(lam[τ](x.e); e2) 7→ [e2/x]e
(10.3g)

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e
(10.3h)

The bracketed Rule (10.3a) is to be included for an eager interpretation of
the successor, and omitted otherwise. Bracketed Rule (10.3f) and the brack-
eted premise on Rule (10.3g) are to be included for a call-by-value interpre-
tation, and omitted for a call-by-name interpretation, of function applica-
tion. Rule (10.3h) implements self-reference by substituting the recursive
expression itself for the variable x in its body; this is called unwinding the
recursion.

Theorem 10.2 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. The proof of preservation is by induction on the derivation of the
transition judgment. Consider Rule (10.3h). Suppose that fix[τ](x.e) : τ.
By inversion and substitution we have [fix[τ](x.e)/x]e : τ, as required.
The proof of progress proceeds by induction on the derivation of the typing
judgment. For example, for Rule (10.1g) the result follows immediately
because we may make progress by unwinding the recursion.

It is easy to check directly that if e val, then e is irreducible in that there
is no e′ such that e 7→ e′. The safety theorem implies the converse, namely
that an irreducible expression is a value, provided that it is closed and well-
typed.

Definitional equality for the call-by-name variant of L{nat⇀}, written
Γ ` e1 ≡ e2 : τ, is defined to be the strongest congruence containing the
following axioms:

Γ ` ifz(z; e0; x.e1) ≡ e0 : τ
(10.4a)
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Γ ` ifz(s(e); e0; x.e1) ≡ [e/x]e1 : τ
(10.4b)

Γ ` fix[τ](x.e) ≡ [fix[τ](x.e)/x]e : τ
(10.4c)

Γ ` ap(lam[τ1](x.e2); e1) ≡ [e1/x]e2 : τ
(10.4d)

These rules are sufficient to calculate the value of any closed expression of
type nat: if e : nat, then e ≡ n : nat iff e 7→∗ n.

10.3 Definability

General recursion is a very flexible programming technique that permits a
wide variety of functions to be defined within L{nat⇀}. The drawback
is that, in contrast to primitive recursion, the termination of a recursively
defined function is not intrinsic to the program itself, but rather must be
proved extrinsically by the programmer. The benefit is a much greater free-
dom in writing programs.

Let us write fun x(y:τ1):τ2 is e for a recursive function within whose
body, e : τ2, are bound two variables, y : τ1 standing for the argument and
x : τ1 → τ2 standing for the function itself. The dynamic semantics of this
construct is given by the axiom

(fun x(y:τ1):τ2 is e)(e1) 7→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function
itself for x and the argument for y in its body.

Recursive functions may be defined in L{nat⇀} using a combination
of recursion and functions, writing

fix x:τ1 ⇀ τ2 isλ (y:τ1) e

for fun x(y:τ1):τ2 is e. It is a good exercise to check that the static and
dynamic semantics of recursive functions are derivable from this definition.

The primitive recursion construct of L{nat→} is defined in L{nat⇀}
using recursive functions by taking the expression

rec e {z⇒ e0 | s(x) with y⇒ e1}
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to stand for the application, e′(e), where e′ is the general recursive function

fun f(u:nat):τ is ifz u {z⇒ e0 | s(x)⇒ [ f(x)/y]e1}.

The static and dynamic semantics of primitive recursion are derivable in
L{nat⇀} using this expansion.

In general, functions definable in L{nat⇀} are partial in that they may
be undefined for some arguments. A partial (mathematical) function, φ :
N ⇀ N, is definable in L{nat⇀} iff there is an expression eφ : nat⇀ nat

such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example, if φ is the totally
undefined function, then eφ is any function that loops without returning
whenever it is called.

It is informative to classify those partial functions φ that are definable
in L{nat⇀}. These are the so-called partial recursive functions, which are
defined to be the primitive recursive functions augmented by the minimiza-
tion operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that
(1) for m′ < m, φ(m′, n) is defined and non-zero, and (2) φ(m, n) = 0. If no
such m exists, then ψ(n) is undefined.

Theorem 10.3. A partial function φ on the natural numbers is definable inL{nat⇀}
iff it is partial recursive.

Proof sketch. Minimization is readily definable in L{nat⇀}, so it is at least
as powerful as the set of partial recursive functions. Conversely, we may,
with considerable tedium, define an evaluator for expressions ofL{nat⇀}
as a partial recursive function, using Gödel-numbering to represent expres-
sions as numbers. Consequently, L{nat⇀} does not exceed the power of
the set of partial recursive functions.

Church’s Law states that the partial recursive functions coincide with
the set of effectively computable functions on the natural numbers—those
that can be carried out by a program written in any programming language
currently available or that will ever be available.1 Therefore L{nat⇀} is
as powerful as any other programming language with respect to the set of
definable functions on the natural numbers.

The universal function, φuniv, for L{nat⇀} is the partial function on
the natural numbers defined by

φuniv(peq)(m) = n iff e(m) ≡ n : nat.

1See Chapter 17 for further discussion of Church’s Law.
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In contrast to L{nat→}, the universal function φuniv for L{nat⇀} is par-
tial (may be undefined for some inputs). It is, in essence, an interpreter
that, given the code peq of a closed expression of type nat⇀ nat, simulates
the dynamic semantics to calculate the result, if any, of applying it to the
m, obtaining n. Because this process may fail to terminate, the universal
function is not defined for all inputs.

By Church’s Law the universal function is definable in L{nat⇀}. In
contrast, we proved in Chapter 9 that the analogous function is not defin-
able in L{nat→} using the technique of diagonalization. It is instructive
to examine why that argument does not apply in the present setting. As in
Section 9.4, we may derive the equivalence

eD(peDq) ≡ s(eD(peDq))

for L{nat⇀}. The difference, however, is that this equation is not incon-
sistent! Rather than being contradictory, it is merely a proof that the expres-
sion eD(peDq) does not terminate when evaluated, for if it did, the result
would be a number equal to its own successor, which is impossible.

10.4 Notes

The language L{nat⇀} is derived from Plotkin (1977). Plotkin introduced
PCF to study the relationship between its operational and denotational se-
mantics, but many authors have used PCF as the subject of study for many
issues in the design and semantics of languages. In this respect PCF may
be thought of as the E. coli of programming languages.

VERSION 1.32 REVISED 05.15.2012



Part IV

Finite Data Types





Chapter 11

Product Types

The binary product of two types consists of ordered pairs of values, one from
each type in the order specified. The associated eliminatory forms are pro-
jections, which select the first and second component of a pair. The nullary
product, or unit, type consists solely of the unique “null tuple” of no val-
ues, and has no associated eliminatory form. The product type admits both
a lazy and an eager dynamics. According to the lazy dynamics, a pair is
a value without regard to whether its components are values; they are not
evaluated until (if ever) they are accessed and used in another computation.
According to the eager dynamics, a pair is a value only if its components
are values; they are evaluated when the pair is created.

More generally, we may consider the finite product, 〈τi〉i∈I , indexed by a
finite set of indices, I. The elements of the finite product type are I-indexed
tuples whose ith component is an element of the type τi, for each i ∈ I.
The components are accessed by I-indexed projection operations, general-
izing the binary case. Special cases of the finite product include n-tuples,
indexed by sets of the form I = { 0, . . . , n− 1 }, and labeled tuples, or records,
indexed by finite sets of symbols. Similarly to binary products, finite prod-
ucts admit both an eager and a lazy interpretation.
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11.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ τ ::= unit unit nullary product
prod(τ1; τ2) τ1 × τ2 binary product

Exp e ::= triv 〈〉 null tuple
pair(e1; e2) 〈e1, e2〉 ordered pair
pr[l](e) e · l left projection
pr[r](e) e · r right projection

There is no elimination form for the unit type, there being nothing to extract
from the null tuple.

The statics of product types is given by the following rules.

Γ ` 〈〉 : unit
(11.1a)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
(11.1b)

Γ ` e : τ1 × τ2

Γ ` e · l : τ1
(11.1c)

Γ ` e : τ1 × τ2

Γ ` e · r : τ2
(11.1d)

The dynamics of product types is specified by the following rules:

〈〉 val
(11.2a)

[e1 val] [e2 val]

〈e1, e2〉 val
(11.2b)[ e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉

]
(11.2c)

[
e1 val e2 7→ e′2
〈e1, e2〉 7→ 〈e1, e′2〉

]
(11.2d)

e 7→ e′

e · l 7→ e′ · l
(11.2e)

e 7→ e′

e · r 7→ e′ · r
(11.2f)
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[e1 val] [e2 val]

〈e1, e2〉 · l 7→ e1
(11.2g)

[e1 val] [e2 val]

〈e1, e2〉 · r 7→ e2
(11.2h)

The bracketed rules and premises are to be omitted for a lazy dynamics,
and included for an eager dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics,
with the proof proceeding along similar lines in each case.

Theorem 11.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ then either e val or there exists e′ such that e 7→ e′.

Proof. Preservation is proved by induction on transition defined by Rules (11.2).
Progress is proved by induction on typing defined by Rules (11.1).

11.2 Finite Products

The syntax of finite product types is given by the following grammar:

Typ τ ::= prod({i ↪→ τi}i∈I) 〈τi〉i∈I product
Exp e ::= tpl({i ↪→ ei}i∈I) 〈ei〉i∈I tuple

pr[i](e) e · i projection

The variable I stands for a finite index set over which products are formed.
The type prod({i ↪→ τi}i∈I), or ∏i∈I τi for short, is the type of I-tuples of
expressions ei of type τi, one for each i ∈ I. An I-tuple has the form
tpl({i ↪→ ei}i∈I), or 〈ei〉i∈I for short, and for each i ∈ I the ith projection
from an I-tuple, e, is written pr[i](e), or e · i for short.

When I = { i1, . . . , in }, the I-tuple type may be written in the form

〈i1 ↪→ τ1, . . . , in ↪→ τn〉

in which we make explicit the association of a type to each index i ∈ I.
Similarly, we may write

〈i1 ↪→ e1, . . . , in ↪→ en〉

for the I-tuple whose ith component is ei.
Finite products generalize empty and binary products by choosing I to

be empty or the two-element set { l, r }, respectively. In practice I is often
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chosen to be a finite set of symbols that serve as labels for the components
of the tuple so as to enhance readability.

The statics of finite products is given by the following rules:

Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` 〈i1 ↪→ e1, . . . , in ↪→ en〉 : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉
(11.3a)

Γ ` e : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉 (1 ≤ k ≤ n)
Γ ` e · ik : τk

(11.3b)

In Rule (11.3b) the index i ∈ I is a particular element of the index set I,
whereas in Rule (11.3a), the index i ranges over the index set I.

The dynamics of finite products is given by the following rules:

[e1 val . . . en val]

〈i1 ↪→ e1, . . . , in ↪→ en〉 val
(11.4a)

[
e1 val . . . ej−1 val ej 7→ e′j e′j+1 = ej+1 . . . e′n = en

〈i1 ↪→ e1, . . . , in ↪→ en〉 7→ 〈i1 ↪→ e′1, . . . , in ↪→ e′n〉

]
(11.4b)

e 7→ e′

e · i 7→ e′ · i
(11.4c)

〈i1 ↪→ e1, . . . , in ↪→ en〉 val

〈i1 ↪→ e1, . . . , in ↪→ en〉 · ik 7→ ek
(11.4d)

As formulated, Rule (11.4b) specifies that the components of a tuple are
to be evaluated in some sequential order, without specifying the order in
which the components are considered. It is not hard, but a bit technically
complicated, to impose an evaluation order by imposing a total ordering
on the index set and evaluating components according to this ordering.

Theorem 11.2 (Safety). If e : τ, then either e val or there exists e′ such that e′ : τ
and e 7→ e′.

Proof. The safety theorem may be decomposed into progress and preserva-
tion lemmas, which are proved as in Section 11.1.

11.3 Primitive and Mutual Recursion

In the presence of products we may simplify the primitive recursion con-
struct defined in Chapter 9 so that only the result on the predecessor, and
not the predecessor itself, is passed to the successor branch. Writing this as
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iter(e; e0; x.e1), we may define primitive recursion in the sense of Chap-
ter 9 to be the expression e′ · r, where e′ is the expression

iter(e; 〈z, e0〉; x.〈s(x · l), [x · r/x]e1〉).

The idea is to compute inductively both the number, n, and the result of the
recursive call on n, from which we can compute both n + 1 and the result
of an additional recursion using e1. The base case is computed directly as
the pair of zero and e0. It is easy to check that the statics and dynamics of
the recursor are preserved by this definition.

We may also use product types to implement mutual recursion, which
allows several mutually recursive computations to be defined simultane-
ously. For example, consider the following recursion equations defining
two mathematical functions on the natural numbers:

E(0) = 1
O(0) = 0

E(n + 1) = O(n)
O(n + 1) = E(n)

Intuitively, E(n) is non-zero if and only if n is even, and O(n) is non-zero
if and only if n is odd. If we wish to define these functions in L{nat⇀},
we immediately face the problem of how to define two functions simul-
taneously. There is a trick available in this special case that takes advan-
tage of the fact that E and O have the same type: simply define eo of type
nat → nat→ nat so that eo(0) represents E and eo(1) represents O. (We
leave the details as an exercise for the reader.)

A more general solution is to recognize that the definition of two mutu-
ally recursive functions may be thought of as the recursive definition of a
pair of functions. In the case of the even and odd functions we will define
the labeled tuple, eEO, of type, τEO, given by

〈even ↪→ nat→ nat, odd ↪→ nat→ nat〉.

From this we will obtain the required mutually recursive functions as the
projections eEO · even and eEO · odd.

To effect the mutual recursion the expression eEO is defined to be

fix this:τEO is 〈even ↪→ eE, odd ↪→ eO〉,

where eE is the expression

λ (x:nat) ifz x {z⇒ s(z) | s(y)⇒ this · odd(y)},
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and eO is the expression

λ (x:nat) ifz x {z⇒ z | s(y)⇒ this · even(y)}.

The functions eE and eO refer to each other by projecting the appropriate
component from the variable this standing for the object itself. The choice
of variable name with which to effect the self-reference is, of course, imma-
terial, but it is common to use this or self to emphasize its role.

11.4 Notes

Product types are the essence of structured data. All languages have some
form of product type, but frequently in a form that is combined with other,
separable, concepts. Common manifestations of products include: (1) func-
tions with “multiple arguments” or “multple results”; (2) “objects” repre-
sented as tuples of mutually recursive functions; (3) “structures,” which are
tuples with mutable components. There are many papers on finite prod-
uct types, which include record types as a special case. Pierce (2002) pro-
vides a thorough account of record types, and their subtyping properties
(for which, see Chapter 23). Allen et al. (2006) analyzes many of the key
ideas in the framework of dependent type theory.
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Chapter 12

Sum Types

Most data structures involve alternatives such as the distinction between a
leaf and an interior node in a tree, or a choice in the outermost form of a
piece of abstract syntax. Importantly, the choice determines the structure
of the value. For example, nodes have children, but leaves do not, and so
forth. These concepts are expressed by sum types, specifically the binary
sum, which offers a choice of two things, and the nullary sum, which offers
a choice of no things. Finite sums generalize nullary and binary sums to
permit an arbitrary number of cases indexed by a finite index set. As with
products, sums come in both eager and lazy variants, differing in how val-
ues of sum type are defined.

12.1 Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ τ ::= void void nullary sum
sum(τ1; τ2) τ1 + τ2 binary sum

Exp e ::= abort[τ](e) abort(e) abort
in[τ1; τ2][l](e) l · e left injection
in[τ1; τ2][r](e) r · e right injection
case(e; x1.e1; x2.e2) case e {l · x1⇒ e1 | r · x2⇒ e2} case analysis

The nullary sum represents a choice of zero alternatives, and hence admits
no introductory form. The eliminatory form, abort(e), aborts the com-
putation in the event that e evaluates to a value, which it cannot do. The
elements of the binary sum type are labeled to indicate whether they are
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drawn from the left or the right summand, either l · e or r · e. A value of
the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

Γ ` e : void
Γ ` abort(e) : τ

(12.1a)

Γ ` e : τ1

Γ ` l · e : τ1 + τ2
(12.1b)

Γ ` e : τ2

Γ ` r · e : τ1 + τ2
(12.1c)

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e {l · x1⇒ e1 | r · x2⇒ e2} : τ
(12.1d)

For the sake of readability, in Rules (12.1b) and (12.1c) we have written l · e
and r · e in place of the abstract syntax in[τ1; τ2][l](e) and in[τ1; τ2][r](e),
which includes the types τ1 and τ2 explicitly. In Rule (12.1d) both branches
of the case analysis must have the same type. Because a type expresses a
static “prediction” on the form of the value of an expression, and because
an expression of sum type could evaluate to either form at run-time, we
must insist that both branches yield the same type.

The dynamics of sums is given by the following rules:

e 7→ e′

abort(e) 7→ abort(e′)
(12.2a)

[e val]

l · e val
(12.2b)

[e val]

r · e val
(12.2c)[

e 7→ e′

l · e 7→ l · e′
]

(12.2d)[
e 7→ e′

r · e 7→ r · e′
]

(12.2e)

e 7→ e′

case e {l · x1⇒ e1 | r · x2⇒ e2} 7→ case e′ {l · x1⇒ e1 | r · x2⇒ e2}
(12.2f)

[e val]

case l · e {l · x1⇒ e1 | r · x2⇒ e2} 7→ [e/x1]e1
(12.2g)
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[e val]

case r · e {l · x1⇒ e1 | r · x2⇒ e2} 7→ [e/x2]e2
(12.2h)

The bracketed premises and rules are to be included for an eager dynamics,
and excluded for a lazy dynamics.

The coherence of the statics and dynamics is stated and proved as usual.

Theorem 12.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′.

Proof. The proof proceeds by induction on Rules (12.2) for preservation,
and by induction on Rules (12.1) for progress.

12.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so
may we also generalize nullary and binary sums to finite sums. The syntax
for finite sums is given by the following grammar:

Typ τ ::= sum({i ↪→ τi}i∈I) [τi]i∈I sum
Exp e ::= in[~τ][i](e) i · e injection

case(e; {i ↪→ xi.ei}i∈I) case e {i · xi⇒ ei}i∈I case analysis

The variable I stands for a finite index set over which sums are formed.
The notation ~τ stands for a finite function {i ↪→ τi}i∈I for some index set
I. The type sum({i ↪→ τi}i∈I), or ∑i∈I τi for short, is the type of I-classified
values of the form in[I][i](ei), or i · ei for short, where i ∈ I and ei is an
expression of type τi. An I-classified value is analyzed by an I-way case
analysis of the form case(e; {i ↪→ xi.ei}i∈I).

When I = { l1, . . . , ln }, the type of I-classified values may be written

[i1 ↪→ τ1, . . . , in ↪→ τn]

specifying the type associated to each class li ∈ I. Correspondingly, the
I-way case analysis has the form

case e {i1 · x1⇒ e1 | . . . | in · xn⇒ en}.

Finite sums generalize empty and binary products by choosing I to be
empty or the two-element set { l, r }, respectively. In practice I is often
chosen to be a finite set of symbols that serve as symbolic names for the
classes so as to enhance readability.
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The statics of finite sums is defined by the following rules:

Γ ` e : τk (1 ≤ k ≤ n)
Γ ` ik · e : [i1 ↪→ τ1, . . . , in ↪→ τn]

(12.3a)

Γ ` e : [i1 ↪→ τ1, . . . , in ↪→ τn] Γ, x1 : τ1 ` e1 : τ . . . Γ, xn : τn ` en : τ

Γ ` case e {i1 · x1⇒ e1 | . . . | in · xn⇒ en} : τ
(12.3b)

These rules generalize to the finite case the statics for nullary and binary
sums given in Section 12.1.

The dynamics of finite sums is defined by the following rules:

[e val]

i · e val
(12.4a)[

e 7→ e′

i · e 7→ i · e′
]

(12.4b)

e 7→ e′

case e {i · xi⇒ ei}i∈I 7→ case e′ {i · xi⇒ ei}i∈I
(12.4c)

i · e val
case i · e {i · xi⇒ ei}i∈I 7→ [e/xi]ei

(12.4d)

These again generalize the dynamics of binary sums given in Section 12.1.

Theorem 12.2 (Safety). If e : τ, then either e val or there exists e′ : τ such that
e 7→ e′.

Proof. The proof is similar to that for the binary case, as described in Sec-
tion 12.1.

12.3 Applications of Sum Types

Sum types have numerous uses, several of which we outline here. More
interesting examples arise once we also have recursive types, which are
introduced in Part V.

12.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often con-
fused with one another. The type unit has exactly one element, 〈〉, whereas
the type void has no elements at all. Consequently, if e : unit, then if e eval-
uates to a value, it must be unit — in other words, e has no interesting value
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(but it could diverge). On the other hand, if e : void, then e must not yield a
value; if it were to have a value, it would have to be a value of type void, of
which there are none. This shows that what is called the void type in many
languages is really the type unit because it indicates that an expression has
no interesting value, not that it has no value at all!

12.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans,
whose syntax is given by the following grammar:

Typ τ ::= bool bool booleans
Exp e ::= true true truth

false false falsity
if(e; e1; e2) if e then e1 else e2 conditional

The expression if(e; e1; e2) branches on the value of e : bool.
The statics of Booleans is given by the following typing rules:

Γ ` true : bool
(12.5a)

Γ ` false : bool
(12.5b)

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ
(12.5c)

The dynamics is given by the following value and transition rules:

true val
(12.6a)

false val
(12.6b)

if true then e1 else e2 7→ e1
(12.6c)

if false then e1 else e2 7→ e2
(12.6d)

e 7→ e′

if e then e1 else e2 7→ if e′ then e1 else e2
(12.6e)
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The type bool is definable in terms of binary sums and nullary prod-
ucts:

bool = unit+ unit (12.7a)
true = l · 〈〉 (12.7b)

false = r · 〈〉 (12.7c)
if e then e1 else e2 = case e {l · x1⇒ e1 | r · x2⇒ e2} (12.7d)

In the last equation above the variables x1 and x2 are chosen arbitrarily
such that x1 /∈ e1 and x2 /∈ e2. It is a simple matter to check that the evident
statics and dynamics of the type bool are engendered by these definitions.

12.3.3 Enumerations

More generally, sum types may be used to define finite enumeration types,
those whose values are one of an explicitly given finite set, and whose elim-
ination form is a case analysis on the elements of that set. For example, the
type suit, whose elements are ♣, ♦, ♥, and ♠, has as elimination form the
case analysis

case e {♣⇒ e0 |♦⇒ e1 |♥⇒ e2 |♠⇒ e3},

which distinguishes among the four suits. Such finite enumerations are
easily representable as sums. For example, we may define suit = [unit] ∈I ,
where I = {♣,♦,♥,♠} and the type family is constant over this set. The
case analysis form for a labeled sum is almost literally the desired case anal-
ysis for the given enumeration, the only difference being the binding for the
uninteresting value associated with each summand, which we may ignore.

12.3.4 Options

Another use of sums is to define the option types, which have the following
syntax:

Typ τ ::= opt(τ) τ opt option
Exp e ::= null null nothing

just(e) just(e) something
ifnull[τ](e; e1; x.e2) check e {null⇒ e1 | just(x)⇒ e2}

null test

The type opt(τ) represents the type of “optional” values of type τ. The
introductory forms are null, corresponding to “no value”, and just(e),
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corresponding to a specified value of type τ. The elimination form dis-
criminates between the two possibilities.

The option type is definable from sums and nullary products according
to the following equations:1

τ opt = unit+ τ (12.8a)
null = l · 〈〉 (12.8b)

just(e) = r · e (12.8c)
check e {null⇒ e1 | just(x2)⇒ e2} = case e {l · ⇒ e1 | r · x2⇒ e2}

(12.8d)

We leave it to the reader to examine the statics and dynamics implied by
these definitions.

The option type is the key to understanding a common misconception,
the null pointer fallacy. This fallacy, which is particularly common in object-
oriented languages, is based on two related errors. The first error is to deem
the values of certain types to be mysterious entities called pointers, based
on suppositions about how these values might be represented at run-time,
rather than on the semantics of the type itself. The second error compounds
the first. A particular value of a pointer type is distinguished as the null
pointer, which, unlike the other elements of that type, does not designate a
value of that type at all, but rather rejects all attempts to use it as such.

To help avoid such failures, such languages usually include a function,
say null : τ → bool, that yields true if its argument is null, and false

otherwise. This allows the programmer to take steps to avoid using null
as a value of the type it purports to inhabit. Consequently, programs are
riddled with conditionals of the form

if null(e) then . . . error . . . else . . . proceed . . . . (12.9)

Despite this, “null pointer” exceptions at run-time are rampant, in part be-
cause it is quite easy to overlook the need for such a test, and in part be-
cause detection of a null pointer leaves little recourse other than abortion
of the program.

The underlying problem may be traced to the failure to distinguish the
type τ from the type τ opt. Rather than think of the elements of type τ
as pointers, and thereby have to worry about the null pointer, we instead
distinguish between a genuine value of type τ and an optional value of type

1We often write an underscore in place of a bound variable that is not used within its
scope.
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τ. An optional value of type τ may or may not be present, but, if it is,
the underlying value is truly a value of type τ (and cannot be null). The
elimination form for the option type,

check e {null⇒ eerror | just(x)⇒ eok}, (12.10)

propagates the information that e is present into the non-null branch by
binding a genuine value of type τ to the variable x. The case analysis ef-
fects a change of type from “optional value of type τ” to “genuine value of
type τ”, so that within the non-null branch no further null checks, explicit
or implicit, are required. Observe that such a change of type is not achieved
by the simple Boolean-valued test exemplified by expression (12.9); the ad-
vantage of option types is precisely that it does so.

12.4 Notes

Heterogeneous data structures are ubiquitous. Sums codify heterogeneity,
yet few languages support them in the form given here. The best approxi-
mation in commercial languages is the concept of a class in object-oriented
programming. A class is an injection into a sum type, and dispatch is case
analysis on the class of the data object. (See Chapter 25 for more on this
correspondence.) The absence of sums is the origin of C.A.R. Hoare’s self-
described “billion dollar mistake,” the null pointer (Hoare, 2009). Bad lan-
guage designs impose the burden of handling “null” values on program-
mers, resulting in countless errors that manifest themselves only at run-
time.
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Chapter 13

Pattern Matching

Pattern matching is a natural and convenient generalization of the elimina-
tion forms for product and sum types. For example, rather than write

let x be e in x · l+ x · r

to add the components of a pair, e, of natural numbers, we may instead
write

match e {〈x1, x2〉 ⇒ x1 + x2},

using pattern matching to name the components of the pair and refer to
them directly. The first argument to the match is called the match value and
the second argument consist of a finite sequence of rules, separated by ver-
tical bars. In this example there is only one rule, but as we shall see shortly
there is, in general, more than one rule in a given match expression. Each
rule consists of a pattern, possibly involving variables, and an expression
that may involve those variables. The value of the match is determined by
considering each rule in the order given to determine the first rule whose
pattern matches the match value. If such a rule is found, the value of the
match is the value of the expression part of the matching rule, with the
variables of the pattern replaced by the corresponding components of the
match value.

Pattern matching becomes more interesting, and useful, when com-
bined with sums. The patterns l · x and r · x match the corresponding val-
ues of sum type. These may be used in combination with other patterns
to express complex decisions about the structure of a value. For example,
the following match expresses the computation that, when given a pair of
type (unit+ unit)× nat, either doubles or squares its second component



110 13.1 A Pattern Language

depending on the form of its first component:

match e {〈l · 〈〉, x〉 ⇒ x + x | 〈r · 〈〉, y〉 ⇒ y ∗ y}. (13.1)

It is an instructive exercise to express the same computation using only the
primitives for sums and products given in Chapters 11 and 12.

In this chapter we study a simple language, L{pat}, of pattern matching
over eager product and sum types.

13.1 A Pattern Language

The abstract syntax of L{pat} is defined by the following grammar:

Exp e ::= match(e; rs) match e {rs} case analysis
Rules rs ::= rules[n](r1; . . . ; rn) r1 | . . . | rn (n ≥ 0)
Rule r ::= rule[k](p; x1, . . . , xk.e) p⇒ e (k ≥ 0)
Pat p ::= wild wild card

x x variable
triv 〈〉 unit
pair(p1; p2) 〈p1, p2〉 pair
in[l](p) l · p left injection
in[r](p) r · p right injection

The operator match has two operands, the expression to match and a series
of rules. A sequence of rules is constructed using the operator rules[n],
which has n ≥ 0 operands. Each rule is constructed by the operator rule[k],
which specifies that it has two operands, binding k variables in the second.

13.2 Statics

The statics of L{pat}makes use of a special form of hypothetical judgment,
written

x1 : τ1, . . . , xk : τk 
 p : τ,

with almost the same meaning as

x1 : τ1, . . . , xk : τk ` p : τ,

except that each variable is required to be used at most once in p. When
reading the judgment Λ 
 p : τ it is helpful to think of Λ as an output, and
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p and τ as inputs. Given p and τ, the rules determine the hypotheses Λ
such that Λ 
 p : τ.

x : τ 
 x : τ (13.2a)

∅ 
 : τ (13.2b)

∅ 
 〈〉 : unit (13.2c)

Λ1 
 p1 : τ1 Λ2 
 p2 : τ2 dom(Λ1) ∩ dom(Λ2) = ∅
Λ1 Λ2 
 〈p1, p2〉 : τ1 × τ2

(13.2d)

Λ1 
 p : τ1

Λ1 
 l · p : τ1 + τ2
(13.2e)

Λ2 
 p : τ2

Λ2 
 r · p : τ1 + τ2
(13.2f)

Rule (13.2a) states that a variable is a pattern of type τ. Rule (13.2d) states
that a pair pattern consists of two patterns with disjoint variables.

The typing judgments for a rule,

p⇒ e : τ τ′,

and for a sequence of rules,

r1 | . . . | rn : τ τ′,

specify that rules transform a value of type τ into a value of type τ′. These
judgments are inductively defined as follows:

Λ 
 p : τ Γ Λ ` e : τ′

Γ ` p⇒ e : τ τ′
(13.3a)

Γ ` r1 : τ τ′ . . . Γ ` rn : τ τ′

Γ ` r1 | . . . | rn : τ τ′
(13.3b)

Using the typing judgments for rules, the typing rule for a match ex-
pression may be stated quite easily:

Γ ` e : τ Γ ` rs : τ τ′

Γ ` match e {rs} : τ′
(13.4)
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13.3 Dynamics

A substitution, θ, is a finite mapping from variables to values. If θ is the sub-
stitution {x0 ↪→ e0, . . . , xk−1 ↪→ ek−1}, we write θ̂(e) for [e1, . . . , ek/x1, . . . , xk]e.
The judgment θ : Λ is inductively defined by the following rules:

∅ : ∅
(13.5a)

θ : Λ e : τ
θ ⊗ x ↪→ e : Λ, x : τ

(13.5b)

The judgment θ 
 p / e states that the pattern, p, matches the value,
e, as witnessed by the substitution, θ, defined on the variables of p. This
judgment is inductively defined by the following rules:

x ↪→ e 
 x / e (13.6a)

∅ 
 / e (13.6b)

∅ 
 〈〉 / 〈〉 (13.6c)

θ1 
 p1 / e1 θ2 
 p2 / e2 dom(θ1) ∩ dom(θ2) = ∅
θ1 ⊗ θ2 
 〈p1, p2〉 / 〈e1, e2〉

(13.6d)

θ 
 p / e
θ 
 l · p / l · e (13.6e)

θ 
 p / e
θ 
 r · p / r · e (13.6f)

These rules simply collect the bindings for the pattern variables required to
form a substitution witnessing the success of the matching process.

The judgment e ⊥ p states that e does not match the pattern p. It is
inductively defined by the following rules:

e1 ⊥ p1

〈e1, e2〉 ⊥ 〈p1, p2〉
(13.7a)

e2 ⊥ p2

〈e1, e2〉 ⊥ 〈p1, p2〉
(13.7b)

l · e ⊥ r · p (13.7c)

e ⊥ p
l · e ⊥ l · p (13.7d)
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r · e ⊥ l · p (13.7e)

e ⊥ p
r · e ⊥ r · p (13.7f)

Neither a variable nor a wildcard nor a null-tuple can mismatch any value
of appropriate type. A pair can only mismatch a pair pattern due to a mis-
match in one of its components. An injection into a sum type can mismatch
the opposite injection, or it can mismatch the same injection by having its
argument mismatch the argument pattern.

Theorem 13.1. Suppose that e : τ, e val, and Λ 
 p : τ. Then either there exists
θ such that θ : Λ and θ 
 p / e, or e ⊥ p.

Proof. By rule induction on Rules (13.2), making use of the canonical forms
lemma to characterize the shape of e based on its type.

The dynamics of the match expression is given in terms of the pattern
match and mismatch judgments as follows:

e 7→ e′

match e {rs} 7→ match e′ {rs} (13.8a)

e val
match e {} err

(13.8b)

e val θ 
 p0 / e

match e {p0 ⇒ e0|rs} 7→ θ̂(e0)
(13.8c)

e val e ⊥ p0 match e {rs} 7→ e′

match e {p0 ⇒ e0|rs} 7→ e′
(13.8d)

Rule (13.8b) specifies that evaluation results in a checked error once all rules
are exhausted. Rules (13.8c) specifies that the rules are to be considered in
order. If the match value, e, matches the pattern, p0, of the initial rule in
the sequence, then the result is the corresponding instance of e0; otherwise,
matching continues by considering the remaining rules.

Theorem 13.2 (Preservation). If e 7→ e′ and e : τ, then e′ : τ.

Proof. By a straightforward induction on the derivation of e 7→ e′.
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13.4 Exhaustiveness and Redundancy

Although it is possible to state and prove a progress theorem for L{pat} as
defined in Section 13.1, it would not have much force, because the statics
does not rule out pattern matching failure. What is missing is enforcement
of the exhaustiveness of a sequence of rules, which ensures that every value
of the domain type of a sequence of rules must match some rule in the
sequence. In addition it would be useful to rule out redundancy of rules,
which arises when a rule can only match values that are also matched by
a preceding rule. Because pattern matching considers rules in the order in
which they are written, such a rule can never be executed, and hence can
be safely eliminated.

13.4.1 Match Constraints

To express exhaustiveness and irredundancy, we introduce a language of
match constraints that identify a subset of the closed values of a type. With
each rule we associate a constraint that classifies the values that are matched
by that rule. A sequence of rules is exhaustive if every value of the domain
type of the rules satisfies the match constraint of some rule in the sequence.
A rule in a sequence is redundant if every value that satisfies its match con-
straint also satisfies the match constraint of some preceding rule.

The language of match constraints is defined by the following grammar:

Constr ξ ::= all[τ] > truth
and(ξ1; ξ2) ξ1 ∧ ξ2 conjunction
nothing[τ] ⊥ falsity
or(ξ1; ξ2) ξ1 ∨ ξ2 disjunction
l · ξ1 l · ξ1 left injection
r · ξ2 r · ξ2 right injection
triv 〈〉 unit
pair(ξ1; ξ2) 〈ξ1, ξ2〉 pair

It is easy to define the judgment ξ : τ specifying that the constraint ξ con-
strains values of type τ.

The De Morgan Dual, ξ, of a match constraint, ξ, is defined by the fol-
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lowing rules:

> =⊥
ξ1 ∧ ξ2 = ξ1 ∨ ξ2

⊥ = >
ξ1 ∨ ξ2 = ξ1 ∧ ξ2

l · ξ1 = l · ξ1 ∨ r · >
r · ξ1 = r · ξ1 ∨ l · >
〈〉 =⊥

〈ξ1, ξ2〉 = 〈ξ1, ξ2〉 ∨ 〈ξ1, ξ2〉 ∨ 〈ξ1, ξ2〉

Intuitively, the dual of a match constraint expresses the negation of that
constraint. In the case of the last four rules it is important to keep in mind
that these constraints apply only to specific types.

The satisfaction judgment, e |= ξ, is defined for values e and constraints
ξ of the same type by the following rules:

e |= > (13.9a)

e |= ξ1 e |= ξ2

e |= ξ1 ∧ ξ2
(13.9b)

e |= ξ1

e |= ξ1 ∨ ξ2
(13.9c)

e |= ξ2

e |= ξ1 ∨ ξ2
(13.9d)

e1 |= ξ1

l · e1 |= l · ξ1
(13.9e)

e2 |= ξ2

r · e2 |= r · ξ2
(13.9f)

〈〉 |= 〈〉 (13.9g)

e1 |= ξ1 e2 |= ξ2

〈e1, e2〉 |= 〈ξ1, ξ2〉
(13.9h)

The De Morgan dual construction negates a constraint.
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Lemma 13.3. If ξ is a constraint on values of type τ, then e |= ξ if, and only if,
e 6|= ξ.

We define the entailment of two constraints, ξ1 |= ξ2 to mean that e |= ξ2
whenever e |= ξ1. By Lemma 13.3 we have that ξ1 |= ξ2 iff |= ξ1 ∨ ξ2. We
often write ξ1, . . . , ξn |= ξ for ξ1 ∧ . . . ∧ ξn |= ξ so that in particular |= ξ
means e |= ξ for every value e : τ.

13.4.2 Enforcing Exhaustiveness and Redundancy

To enforce exhaustiveness and irredundancy the statics of pattern match-
ing is augmented with constraints that express the set of values matched
by a given set of rules. A sequence of rules is exhaustive if every value of
suitable type satisfies the associated constraint. A rule is redundant relative
to the preceding rules if every value satisfying its constraint satisfies one of
the preceding constraints. A sequence of rules is irredundant iff no rule is
redundant relative to the rules that precede it in the sequence.

The judgment Λ 
 p : τ [ξ] augments the judgment Λ 
 p : τ with a
match constraint characterizing the set of values of type τ matched by the
pattern p. It is inductively defined by the following rules:

x : τ 
 x : τ [>] (13.10a)

∅ 
 : τ [>] (13.10b)

∅ 
 〈〉 : unit [〈〉] (13.10c)

Λ1 
 p : τ1 [ξ1]

Λ1 
 l · p : τ1 + τ2 [l · ξ1]
(13.10d)

Λ2 
 p : τ2 [ξ2]

Λ2 
 r · p : τ1 + τ2 [r · ξ2]
(13.10e)

Λ1 
 p1 : τ1 [ξ1] Λ2 
 p2 : τ2 [ξ2] dom(Λ1) ∩ dom(Λ2) = ∅
Λ1 Λ2 
 〈p1, p2〉 : τ1 × τ2 [〈ξ1, ξ2〉]

(13.10f)

Lemma 13.4. Suppose that Λ 
 p : τ [ξ]. For every e : τ such that e val, e |= ξ
iff θ 
 p / e for some θ, and e 6|= ξ iff e ⊥ p.

The judgment Γ ` r : τ τ′ [ξ] augments the formation judgment for
a rule with a match constraint characterizing the pattern component of the
rule. The judgment Γ ` rs : τ τ′ [ξ] augments the formation judgment
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for a sequence of rules with a match constraint characterizing the values
matched by some rule in the given rule sequence.

Λ 
 p : τ [ξ] Γ Λ ` e : τ′

Γ ` p⇒ e : τ τ′ [ξ]
(13.11a)

(∀1 ≤ i ≤ n) ξi 6|= ξ1 ∨ . . . ∨ ξi−1

Γ ` r1 : τ τ′ [ξ1] . . . Γ ` rn : τ τ′ [ξn]

Γ ` r1 | . . . | rn : τ τ′ [ξ1 ∨ . . . ∨ ξn]

(13.11b)

Rule (13.11b) requires that each successive rule not be redundant relative to
the preceding rules. The overall constraint associated to the rule sequence
specifies that every value of type τ satisfy the constraint associated with
some rule.

The typing rule for match expressions demands that the rules that com-
prise it be exhaustive:

Γ ` e : τ Γ ` rs : τ τ′ [ξ] |= ξ

Γ ` match e {rs} : τ′
(13.12)

Rule (13.11b) ensures that ξ is a disjunction of the match constraints asso-
ciated to the constituent rules of the match expression. The requirement
that ξ be valid amounts to requiring that every value of type τ satisfies the
constraint of at least one rule of the match.

Theorem 13.5. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. The exhaustiveness check in Rule (13.12) ensures that if e val and
e : τ, then e |= ξ. The form of ξ given by Rule (13.11b) ensures that e |= ξi
for some constraint ξi corresponding to the ith rule. By Lemma 13.4 the
value e must match the ith rule, which is enough to ensure progress.

13.4.3 Checking Exhaustiveness and Redundancy

Checking exhaustiveness and redundacy reduces to showing that the con-
straint validity judgment |= ξ is decidable. We will prove this by defining
a judgment Ξ incon, where Ξ is a finite set of constraints of the same type,
with the meaning that no value of this type satisfies all of the constraints in
Ξ. We will then show that either Ξ incon or not.

The rules defining inconsistency of a finite set, Ξ, of constraints of the
same type are as follows:

Ξ incon
Ξ,> incon

(13.13a)
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Ξ, ξ1, ξ2 incon

Ξ, ξ1 ∧ ξ2 incon
(13.13b)

Ξ,⊥ incon
(13.13c)

Ξ, ξ1 incon Ξ, ξ2 incon

Ξ, ξ1 ∨ ξ2 incon
(13.13d)

Ξ, l · ξ1, r · ξ2 incon
(13.13e)

Ξ incon
l · Ξ incon

(13.13f)

Ξ incon
r · Ξ incon

(13.13g)

Ξ1 incon

〈Ξ1, Ξ2〉 incon
(13.13h)

Ξ2 incon

〈Ξ1, Ξ2〉 incon
(13.13i)

In Rule (13.13f) we write l ·Ξ for the finite set of constraints l · ξ1, . . . , l · ξn,
where Ξ = ξ1, . . . , ξn, and similarly in Rules (13.13g), (13.13h), and (13.13i).

Lemma 13.6. It is decidable whether or not Ξ incon.

Proof. The premises of each rule involves only constraints that are proper
components of the constraints in the conclusion. Consequently, we can
simplify Ξ by inverting each of the applicable rules until no rule applies,
then determine whether or not the resulting set, Ξ′, is contradictory in the
sense that it contains ⊥ or both l · ξ and r · ξ ′ for some ξ and ξ ′.

Lemma 13.7. Ξ incon iff Ξ |= ⊥.

Proof. From left to right we proceed by induction on Rules (13.13). From
right to left we may show that if Ξ incon is not derivable, then there exists
a value e such that e |= Ξ, and hence Ξ 6|= ⊥.
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13.5 Notes

Pattern-matching against heterogeneous structured data was first explored
in the context of logic programming languages, such as Prolog (Kowalski,
1988; Colmerauer and Roussel, 1993), but with an execution model based
on proof search. Pattern matching in the form described here is present
in the functional languages Miranda (Turner, 1987), Hope (Burstall et al.,
1980), Standard ML (Milner et al., 1997), Caml (Cousineau and Mauny,
1998), and Haskell (Jones, 2003).
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Chapter 14

Generic Programming

14.1 Introduction

Many programs can be seen as instances of a general pattern applied to a
particular situation. Very often the pattern is determined by the types of
the data involved. For example, in Chapter 9 the pattern of computing by
recursion over a natural number is isolated as the defining characteristic of
the type of natural numbers. This concept will itself emerge as an instance
of the concept of type-generic, or just generic, programming.

Suppose that we have a function, f , of type ρ → ρ′ that transforms
values of type ρ into values of type ρ′. For example, f might be the doubling
function on natural numbers. We wish to extend f to a transformation from
type [ρ/t]τ to type [ρ′/t]τ by applying f to various spots in the input where
a value of type ρ occurs to obtain a value of type ρ′, leaving the rest of the
data structure alone. For example, τ might be bool× ρ, in which case f
could be extended to a function of type bool× ρ → bool× ρ′ that sends
the pairs 〈a, b〉 to the pair 〈a, f(b)〉.

This example glosses over a significant problem of ambiguity of the ex-
tension. Given a function f of type ρ→ ρ′, it is not obvious in general how
to extend it to a function mapping [ρ/t]τ to [ρ′/t]τ. The problem is that it
is not clear which of many occurrences of ρ in [ρ/t]τ are to be transformed
by f , even if there is only one occurrence of ρ. To avoid ambiguity we
need a way to mark which occurrences of ρ in [ρ/t]τ are to be transformed,
and which are to be left fixed. This can be achieved by isolating the type
operator, t.τ, which is a type expression in which a designated variable,
t, marks the spots at which we wish the transformation to occur. Given
t.τ and f : ρ→ ρ′, we can extend f unambiguously to a function of type
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[ρ/t]τ → [ρ′/t]τ.
The technique of using a type operator to determine the behavior of

a piece of code is called generic programming. The power of generic pro-
gramming depends on which forms of type operator are considered. The
simplest case is that of a polynomial type operator, one constructed from
sum and product of types, including their nullary forms. These may be
extended to positive type operators, which also permit restricted forms of
function types.

14.2 Type Operators

A type operator is a type equipped with a designated variable whose oc-
currences mark the positions in the type where a transformation is to be
applied. A type operator is represented by an abstractor t.τ such that
t type ` τ type. An example of a type operator is the abstractor

t.unit+ (bool× t)

in which occurrences of t mark the spots in which a transformation is to
be applied. An instance of the type operator t.τ is obtained by substitut-
ing a type, ρ, for the variable, t, within the type τ. We sometimes write
Map[t.τ](ρ) for the substitution instance [ρ/t]τ.

The polynomial type operators are those constructed from the type vari-
able, t, the types void and unit, and the product and sum type construc-
tors, τ1 × τ2 and τ1 + τ2. It is a straightforward exercise to give inductive
definitions of the judgment t.τ poly stating that the operator t.τ is a poly-
nomial type operator.

14.3 Generic Extension

The generic extension primitive has the form

map[t.τ](x.e′; e)

with statics given by the following rule:

t type ` τ type Γ, x : ρ ` e′ : ρ′ Γ ` e : [ρ/t]τ
Γ ` map[t.τ](x.e′; e) : [ρ′/t]τ

(14.1)

The abstractor x.e′ specifies a transformation from type ρ, the type of x, to
type ρ′, the type of e′. The expression e of type [ρ/t]τ determines the value
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to be transformed to obtain a value of type [ρ′/t]τ. The occurrences of t
in τ determine the spots at which the transformation given by x.e is to be
performed.

The dynamics of generic extension is specified by the following rules.
We consider here only polynomial type operators, leaving the extension to
positive type operators to be considered later.

map[t.t](x.e′; e) 7→ [e/x]e′
(14.2a)

map[t.unit](x.e′; e) 7→ 〈〉
(14.2b)

map[t.τ1 × τ2](x.e′; e)
7→

〈map[t.τ1](x.e′; e · l), map[t.τ2](x.e′; e · r)〉

(14.2c)

map[t.void](x.e′; e) 7→ abort(e)
(14.2d)

map[t.τ1 + τ2](x.e′; e)
7→

case e {l · x1⇒ l · map[t.τ1](x.e′; x1) | r · x2⇒ r · map[t.τ2](x.e′; x2)}
(14.2e)

Rule (14.2a) applies the transformation x.e′ to e itself, because the operator
t.t specifies that the transformation is to be perfomed directly. Rule (14.2b)
states that the empty tuple is transformed to itself. Rule (14.2c) states that
to transform e according to the operator t.τ1 × τ2, the first component of e
is transformed according to t.τ1 and the second component of e is trans-
formed according to t.τ2. Rule (14.2d) states that the transformation of a
value of type void aborts, because there can be no such values. Rule (14.2e)
states that to transform e according to t.τ1 + τ2, case analyze e and recon-
struct it after transforming the injected value according to t.τ1 or t.τ2.

Consider the type operator t.τ given by t.unit+ (bool× t). Let x.e be
the abstractor x.s(x), which increments a natural number. Using Rules (14.2)
we may derive that

map[t.τ](x.e; r · 〈true, n〉) 7→∗ r · 〈true, n + 1〉.
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The natural number in the second component of the pair is incremented,
because the type variable, t, occurs in that position in the type operator
t.τ.

Theorem 14.1 (Preservation). If map[t.τ](x.e′; e) : τ′ and map[t.τ](x.e′; e) 7→
e′′, then e′′ : τ′.

Proof. By inversion of Rule (14.1) we have

1. t type ` τ type;

2. x : ρ ` e′ : ρ′ for some ρ and ρ′;

3. e : [ρ/t]τ;

4. τ′ is [ρ′/t]τ.

We proceed by cases on Rules (14.2). For example, consider Rule (14.2c).
It follows from inversion that map[t.τ1](x.e′; e · l) : [ρ′/t]τ1, and similarly
that map[t.τ2](x.e′; e · r) : [ρ′/t]τ2. It is easy to check that

〈map[t.τ1](x.e′; e · l), map[t.τ2](x.e′; e · r)〉

has type [ρ′/t]τ1 × τ2, as required.

The positive type operators extend the polynomial type operators to ad-
mit restricted forms of function type. Specifically, t.τ1 → τ2 is a positive
type operator, provided that (1) t does not occur in τ1, and (2) t.τ2 is a pos-
itive type operator. In general, any occurrences of a type variable t in the
domain a function type are said to be negative occurrences, whereas any oc-
currences of t within the range of a function type, or within a product or
sum type, are said to be positive occurrences.1 A positive type operator is
one for which only positive occurrences of the parameter, t, are permitted.

The generic extension according to a positive type operator is defined
similarly to the case of a polynomial type operator, with the following ad-
ditional rule:

map[t.τ1 → τ2](x.e′; e) 7→ λ (x1:τ1) map[t.τ2](x.e′; e(x1))
(14.3)

1The origin of this terminology seems to be that a function type τ1 → τ2 is analogous to
the implication φ1 ⊃ φ2, which is classically equivalent to ¬φ1 ∨ φ2, so that occurrences in
the domain are under the negation.
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Because t is not permitted to occur within the domain type, the type of the
result is τ1 → [ρ′/t]τ2, assuming that e is of type τ1 → [ρ/t]τ2. It is easy to
verify preservation for the generic extension of a positive type operator.

It is interesting to consider what goes wrong if we relax the restric-
tion on positive type operators to admit negative, as well as positive, oc-
currences of the parameter of a type operator. Consider the type opera-
tor t.τ1 → τ2, without restriction on t, and suppose that x : ρ ` e′ : ρ′.
The generic extension map[t.τ1 → τ2](x.e′; e) should have type [ρ′/t]τ1 →
[ρ′/t]τ2, given that e has type [ρ/t]τ1 → [ρ/t]τ2. The extension should yield
a function of the form

λ (x1:[ρ
′/t]τ1) . . .(e(. . .(x1)))

in which we apply e to a transformation of x1 and then transform the re-
sult. The trouble is that we are given, inductively, that map[t.τ1](x.e′;−)
transforms values of type [ρ/t]τ1 into values of type [ρ′/t]τ1, but we need to
go the other way around in order to make x1 suitable as an argument for e.
Unfortunately, there is no obvious way to obtain the required transforma-
tion.

One solution to this is to assume that the fundamental transformation
x.e′ is invertible so that we may apply the inverse transformation on x1 to
get an argument of type suitable for e, then apply the forward transforma-
tion on the result, just as in the positive case. Because we cannot invert
an arbitrary transformation, we must instead pass both the transformation
and its inverse to the generic extension operation so that it can “go back-
wards” as necessary to cover negative occurrences of the type parameter.
So the generic extension applies only when we are given a type isomorphism
(a pair of mutually inverse mappings between two types), and then results
in another isomorphism pair.

14.4 Notes

The generic extension of a type operator is an example of the concept of
a functor in category theory (MacLane, 1998). Generic programming is es-
sentially functorial programming, exploiting the functorial action of poly-
nomial type operators (Hinze and Jeuring, 2003).
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Chapter 15

Inductive and Co-Inductive
Types

The inductive and the coinductive types are two important forms of recur-
sive type. Inductive types correspond to least, or initial, solutions of certain
type isomorphism equations, and coinductive types correspond to their
greatest, or final, solutions. Intuitively, the elements of an inductive type
are those that may be obtained by a finite composition of its introductory
forms. Consequently, if we specify the behavior of a function on each of the
introductory forms of an inductive type, then its behavior is determined for
all values of that type. Such a function is called a recursor, or catamorphism.
Dually, the elements of a coinductive type are those that behave properly
in response to a finite composition of its elimination forms. Consequently,
if we specify the behavior of an element on each elimination form, then we
have fully specified that element as a value of that type. Such an element is
called an generator, or anamorphism.

15.1 Motivating Examples

The most important example of an inductive type is the type of natural
numbers as formalized in Chapter 9. The type nat is defined to be the
least type containing z and closed under s(−). The minimality condition
is witnessed by the existence of the recursor, iter e {z⇒ e0 | s(x)⇒ e1},
which transforms a natural number into a value of type τ, given its value
for zero, and a transformation from its value on a number to its value on the
successor of that number. This operation is well-defined precisely because
there are no other natural numbers. Put the other way around, the existence
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of this operation expresses the inductive nature of the type nat.
With a view towards deriving the type nat as a special case of an in-

ductive type, it is useful to consolidate zero and successor into a single
introductory form, and to correspondingly consolidate the basis and in-
ductive step of the recursor. The following rules specify the statics of this
reformulation:

Γ ` e : unit+ nat

Γ ` foldnat(e) : nat (15.1a)

Γ, x : unit+ τ ` e1 : τ Γ ` e2 : nat
Γ ` recnat[x.e1](e2) : τ

(15.1b)

The expression foldnat(e) is the unique introductory form of the type nat.
Using this, the expression z is defined to be foldnat(l · 〈〉), and s(e) is de-
fined to be foldnat(r · e). The recursor, recnat[x.e1](e2), takes as argu-
ment the abstractor x.e1 that consolidates the basis and inductive step into
a single computation that, given a value of type unit+ τ, yields a value
of type τ. Intuitively, if x is replaced by the value l · 〈〉, then e1 computes
the base case of the recursion, and if x is replaced by the value r · e, then e1
computes the inductive step as a function of the result, e, of the recursive
call.

The dynamics of the consolidated representation of natural numbers is
given by the following rules:

foldnat(e) val
(15.2a)

e2 7→ e′2
recnat[x.e1](e2) 7→ recnat[x.e1](e′2)

(15.2b)

recnat[x.e1](foldnat(e2))

7→
[map[t.unit+ t](y.recnat[x.e1](y); e2)/x]e1

(15.2c)

Rule (15.2c) makes use of generic extension (see Chapter 14) to apply the
recursor to the predecessor, if any, of a natural number. The idea is that
the result of extending the recursor from the type unit+ nat to the type
unit+ τ is substituted into the inductive step, given by the expression e1.
If we expand the definition of the generic extension in place, we obtain the
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following reformulation of this rule:

recnat[x.e1](foldnat(e2))

7→
[case e2 {l · ⇒ l · 〈〉 | r · y⇒ r · recnat[x.e1](y)}/x]e1

An illustrative example of a coinductive type is the type of streams of
natural numbers. A stream is an infinite sequence of natural numbers such
that an element of the stream can be computed only after computing all
preceding elements in that stream. That is, the computations of successive
elements of the stream are sequentially dependent in that the computation
of one element influences the computation of the next. This characteristic
of the introductory form for streams is dual to the analogous property of
the eliminatory form for natural numbers whereby the result for a number
is determined by its result for all preceding numbers.

A stream is characterized by its behavior under the elimination forms
for the stream type: hd(e) returns the next, or head, element of the stream,
and tl(e) returns the tail of the stream, the stream resulting when the head
element is removed. A stream is introduced by a generator, the dual of a
recursor, that determines the head and the tail of the stream in terms of the
current state of the stream, which is represented by a value of some type.
The statics of streams is given by the following rules:

Γ ` e : stream
Γ ` hd(e) : nat

(15.3a)

Γ ` e : stream
Γ ` tl(e) : stream

(15.3b)

Γ ` e : τ Γ, x : τ ` e1 : nat Γ, x : τ ` e2 : τ

Γ ` strgen e {hd(x)⇒ e1 | tl(x)⇒ e2} : stream
(15.3c)

In Rule (15.3c) the current state of the stream is given by the expression e
of some type τ, and the head and tail of the stream are determined by the
expressions e1 and e2, respectively, as a function of the current state.

The dynamics of streams is given by the following rules:

strgen e {hd(x)⇒ e1 | tl(x)⇒ e2} val
(15.4a)

e 7→ e′

hd(e) 7→ hd(e′)
(15.4b)
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hd(strgen e {hd(x)⇒ e1 | tl(x)⇒ e2}) 7→ [e/x]e1
(15.4c)

e 7→ e′

tl(e) 7→ tl(e′)
(15.4d)

tl(strgen e {hd(x)⇒ e1 | tl(x)⇒ e2})
7→

strgen [e/x]e2 {hd(x)⇒ e1 | tl(x)⇒ e2}

(15.4e)

Rules (15.4c) and (15.4e) express the dependency of the head and tail of the
stream on its current state. Observe that the tail is obtained by applying
the generator to the new state determined by e2 as a function of the current
state.

To derive streams as a special case of a coinductive type, we consolidate
the head and the tail into a single eliminatory form, and reorganize the
generator correspondingly. This leads to the following statics:

Γ ` e : stream
Γ ` unfoldstream(e) : nat× stream

(15.5a)

Γ, x : τ ` e1 : nat× τ Γ ` e2 : τ

Γ ` genstream[x.e1](e2) : stream
(15.5b)

Rule (15.5a) states that a stream may be unfolded into a pair consisting of its
head, a natural number, and its tail, another stream. The head, hd(e), and
tail, tl(e), of a stream, e, are defined to be the projections unfoldstream(e) ·
l and unfoldstream(e) · r, respectively. Rule (15.5b) states that a stream
may be generated from the state element, e2, by an expression e1 that yields
the head element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream[x.e1](e2) val
(15.6a)

e 7→ e′

unfoldstream(e) 7→ unfoldstream(e′)
(15.6b)

unfoldstream(genstream[x.e1](e2))

7→
map[t.nat× t](y.genstream[x.e1](y); [e2/x]e1)

(15.6c)
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Rule (15.6c) uses generic extension to generate a new stream whose state
is the second component of [e2/x]e1. Expanding the generic extension we
obtain the following reformulation of this rule:

unfoldstream(genstream[x.e1](e2))

7→
〈([e2/x]e1) · l, genstream[x.e1](([e2/x]e1) · r)〉

15.2 Statics

We may now give a fully general account of inductive and coinductive
types, which are defined in terms of positive type operators. We will con-
sider the language, L{µiµf}, with inductive and co-inductive types.

15.2.1 Types

The syntax of inductive and coinductive types involves type variables, which
are, of course, variables ranging over types. The abstract syntax of induc-
tive and coinductive types is given by the following grammar:

Typ τ ::= t t self-reference
ind(t.τ) µi(t.τ) inductive
coi(t.τ) µf(t.τ) coinductive

Type formation judgments have the form

t1 type, . . . , tn type ` τ type,

where t1, . . . , tn are type names. We let ∆ range over finite sets of hypothe-
ses of the form t type, where t is a type name. The type formation judgment
is inductively defined by the following rules:

∆, t type ` t type (15.7a)

∆ ` unit type (15.7b)

∆ ` τ1 type ∆ ` τ2 type

∆ ` prod(τ1; τ2) type
(15.7c)

∆ ` void type (15.7d)

REVISED 05.15.2012 VERSION 1.32



134 15.3 Dynamics

∆ ` τ1 type ∆ ` τ2 type

∆ ` sum(τ1; τ2) type
(15.7e)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(15.7f)

∆, t type ` τ type ∆ ` t.τ pos

∆ ` ind(t.τ) type
(15.7g)

∆, t type ` τ type ∆ ` t.τ pos

∆ ` coi(t.τ) type
(15.8)

15.2.2 Expressions

The abstract syntax of expressions for inductive and coinductive types is
given by the following grammar:

Exp e ::= fold[t.τ](e) fold(e) constructor
rec[t.τ][x.e1](e2) rec[x.e1](e2) recursor
unfold[t.τ](e) unfold(e) destructor
gen[t.τ][x.e1](e2) gen[x.e1](e2) generator

The statics for inductive and coinductive types is given by the following
typing rules:

Γ ` e : [ind(t.τ)/t]τ
Γ ` fold[t.τ](e) : ind(t.τ)

(15.9a)

Γ, x : [ρ/t]τ ` e1 : ρ Γ ` e2 : ind(t.τ)

Γ ` rec[t.τ][x.e1](e2) : ρ
(15.9b)

Γ ` e : coi(t.τ)

Γ ` unfold[t.τ](e) : [coi(t.τ)/t]τ (15.9c)

Γ ` e2 : ρ Γ, x : ρ ` e1 : [ρ/t]τ
Γ ` gen[t.τ][x.e1](e2) : coi(t.τ)

(15.9d)

15.3 Dynamics

The dynamics of inductive and coinductive types is given in terms of the
generic extension operation described in Chapter 14. The following rules
specify a lazy dynamics for L{µiµf}:

fold(e) val
(15.10a)
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e2 7→ e′2
rec[x.e1](e2) 7→ rec[x.e1](e′2)

(15.10b)

rec[x.e1](fold(e2))

7→
[map[t.τ](y.rec[x.e1](y); e2)/x]e1

(15.10c)

gen[x.e1](e2) val
(15.10d)

e 7→ e′

unfold(e) 7→ unfold(e′)
(15.10e)

unfold(gen[x.e1](e2))

7→
map[t.τ](y.gen[x.e1](y); [e2/x]e1)

(15.10f)

Rule (15.10c) states that to evaluate the recursor on a value of recursive
type, we inductively apply the recursor as guided by the type operator to
the value, and then perform the inductive step on the result. Rule (15.10f)
is simply the dual of this rule for coinductive types.

Lemma 15.1. If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on Rules (15.10).

Lemma 15.2. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. By rule induction on Rules (15.9).

15.4 Notes

The treatment of inductive and coinductive types is derived from Mendler
(1987), which is based on the categorial analysis of these concepts (MacLane,
1998; Taylor, 1999). The functorial action of a type constructor (described
in Chapter 14) plays a central role. Specifically, inductive types are initial
algebras and coinductive types are final coalgebras for a functor given by a
composition of type constructors. The positivity requirement imposed on
well-formed inductive and coinductive types ensures that the action of the
associated type constructor is properly functorial.
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Chapter 16

Recursive Types

Inductive and coinductive types, such as natural numbers and streams,
may be seen as examples of fixed points of type operators up to isomorphism.
An isomorphism between two types, τ1 and τ2, is given by two expressions

1. x1 : τ1 ` e2 : τ2, and

2. x2 : τ2 ` e1 : τ1

that are mutually inverse to each other.1 For example, the types nat and
unit+ nat are isomorphic, as witnessed by the following two expressions:

1. x : unit+ nat ` case x {l · ⇒ z | r · x2⇒ s(x2)} : nat, and

2. x : nat ` ifz x {z⇒ l · 〈〉 | s(x2)⇒ r · x2} : unit+ nat.

These are called, respectively, the fold and unfold operations of the iso-
morphism nat ∼= unit+ nat. Thinking of unit+ nat as [nat/t](unit+ t),
this means that nat is a fixed point of the type operator t.unit+ t.

In this chapter we study the language L{+×⇀µ}, which provides so-
lutions to all such type equations. The recursive type µt.τ is defined to be a
solution to the isomorphism problem

µt.τ ∼= [µt.τ/t]τ.

This is witnessed by the operations

x : µt.τ ` unfold(x) : [µt.τ/t]τ

1To make this precise requires a discussion of equivalence of expressions to be taken up
in Chapter 47. For now we will rely on an intuitive understanding of when two expressions
are equivalent.
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and
x : [µt.τ/t]τ ` fold(x) : µt.τ,

which are mutually inverse to each other.
Requiring solutions to all type equations may seem suspicious, because

we know by Cantor’s Theorem that an isomorphism such as X ∼= (X → 2)
is set-theoretically impossible. This negative result tells us not that our re-
quirement is untenable, but rather that types are not sets. To permit solution
of arbitrary type equations, we must take into account that types describe
computations, some of which may not even terminate. Consequently, the
function space does not coincide with the set-theoretic function space, but
rather is analogous to it (in a precise sense that we shall not go into here).

16.1 Solving Type Isomorphisms

The recursive type µt.τ, where t.τ is a type operator, represents a solution
for t to the isomorphism t ∼= τ. The solution is witnessed by two oper-
ations, fold(e) and unfold(e), that relate the recursive type µt.τ to its
unfolding, [µt.τ/t]τ, and serve, respectively, as its introduction and elimi-
nation forms.

The language L{+×⇀µ} extends L{⇀}with recursive types and their
associated operations.

Typ τ ::= t t self-reference
rec(t.τ) µt.τ recursive

Exp e ::= fold[t.τ](e) fold(e) constructor
unfold(e) unfold(e) destructor

The statics of L{+×⇀µ} consists of two forms of judgment. The first,
called type formation, is a general hypothetical judgment of the form

∆ ` τ type,

where ∆ has the form t1 type, . . . , tk type. Type formation is inductively
defined by the following rules:

∆, t type ` t type
(16.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(16.1b)
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∆, t type ` τ type

∆ ` rec(t.τ) type
(16.1c)

The second form of judgment of the statics is the typing judgment, which
is a hypothetical judgment of the form

Γ ` e : τ,

where we assume that τ type. Typing for L{+×⇀µ} is inductively defined
by the following rules:

Γ ` e : [rec(t.τ)/t]τ
Γ ` fold[t.τ](e) : rec(t.τ)

(16.2a)

Γ ` e : rec(t.τ)

Γ ` unfold(e) : [rec(t.τ)/t]τ (16.2b)

The dynamics of L{+×⇀µ} is specified by one axiom stating that the
elimination form is inverse to the introduction form.

[e val]

fold[t.τ](e) val
(16.3a)[

e 7→ e′

fold[t.τ](e) 7→ fold[t.τ](e′)

]
(16.3b)

e 7→ e′

unfold(e) 7→ unfold(e′)
(16.3c)

fold[t.τ](e) val
unfold(fold[t.τ](e)) 7→ e

(16.3d)

The bracketed premise and rule are to be included for an eager interpreta-
tion of the introduction form, and omitted for a lazy interpretation.

It is a straightforward exercise to prove type safety for L{+×⇀µ}.

Theorem 16.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

16.2 Recursive Data Structures

One important application of recursive types is to the representation of in-
ductive data types such as the type of natural numbers. We may think of
the type nat as a solution (up to isomorphism) of the type equation

nat ∼= [z ↪→ unit, s ↪→ nat]
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According to this isomorphism every natural number is either zero or the
successor of another natural number. A solution is given by the recursive
type

µt.[z ↪→ unit, s ↪→ t]. (16.4)

The introductory forms for the type nat are defined by the following equa-
tions:

z = fold(z · 〈〉)
s(e) = fold(s · e).

The conditional branch may then be defined as follows:

ifz e {z⇒ e0 | s(x)⇒ e1} = case unfold(e) {z · ⇒ e0 | s · x⇒ e1},

where the “underscore” indicates a variable that does not occur free in e0.
It is easy to check that these definitions exhibit the expected behavior.

As another example, the type list of lists of natural numbers may be
represented by the recursive type

µt.[n ↪→ unit, c ↪→ nat× t]

so that we have the isomorphism

list ∼= [n ↪→ unit, c ↪→ nat× list].

The list formation operations are represented by the following equations:

nil = fold(n · 〈〉)
cons(e1; e2) = fold(c · 〈e1, e2〉).

A conditional branch on the form of the list may be defined by the follow-
ing equation:

case e {nil⇒ e0 | cons(x; y)⇒ e1} =
case unfold(e) {n · ⇒ e0 | c · 〈x, y〉 ⇒ e1},

where we have used an underscore for a “don’t care” variable, and used
pattern-matching syntax to bind the components of a pair.

As long as sums and products are evaluated eagerly, there is a natural
correspondence between this representation of lists and the conventional
“blackboard notation” for linked lists. We may think of fold as an abstract
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heap-allocated pointer to a tagged cell consisting of either (a) the tag n with
no associated data, or (b) the tag c attached to a pair consisting of a natural
number and another list, which must be an abstract pointer of the same
sort. If sums or products are evaluated lazily, then the blackboard notation
breaks down because it is unable to depict the suspended computations
that are present in the data structure. In general there is no substitute for the
type itself. Drawings can be helpful, but the type determines the semantics.

We may also represent coinductive types, such as the type of streams of
natural numbers, using recursive types. The representation is particularly
natural in the case that fold(−) is evaluated lazily, for then we may define
the type stream to be the recursive type

µt.nat× t.

This states that every stream may be thought of as a computation of a pair
consisting of a number and another stream. If fold(−) is evaluated ea-
gerly, then we may instead consider the recursive type

µt.unit→ (nat× t),

which expresses the same representation of streams. In either case streams
cannot be easily depicted in blackboard notation, not so much because they
are infinite, but because there is no accurate way to depict the delayed com-
putation other than by an expression in the programming language. Here
again we see that pictures can be helpful, but are not adequate for accu-
rately defining a data structure.

16.3 Self-Reference

In the general recursive expression, fix[τ](x.e), the variable, x, stands for
the expression itself. This is ensured by the unrolling transition

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e,

which substitutes the expression itself for x in its body during execution.
It is useful to think of x as an implicit argument to e that is implicitly in-
stantiated to itself whenever the expression is used. In many well-known
languages this implicit argument has a special name, such as this or self,
to emphasize its self-referential interpretation.

Using this intuition as a guide, we may derive general recursion from
recursive types. This derivation shows that general recursion may, like
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other language features, be seen as a manifestation of type structure, rather
than an ad hoc language feature. The derivation is based on isolating a type
of self-referential expressions given by the following grammar:

Typ τ ::= self(τ) τ self self-referential type
Exp e ::= self[τ](x.e) self x is e self-referential expression

unroll(e) unroll(e) unroll self-reference

The statics of these constructs is given by the following rules:

Γ, x : self(τ) ` e : τ

Γ ` self[τ](x.e) : self(τ)
(16.5a)

Γ ` e : self(τ)
Γ ` unroll(e) : τ

(16.5b)

The dynamics is given by the following rule for unrolling the self-reference:

self[τ](x.e) val
(16.6a)

e 7→ e′

unroll(e) 7→ unroll(e′)
(16.6b)

unroll(self[τ](x.e)) 7→ [self[τ](x.e)/x]e
(16.6c)

The main difference, compared to general recursion, is that we distinguish
a type of self-referential expressions, rather than impose self-reference at
every type. However, as we shall see shortly, the self-referential type is
sufficient to implement general recursion, so the difference is largely one of
technique.

The type self(τ) is definable from recursive types. As suggested ear-
lier, the key is to consider a self-referential expression of type τ to be a func-
tion of the expression itself. That is, we seek to define the type self(τ) so
that it satisfies the isomorphism

self(τ) ∼= self(τ)→ τ.

This means that we seek a fixed point of the type operator t.t→ τ, where
t /∈ τ is a type variable standing for the type in question. The required fixed
point is just the recursive type

rec(t.t→ τ),
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which we take as the definition of self(τ).
The self-referential expression self[τ](x.e) is then defined to be the

expression

fold(λ (x:self(τ)) e).

We may easily check that Rule (16.5a) is derivable according to this defi-
nition. The expression unroll(e) is correspondingly defined to be the ex-
pression

unfold(e)(e).

It is easy to check that Rule (16.5b) is derivable from this definition. More-
over, we may check that

unroll(self[τ](y.e)) 7→∗ [self[τ](y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expres-
sions of type τ.

One consequence of admitting the self-referential type self(τ) is that
we may use it to define general recursion for any type. To be precise, we
may define fix[τ](x.e) to stand for the expression

unroll(self[τ](y.[unroll(y)/x]e))

in which we have unrolled the recursion at each occurrence of x within e.
It is easy to check that this verifies the statics of general recursion given in
Chapter 10. Moreover, it also validates the dynamics, as evidenced by the
following derivation:

fix[τ](x.e) = unroll(self[τ](y.[unroll(y)/x]e))
7→∗ [unroll(self[τ](y.[unroll(y)/x]e))/x]e
= [fix[τ](x.e)/x]e.

It follows that recursive types may be used to define a non-terminating
expression of every type, namely fix[τ](x.x). Unlike many other type
constructs we have considered, recursive types change the meaning of ev-
ery type, not just those that involve recursion. Recursive types are there-
fore said to be a non-conservative extension of languages such as L{nat→},
which otherwise admits no non-terminating computations.
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16.4 The Origin of State

The notion of state in a computation—which will be discussed thoroughly
in Part XIII—has its origins in the concept of recursion, or self-reference,
which, as we have just seen, arises from the concept of recursive types. For
example, you may be familiar with the concept of a flip-flop or a latch at the
hardware level. These are circuits built from combinational logic elements
(typically, nor or nand gates) that have the characteristic that they maintain
an alterable state over time. An RS latch, for example, maintains its output
at the logical level of zero or one in response to a signal on the R or S inputs,
respectively, after a brief settling delay. This behavior is achieved using
feedback, which is just a form of self-reference, or recursion: the output of
the gate is fed back into its input so as to convey the current state of the
gate to the logic that determines its next state.

One way to model an RS latch using recursive types is to make explicit
the passage of time in the determination of the current output of the gate
as a function of its inputs and its previous outputs. An RS latch is a value
of type τrsl given by

µt.〈X ↪→ bool, Q ↪→ bool, N ↪→ t〉.

The X and Q components of the latch represent its current outputs (of which
Q represents the current state of the latch), and the N component represents
the next state of the latch. If e is of type τrsl, then we define e @ X to mean
unfold(e) · X, and define e @ Q and e @ N similarly. The expressions e @ X and
e @ Q evaluate to the “current” outputs of the latch, e, and e @ N evaluates to
another latch representing the “next” state determined as a function of the
“current” state.2

For given values, r and s, a new latch is computed from an old latch by
the recursive function rsl defined as follows:

fix rsl isλ (o:τrsl) fix this is ersl,

where ersl is given by

fold(〈X ↪→ nor(〈s, o @ Q〉), Q ↪→ nor(〈r, o @ X〉), N ↪→ rsl(this)〉)

2For simplicity the R and S inputs are fixed, which amounts to requiring that we build a
new latch whenever these are changed. It is straightforward to modify the construction so
that new R and S inputs may be provided whenever the next state of a latch is computed,
allowing for these inputs to change over time.
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and nor is the obvious function defined on the booleans.3 The outputs of
the latch are computed as a function of the r and s inputs and the ouputs
of the previous state of the latch. To get the construction started, we define
an initial state of the latch in which the outputs are arbitrarily set to false,
and whose next state is determined by applying rsl to the initial state:

fix this is fold(〈X ↪→ false, Q ↪→ false, N ↪→ rsl(this)〉).

Selection of the N component causes the outputs to be recalculated based
on the current outputs. Notice the essential role of self-reference in main-
taining the state of the latch.

The foregoing implementation of a latch models time explicitly by pro-
viding the N component of the latch to compute the next state from the
current one. It is also possible to model time implicitly by treating the latch
as a transducer whose inputs and outputs are signals that change over time.
A signal may be represented by a stream of booleans (as described in Chap-
ter 15 or using general recursive types as described earlier in this chapter),
in which case a transducer is a stream transformer that computes the suc-
cessive elements of the outputs from the successive elements of the inputs
by applying a function to them. This implicit formulation is arguably more
natural than the explicit one given above, but it nevertheless relies on recur-
sive types and self-reference, just as does the implementation given above.

16.5 Notes

The systematic study of recursive types in programming was initiated by
Scott (1976, 1982) to provide a mathematical model of the untyped λ-calculus.
The derivation of recursion from recursive types is essentially an applica-
tion of Scott’s theory to find the interpretation of a fixed point combina-
tor in a model of the λ-calculus given by a recursive type. The category-
theoretic view of recursive types was developed by Wand (1979) and Smyth
and Plotkin (1982). Implementing state using self-reference is fundamental
to digital logic. Abadi and Cardelli (1996) and Cook (2009), among others,
explore similar ideas to model objects. The account of signals as streams is
inspired by the pioneering work of Kahn (MacQueen, 2009).

3It suffices to require that fold be evaluated lazily to ensure that recursion is well-
grounded. This assumption is unnecessary if the next state component is abstracted on
the R and S inputs, as suggested earlier.
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Chapter 17

The Untyped λ-Calculus

Types are the central organizing principle in the study of programming
languages. Yet many languages of practical interest are said to be untyped.
Have we missed something important? The answer is no. The supposed
opposition between typed and untyped languages turns out to be illusory.
In fact, untyped languages are special cases of typed languages with a sin-
gle, pre-determined recursive type. Far from being untyped, such languages
are uni-typed.

In this chapter we study the premier example of a uni-typed program-
ming language, the (untyped) λ-calculus. This formalism was introduced by
Church in the 1930’s as a universal language of computable functions. It
is distinctive for its austere elegance. The λ-calculus has but one “feature”,
the higher-order function. Everything is a function, hence every expression
may be applied to an argument, which must itself be a function, with the
result also being a function. To borrow a turn of phrase, in the λ-calculus
it’s functions all the way down.

17.1 The λ-Calculus

The abstract syntax of L{λ} is given by the following grammar:

Exp u ::= x x variable
λ(x.u) λ (x) u λ-abstraction
ap(u1; u2) u1(u2) application

The statics of L{λ} is defined by general hypothetical judgments of the
form x1 ok, . . . , xn ok ` u ok, stating that u is a well-formed expression in-
volving the variables x1, . . . , xn. (As usual, we omit explicit mention of the
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parameters when they can be determined from the form of the hypotheses.)
This relation is inductively defined by the following rules:

Γ, x ok ` x ok
(17.1a)

Γ ` u1 ok Γ ` u2 ok

Γ ` ap(u1; u2) ok
(17.1b)

Γ, x ok ` u ok

Γ ` λ(x.u) ok
(17.1c)

The dynamics of L{λ} is given equationally, rather than via a transition
system. Definitional equality for L{λ} is a judgment of the form Γ ` u ≡
u′, where Γ = x1 ok, . . . , xn ok for some n ≥ 0, and u and u′ are terms
having at most the variables x1, . . . , xn free. It is inductively defined by the
following rules:

Γ, u ok ` u ≡ u
(17.2a)

Γ ` u ≡ u′

Γ ` u′ ≡ u
(17.2b)

Γ ` u ≡ u′ Γ ` u′ ≡ u′′

Γ ` u ≡ u′′
(17.2c)

Γ ` e1 ≡ e′1 Γ ` e2 ≡ e′2
Γ ` ap(e1; e2) ≡ ap(e′1; e′2)

(17.2d)

Γ, x ok ` u ≡ u′

Γ ` λ(x.u) ≡ λ(x.u′)
(17.2e)

Γ, x ok ` e2 ok Γ ` e1 ok

Γ ` ap(λ(x.e2); e1) ≡ [e1/x]e2
(17.2f)

We often write just u ≡ u′ when the variables involved need not be empha-
sized or are clear from context.

17.2 Definability

Interest in the untyped λ-calculus stems from its surprising expressiveness.
It is a Turing-complete language in the sense that it has the same capability
to express computations on the natural numbers as does any other known
programming language. Church’s Law states that any conceivable notion
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of computable function on the natural numbers is equivalent to the λ-
calculus. This is certainly true for all known means of defining computable
functions on the natural numbers. The force of Church’s Law is that it pos-
tulates that all future notions of computation will be equivalent in expres-
sive power (measured by definability of functions on the natural numbers)
to the λ-calculus. Church’s Law is therefore a scientific law in the same sense
as, say, Newton’s Law of Universal Gravitation, which makes a prediction
about all future measurements of the acceleration in a gravitational field.1

We will sketch a proof that the untyped λ-calculus is as powerful as the
language PCF described in Chapter 10. The main idea is to show that the
PCF primitives for manipulating the natural numbers are definable in the
untyped λ-calculus. This means, in particular, that we must show that the
natural numbers are definable as λ-terms in such a way that case analysis,
which discriminates between zero and non-zero numbers, is definable. The
principal difficulty is with computing the predecessor of a number, which
requires a bit of cleverness. Finally, we show how to represent general
recursion, completing the proof.

The first task is to represent the natural numbers as certain λ-terms,
called the Church numerals.

0 , λ (b)λ (s) b (17.3a)

n + 1 , λ (b)λ (s) s(n(b)(s)) (17.3b)

It follows that
n(u1)(u2) ≡ u2(. . . (u2(u1))),

the n-fold application of u2 to u1. That is, n iterates its second argument
(the induction step) n times, starting with its first argument (the basis).

Using this definition it is not difficult to define the basic functions of
arithmetic. For example, successor, addition, and multiplication are de-
fined by the following untyped λ-terms:

succ , λ (x)λ (b)λ (s) s(x(b)(s)) (17.4)

plus , λ (x)λ (y) y(x)(succ) (17.5)

times , λ (x)λ (y) y(0)(plus(x)) (17.6)

1Unfortunately, it is common in Computer Science to put forth as “laws” assertions that
are not scientific laws at all. For example, Moore’s Law is merely an observation about a
near-term trend in microprocessor fabrication that is certainly not valid over the long term,
and Amdahl’s Law is but a simple truth of arithmetic. Worse, Church’s Law, which is a
proper scientific law, is usually called Church’s Thesis, which, to the author’s ear, suggests
something less than the full force of a scientific law.
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It is easy to check that succ(n) ≡ n + 1, and that similar correctness con-
ditions hold for the representations of addition and multiplication.

To define ifz(u; u0; x.u1) requires a bit of ingenuity. We wish to find a
term pred such that

pred(0) ≡ 0 (17.7)

pred(n + 1) ≡ n. (17.8)

To compute the predecessor using Church numerals, we must show how to
compute the result for n + 1 as a function of its value for n. At first glance
this seems straightforward—just take the successor—until we consider the
base case, in which we define the predecessor of 0 to be 0. This invalidates
the obvious strategy of taking successors at inductive steps, and necessi-
tates some other approach.

What to do? A useful intuition is to think of the computation in terms
of a pair of “shift registers” satisfying the invariant that on the nth iteration
the registers contain the predecessor of n and n itself, respectively. Given
the result for n, namely the pair (n− 1, n), we pass to the result for n + 1
by shifting left and incrementing to obtain (n, n + 1). For the base case, we
initialize the registers with (0, 0), reflecting the stipulation that the prede-
cessor of zero be zero. To compute the predecessor of n we compute the
pair (n− 1, n) by this method, and return the first component.

To make this precise, we must first define a Church-style representation
of ordered pairs.

〈u1, u2〉 , λ ( f) f(u1)(u2) (17.9)

u · l , u(λ (x)λ (y) x) (17.10)

u · r , u(λ (x)λ (y) y) (17.11)

It is easy to check that under this encoding 〈u1, u2〉 · l ≡ u1, and that a
similar equivalence holds for the second projection. We may now define
the required representation, up, of the predecessor function:

u′p , λ (x) x(〈0, 0〉)(λ (y) 〈y · r, succ (y · r)〉) (17.12)

up , λ (x) u′p(x) · l (17.13)

It is easy to check that this gives us the required behavior. Finally, we may
define ifz(u; u0; x.u1) to be the untyped term

u(u0)(λ ( ) [up(u)/x]u1).

VERSION 1.32 REVISED 05.15.2012



17.3 Scott’s Theorem 153

This gives us all the apparatus of PCF, apart from general recursion. But
this is also definable using a fixed point combinator. There are many choices
of fixed point combinator, of which the best known is the Y combinator:

Y , λ (F) (λ ( f) F( f( f)))(λ ( f) F( f( f))).

It is easy to check that
Y(F) ≡ F(Y(F)).

Using the Y combinator, we may define general recursion by writing Y(λ (x) u),
where x stands for the recursive expression itself.

Although it is clear that Y as just defined computes a fixed point of its
argument, it is probably less clear why it works or how we might have
invented it in the first place. The main idea is actually quite simple. If a
function is to be recursive, it is given an additional first argument, which is
arranged to stand for the function itself. Whenever the function wishes to
call itself, it calls the implicit first argument, which is for this reason often
called this or self. At each call site to a recursive function, the function is
applied to itself before being applied to any other argument. This ensures
that the argument called this actually refers to the function itself.

With this in mind, it is easy to see how to derive the definition of Y.
If F is the function whose fixed point we seek, then the function F′ =

λ ( f) F( f( f)) is a variant of F in which the self-application convention
has been imposed by replacing each use of f in F( f) by f( f). Now ob-
serve that F′(F′) ≡ F(F′(F′)), so that F′(F′) is the desired fixed point of
F. Expanding the definition of F′, we have derived that the desired fixed
point is

λ ( f) F( f( f))(λ ( f) F( f( f))).

To finish the derivation, we need only observe that nothing depends on the
particular choice of F, which means that we can compute a fixed point for
F uniformly in F. That is, we may define a single function, namely Y as
defined above, that computes the fixed point of any F.

17.3 Scott’s Theorem

Scott’s Theorem states that definitional equality for the untyped λ-calculus
is undecidable: there is no algorithm to determine whether or not two un-
typed terms are definitionally equal. The proof uses the concept of insepa-
rability. Any two properties,A0 andA1, of λ-terms are inseparable if there is
no decidable property, B, such that A0 u implies that B u and A1 u implies
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that it is not the case that B u. We say that a property, A, of untyped terms
is behavioral iff whenever u ≡ u′, then A u iff A u′.

The proof of Scott’s Theorem decomposes into two parts:

1. For any untyped λ-term u, we may find an untyped term v such that
u(pvq) ≡ v, where pvq is the Gödel number of v, and pvq is its rep-
resentation as a Church numeral. (See Chapter 9 for a discussion of
Gödel-numbering.)

2. Any two non-trivial2 behavioral properties A0 and A1 of untyped
terms are inseparable.

Lemma 17.1. For any u there exists v such that u(pvq) ≡ v.

Proof Sketch. The proof relies on the definability of the following two oper-
ations in the untyped λ-calculus:

1. ap(pu1q)(pu2q) ≡ pu1(u2)q.

2. nm(n) ≡ pnq.

Intuitively, the first takes the representations of two untyped terms, and
builds the representation of the application of one to the other. The sec-
ond takes a numeral for n, and yields the representation of n. Given these,
we may find the required term v by defining v , w(pwq), where w ,
λ (x) u(ap(x)(nm(x))). We have

v = w(pwq)

≡ u(ap(pwq)(nm(pwq)))

≡ u(pw(pwq)q)

≡ u(pvq).

The definition is very similar to that of Y(u), except that u takes as input
the representation of a term, and we find a v such that, when applied to the
representation of v, the term u yields v itself.

Lemma 17.2. Suppose that A0 and A1 are two non-trivial behavioral properties
of untyped terms. Then there is no untyped term w such that

1. For every u either w(puq) ≡ 0 or w(puq) ≡ 1.

2A property of untyped terms is said to be trivial if it either holds for all untyped terms
or never holds for any untyped term.

VERSION 1.32 REVISED 05.15.2012



17.4 Untyped Means Uni-Typed 155

2. If A0 u, then w(puq) ≡ 0.

3. If A1 u, then w(puq) ≡ 1.

Proof. Suppose there is such an untyped term w. Let v be the untyped term
λ (x) ifz(w(x); u1; .u0), where A0 u0 and A1 u1. By Lemma 17.1 there is
an untyped term t such that v(ptq) ≡ t. If w(ptq) ≡ 0, then t ≡ v(ptq) ≡
u1, and so A1 t, because A1 is behavioral and A1 u1. But then w(ptq) ≡
1 by the defining properties of w, which is a contradiction. Similarly, if
w(ptq) ≡ 1, then A0 t, and hence w(ptq) ≡ 0, again a contradiction.

Corollary 17.3. There is no algorithm to decide whether or not u ≡ u′.

Proof. For fixed u, the property Eu u′ defined by u′ ≡ u is a non-trivial
behavioral property of untyped terms. It is therefore inseparable from its
negation, and hence is undecidable.

17.4 Untyped Means Uni-Typed

The untyped λ-calculus may be faithfully embedded in a typed language
with recursive types. This means that every untyped λ-term has a represen-
tation as a typed expression in such a way that execution of the representa-
tion of a λ-term corresponds to execution of the term itself. This embedding
is not a matter of writing an interpreter for the λ-calculus in L{+×⇀µ}
(which we could surely do), but rather a direct representation of untyped
λ-terms as typed expressions in a language with recursive types.

The key observation is that the untyped λ-calculus is really the uni-typed
λ-calculus. It is not the absence of types that gives it its power, but rather
that it has only one type, namely the recursive type

D , µt.t→ t.

A value of type D is of the form fold(e) where e is a value of type D → D
— a function whose domain and range are both D. Any such function can
be regarded as a value of type D by “rolling”, and any value of type D can
be turned into a function by “unrolling”. As usual, a recursive type may
be seen as a solution to a type isomorphism equation, which in the present
case is the equation

D ∼= D → D.

This specifies that D is a type that is isomorphic to the space of functions
on D itself, something that is impossible in conventional set theory, but is
feasible in the computationally-based setting of the λ-calculus.
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This isomorphism leads to the following translation, ofL{λ} intoL{+×⇀µ}:

x† , x (17.14a)

λ (x) u† , fold(λ (x:D) u†) (17.14b)

u1(u2)
† , unfold(u†

1)(u†
2) (17.14c)

Observe that the embedding of a λ-abstraction is a value, and that the
embedding of an application exposes the function being applied by un-
rolling the recursive type. Consequently,

λ (x) u1(u2)
† = unfold(fold(λ (x:D) u†

1))(u†
2)

≡ λ (x:D) u†
1(u†

2)

≡ [u†
2/x]u†

1

= ([u2/x]u1)
†.

The last step, stating that the embedding commutes with substitution, is
easily proved by induction on the structure of u1. Thus β-reduction is faith-
fully implemented by evaluation of the embedded terms.

Thus we see that the canonical untyped language, L{λ}, which by dint
of terminology stands in opposition to typed languages, turns out to be
but a typed language after all. Rather than eliminating types, an untyped
language consolidates an infinite collection of types into a single recursive
type. Doing so renders static type checking trivial, at the expense of incur-
ring substantial dynamic overhead to coerce values to and from the recur-
sive type. In Chapter 18 we will take this a step further by admitting many
different types of data values (not just functions), each of which is a com-
ponent of a “master” recursive type. This shows that so-called dynamically
typed languages are, in fact, statically typed. Thus this traditional distinction
can hardly be considered an opposition, because dynamic languages are
but particular forms of static languages in which undue emphasis is placed
on a single recursive type.

17.5 Notes

The untyped λ-calculus was introduced by Church (1941) as a codifica-
tion of the informal concept of a computable function. Unlike the well-
known machine models, such as the Turing machine or the random access
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machine, the λ-calculus directly codifies mathematical and programming
practice. Barendregt (1984) is the definitive reference for all aspects of the
untyped λ-calculus; the proof of Scott’s theorem is adapted from Baren-
dregt’s account. Scott (1980) gave the first model of the untyped λ-calculus
in terms of an elegant theory of recursive types. This construction under-
lies Scott’s apt description of the λ-calculus as “unityped”, rather than “un-
typed.”
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Chapter 18

Dynamic Typing

We saw in Chapter 17 that an untyped language may be viewed as a uni-
typed language in which the so-called untyped terms are terms of a distin-
guished recursive type. In the case of the untyped λ-calculus this recursive
type has a particularly simple form, expressing that every term is isomor-
phic to a function. Consequently, no run-time errors can occur due to the
misuse of a value—the only elimination form is application, and its first ar-
gument can only be a function. This property breaks down once more than
one class of value is permitted into the language. For example, if we add
natural numbers as a primitive concept to the untyped λ-calculus (rather
than defining them via Church encodings), then it is possible to incur a
run-time error arising from attempting to apply a number to an argument,
or to add a function to a number. One school of thought in language design
is to turn this vice into a virtue by embracing a model of computation that
has multiple classes of value of a single type. Such languages are said to
be dynamically typed, in purported opposition to statically typed languages.
But the supposed opposition is illusory: just as the so-called untyped λ-
calculus turns out to be uni-typed, so dynamic languages turn out to be
but restricted forms of static language. This remark is so important it bears
repeating: every dynamic language is inherently a static language in which
we confine ourselves to a (needlessly) restricted type discipline to ensure
safety.

18.1 Dynamically Typed PCF

To illustrate dynamic typing we formulate a dynamically typed version of
L{nat⇀}, called L{dyn}. The abstract syntax of L{dyn} is given by the
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following grammar:

Exp d ::= x x variable
num(n) n numeral
zero zero zero
succ(d) succ(d) successor
ifz(d; d0; x.d1) ifz d {zero⇒ d0 | succ(x)⇒ d1}

zero test
fun(λ (x) d) λ (x) d abstraction
ap(d1; d2) d1(d2) application
fix(x.d) fix x is d recursion

There are two classes of values in L{dyn}, the numbers, which have the
form n, and the functions, which have the form λ (x) d. The expressions
zero and succ(d) are not values, but rather are operations that evaluate
to values. General recursion is definable using a fixed point combinator,
but is taken as primitive here to simplify the analysis of the dynamics in
Section 18.3.

As usual, the abstract syntax of L{dyn} is what matters, but we use the
concrete syntax to write examples in a convenient manner. However, it is
often the case for dynamic languages, including L{dyn}, that the concrete
syntax is deceptive in that it obscures an important detail of the abstract
syntax, namely that every value is tagged with a classifier that plays a sig-
nificant role at run-time (as we shall see shortly). So although the concrete
syntax for a number, n, suggests a “bare” representation, the abstract syn-
tax reveals that the number is labelled with the class num to indicate that the
value is of the numeric class. This is done to distinguish it from a function
value, which concretely has the form λ (x) d, but whose abstract syntax,
fun(λ (x) d), indicates that it is to be classified with the tag fun to distin-
guish it from a number. As we shall see shortly, this tagging is of prime
importance in any dynamic language, so it is important to pay close atten-
tion to the abstract form in what follows.

The statics of L{dyn} is essentially the same as that of L{λ} given in
Chapter 17; it merely checks that there are no free variables in the expres-
sion. The judgment

x1 ok, . . . xn ok ` d ok

states that d is a well-formed expression with free variables among those
in the hypotheses. If the assumptions are empty, then we write just d ok to
indicate that d is a closed expression of L{dyn}.
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The dynamics of L{dyn} must check for errors that would never arise
in a language such as L{nat⇀}. For example, evaluation of a function
application must ensure that the value being applied is indeed a function,
signaling an error if it is not. Similarly the conditional branch must ensure
that its principal argument is a number, signaling an error if it is not. To
account for these possibilities, the dynamics is given by several judgment
forms, as summarized in the following chart:

d val d is a (closed) value
d 7→ d′ d evaluates in one step to d′

d err d incurs a run-time error
d is num n d is of class num with value n
d isnt num d is not of class num
d is fun x.d d is of class fun with body x.d
d isnt fun d is not of class fun

The last four judgment forms implement dynamic class checking. They are
only relevant when d has already been determined to be a value. The affir-
mative class-checking judgments have a second argument that represents
the underlying structure of a value; this argument is not itself a value.

The value judgment, d val, states that d is a fully evaluated (closed)
expression:

num(n) val (18.1a)

fun(λ (x) d) val (18.1b)

The affirmative class-checking judgments are defined by the following
rules:

num(n) is num n (18.2a)

fun(λ (x) d) is fun x.d (18.2b)

The negative class-checking judgments are correspondingly defined by
these rules:

num( ) isnt fun (18.3a)

fun( ) isnt num (18.3b)

The transition judgment, d 7→ d′, and the error judgment, d err, are
defined simultaneously by the following rules:

zero 7→ num(z) (18.4a)

d 7→ d′

succ(d) 7→ succ(d′)
(18.4b)
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d err
succ(d) err

(18.4c)

d is num n
succ(d) 7→ num(s(n))

(18.4d)

d isnt num
succ(d) err

(18.4e)

d 7→ d′

ifz(d; d0; x.d1) 7→ ifz(d′; d0; x.d1)
(18.4f)

d err
ifz(d; d0; x.d1) err

(18.4g)

d is num 0
ifz(d; d0; x.d1) 7→ d0

(18.4h)

d is num n + 1
ifz(d; d0; x.d1) 7→ [num(n)/x]d1

(18.4i)

d isnt num
ifz(d; d0; x.d1) err

(18.4j)

d1 7→ d′1
ap(d1; d2) 7→ ap(d′1; d2)

(18.4k)

d1 err

ap(d1; d2) err
(18.4l)

d1 is fun x.d
ap(d1; d2) 7→ [d2/x]d

(18.4m)

d1 isnt fun

ap(d1; d2) err
(18.4n)

fix(x.d) 7→ [fix(x.d)/x]d (18.4o)

Rule (18.4i) labels the predecessor with the class num to maintain the invari-
ant that variables are bound to expressions of L{dyn}.

Lemma 18.1 (Class Checking). If d val, then

1. either d is num n for some n, or d isnt num;

2. either d is fun x.d′ for some x and d′, or d isnt fun.

Proof. By a straightforward inspection of the rules defining the class-checking
judgments.
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Theorem 18.2 (Progress). If d ok, then either d val, or d err, or there exists d′

such that d 7→ d′.

Proof. By induction on the structure of d. For example, if d = succ(d′),
then we have by induction either d′ val, d′ err, or d′ 7→ d′′ for some d′′.
In last case we have by Rule (18.4b) that succ(d′) 7→ succ(d′′), and in
the second-to-last case we have by Rule (18.4c) that succ(d′) err. Is d′ val,
then by Lemma 18.1, either d′ is num n or d′ isnt num. In the former case
succ(d′) 7→ num(n + 1), and in the latter succ(d′) err. The other cases are
handled similarly.

Lemma 18.3 (Exclusivity). For any d in L{dyn}, exactly one of the following
holds: d val, or d err, or d 7→ d′ for some d′.

Proof. By induction on the structure of d, making reference to Rules (18.4).

18.2 Variations and Extensions

The dynamic language L{dyn} defined in Section 18.1 closely parallels the
static language L{nat⇀} defined in Chapter 10. One discrepancy, how-
ever, is in the treatment of natural numbers. Whereas in L{nat⇀} the
zero and successor operations are introductory forms for the type nat, in
L{dyn} they are elimination forms that act on separately-defined numer-
als. This is done to ensure that there is a single class of numbers, rather
than a separate class for zero and successor.

An alternative is to treat zero and succ(d) as values of two separate
classes, and to introduce the obvious class checking judgments for them.
This complicates the error checking rules, and admits problematic values
such as succ(λ (x) d), but it allows us to avoid having a class of numbers.
When written in this style, the dynamics of the conditional branch is given
as follows:

d 7→ d′

ifz(d; d0; x.d1) 7→ ifz(d′; d0; x.d1)
(18.5a)

d is zero
ifz(d; d0; x.d1) 7→ d0

(18.5b)

d is succ d′

ifz(d; d0; x.d1) 7→ [d′/x]d1
(18.5c)

d isnt zero d isnt succ
ifz(d; d0; x.d1) err

(18.5d)
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Notice that the predecessor of a value of the successor class need not be a
number, whereas in the previous formulation this possibility does not arise.

Structured data may be added to L{dyn} using similar techniques. The
classic example is to introduce a null value, and a constructor for combin-
ing two values into one.

Exp d ::= nil nil null
cons(d1; d2) cons(d1; d2) pair
ifnil(d; d0; x, y.d1) ifnil d {nil⇒ d0 | cons(x; y)⇒ d1}

conditional

The expression ifnil(d; d0; x, y.d1) distinguishes the null value from a
pair, and signals an error on any other class of value.

Lists may be represented using null and pairing. For example, the list
consisting of three zeroes is represented by the value

cons(zero; cons(zero; cons(zero; nil))).

But what to make of this beast?

cons(zero; cons(zero; cons(zero; λ (x) x)))

This does not correspond to a list, because it does not end with nil.
The difficulty with encoding lists using null and pair becomes appar-

ent when defining functions that operate on them. For example, here is a
possible definition of the function that appends two lists:

fix a isλ (x)λ (y) ifnil(x; y; x1, x2.cons(x1; a(x2)(y)))

Nothing prevents us from applying this function to any two values, re-
gardless of whether they are lists. If the first argument is not a list, then
execution aborts with an error. But the function does not traverse its sec-
ond argument, it can be any value at all. For example, we may append a
list to a function, and obtain the “list” that ends with a λ given above.

It might be argued that the conditional branch that distinguishes null
from a pair is inappropriate in L{dyn}, because there are more than just
these two classes in the language. One approach that avoids this criticism
is to abandon the idea of pattern matching on the class of data entirely,
replacing it by a general conditional branch that distinguishes null from all
other values, and adding to the language predicates1 that test the class of a
value and destructors that invert the constructors of each class.

1Predicates evaluate to the null value to indicate that a condition is false, and some non-
null value to indicate that it is true.
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In the present case we would reformulate the extension of L{dyn}with
null and pairing as follows:

Exp d ::= cond(d; d0; d1) cond(d; d0; d1) conditional
nil?(d) nil?(d) nil test
cons?(d) cons?(d) pair test
car(d) car(d) first projection
cdr(d) cdr(d) second projection

The conditional cond(d; d0; d1) distinguishes d between nil and all other
values. If d is not nil, the conditional evaluates to d0, and otherwise eval-
uates to d1. In other words the value nil represents boolean falsehood,
and all other values represent boolean truth. The predicates nil?(d) and
cons?(d) test the class of their argument, yielding nil if the argument is
not of the specified class, and yielding some non-nil if so. The destructors
car(d) and cdr(d)2 decompose cons(d1; d2) into d1 and d2, respectively.

Written in this form, the append function is given by the expression

fix a isλ (x)λ (y) cond(x; cons(car(x); a(cdr(x))(y)); y).

The behavior of this formulation of append is no different from the earlier
one; the only difference is that instead of dispatching on whether a value
is either null or a pair, we instead allow discrimination on any predicate of
the value, which includes such checks as special cases.

An alternative, which is not widely used, is to enhance, rather than re-
strict, the conditional branch so that it includes cases for each possible class
of value in the language. So, for example, in a language with numbers,
functions, null, and pairing, the conditional would have four branches. The
fourth branch, for pairing, would deconstruct the pair into its constituent
parts. The difficulty with this approach is that in realistic languages there
are many classes of data, and such a conditional would be rather unwieldy.
Moreover, even once we have dispatched on the class of a value, it is never-
theless necessary for the primitive operations associated with that class to
perform run-time checks. For example, we may determine that a value, d, is
of the numeric class, but there is no way to propagate this information into
the branch of the conditional that then adds d to some other number. The
addition operation must still check the class of d, recover the underlying
number, and create a new value of numeric class. This is an inherent lim-
itation of dynamic languages, which do not permit handling values other
than classified values.

2This terminology for the projections is archaic, but firmly established in the literature.
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18.3 Critique of Dynamic Typing

The safety theorem for L{dyn} is often promoted as an advantage of dy-
namic over static typing. Unlike static languages, which rule out some
candidate programs as ill-typed, essentially every piece of abstract syntax
in L{dyn} is well-formed, and hence, by Theorem 18.2, has a well-defined
dynamics. But this can also be seen as a disadvantage, because errors that
could be ruled out at compile time by type checking are not signalled until
run time in L{dyn}. To make this possible, the dynamics of L{dyn} must
enforce conditions that need not be checked in a statically typed language.

Consider, for example, the addition function in L{dyn}, whose spec-
ification is that, when passed two values of class num, returns their sum,
which is also of class num:3

fun(λ (x) fix(p.fun(λ (y) ifz(y; x; y′.succ(p(y′)))))).

The addition function may, deceptively, be written in concrete syntax as
follows:

λ (x) fix p isλ (y) ifz y {zero⇒ x | succ(y′)⇒ succ(p(y′))}.

It is deceptive, because it obscures the class tags on values, and the opera-
tions that check the validity of those tags. Let us now examine the costs of
these operations in a bit more detail.

First, observe that the body of the fixed point expression is labeled with
class fun. The dynamics of the fixed point construct binds p to this function.
This means that the dynamic class check incurred by the application of p in
the recursive call is guaranteed to succeed. But L{dyn} offers no means of
suppressing this redundant check, because it cannot express the invariant
that p is always bound to a value of class fun.

Second, observe that the result of applying the inner λ-abstraction is
either x, the argument of the outer λ-abstraction, or the successor of a re-
cursive call to the function itself. The successor operation checks that its
argument is of class num, even though this is guaranteed for all but the
base case, which returns the given x, which can be of any class at all. In
principle we can check that x is of class num once, and observe that it is oth-
erwise a loop invariant that the result of applying the inner function is of
this class. However, L{dyn} gives us no way to express this invariant; the

3This specification imposes no restrictions on the behavior of addition on arguments
that are not classified as numbers, but we could make the further demand that the function
abort when applied to arguments that are not classified by num.
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repeated, redundant tag checks imposed by the successor operation cannot
be avoided.

Third, the argument, y, to the inner function is either the original ar-
gument to the addition function, or is the predecessor of some earlier re-
cursive call. But as long as the original call is to a value of class num, then
the dynamics of the conditional will ensure that all recursive calls have this
class. And again there is no way to express this invariant in L{dyn}, and
hence there is no way to avoid the class check imposed by the conditional
branch.

Classification is not free—storage is required for the class label, and it
takes time to detach the class from a value each time it is used and to attach
a class to a value whenever it is created. Although the overhead of classi-
fication is not asymptotically significant (it slows down the program only
by a constant factor), it is nevertheless non-negligible, and should be elim-
inated whenever possible. But this is impossible within L{dyn}, because it
cannot enforce the restrictions required to express the required invariants.
For that we need a static type system.

18.4 Notes

The earliest dynamically typed language is Lisp (McCarthy, 1965), which
continues to influence language design a half century after its invention.
Dynamic PCF is essentially the core of Lisp, but with a proper treatment
of variable binding, correcting what McCarthy himself has described as an
error in the original design. Informal discussions of dynamic languages
are often confused by the ellision of the dynamic checks that are made ex-
plicit here. Although the surface syntax of dynamic PCF is essentially the
same as that for PCF, minus the type annotations, the underlying dynam-
ics is fundamentally different. It is for this reason that static PCF cannot be
properly seen as a restriction of dynamic PCF by the imposition of a type
system, contrary to what seems to be a widely held belief.
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Chapter 19

Hybrid Typing

A hybrid language is one that combines static and dynamic typing by en-
riching a statically typed language with a distinguished type, dyn, of dy-
namic values. The dynamically typed language considered in Chapter 18
may be embedded into the hybrid language by regarding a dynamically
typed program as a statically typed program of type dyn. This shows that
static and dynamic types are not opposed to one another, but may coexist
harmoniously.

The notion of a hybrid language, however, is itself illusory, because the
type dyn is really a particular recursive type. This shows that there is no
need for any special mechanisms to support dynamic typing. Rather, they
may be derived from the more general concept of a recursive type. More-
over, this shows that dynamic typing is but a mode of use of static typing. The
supposed opposition between dynamic and static typing is, therefore, a
fallacy: dynamic typing can hardly be opposed to that of which it is but a
special case.

19.1 A Hybrid Language

Consider the language L{nat dyn⇀}, which extends L{nat⇀} with the
following additional constructs:

Typ τ ::= dyn dyn dynamic
Exp e ::= new[l](e) l ! e construct

cast[l](e) e ? l destruct
Cls l ::= num num number

fun fun function
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The type dyn is the type of dynamically classified values. The new operation
attaches a classifier to a value, and the cast operation checks the classifier
and returns the associated value.

The statics of L{nat dyn⇀} extends that of L{nat⇀} with the follow-
ing additional rules:

Γ ` e : nat
Γ ` new[num](e) : dyn (19.1a)

Γ ` e : dyn⇀ dyn

Γ ` new[fun](e) : dyn
(19.1b)

Γ ` e : dyn
Γ ` cast[num](e) : nat

(19.1c)

Γ ` e : dyn
Γ ` cast[fun](e) : dyn⇀ dyn

(19.1d)

The statics ensures that class labels are applied to objects of the appropriate
type, namely num for natural numbers, and fun for functions defined over
labeled values.

The dynamics of L{nat dyn⇀} extends that of L{nat⇀} with the fol-
lowing rules:

e val
new[l](e) val

(19.2a)

e 7→ e′

new[l](e) 7→ new[l](e′)
(19.2b)

e 7→ e′

cast[l](e) 7→ cast[l](e′)
(19.2c)

new[l](e) val
cast[l](new[l](e)) 7→ e

(19.2d)

new[l′](e) val l 6= l′

cast[l](new[l′](e)) err
(19.2e)

Casting compares the class of the object to the required class, returning the
underlying object if these coincide, and signalling an error otherwise.

Lemma 19.1 (Canonical Forms). If e : dyn and e val, then e = new[l](e′) for
some class l and some e′ val. If l = num, then e′ : nat, and if l = fun, then
e′ : dyn⇀ dyn.

Proof. By a straightforward rule induction on the statics of L{nat dyn⇀}.

Theorem 19.2 (Safety). The language L{nat dyn⇀} is safe:
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1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or e err, or e 7→ e′ for some e′.

Proof. Preservation is proved by rule induction on the dynamics, and progress
is proved by rule induction on the statics, making use of the canonical
forms lemma. The opportunities for run-time errors are the same as those
for L{dyn}—a well-typed cast might fail at run-time if the class of the cast
does not match the class of the value.

The type dyn need not be taken as primitive in any language with sum
types and recursive types. Specifically, the type dyn is definable in such a
language by the following correspondences:1

dyn , µt.[num ↪→ nat, fun ↪→ t ⇀ t] (19.3)

new[num](e) , fold(num · e) (19.4)

new[fun](e) , fold(fun · e) (19.5)

cast[num](e) , case unfold(e) {num · x⇒ x | fun · x⇒ error} (19.6)

cast[fun](e) , case unfold(e) {num · x⇒ error | fun · x⇒ x}. (19.7)

Thus there is no need for a primitive notion of dynamic type, provided that
sums and recursive types are available.

19.2 Dynamic as Static Typing

The languageL{dyn} described in Chapter 18 may be embedded intoL{nat dyn⇀}
by a simple translation that makes explicit the class checking in the dynam-
ics of L{dyn}. Specifically, we may define a translation d† of expressions of
L{dyn} into expressions of L{nat dyn⇀} according to the following static
correctness criterion:

Theorem 19.3. If x1 ok, . . . , xn ok ` d ok according to the statics of L{dyn},
then x1 : dyn, . . . , xn : dyn ` d† : dyn in L{nat dyn⇀}.

1The expression error aborts the computation with an error; this can be accomplished
using exceptions, which are described in Chapter 28.
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The proof of Theorem 19.3 is a straightforward induction on the struc-
ture of d based on the following translation:

x† , x

num(n)† , new[num](n)

zero† , new[num](z)

succ(d)† , new[num](s(cast[num](d†)))

ifz(d; d0; x.d1) , ifz(cast[num](d†); d†
0; x.[new[num](x)/x]d†

1)

(λ (x) d)† , new[fun](λ (x:dyn) d†)

(d1(d2))
† , cast[fun](d†

1)(d†
2)

fix(x.d) , fix[dyn](x.d†)

Although a rigorous proof requires methods extending those to be devel-
oped in Chapter 48, it should be clear that the translation is faithful to the
dynamics of L{dyn} given in Chapter 18.

19.3 Optimization of Dynamic Typing

The language L{nat dyn⇀} combines static and dynamic typing by en-
riching L{nat⇀} with the type, dyn, of classified values. It is, for this
reason, called a hybrid language. Unlike a purely dynamic type system, a
hybrid type system can express invariants that are crucial to the optimiza-
tion of programs in L{dyn}.

Consider the addition function in L{dyn} given in Section 18.3, which
we transcribe here for easy reference:

λ (x) fix p isλ (y) ifz y {zero⇒ x | succ(y′)⇒ succ(p(y′))}.

This function may be regarded as a value of type dyn in L{nat dyn⇀}
given as follows:

fun ! λ (x:dyn) fix p:dyn is fun ! λ (y:dyn) ex,p,y,

where
x : dyn, p : dyn, y : dyn ` ex,p,y : dyn

is the expression

ifz (y ? num) {zero⇒ x | succ(y′)⇒ num ! (s((p ? fun)(num ! y′) ? num))}.
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The embedding into L{nat dyn⇀}makes explicit the run-time checks that
are implicit in the dynamics of L{dyn}.

Careful examination of the embedded formulation of addition reveals a
great deal of redundancy and overhead that can be eliminated in the stat-
ically typed version. Eliminating this redundancy requires a static type
discipline, because the intermediate computations involve values of a type
other than dyn. Because a dynamic language can only express values of
one type, it is impossible to express the optimized form within a dynamic
language. This shows that the superficial freedoms offered by dynamic
languages supposedly accruing from the omission of types are, in fact, se-
vere restrictions on the expressiveness of the language compared to a static
language with a type of dynamic values.

The first redundancy arises from the use of recursion in a dynamic lan-
guage. In the above example we use recursion to define the inner loop, p,
of the computation. The value p is, by definition, a λ-abstraction, which is
explicitly tagged as a function. Yet the call to p within the loop checks at
run-time whether p is in fact a function before applying it. Because p is an
internally defined function, all of its call sites are under the control of the
addition function, which means that there is no need for such pessimism
at calls to p, provided that we change its type to dyn⇀ dyn, which directly
expresses the invariant that p is a function acting on dynamic values.

Performing this transformation, we obtain the following reformulation
of the addition function that eliminates this redundancy:

fun ! λ (x:dyn) fun ! fix p:dyn⇀ dyn isλ (y:dyn) e′x,p,y,

where e′x,p,y is the expression

ifz (y ? num) {zero⇒ x | succ(y′)⇒ num ! (s(p(num ! y′) ? num))}.

We have “hoisted” the function class label out of the loop, and suppressed
the cast inside the loop. Correspondingly, the type of p has changed to
dyn⇀ dyn.

Next, observe that the parameter y of type dyn is cast to a number on
each iteration of the loop before it is tested for zero. Because this function
is recursive, the bindings of y arise in one of two ways: at the initial call
to the addition function, and on each recursive call. But the recursive call
is made on the predecessor of y, which is a true natural number that is
labeled with num at the call site, only to be removed by the class check at
the conditional on the next iteration. This suggests that we hoist the check
on y outside of the loop, and avoid labeling the argument to the recursive
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call. Doing so changes the type of the function, however, from dyn⇀ dyn to
nat⇀ dyn. Consequently, further changes are required to ensure that the
entire function remains well-typed.

Before doing so, let us make another observation. The result of the re-
cursive call is checked to ensure that it has class num, and, if so, the under-
lying value is incremented and labeled with class num. If the result of the
recursive call came from an earlier use of this branch of the conditional,
then obviously the class check is redundant, because we know that it must
have class num. But what if the result came from the other branch of the
conditional? In that case the function returns x, which need not be of class
num because it is provided by the caller of the function. However, we may
reasonably insist that it is an error to call addition with a non-numeric ar-
gument. This can be enforced by replacing x in the zero branch of the con-
ditional by x ? num.

Combining these optimizations we obtain the inner loop e′′x defined as
follows:

fix p:nat⇀ nat isλ (y:nat) ifz y {zero⇒ x ? num | succ(y′)⇒ s(p(y′))}.

This function has type nat⇀ nat, and runs at full speed when applied to a
natural number—all checks have been hoisted out of the inner loop.

Finally, recall that the overall goal is to define a version of addition that
works on values of type dyn. Thus we require a value of type dyn⇀ dyn,
but what we have at hand is a function of type nat⇀ nat. This can be
converted to the required form by pre-composing with a cast to num and
post-composing with a coercion to num:

fun ! λ (x:dyn) fun ! λ (y:dyn) num ! (e′′x(y ? num)).

The innermost λ-abstraction converts the function e′′x from type nat⇀ nat

to type dyn⇀ dyn by composing it with a class check that ensures that y is
a natural number at the initial call site, and applies a label to the result to
restore it to type dyn.

The outcome of these transformations is that the inner loop of the com-
putation runs at “full speed”, without any manipulation of tags on func-
tions or numbers. But the outermost form of addition has been retained
as a value of type dyn encapsulating a curried function that takes two ar-
guments of type dyn. This preserves the correctness of all calls to addi-
tion, which pass and return values of type dyn, while optimizing its execu-
tion during the computation. Of course, we could strip the class tags from
the addition function, changing its type from dyn to the more descriptive
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dyn⇀ dyn⇀ dyn, but this imposes the requirement on the caller to treat
addition not as a value of type dyn, but rather as a function that must be
applied to two successive values of type dyn whose class is num. As long as
the call sites to addition are under programmer control, there is no obsta-
cle to effecting this transformation. It is only when there may be external
call sites, not directly under programmer control, that there is any need to
package addition as a value of type dyn. Applying this principle gener-
ally, we see that dynamic typing is only of marginal utility—that is, is used
only at the margins of a system where uncontrolled calls arise. Internally
to a system there is no benefit, and considerable drawback, to restricting
attention to the type dyn.

19.4 Static Versus Dynamic Typing

There have been many attempts by advocates of dynamic typing to distin-
guish dynamic from static languages. It is useful to review the supposed
distinctions from the present viewpoint.

1. Dynamic languages associate types with values, whereas static languages
associate types to variables. But this is nonsense arising from the con-
fusion of types with classes. Dynamic languages associate classes, not
types, to values by tagging them with identifiers such as num and fun.
This form of classification amounts to a use of recursive sum types
within a statically typed language, and hence cannot be seen as a dis-
tinguishing feature of dynamic languages. Morever, static languages
assign types to expressions, not just variables. Because dynamic lan-
guages are just particular static languages (with a single type), the
same can be said of dynamic languages.

2. Dynamic languages check types at run-time, whereas static language check
types at compile time. This, too, is erroneous. Dynamic languages are
just as surely statically typed as static languages, albeit for a degen-
erate type system with only one type. As we have seen, dynamic
languages do perform class checks at run-time, but so too do static
languages that admit sum types. The difference is only the extent
to which we must use classification: always in a dynamic language,
only as necessary in a static language.

3. Dynamic languages support heterogeneous collections, whereas static lan-
guages support homogeneous collections. But this, too, is in error. Sum
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types exist to support heterogeneity, and any static language with
sums admits heterogenous data structures. A typical example is a
list such as

cons(num(1); cons(fun(λ (x) x); nil)).

It is sometimes said that such a list is not representable in a static
language, because of the disparate nature of its components. In both
static and dynamic languages are type homogeneous, but may be class
heterogeneous. All elements of the above list are of type dyn; the first
is of class num, and the second is of class fun.

What, then, are we to make of the supposed distinction between dy-
namic and static languages? Rather than being in opposition to each other,
it is more accurate to say that dynamic languages are a mode of use of static
languages. Every dynamic language is a static language, albeit one with a
paucity of types available to the programmer (only one!). But as we have
seen above, types express and enforce invariants that are crucial to the cor-
rectness and efficiency of programs.

19.5 Notes

The concept of a hybrid type system is wholly artificial, serving only as
an explanatory bridge between dynamic and static languages. Viewing
dynamic languages as static languages with recursive types was first pro-
posed by Scott (1980), who also suggested the term “unityped” as a more
descriptive alternative to “untyped.”
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Chapter 20

Girard’s System F

The languages we have considered so far are all monomorphic in that every
expression has a unique type, given the types of its free variables, if it has
a type at all. Yet it is often the case that essentially the same behavior is re-
quired, albeit at several different types. For example, in L{nat→} there is
a distinct identity function for each type τ, namely λ (x:τ) x, even though
the behavior is the same for each choice of τ. Similarly, there is a distinct
composition operator for each triple of types, namely

◦τ1,τ2,τ3 = λ ( f:τ2 → τ3)λ (g:τ1 → τ2)λ (x:τ1) f(g(x)).

Each choice of the three types requires a different program, even though
they all exhibit the same behavior when executed.

Obviously it would be useful to capture the general pattern once and
for all, and to instantiate this pattern each time we need it. The expression
patterns codify generic (type-independent) behaviors that are shared by all
instances of the pattern. Such generic expressions are said to be polymor-
phic. In this chapter we will study a language introduced by Girard under
the name System F and by Reynolds under the name polymorphic typed λ-
calculus. Although motivated by a simple practical problem (how to avoid
writing redundant code), the concept of polymorphism is central to an im-
pressive variety of seemingly disparate concepts, including the concept of
data abstraction (the subject of Chapter 21), and the definability of product,
sum, inductive, and coinductive types considered in the preceding chap-
ters. (Only general recursive types extend the expressive power of the lan-
guage.)
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20.1 System F

System F, or the polymorphic λ-calculus, or L{→∀}, is a minimal functional
language that illustrates the core concepts of polymorphic typing, and per-
mits us to examine its surprising expressive power in isolation from other
language features. The syntax of System F is given by the following gram-
mar:

Typ τ ::= t t variable
arr(τ1; τ2) τ1 → τ2 function
all(t.τ) ∀(t.τ) polymorphic

Exp e ::= x x
lam[τ](x.e) λ (x:τ) e abstraction
ap(e1; e2) e1(e2) application
Lam(t.e) Λ(t.e) type abstraction
App[τ](e) e[τ] type application

A type abstraction, Lam(t.e), defines a generic, or polymorphic, function with
type parameter t standing for an unspecified type within e. A type application,
or instantiation, App[τ](e), applies a polymorphic function to a specified
type, which is then plugged in for the type parameter to obtain the result.
Polymorphic functions are classified by the universal type, all(t.τ), that
determines the type, τ, of the result as a function of the argument, t.

The statics of L{→∀} consists of two judgment forms, the type formation
judgment,

∆ ` τ type,

and the typing judgment,
∆ Γ ` e : τ.

The hypotheses ∆ have the form t type, where t is a variable of sort Typ,
and the hypotheses Γ have the form x : τ, where x is a variable of sort Exp.

The rules defining the type formation judgment are as follows:

∆, t type ` t type (20.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(20.1b)

∆, t type ` τ type

∆ ` all(t.τ) type
(20.1c)

The rules defining the typing judgment are as follows:

∆ Γ, x : τ ` x : τ (20.2a)
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∆ ` τ1 type ∆ Γ, x : τ1 ` e : τ2

∆ Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(20.2b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(20.2c)

∆, t type Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(20.2d)

∆ Γ ` e : all(t.τ′) ∆ ` τ type

∆ Γ ` App[τ](e) : [τ/t]τ′
(20.2e)

Lemma 20.1 (Regularity). If ∆ Γ ` e : τ, and if ∆ ` τi type for each assumption
xi : τi in Γ, then ∆ ` τ type.

Proof. By induction on Rules (20.2).

The statics admits the structural rules for a general hypothetical judg-
ment. In particular, we have the following critical substitution property for
type formation and expression typing.

Lemma 20.2 (Substitution). 1. If ∆, t type ` τ′ type and ∆ ` τ type, then
∆ ` [τ/t]τ′ type.

2. If ∆, t type Γ ` e′ : τ′ and ∆ ` τ type, then ∆ [τ/t]Γ ` [τ/t]e′ : [τ/t]τ′.

3. If ∆ Γ, x : τ ` e′ : τ′ and ∆ Γ ` e : τ, then ∆ Γ ` [e/x]e′ : τ′.

The second part of the lemma requires substitution into the context, Γ,
as well as into the term and its type, because the type variable t may occur
freely in any of these positions.

Returning to the motivating examples from the introduction, the poly-
morphic identity function, I, is written

Λ(t.λ (x:t) x);

it has the polymorphic type

∀(t.t→ t).

Instances of the polymorphic identity are written I[τ], where τ is some
type, and have the type τ → τ.

Similarly, the polymorphic composition function, C, is written

Λ(t1.Λ(t2.Λ(t3.λ ( f:t2 → t3)λ (g:t1 → t2)λ (x:t1) f(g(x))))).

REVISED 05.15.2012 VERSION 1.32



182 20.1 System F

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3)→ (t1 → t2)→ (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, written
C[τ1][τ2][τ3]. Each such instance has the type

(τ2 → τ3)→ (τ1 → τ2)→ (τ1 → τ3).

Dynamics

The dynamics of L{→∀} is given as follows:

lam[τ](x.e) val
(20.3a)

Lam(t.e) val
(20.3b)

[e2 val]

ap(lam[τ1](x.e); e2) 7→ [e2/x]e
(20.3c)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(20.3d)[
e1 val e2 7→ e′2

ap(e1; e2) 7→ ap(e1; e′2)

]
(20.3e)

App[τ](Lam(t.e)) 7→ [τ/t]e
(20.3f)

e 7→ e′

App[τ](e) 7→ App[τ](e′)
(20.3g)

The bracketed premises and rule are to be included for a call-by-value in-
terpretation, and omitted for a call-by-name interpretation of L{→∀}.

It is a simple matter to prove safety forL{→∀}, using familiar methods.

Lemma 20.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam[τ1](x.e2) with x : τ1 ` e2 : τ2.

2. If τ = all(t.τ′), then e = Lam(t.e′) with t type ` e′ : τ′.

Proof. By rule induction on the statics.
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Theorem 20.4 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on the dynamics.

Theorem 20.5 (Progress). If e : τ, then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on the statics.

20.2 Polymorphic Definability

The language L{→∀} is astonishingly expressive. Not only are all finite
products and sums definable in the language, but so are all inductive and
coinductive types. This is most naturally expressed using definitional equal-
ity, which is defined to be the least congruence containing the following
two axioms:

∆ Γ, x : τ1 ` e2 : τ2 ∆ Γ ` e1 : τ1

∆ Γ ` λ (x:τ) e2(e1) ≡ [e1/x]e2 : τ2
(20.4a)

∆, t type Γ ` e : τ ∆ ` ρ type

∆ Γ ` Λ(t.e)[ρ] ≡ [ρ/t]e : [ρ/t]τ
(20.4b)

In addition there are rules omitted here specifying that definitional equality
is a congruence relation (that is, an equivalence relation respected by all
expression-forming operations).

20.2.1 Products and Sums

The nullary product, or unit, type is definable in L{→∀} as follows:

unit , ∀(r.r → r)

〈〉 , Λ(r.λ (x:r) x)

The identity function plays the role of the null tuple, because it is the only
closed value of this type.

Binary products are definable in L{→∀} by using encoding tricks sim-
ilar to those described in Chapter 17 for the untyped λ-calculus:

τ1 × τ2 , ∀(r.(τ1 → τ2 → r)→ r)

〈e1, e2〉 , Λ(r.λ (x:τ1 → τ2 → r) x(e1)(e2))

e · l , e[τ1](λ (x:τ1)λ (y:τ2) x)

e · r , e[τ2](λ (x:τ1)λ (y:τ2) y)
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The statics given in Chapter 11 is derivable according to these definitions.
Moreover, the following definitional equalities are derivable in L{→∀}
from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and
〈e1, e2〉 · r ≡ e2 : τ2.

The nullary sum, or void, type is definable in L{→∀}:

void , ∀(r.r)

abort[ρ](e) , e[ρ]

There is no definitional equality to be checked, there being no introductory
rule for the void type.

Binary sums are also definable in L{→∀}:

τ1 + τ2 , ∀(r.(τ1 → r)→ (τ2 → r)→ r)

l · e , Λ(r.λ (x:τ1 → r)λ (y:τ2 → r) x(e))

r · e , Λ(r.λ (x:τ1 → r)λ (y:τ2 → r) y(e))

case e {l · x1⇒ e1 | r · x2⇒ e2} ,
e[ρ](λ (x1:τ1) e1)(λ (x2:τ2) e2)

provided that the types make sense. It is easy to check that the following
equivalences are derivable in L{→∀}:

case l · d1 {l · x1⇒ e1 | r · x2⇒ e2} ≡ [d1/x1]e1 : ρ

and
case r · d2 {l · x1⇒ e1 | r · x2⇒ e2} ≡ [d2/x2]e2 : ρ.

Thus the dynamic behavior specified in Chapter 12 is correctly implemented
by these definitions.

20.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation)
are also definable in L{→∀}. The key is the representation of the iterator,
whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ` e2 : τ

iter(e0; e1; x.e2) : τ
.
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Because the result type τ is arbitrary, this means that if we have an iterator,
then it can be used to define a function of type

nat→ ∀(t.t→ (t→ t)→ t).

This function, when applied to an argument n, yields a polymorphic func-
tion that, for any result type, t, given the initial result for z and a trans-
formation from the result for x into the result for s(x), yields the result of
iterating the transformation n times, starting with the initial result.

Because the only operation we can perform on a natural number is to
iterate up to it in this manner, we may simply identify a natural number, n,
with the polymorphic iterate-up-to-n function just described. This means
that we may define the type of natural numbers in L{→∀} by the following
equations:

nat , ∀(t.t→ (t→ t)→ t)

z , Λ(t.λ (z:t)λ (s:t→ t) z)

s(e) , Λ(t.λ (z:t)λ (s:t→ t) s(e[t](z)(s)))

iter(e0; e1; x.e2) , e0[τ](e1)(λ (x:τ) e2)

It is easy to check that the statics and dynamics of the natural numbers type
given in Chapter 9 are derivable in L{→∀} under these definitions.

This shows that L{→∀} is at least as expressive as L{nat→}. But is it
more expressive? Yes! It is possible to show that the evaluation function
for L{nat→} is definable in L{→∀}, even though it is not definable in
L{nat→} itself. However, the same diagonal argument given in Chap-
ter 9 applies here, showing that the evaluation function for L{→∀} is not
definable in L{→∀}. We may enrich L{→∀} a bit more to define the eval-
uator for L{→∀}, but as long as all programs in the enriched language
terminate, we will once again have an undefinable function, the evaluation
function for that extension.

20.3 Parametricity Overview

A remarkable property of L{→∀} is that polymorphic types severely con-
strain the behavior of their elements. We may prove useful theorems about
an expression knowing only its type—that is, without ever looking at the
code. For example, if i is any expression of type ∀(t.t→ t), then it must
be the identity function. Informally, when i is applied to a type, τ, and
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an argument of type τ, it must return a value of type τ. But because τ is
not specified until i is called, the function has no choice but to return its
argument, which is to say that it is essentially the identity function. Sim-
ilarly, if b is any expression of type ∀(t.t→ t→ t), then b must be either
Λ(t.λ (x:t)λ (y:t) x) or Λ(t.λ (x:t)λ (y:t) y). For when b is applied to
two arguments of some type, its only choice to return a value of that type
is to return one of the two.

What is remarkable is that these properties of i and b have been de-
rived without knowing anything about the expressions themselves, but only their
types. The theory of parametricity implies that we are able to derive the-
orems about the behavior of a program knowing only its type. Such the-
orems are sometimes called free theorems because they come “for free” as
a consequence of typing, and require no program analysis or verification
to derive. These theorems underpin the remarkable experience with poly-
morphic languages that well-typed programs tend to behave as expected
when executed. That is, satisfying the type checker is sufficient condition
for correctness. Parametricity so constrains the behavior of a program that
there are relatively few programs of the same type that exhibit unintended
behavior, ruling out a large class of mistakes that commonly arise when
writing code. Parametricity also guarantees representation independence
for abstract types, a topic that is discussed further in Chapter 21.

20.4 Restricted Forms of Polymorphism

In this section we briefly examine some restricted forms of polymorphism
with less than the full expressive power of L{→∀}. These are obtained in
one of two ways:

1. Restricting type quantification to unquantified types.

2. Restricting the occurrence of quantifiers within types.

20.4.1 Predicative Fragment

The remarkable expressive power of the language L{→∀} may be traced
to the ability to instantiate a polymorphic type with another polymorphic
type. For example, if we let τ be the type ∀(t.t→ t), and, assuming that
e : τ, we may apply e to its own type, obtaining the expression e[τ] of type
τ → τ. Written out in full, this is the type

∀(t.t→ t)→ ∀(t.t→ t),
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which is larger (both textually, and when measured by the number of oc-
currences of quantified types) than the type of e itself. In fact, this type is
large enough that we can go ahead and apply e[τ] to e again, obtaining the
expression e[τ](e), which is again of type τ — the very type of e.

This property of L{→∀} is called impredicativity1; the language L{→∀}
is said to permit impredicative (type) quantification. The distinguishing char-
acteristic of impredicative polymorphism is that it involves a kind of cir-
cularity in that the meaning of a quantified type is given in terms of its
instances, including the quantified type itself. This quasi-circularity is re-
sponsible for the surprising expressive power of L{→∀}, and is corre-
spondingly the prime source of complexity when reasoning about it (for
example, in the proof that all expressions of L{→∀} terminate).

Contrast this with L{→}, in which the type of an application of a func-
tion is evidently smaller than the type of the function itself. For if e :
τ1 → τ2, and e1 : τ1, then we have e(e1) : τ2, a smaller type than the type of
e. This situation extends to polymorphism, provided that we impose the re-
striction that a quantified type can only be instantiated by an un-quantified
type. For in that case passage from ∀(t.τ) to [ρ/t]τ decreases the num-
ber of quantifiers (even if the size of the type expression viewed as a tree
grows). For example, the type ∀(t.t→ t) may be instantiated with the
type u → u to obtain the type (u→ u) → (u→ u). This type has more
symbols in it than τ, but is smaller in that it has fewer quantifiers. The re-
striction to quantification only over unquantified types is called predicative2

polymorphism. The predicative fragment is significantly less expressive than
the full impredicative language. In particular, the natural numbers are no
longer definable in it.

20.4.2 Prenex Fragment

A rather more restricted form of polymorphism, called the prenex fragment,
further restricts polymorphism to occur only at the outermost level — not
only is quantification predicative, but quantifiers are not permitted to occur
within the arguments to any other type constructors. This restriction, called
prenex quantification, is often imposed for the sake of type inference, which
permits type annotations to be omitted entirely in the knowledge that they
can be recovered from the way the expression is used. We will not discuss
type inference here, but we will give a formulation of the prenex fragment

1pronounced im-PRED-ic-a-tiv-it-y
2pronounced PRED-i-ca-tive
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of L{→∀}, because it plays an important role in the design of practical
polymorphic languages.

The prenex fragment of L{→∀} is designated L1{→∀}, for reasons
that will become clear in the next subsection. It is defined by stratifying
types into two sorts, the monotypes (or rank-0 types) and the polytypes (or
rank-1 types). The monotypes are those that do not involve any quantifica-
tion, and may be used to instantiate the polymorphic quantifier. The poly-
types include the monotypes, but also permit quantification over mono-
types. These classifications are expressed by the judgments ∆ ` τ mono
and ∆ ` τ poly, where ∆ is a finite set of hypotheses of the form t mono,
where t is a type variable not otherwise declared in ∆. The rules for deriv-
ing these judgments are as follows:

∆, t mono ` t mono (20.5a)

∆ ` τ1 mono ∆ ` τ2 mono

∆ ` arr(τ1; τ2) mono
(20.5b)

∆ ` τ mono
∆ ` τ poly

(20.5c)

∆, t mono ` τ poly

∆ ` all(t.τ) poly
(20.5d)

Base types, such as nat (as a primitive), or other type constructors, such as
sums and products, would be added to the language as monotypes.

The statics of L1{→∀} is given by rules for deriving hypothetical judg-
ments of the form ∆ Γ ` e : ρ, where ∆ consists of hypotheses of the form
t mono, and Γ consists of hypotheses of the form x : ρ, where ∆ ` ρ poly.
The rules defining this judgment are as follows:

∆ Γ, x : τ ` x : τ (20.6a)

∆ ` τ1 mono ∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2)
(20.6b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(20.6c)

∆, t mono Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(20.6d)

∆ ` τ mono ∆ Γ ` e : all(t.τ′)
∆ Γ ` App[τ](e) : [τ/t]τ′

(20.6e)
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We tacitly exploit the inclusion of monotypes as polytypes so that all typing
judgments have the form e : ρ for some expression e and polytype ρ.

The restriction on the domain of a λ-abstraction to be a monotype means
that a fully general let construct is no longer definable—there is no means
of binding an expression of polymorphic type to a variable. For this reason
it is usual to augment L1{→∀}with a primitive let construct whose statics
is as follows:

∆ ` τ1 poly ∆ Γ ` e1 : τ1 ∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` let[τ1](e1; x.e2) : τ2
. (20.7)

For example, the expression

let I:∀(t.t→ t) beΛ(t.λ (x:t) x) in I[τ → τ](I[τ])

has type τ → τ for any polytype τ.

20.4.3 Rank-Restricted Fragments

The binary distinction between monomorphic and polymorphic types in
L1{→∀} may be generalized to form a hierarchy of languages in which
the occurrences of polymorphic types are restricted in relation to function
types. The key feature of the prenex fragment is that quantified types are
not permitted to occur in the domain of a function type. The prenex frag-
ment also prohibits polymorphic types from the range of a function type,
but it would be harmless to admit it, there being no significant difference
between the type ρ → ∀(t.τ) and the type ∀(t.ρ→ τ) (where t /∈ ρ).
This motivates the definition of a hierarchy of fragments of L{→∀} that
subsumes the prenex fragment as a special case.

We will define a judgment of the form τ type [k], where k ≥ 0, to mean
that τ is a type of rank k. Informally, types of rank 0 have no quantification,
and types of rank k + 1 may involve quantification, but the domains of
function types are restricted to be of rank k. Thus, in the terminology of
Section 20.4.2, a monotype is a type of rank 0 and a polytype is a type of
rank 1.

The definition of the types of rank k is defined simultaneously for all
k by the following rules. These rules involve hypothetical judgments of
the form ∆ ` τ type [k], where ∆ is a finite set of hypotheses of the form
ti type [ki] for some pairwise distinct set of type variables ti. The rules defin-
ing these judgments are as follows:

∆, t type [k] ` t type [k] (20.8a)
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∆ ` τ1 type [0] ∆ ` τ2 type [0]
∆ ` arr(τ1; τ2) type [0]

(20.8b)

∆ ` τ1 type [k] ∆ ` τ2 type [k + 1]
∆ ` arr(τ1; τ2) type [k + 1]

(20.8c)

∆ ` τ type [k]
∆ ` τ type [k + 1]

(20.8d)

∆, t type [k] ` τ type [k + 1]
∆ ` all(t.τ) type [k + 1]

(20.8e)

With these restrictions in mind, it is a good exercise to define the statics
of Lk{→∀}, the restriction of L{→∀} to types of rank k (or less). It is most
convenient to consider judgments of the form e : τ [k] specifying simulta-
neously that e : τ and τ type [k]. For example, the rank-limited rules for
λ-abstractions is phrased as follows:

∆ ` τ1 type [0] ∆ Γ, x : τ1 [0] ` e2 : τ2 [0]
∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2) [0]

(20.9a)

∆ ` τ1 type [k] ∆ Γ, x : τ1 [k] ` e2 : τ2 [k + 1]
∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2) [k + 1]

(20.9b)

The remaining rules follow a similar pattern.
The rank-limited languages Lk{→∀} clarify the need for a primitive (as

opposed to derived) definition mechanism in L1{→∀}. The prenex frag-
ment of L{→∀} corresponds to the rank-one fragment L1{→∀}. The let

construct for rank-one types is definable in L2{→∀} from λ-abstraction
and application. This definition only makes sense at rank two, because it
abstracts over a rank-one polymorphic type, and is therefore not available
at lesser rank.

20.5 Notes

System F was introduced by Girard (1972) in the context of proof theory
and by Reynolds (1974) in the context of programming languages. The
concept of parametricity was originally isolated by Strachey, but was not
fully developed until the work of Reynolds (1983). The description of para-
metricity as providing “theorems for free” was popularized by Wadler (1989).
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Chapter 21

Abstract Types

Data abstraction is perhaps the most important technique for structuring
programs. The main idea is to introduce an interface that serves as a contract
between the client and the implementor of an abstract type. The interface
specifies what the client may rely on for its own work, and, simultaneously,
what the implementor must provide to satisfy the contract. The interface
serves to isolate the client from the implementor so that each may be devel-
oped in isolation from the other. In particular one implementation may be
replaced by another without affecting the behavior of the client, provided
that the two implementations meet the same interface and are, in a sense
to be made precise below, suitably related to one another. (Roughly, each
simulates the other with respect to the operations in the interface.) This
property is called representation independence for an abstract type.

Data abstraction may be formalized by extending the language L{→∀}
with existential types. Interfaces are modelled as existential types that pro-
vide a collection of operations acting on an unspecified, or abstract, type.
Implementations are modelled as packages, the introductory form for exis-
tentials, and clients are modelled as uses of the corresponding elimination
form. It is remarkable that the programming concept of data abstraction
is modelled so naturally and directly by the logical concept of existential
type quantification. Existential types are closely connected with universal
types, and hence are often treated together. The superficial reason is that
both are forms of type quantification, and hence both require the machin-
ery of type variables. The deeper reason is that existentials are definable
from universals — surprisingly, data abstraction is actually just a form of
polymorphism! One consequence of this observation is that representation
independence is just a use of the parametricity properties of polymorphic
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functions discussed in Chapter 20.

21.1 Existential Types

The syntax of L{→∀∃} is the extension of L{→∀} with the following con-
structs:

Typ τ ::= some(t.τ) ∃(t.τ) interface
Exp e ::= pack[t.τ][ρ](e) pack ρ with e as ∃(t.τ) implementation

open[t.τ][ρ](e1; t, x.e2) open e1 as t with x:τ in e2 client

The introductory form for the existential type ∃(t.τ) is a package of the
form pack ρ with e as ∃(t.τ), where ρ is a type and e is an expression of
type [ρ/t]τ. The type ρ is called the representation type of the package, and
the expression e is called the implementation of the package. The elimina-
tory form for existentials is the expression open e1 as t with x:τ in e2, which
opens the package e1 for use within the client e2 by binding its representa-
tion type to t and its implementation to x for use within e2. Crucially, the
typing rules ensure that the client is type-correct independently of the ac-
tual representation type used by the implementor, so that it may be varied
without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable,
t, and the expression variable, x, are bound within the client. They may be
renamed at will by α-equivalence without affecting the meaning of the con-
struct, provided, of course, that the names are chosen so as not to conflict
with any others that may be in scope. In other words the type, t, may be
thought of as a “new” type, one that is distinct from all other types, when
it is introduced. This is sometimes called generativity of abstract types: the
use of an abstract type by a client “generates” a “new” type within that
client. This behavior is simply a consequence of identifying terms up to
α-equivalence, and is not particularly tied to data abstraction.

21.1.1 Statics

The statics of existential types is specified by rules defining when an exis-
tential is well-formed, and by giving typing rules for the associated intro-
ductory and eliminatory forms.

∆, t type ` τ type

∆ ` some(t.τ) type
(21.1a)
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∆ ` ρ type ∆, t type ` τ type ∆ Γ ` e : [ρ/t]τ
∆ Γ ` pack[t.τ][ρ](e) : some(t.τ)

(21.1b)

∆ Γ ` e1 : some(t.τ) ∆, t type Γ, x : τ ` e2 : τ2 ∆ ` τ2 type

∆ Γ ` open[t.τ][τ2](e1; t, x.e2) : τ2
(21.1c)

Rule (21.1c) is complex, so study it carefully! There are two important
things to notice:

1. The type of the client, τ2, must not involve the abstract type t. This
restriction prevents the client from attempting to export a value of the
abstract type outside of the scope of its definition.

2. The body of the client, e2, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in the type
variable t.

Lemma 21.1 (Regularity). Suppose that ∆ Γ ` e : τ. If ∆ ` τi type for each
xi : τi in Γ, then ∆ ` τ type.

Proof. By induction on Rules (21.1).

21.1.2 Dynamics

The dynamics of existential types is specified by the following rules (in-
cluding the bracketed material for an eager interpretation, and omitting it
for a lazy interpretation):

[e val]

pack[t.τ][ρ](e) val
(21.2a)[

e 7→ e′

pack[t.τ][ρ](e) 7→ pack[t.τ][ρ](e′)

]
(21.2b)

e1 7→ e′1
open[t.τ][τ2](e1; t, x.e2) 7→ open[t.τ][τ2](e′1; t, x.e2)

(21.2c)

[e val]

open[t.τ][τ2](pack[t.τ][ρ](e); t, x.e2) 7→ [ρ, e/t, x]e2
(21.2d)

It is important to observe that, according to these rules, there are no abstract
types at run time! The representation type is propagated to the client by sub-
stitution when the package is opened, thereby eliminating the abstraction
boundary between the client and the implementor. Thus, data abstraction
is a compile-time discipline that leaves no traces of its presence at execution
time.
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21.1.3 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for L{→∀} to the new constructs.

Theorem 21.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on e 7→ e′, making use of substitution for both
expression- and type variables.

Lemma 21.3 (Canonical Forms). If e : some(t.τ) and e val, then e = pack[t.τ][ρ](e′)
for some type ρ and some e′ such that e′ : [ρ/t]τ.

Proof. By rule induction on the statics, making use of the definition of closed
values.

Theorem 21.4 (Progress). If e : τ then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on e : τ, making use of the canonical forms lemma.

21.2 Data Abstraction Via Existentials

To illustrate the use of existentials for data abstraction, we consider an ab-
stract type of queues of natural numbers supporting three operations:

1. Forming the empty queue.

2. Inserting an element at the tail of the queue.

3. Removing the head of the queue, which is assumed to be non-empty.

This is clearly a bare-bones interface, but is sufficient to illustrate the main
ideas of data abstraction. Queue elements may be taken to be of any type, τ,
of our choosing; we will not be specific about this choice, because nothing
depends on it.

The crucial property of this description is that nowhere do we specify
what queues actually are, only what we can do with them. This is captured
by the following existential type, ∃(t.τ), which serves as the interface of
the queue abstraction:

∃(t.〈emp ↪→ t, ins ↪→ nat× t→ t, rem ↪→ t→ nat× t〉).
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The representation type, t, of queues is abstract — all that is specified about
it is that it supports the operations emp, ins, and rem, with the specified
types.

An implementation of queues consists of a package specifying the rep-
resentation type, together with the implementation of the associated op-
erations in terms of that representation. Internally to the implementation,
the representation of queues is known and relied upon by the operations.
Here is a very simple implementation, el , in which queues are represented
as lists:

pack list with 〈emp ↪→ nil, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ),

where
ei : nat× list→ list = λ (x:nat× list) e′i,

and
er : list→ nat× list = λ (x:list) e′r.

Here the expression e′i conses the first component of x, the element, onto the
second component of x, the queue. Correspondingly, the expression e′r re-
verses its argument, and returns the head element paired with the reversal
of the tail. These operations “know” that queues are represented as values
of type list, and are programmed accordingly.

It is also possible to give another implementation, ep, of the same inter-
face, ∃(t.τ), but in which queues are represented as pairs of lists, consist-
ing of the “back half” of the queue paired with the reversal of the “front
half”. This representation avoids the need for reversals on each call, and,
as a result, achieves amortized constant-time behavior:

pack list× list with 〈emp ↪→ 〈nil, nil〉, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ).

In this case ei has type

nat× (list× list)→ (list× list),

and er has type

(list× list)→ nat× (list× list).

These operations “know” that queues are represented as values of type
list× list, and are implemented accordingly.

The important point is that the same client type checks regardless of
which implementation of queues we choose. This is because the represen-
tation type is hidden, or held abstract, from the client during type checking.

REVISED 05.15.2012 VERSION 1.32



196 21.3 Definability of Existentials

Consequently, it cannot rely on whether it is list or list× list or some
other type. That is, the client is independent of the representation of the
abstract type.

21.3 Definability of Existentials

It turns out that it is not necessary to extend L{→∀} with existential types
to model data abstraction, because they are already definable using only
universal types! Before giving the details, let us consider why this should
be possible. The key is to observe that the client of an abstract type is poly-
morphic in the representation type. The typing rule for

open e1 as t with x:τ in e2 : τ2,

where e1 : ∃(t.τ), specifies that e2 : τ2 under the assumptions t type and
x : τ. In essence, the client is a polymorphic function of type

∀(t.τ → τ2),

where t may occur in τ (the type of the operations), but not in τ2 (the type
of the result).

This suggests the following encoding of existential types:

∃(t.τ) , ∀(u.∀(t.τ → u)→ u)

pack ρ with e as ∃(t.τ) , Λ(u.λ (x:∀(t.τ → u)) x[ρ](e))

open e1 as t with x:τ in e2 , e1[τ2](Λ(t.λ (x:τ) e2))

An existential is encoded as a polymorphic function taking the overall re-
sult type, u, as argument, followed by a polymorphic function representing
the client with result type u, and yielding a value of type u as overall re-
sult. Consequently, the open construct simply packages the client as such a
polymorphic function, instantiates the existential at the result type, τ, and
applies it to the polymorphic client. (The translation therefore depends
on knowing the overall result type, τ, of the open construct.) Finally, a
package consisting of a representation type ρ and an implementation e is a
polymorphic function that, when given the result type, t, and the client, x,
instantiates x with ρ and passes to it the implementation e.

It is then a straightforward exercise to show that this translation cor-
rectly reflects the statics and dynamics of existential types.
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21.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are
insensitive to the representations of abstract types. More precisely, there is
a criterion, called bisimilarity, for relating two implementations of an ab-
stract type such that the behavior of a client is unaffected by swapping
one implementation by another that is bisimilar to it. This leads to a sim-
ple methodology for proving the correctness of candidate implementation
of an abstract type, which is to show that it is bisimilar to an obviously
correct reference implementation of it. Because the candidate and the ref-
erence implementations are bisimilar, no client may distinguish them from
one another, and hence if the client behaves properly with the reference
implementation, then it must also behave properly with the candidate.

To derive the definition of bisimilarity of implementations, it is helpful
to examine the definition of existentials in terms of universals given in Sec-
tion 21.3. It is an immediate consequence of the definition that the client of
an abstract type is polymorphic in the representation of the abstract type. A
client, c, of an abstract type ∃(t.τ) has type ∀(t.τ → τ2), where t does not
occur free in τ2 (but may, of course, occur in τ). Applying the parametricity
property described informally in Chapter 20 (and developed rigorously in
Chapter 49), this says that if R is a bisimulation relation between any two
implementations of the abstract type, then the client behaves identically on
both of them. The fact that t does not occur in the result type ensures that
the behavior of the client is independent of the choice of relation between
the implementations, provided that this relation is preserved by the opera-
tions that implement it.

To see what this means requires that we specify what is meant by a
bisimulation. This is best done by example. Consider the existential type
∃(t.τ), where τ is the labeled tuple type

〈emp ↪→ t, ins ↪→ nat× t→ t, rem ↪→ t→ (nat× t) opt〉.

This specifies an abstract type of queues. The operations emp, ins, and rem

specify, respectively, the empty queue, an insert operation, and a remove
operation. For the sake of simplicity the element type is chosen to be the
natural numbers. The result of removal is an optional pair, according to
whether the queue is empty or not.

Theorem 49.12 ensures that if ρ and ρ′ are any two closed types, R is
a relation between expressions of these two types, then if any of the im-
plementations e : [ρ/x]τ and e′ : [ρ′/x]τ respect R, then c[ρ]e behaves the
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same as c[ρ′]e′. It remains to define when two implementations respect the
relation R. Let

e , 〈emp ↪→ em, ins ↪→ ei, rem ↪→ er〉
and

e′ , 〈emp ↪→ e′m, ins ↪→ e′i , rem ↪→ e′r〉.
For these implementations to respect R means that the following three con-
ditions hold:

1. The empty queues are related: R(em, e′m).

2. Inserting the same element on each of two related queues yields re-
lated queues: if d : τ and R(q, q′), then R(ei(d)(q), e′i(d)(q′)).

3. If two queues are related, then either they are both empty, or their
front elements are the same and their back elements are related: if
R(q, q′), then either

(a) er(q) ∼= null ∼= e′r(q′), or
(b) er(q) ∼= just(〈d, r〉) and e′r(q′) ∼= just(〈d′, r′〉), with d ∼= d′

and R(r, r′).

If such a relation R exists, then the implementations e and e′ are said to be
bisimilar. The terminology stems from the requirement that the operations
of the abstract type preserve the relation: if it holds before an operation is
performed, then it must also hold afterwards, and the relation must hold
for the initial state of the queue. Thus each implementation simulates the
other up to the relationship specified by R.

To see how this works in practice, let us consider informally two im-
plementations of the abstract type of queues specified above. For the refer-
ence implementation we choose ρ to be the type list, and define the empty
queue to be the empty list, define insert to add the specified element to the
head of the list, and define remove to remove the last element of the list.
The code is as follows:

t , list

emp , nil

ins , λ (x:nat)λ (q:t) cons(x; q)

rem , λ (q:t) case rev(q) {nil⇒ null | cons( f ; qr)⇒ just(〈 f , rev(qr)〉)}.

Removing an element takes time linear in the length of the list, because of
the reversal.
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For the candidate implementation we choose ρ′ to be the type list×
list of pairs of lists 〈b, f 〉 in which b is the “back half” of the queue, and f
is the reversal of the “front half” of the queue. For this representation we de-
fine the empty queue to be a pair of empty lists, define insert to extend the
back with that element at the head, and define remove based on whether
the front is empty or not. If it is non-empty, the head element is removed
from it, and returned along with the pair consisting of the back and the tail
of the front. If it is empty, and the back is not, then we reverse the back,
remove the head element, and return the pair consisting of the empty list
and the tail of the now-reversed back. The code is as follows:

t , list× list

emp , 〈nil, nil〉
ins , λ (x:nat)λ (〈bs, f s〉:t) 〈cons(x; bs), f s〉
rem , λ (〈bs, f s〉:t) case f s {nil⇒ e | cons( f ; f s′)⇒ 〈bs, f s′〉}, where

e , case rev(bs) {nil⇒ null | cons(b; bs′)⇒ just(〈b, 〈nil, bs′〉〉)}.

The cost of the occasional reversal may be amortized across the sequence
of inserts and removes to show that each operation in a sequence costs unit
time overall.

To show that the candidate implementation is correct, we show that it is
bisimilar to the reference implementation. This reduces to specifying a re-
lation, R, between the types list and list× list such that the three sim-
ulation conditions given above are satisfied by the two implementations
just described. The relation in question states that R(l, 〈b, f 〉) iff the list l
is the list app(b)(rev( f)), where app is the evident append function on
lists. That is, thinking of l as the reference representation of the queue, the
candidate must maintain that the elements of b followed by the elements
of f in reverse order form precisely the list l. It is easy to check that the
implementations just described preserve this relation. Having done so, we
are assured that the client, c, behaves the same regardless of whether we
use the reference or the candidate. Because the reference implementation
is obviously correct (albeit inefficient), the candidate must also be correct
in that the behavior of any client is unaffected by using it instead of the
reference.
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21.5 Notes

The connection between abstract types in programming languages and ex-
istential types in logic was made by Mitchell and Plotkin (1988). Closely
related ideas were already present in Reynolds (1974), but the connection
with existential types was not explicitly drawn there. The account of rep-
resentation independence given here is derived from Mitchell (1986).
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Chapter 22

Constructors and Kinds

The types nat → nat and nat list may be thought of as being built from
other types by the application of a type constructor, or type operator. These
two examples differ from each other in that the function space type con-
structor takes two arguments, whereas the list type constructor takes only
one. We may, for the sake of uniformity, think of types such as nat as be-
ing built by a type constructor of no arguments. More subtly, we may even
think of the types ∀(t.τ) and ∃(t.τ) as being built up in the same way by
regarding the quantifiers as higher-order type operators.

These seemingly disparate cases may be treated uniformly by enrich-
ing the syntactic structure of a language with a new layer of constructors.
To ensure that constructors are used properly (for example, that the list
constructor is given only one argument, and that the function constructor
is given two), we classify constructors by kinds. Constructors of a distin-
guished kind, T, are types, which may be used to classify expressions. To
allow for multi-argument and higher-order constructors, we will also con-
sider finite product and function kinds. (Later we shall consider even richer
kinds.)

The distinction between constructors and kinds on one hand and types
and expressions on the other reflects a fundamental separation between
the static and dynamic phase of processing of a programming language,
called the phase distinction. The static phase implements the statics and the
dynamic phase implements the dynamics. Constructors may be seen as a
form of static data that is manipulated during the static phase of process-
ing. Expressions are a form of dynamic data that is manipulated at run-time.
Because the dynamic phase follows the static phase (we only execute well-
typed programs), we may also manipulate constructors at run-time.
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Adding constructors and kinds to a language introduces more techni-
cal complications than might at first be apparent. The main difficulty is that
as soon as we enrich the kind structure beyond the distinguished kind of
types, it becomes essential to simplify constructors to determine whether
they are equivalent. For example, if we admit product kinds, then a pair of
constructors is a constructor of product kind, and projections from a con-
structor of product kind are also constructors. But what if we form the first
projection from the pair consisting of the constructors nat and str? This
should be equivalent to nat, because the elimination form is post-inverse to
the introduction form. Consequently, any expression (say, a variable) of the
one type should also be an expression of the other. That is, typing should
respect definitional equality of constructors.

There are two main ways to deal with this. One is to introduce a con-
cept of definitional equality for constructors, and to demand that the typing
judgment for expressions respect definitional equality of constructors of
kind T. This means, however, that we must show that definitional equality
is decidable if we are to build a complete implementation of the language.
The other is to prohibit formation of awkward constructors such as the pro-
jection from a pair so that there is never any issue of when two constructors
are equivalent (only when they are identical). But this complicates the def-
inition of substitution, because a projection from a constructor variable is
well-formed, until you substitute a pair for the variable. Both approaches
have their benefits, but the second is simplest, and is adopted here.

22.1 Statics

The syntax of kinds is given by the following grammar:

Kind κ ::= Type T types
Unit 1 nullary product
Prod(κ1; κ2) κ1 × κ2 binary product
Arr(κ1; κ2) κ1→ κ2 function

The kinds consist of the kind of types, T, and the unit kind, Unit, and are
closed under formation of product and function kinds.

The syntax of constructors is divided into two syntactic sorts, the neutral
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and the canonical, according to the following grammar:

NCon a ::= u u variable
proj[l](a) a · l first projection
proj[r](a) a · r second projection
app(a1; c2) a1[c2] application

CCon c ::= atom(a) â atomic
unit 〈〉 null tuple
pair(c1; c2) 〈c1,c2〉 pair
lam(u.c) λ u.c abstraction

The reason to distinguish neutral from canonical constructors is to en-
sure that it is impossible to apply an elimination form to an introduction
form, which demands an equation to capture the inversion principle. For
example, the putative constructor 〈c1,c2〉 · l, which would be definition-
ally equal to c1, is ill-formed according to the above syntax chart. This is
because the argument to a projection must be neutral, but a pair is only
canonical, not neutral.

The canonical constructor â is the inclusion of neutral constructors into
canonical constructors. However, the grammar does not capture a crucial
property of the statics that ensures that only neutral constructors of kind
T may be treated as canonical. This requirement is imposed to limit the
forms of canonical constructors of the other kinds. In particular, variables
of function, product, or unit kind will turn out not to be canonical, but only
neutral.

The statics of constructors and kinds is specified by the judgments

∆ ` a ⇑ κ neutral constructor formation
∆ ` c ⇓ κ canonical constructor formation

In each of these judgments ∆ is a finite set of hypotheses of the form

u1 ⇑ κ1, . . . , un ⇑ κn

for some n ≥ 0. The form of the hypotheses expresses the principle that
variables are neutral constructors. The formation judgments are to be un-
derstood as generic hypothetical judgments with parameters u1, . . . , un that
are determined by the forms of the hypotheses.

The rules for constructor formation are as follows:

∆, u ⇑ κ ` u ⇑ κ (22.1a)
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∆ ` a ⇑ κ1 × κ2

∆ ` a · l ⇑ κ1
(22.1b)

∆ ` a ⇑ κ1 × κ2

∆ ` a · r ⇑ κ2
(22.1c)

∆ ` a1 ⇑ κ2→ κ ∆ ` c2 ⇓ κ2

∆ ` a1[c2] ⇑ κ
(22.1d)

∆ ` a ⇑ T

∆ ` â ⇓ T
(22.1e)

∆ ` 〈〉 ⇓ 1 (22.1f)

∆ ` c1 ⇓ κ1 ∆ ` c2 ⇓ κ2

∆ ` 〈c1,c2〉 ⇓ κ1 × κ2
(22.1g)

∆, u ⇑ κ1 ` c2 ⇓ κ2

∆ ` λ u.c2 ⇓ κ1→ κ2
(22.1h)

Rule (22.1e) specifies that the only neutral constructors that are canon-
ical are those with kind T. This ensures that the language enjoys the fol-
lowing canonical forms property, which is easily proved by inspection of
Rules (22.1).

Lemma 22.1. Suppose that ∆ ` c ⇓ κ.

1. If κ = 1, then c = 〈〉.

2. If κ = κ1 × κ2, then c = 〈c1,c2〉 for some c1 and c2 such that ∆ ` ci ⇓ κi
for i = 1, 2.

3. If κ = κ1→ κ2, then c = λ u.c2 for some u and c2 such that ∆, u ⇑ κ1 `
c2 ⇓ κ2.

22.2 Higher Kinds

To equip a language, L, with constructors and kinds requires that we aug-
ment its statics with hypotheses governing constructor variables, and that
we relate constructors of kind T (types as static data) to the classifiers of
dynamic expressions (types as classifiers). To achieve this the statics of L
must be defined to have judgments of the following two forms:

∆ ` τ type type formation
∆ Γ ` e : τ expression formation
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where, as before, Γ is a finite set of hypotheses of the form

x1 : τ1, . . . , xk : τk

for some k ≥ 0 such that ∆ ` τi type for each 1 ≤ i ≤ k.
As a general principle, every constructor of kind T is a classifier:

∆ ` τ ⇑ T

∆ ` τ type
. (22.2)

In many cases this is the sole rule of type formation, so that every classifier
is a constructor of kind T. However, this need not be the case. In some
situations we may wish to have strictly more classifiers than constructors
of the distinguished kind.

To see how this might arise, let us consider two extensions of L{→∀}
from Chapter 20. In both cases we extend the universal quantifier ∀(t.τ)
to admit quantification over an arbitrary kind, written ∀ u :: κ.τ, but the
two languages differ in what constitutes a constructor of kind T. In one
case, the impredicative, we admit quantified types as constructors, and in
the other, the predicative, we exclude quantified types from the domain of
quantification.

The impredicative fragment includes the following two constructor con-
stants:

∆ ` → ⇑ T→ T→ T (22.3a)

∆ ` ∀κ ⇑ (κ→ T)→ T (22.3b)

We regard the classifier τ1 → τ2 to be the application→[τ1][τ2]. Similarly,
we regard the classifier ∀ u :: κ.τ to be the application ∀κ[λ u.τ].

The predicative fragment excludes the constant specified by Rule (22.3b)
in favor of a separate rule for the formation of universally quantified types:

∆, u ⇑ κ ` τ type

∆ ` ∀ u :: κ.τ type
. (22.4)

The point is that ∀ u :: κ.τ is a type (as classifier), but is not a constructor of
kind type.

The significance of this distinction becomes apparent when we con-
sider the introduction and elimination forms for the generalized quantifier,
which are the same for both fragments:

∆, u ⇑ κ Γ ` e : τ

∆ Γ ` Λ(u::κ.e) : ∀ u :: κ.τ
(22.5a)
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∆ Γ ` e : ∀ u :: κ.τ ∆ ` c ⇓ κ

∆ Γ ` e[c] : [c/u]τ
(22.5b)

(Rule (22.5b) makes use of substitution, whose definition requires some
care. We will return to this point in Section 22.3.)

Rule (22.5b) makes clear that a polymorphic abstraction quantifies over
the constructors of kind κ. When κ is T this kind may or may not include
all of the classifiers of the language, according to whether we are working
with the impredicative formulation of quantification (in which the quanti-
fiers are distinguished constants for building constructors of kind T) or the
predicative formulation (in which quantifiers arise only as classifiers and
not as constructors).

The main idea is that constructors are static data, so that a constructor
abstraction Λ(u::κ.e) of type ∀ u :: κ.τ is a mapping from static data c of
kind κ to dynamic data [c/u]e of type [c/u]τ. Rule (22.1e) tells us that every
constructor of kind T determines a classifier, but it may or may not be the
case that every classifier arises in this manner.

22.3 Canonizing Substitution

Rule (22.5b) involves substitution of a canonical constructor, c, of kind κ
into a family of types u ⇑ κ ` τ type. This operation is written [c/u]τ, as
usual. Although the intended meaning is clear, it is in fact impossible to in-
terpret [c/u]τ as the standard concept of substitution defined in Chapter 1.
The reason is that to do so would risk violating the distinction between
neutral and canonical constructors. Consider, for example, the case of the
family of types

u ⇑ T→ T ` u[d] ⇑ T,

where d ⇑ T. (It is not important what we choose for d, so we leave it ab-
stract.) Now if c ⇓ T→ T, then by Lemma 22.1 we have that c is λ u′.c′.
Thus, if interpreted conventionally, substitution of c for u in the given fam-
ily yields the “constructor” (λ u′.c′)[d], which is not well-formed.

The solution is to define a form of canonizing substitution that simplifies
such “illegal” combinations as it performs the replacement of a variable by
a constructor of the same kind. In the case just sketched this means that we
must ensure that

[λ u′.c′/u]u[d] = [d/u′]c′.

If viewed as a definition this equation is problematic because it switches
from substituting for u in the constructor u[d] to substituting for u′ in the
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unrelated constructor c′. Why should such a process terminate? The an-
swer lies in the observation that the kind of u′ is definitely smaller than
the kind of u, because the kind of the former is the domain kind of the lat-
ter. In all other cases of substitution (as we shall see shortly) the size of
the target of the substitution becomes smaller; in the case just cited the size
may increase, but the type of the target variable decreases. Therefore by
a lexicographic induction on the type of the target variable and the struc-
ture of the target constructor, we may prove that canonizing substitution is
well-defined.

We now turn to the task of making this precise. We will define simulta-
neously two principal forms of substitution, one of which divides into two
cases:

[c/u : κ]a = a′ canonical into neutral yielding neutral
[c/u : κ]a = c′ ⇓ κ′ canonical into neutral yielding canonical and kind
[c/u : κ]c′ = c′′ canonical into canonical yielding canonical

Substitution into a neutral constructor divides into two cases according to
whether the substituted variable u occurs in critical position in a sense to be
made precise below.

These forms of substitution are simultaneously inductively defined by
the following rules, which are broken into groups for clarity.

The first set of rules defines substitution of a canonical constructor into
a canonical constructor; the result is always canonical.

[c/u : κ]a′ = a′′

[c/u : κ]â′ = â′′
(22.6a)

[c/u : κ]a′ = c′′ ⇓ κ′′

[c/u : κ]â′ = c′′
(22.6b)

[u/〈〉 : κ]=〈〉 (22.6c)

[c/u : κ]c′1 = c′′1 [c/u : κ]c′2 = c′′2
[c/u : κ]〈c′1,c′2〉 = 〈c′′1,c′′2 〉

(22.6d)

[c/u : κ]c′ = c′′ (u 6= u′) (u′ /∈ c)
[c/u : κ]λ u′.c′ = λ u′.c′′

(22.6e)

The conditions on variables in Rule (22.6e) may always be met by renaming
the bound variable, u′, of the abstraction.
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The second set of rules defines substitution of a canonical constructor
into a neutral constructor, yielding another neutral constructor.

(u 6= u′)
[c/u : κ]u′ = u′

(22.7a)

[c/u : κ]a′ = a′′

[c/u : κ]a′ · l = a′′ · l
(22.7b)

[c/u : κ]a′ = a′′

[c/u : κ]a′ · r = a′′ · r
(22.7c)

[c/u : κ]a1 = a′1 [c/u : κ]c2 = c′2
[c/u : κ]a1[c2] = a′1(c′2)

(22.7d)

Rule (22.7a) pertains to a non-critical variable, which is not the target of sub-
stitution. The remaining rules pertain to situations in which the recursive
call on a neutral constructor yields a neutral constructor.

The third set of rules defines substitution of a canonical constructor into
a neutral constructor, yielding a canonical constructor and its kind.

[c/u : κ]u = c ⇓ κ (22.8a)

[c/u : κ]a′ = 〈c′1,c′2〉 ⇓ κ′1 × κ′2
[c/u : κ]a′ · l = c′1 ⇓ κ′1

(22.8b)

[c/u : κ]a′ = 〈c′1,c′2〉 ⇓ κ′1 × κ′2
[c/u : κ]a′ · r = c′2 ⇓ κ′2

(22.8c)

[c/u : κ]a′1 = λ u′.c′ ⇓ κ′2→ κ′ [c/u : κ]c′2 = c′′2 [c′′2 /u′ : κ′2]c
′ = c′′

[c/u : κ]a′1[c′2] = c′′ ⇓ κ′

(22.8d)
Rule (22.8a) governs a critical variable, which is the target of substitution.
The substitution transforms it from a neutral constructor to a canonical con-
structor. This has a knock-on effect in the remaining rules of the group,
which analyze the canonical form of the result of the recursive call to de-
termine how to proceed. Rule (22.8d) is the most interesting rule. In the
third premise, all three arguments to substitution change as we substitute
the (substituted) argument of the application for the parameter of the (sub-
stituted) function into the body of that function. Here we require the type
of the function in order to determine the type of its parameter.
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Theorem 22.2. Suppose that ∆ ` c ⇓ κ, and ∆, u ⇑ κ ` c′ ⇓ κ′, and ∆, u ⇑ κ `
a′ ⇑ κ′. There exists a unique ∆ ` c′′ ⇓ κ′ such that [c/u : κ]c′ = c′′. Either there
exists a unique ∆ ` a′′ ⇑ κ′ such that [c/u : κ]a′ = a′′, or there exists a unique
∆ ` c′′ ⇓ κ′ such that [c/u : κ]a′ = c′′, but not both.

Proof. Simultaneously by a lexicographic induction with major index be-
ing the structure of the kind κ, and with minor index determined by the
formation rules for c′ and a′. For all rules except Rule (22.8d) the induc-
tive hypothesis applies to the premise(s) of the relevant formation rules.
For Rule (22.8d) we appeal to the major inductive hypothesis applied to κ′2,
which is a component of the kind κ′2→ κ′.

22.4 Canonization

With canonizing substitution in hand, it is perfectly possible to confine our
attention to constructors in canonical form. However, for some purposes
it can be useful to admit a more relaxed syntax in which it is possible to
form non-canonical constructors that may be transformed into canonical
form. The prototypical example is the constructor (λ u.c2)[c1], which
is malformed according to Rules (22.1), because the first argument of an
application is required to be in atomic form, whereas the λ-abstraction is
in canonical form. However, if c1 and c2 are already canonical, then the
malformed application may be transformed into the well-formed canoni-
cal form [c1/u]c2, where substitution is as defined in Section 22.3. If c1 or
c2 are not already canonical we may, inductively, put them into canonical
form before performing the substitution, resulting in the same canonical
form.

A constructor in general form is one that is well-formed with respect to
Rules (22.1), but disregarding the distinction between atomic and canoni-
cal forms. We write ∆ ` c :: κ to mean that c is a well-formed construc-
tor of kind κ in general form. The difficulty with admitting general form
constructors is that they introduce non-trivial equivalences between con-
structors. For example, we must ensure that 〈int,bool〉 · l is equivalent to
int wherever the former may occur. With this in mind we will introduce a
canonization procedure that allows us to define equivalence of general form
constructors, written ∆ ` c1 ≡ c2 :: κ, to mean that c1 and c2 have identical
canonical forms (up to α-equivalence).

Canonization of general-form constructors is defined by these two judg-
ments:
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1. Canonization: ∆ ` c :: κ ⇓ c: transform general-form constructor c of
kind κ to canonical form c.

2. Atomization: ∆ ` c ⇑ c :: κ: transform general-form constructor c to
obtain atomic form c of kind κ.

These two judgments are defined simultaneously by the following rules.
The canonization judgment is used to determine the canonical form of a
general-form constructor; the atomization judgment is an auxiliary to the
first that transforms constructors into atomic form. The canonization judg-
ment is to be thought of as having mode (∀, ∀, ∃), whereas the atomization
judgment is to be thought of as having mode (∀, ∃, ∃).

∆ ` c ⇑ c :: T
∆ ` c :: T ⇓ ĉ

(22.9a)

∆ ` c :: 1 ⇓ 〈〉
(22.9b)

∆ ` c · l :: κ1 ⇓ c1 ∆ ` c · r :: κ2 ⇓ c2

∆ ` c :: κ1 × κ2 ⇓ 〈c1,c2〉
(22.9c)

∆, u ⇑ κ1 ` c[u] :: κ2 ⇓ c2

∆ ` c :: κ1→ κ2 ⇓ λ u.c2
(22.9d)

∆, u ⇑ κ ` u ⇑ u :: κ
(22.9e)

∆ ` c ⇑ c :: κ1 × κ2

∆ ` c · l ⇑ c · l :: κ1
(22.9f)

∆ ` c ⇑ c :: κ1 × κ2

∆ ` c · r ⇑ c · r :: κ2
(22.9g)

∆ ` c1 ⇑ c1 :: κ1→ κ2 ∆ ` c2 :: κ1 ⇓ c2

∆ ` c1[c2] ⇑ c1[c2] :: κ2
(22.9h)

The canonization judgment produces canonical forms, and the atom-
ization judgment produces atomic forms.

Lemma 22.3. 1. If ∆ ` c :: κ ⇓ c, then ∆ ` c ⇓ κ.

2. If ∆ ` c ⇑ c :: κ, then ∆ ` c ⇑ κ.

Proof. By induction on Rules (22.9).

Theorem 22.4. If Γ ` c :: κ, then there exists c such that ∆ ` c :: κ ⇓ c.

Proof. By induction on the formation rules for general-form constructors,
making use of an analysis of the general-form constructors of kind T.
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22.5 Notes

The classical approach is to consider general-form constructors at the out-
set, for which substitution is readily defined, and then to test equivalence
of general-form constructors by reduction to a common irreducible form.
Two main lemmas are required for this approach. First, every constructor
must reduce in a finite number of steps to an irreducible form; this is called
normalization. Second, the relation “has a common irreducible form” must
be shown to be transitive; this is called confluence. Here we have turned the
development on its head by considering only canonical constructors in the
first place, then defining canonizing substitution introduced by Watkins
et al. (2008). It is then straightforward to decide equivalence of general-
form constructors by canonization of both sides of a candidate equation.
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Chapter 23

Subtyping

A subtype relation is a pre-order (reflexive and transitive relation) on types
that validates the subsumption principle:

if τ′ is a subtype of τ, then a value of type τ′ may be provided whenever
a value of type τ is required.

The subsumption principle relaxes the strictures of a type system to permit
values of one type to be treated as values of another.

Experience shows that the subsumption principle, although useful as a
general guide, can be tricky to apply correctly in practice. The key to get-
ting it right is the principle of introduction and elimination. To determine
whether a candidate subtyping relationship is sensible, it suffices to con-
sider whether every introductory form of the subtype can be safely manip-
ulated by every eliminatory form of the supertype. A subtyping principle
makes sense only if it passes this test; the proof of the type safety theorem
for a given subtyping relation ensures that this is the case.

A good way to get a subtyping principle wrong is to think of a type
merely as a set of values (generated by introductory forms), and to consider
whether every value of the subtype can also be considered to be a value of
the supertype. The intuition behind this approach is to think of subtyping
as akin to the subset relation in ordinary mathematics. But, as we shall
see, this can lead to serious errors, because it fails to take account of the
eliminatory forms that are applicable to the supertype. It is not enough
to think only of the introductory forms; subtyping is a matter of behavior,
rather than containment.
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23.1 Subsumption

A subtyping judgment has the form τ′ <: τ, and states that τ′ is a subtype of
τ. At a minimum we demand that the following structural rules of subtyp-
ing be admissible:

τ <: τ (23.1a)

τ′′ <: τ′ τ′ <: τ
τ′′ <: τ

(23.1b)

In practice we either tacitly include these rules as primitive, or prove that
they are admissible for a given set of subtyping rules.

The point of a subtyping relation is to enlarge the set of well-typed pro-
grams, which is achieved by the subsumption rule:

Γ ` e : τ′ τ′ <: τ
Γ ` e : τ

(23.2)

In contrast to most other typing rules, the rule of subsumption is not syntax-
directed, because it does not constrain the form of e. That is, the subsump-
tion rule may be applied to any form of expression. In particular, to show
that e : τ, we have two choices: either apply the rule appropriate to the
particular form of e, or apply the subsumption rule, checking that e : τ′ and
τ′ <: τ.

23.2 Varieties of Subtyping

In this section we will informally explore several different forms of subtyp-
ing for various extensions of L{⇀}. In Section 23.4 we will examine some
of these in more detail from the point of view of type safety.

23.2.1 Numeric Types

For languages with numeric types, our mathematical experience suggests
subtyping relationships among them. For example, in a language with
types int, rat, and real, representing, respectively, the integers, the ratio-
nals, and the reals, it is tempting to postulate the subtyping relationships

int <: rat <: real

by analogy with the set containments

Z ⊆ Q ⊆ R
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familiar from mathematical experience.
But are these subtyping relationships sensible? The answer depends

on the representations and interpretations of these types! Even in mathe-
matics, the containments just mentioned are usually not quite true—or are
true only in a somewhat generalized sense. For example, the set of rational
numbers may be considered to consist of ordered pairs (m, n), with n 6= 0
and gcd(m, n) = 1, representing the ratio m/n. The set Z of integers may
be isomorphically embedded within Q by identifying n ∈ Z with the ratio
n/1. Similarly, the real numbers are often represented as convergent se-
quences of rationals, so that strictly speaking the rationals are not a subset
of the reals, but rather may be embedded in them by choosing a canonical
representative (a particular convergent sequence) of each rational.

For mathematical purposes it is entirely reasonable to overlook fine dis-
tinctions such as that between Z and its embedding within Q. This is jus-
tified because the operations on rationals restrict to the embedding in the
expected manner: if we add two integers thought of as rationals in the
canonical way, then the result is the rational associated with their sum.
And similarly for the other operations, provided that we take some care
in defining them to ensure that it all works out properly. For the purposes
of computing, however, we cannot be quite so cavalier, because we must
also take account of algorithmic efficiency and the finiteness of machine
representations. Often what are called “real numbers” in a programming
language are, in fact, finite precision floating point numbers, a small subset
of the rational numbers. Not every rational can be exactly represented as
a floating point number, nor does floating point arithmetic restrict to ratio-
nal arithmetic, even when its arguments are exactly represented as floating
point numbers.

23.2.2 Product Types

Product types give rise to a form of subtyping based on the subsumption
principle. The only elimination form applicable to a value of product type
is a projection. Under mild assumptions about the dynamics of projections,
we may consider one product type to be a subtype of another by consid-
ering whether the projections applicable to the supertype may be validly
applied to values of the subtype.

Consider a context in which a value of type τ = 〈τj〉j∈J is required. The
statics of finite products (Rules (11.3)) ensures that the only operation we
may perform on a value of type τ, other than to bind it to a variable, is to
take the jth projection from it for some j ∈ J to obtain a value of type τj.
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Now suppose that e is of type τ′. If the projection e · j is to be well-formed,
then τ′ must be a finite product type 〈τ′i 〉i∈I such that j ∈ I. Moreover, for
this to be of type τj, it is enough to require that τ′j = τj. Because j ∈ J is
arbitrary, we arrive at the following subtyping rule for finite product types:

J ⊆ I
∏i∈I τi <: ∏j∈J τj

. (23.3)

This rule is sufficient for the required subtyping, but not necessary; we will
consider a more liberal form of this rule in Section 23.3. The justification
for Rule (23.3) is that we may evaluate e · i regardless of the actual form of
e, provided only that it has a field indexed by i ∈ I.

23.2.3 Sum Types

By an argument dual to the one given for finite product types we may de-
rive a related subtyping rule for finite sum types. If a value of type ∑j∈J τj is
required, the statics of sums (Rules (12.3)) ensures that the only non-trivial
operation that we may perform on that value is a J-indexed case analysis.
If we provide a value of type ∑i∈I τ′i instead, no difficulty will arise so long
as I ⊆ J and each τ′i is equal to τi. If the containment is strict, some cases
cannot arise, but this does not disrupt safety. This leads to the following
subtyping rule for finite sums:

I ⊆ J
∑i∈I τi <: ∑j∈J τj

. (23.4)

Note well the reversal of the containment as compared to Rule (23.3).

23.3 Variance

In addition to basic subtyping principles such as those considered in Sec-
tion 23.2, it is also important to consider the effect of subtyping on type
constructors. A type constructor is said to be covariant in an argument if
subtyping in that argument is preserved by the constructor. It is said to be
contravariant if subtyping in that argument is reversed by the constructor. It
is said to be invariant in an argument if subtyping for the constructed type
is not affected by subtyping in that argument.
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23.3.1 Product and Sum Types

Finite product types are covariant in each field. For if e is of type ∏i∈I τ′i ,
and the projection e · j is expected to be of type τj, then it is sufficient to
require that j ∈ I and τ′j <: τj. This is summarized by the following rule:

(∀i ∈ I) τ′i <: τi

∏i∈I τ′i <: ∏i∈I τi
(23.5)

It is implicit in this rule that the dynamics of projection must not be sen-
sitive to the precise type of any of the fields of a value of finite product
type.

Finite sum types are also covariant, because each branch of a case anal-
ysis on a value of the supertype expects a value of the corresponding sum-
mand, for which it is sufficient to provide a value of the corresponding
subtype summand:

(∀i ∈ I) τ′i <: τi

∑i∈I τ′i <: ∑i∈I τi
(23.6)

23.3.2 Function Types

The variance of the function type constructor is a bit more subtle. Let us
consider first the variance of the function type in its range. Suppose that
e : τ1 → τ′2. This means that if e1 : τ1, then e(e1) : τ′2. If τ′2 <: τ2, then
e(e1) : τ2 as well. This suggests the following covariance principle for
function types:

τ′2 <: τ2

τ1 → τ′2 <: τ1 → τ2
(23.7)

Every function that delivers a value of type τ′2 also delivers a value of type
τ2, provided that τ′2 <: τ2. Thus the function type constructor is covariant
in its range.

Now let us consider the variance of the function type in its domain.
Suppose again that e : τ1 → τ2. This means that e may be applied to any
value of type τ1 to obtain a value of type τ2. Hence, by the subsumption
principle, it may be applied to any value of a subtype, τ′1, of τ1, and it will
still deliver a value of type τ2. Consequently, we may just as well think of e
as having type τ′1 → τ2.

τ′1 <: τ1

τ1 → τ2 <: τ′1 → τ2
(23.8)
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The function type is contravariant in its domain position. Note well the
reversal of the subtyping relation in the premise as compared to the con-
clusion of the rule!

Combining these rules we obtain the following general principle of
contra- and co-variance for function types:

τ′1 <: τ1 τ′2 <: τ2

τ1 → τ′2 <: τ′1 → τ2
(23.9)

Beware of the reversal of the ordering in the domain!

23.3.3 Quantified Types

The extension of subtyping to quantified types requires a judgment of the
form ∆ ` τ′ <: τ, where ∆ ` τ′ type and ∆ ` τ type. The variance
principles for the quantifiers may then be stated so that both are covariant
in the quantified type:

∆, t type ` τ′ <: τ

∆ ` ∀(t.τ′) <: ∀(t.τ)
(23.10a)

∆, t type ` τ′ <: τ

∆ ` ∃(t.τ′) <: ∃(t.τ)
(23.10b)

The judgment ∆ ` τ′ <: τ states that τ′ is a subtype of τ uniformly in the
type variables declared in ∆. Consequently, we may derive the principle of
substitution:

Lemma 23.1. If ∆, t type ` τ′ <: τ, and ∆ ` ρ type, then ∆ ` [ρ/t]τ′ <:
[ρ/t]τ.

Proof. By induction on the subtyping derivation.

It is easy to check that the above variance principles for the quantifiers
are consistent with the principle of subsumption. For example, a package
of the subtype ∃(t.τ′) consists of a representation type, ρ, and an imple-
mentation, e, of type [ρ/t]τ′. But if t type ` τ′ <: τ, we have by substitution
that [ρ/t]τ′ <: [ρ/t]τ, and hence e is also an implementation of type [ρ/t]τ.
This is sufficient to ensure that the package is also of the supertype.

It is natural to extend subtyping to the quantifiers by allowing quantifi-
cation over all subtypes of a specified type. This is called bounded quantifica-
tion. To express bounded quantification we consider additional hypotheses
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of the form t <: ρ, expressing that t is a variable that may only be instanti-
ated to subtypes of ρ.

∆, t type, t <: τ ` t <: τ
(23.11a)

∆ ` τ :: T
∆ ` τ <: τ

(23.11b)

∆ ` τ′′ <: τ′ ∆ ` τ′ <: τ
∆ ` τ′′ <: τ

(23.11c)

∆ ` ρ′ <: ρ ∆, t type, t <: ρ′ ` τ′ <: τ

∆ ` ∀ t <: ρ.τ′ <: ∀ t <: ρ′.τ′
(23.11d)

∆ ` ρ′ <: ρ ∆, t type, t <: ρ′ ` τ′ <: τ

∆ ` ∃ t <: ρ′.τ′ <: ∃ t <: ρ.τ
(23.11e)

Rule (23.11d) states that the universal quantifier is contravariant in its bound,
whereas Rule (23.11e) states that the existential quantifier is covariant in its
bound.

23.3.4 Recursive Types

The variance principle for recursive types is rather subtle, and has been the
source of errors in language design. To gain some intuition, consider the
type of labeled binary trees with natural numbers at each node,

µt.[empty ↪→ unit, binode ↪→ 〈data ↪→ nat, lft ↪→ t, rht ↪→ t〉],

and the type of “bare” binary trees, without labels on the nodes,

µt.[empty ↪→ unit, binode ↪→ 〈lft ↪→ t, rht ↪→ t〉].

Is either a subtype of the other? Intuitively, we might expect the type of
labeled binary trees to be a subtype of the type of bare binary trees, because
any use of a bare binary tree can simply ignore the presence of the label.

Now consider the type of bare “two-three” trees with two sorts of nodes,
those with two children, and those with three:

µt.[empty ↪→ unit, binode ↪→ τ2, trinode ↪→ τ3],

where

τ2 , 〈lft ↪→ t, rht ↪→ t〉, and

τ3 , 〈lft ↪→ t, mid ↪→ t, rht ↪→ t〉.
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What subtype relationships should hold between this type and the preced-
ing two tree types? Intuitively the type of bare two-three trees should be
a supertype of the type of bare binary trees, because any use of a two-three
tree must proceed by three-way case analysis, which covers both forms of
binary tree.

To capture the pattern illustrated by these examples, we must formulate
a subtyping rule for recursive types. It is tempting to consider the following
rule:

t type ` τ′ <: τ

µt.τ′ <: µt.τ
?? (23.12)

That is, to determine whether one recursive type is a subtype of the other,
we simply compare their bodies, with the bound variable treated as a pa-
rameter. Notice that by reflexivity of subtyping, we have t <: t, and hence
we may use this fact in the derivation of τ′ <: τ.

Rule (23.12) validates the intuitively plausible subtyping between la-
beled binary tree and bare binary trees just described. Deriving this re-
quires checking that the subtyping relationship

〈data ↪→ nat, lft ↪→ t, rht ↪→ t〉 <: 〈lft ↪→ t, rht ↪→ t〉,

holds generically in t, which is evidently the case.

Unfortunately, Rule (23.12) also underwrites incorrect subtyping rela-
tionships, as well as some correct ones. As an example of what goes wrong,
consider the recursive types

τ′ = µt.〈a ↪→ t→ nat, b ↪→ t→ int〉

and
τ = µt.〈a ↪→ t→ int, b ↪→ t→ int〉.

We assume for the sake of the example that nat <: int, so that by using
Rule (23.12) we may derive τ′ <: τ, which we will show to be incorrect. Let
e : τ′ be the expression

fold(〈a ↪→ λ (x:τ′) 4, b ↪→ λ (x:τ′) q((unfold(x) · a)(x))〉),

where q : nat→ nat is the discrete square root function. Because τ′ <: τ,
it follows that e : τ as well, and hence

unfold(e) : 〈a ↪→ τ → int, b ↪→ τ → int〉.

VERSION 1.32 REVISED 05.15.2012



23.4 Safety 223

Now let e′ : τ be the expression

fold(〈a ↪→ λ (x:τ) -4, b ↪→ λ (x:τ) 0〉).

(The important point about e′ is that the a method returns a negative num-
ber; the b method is of no significance.) To finish the proof, observe that

(unfold(e) · b)(e′) 7→∗ q(-4),

which is a stuck state. We have derived a well-typed program that “gets
stuck”, refuting type safety!

Rule (23.12) is therefore incorrect. But what has gone wrong? The error
lies in the choice of a single parameter to stand for both recursive types,
which does not correctly model self-reference. In effect we are regarding
two distinct recursive types as equal while checking their bodies for a sub-
typing relationship. But this is clearly wrong! It fails to take account of
the self-referential nature of recursive types. On the left side the bound
variable stands for the subtype, whereas on the right the bound variable
stands for the super-type. Confusing them leads to the unsoundness just
illustrated.

As is often the case with self-reference, the solution is to assume what
we are trying to prove, and check that this assumption can be maintained
by examining the bodies of the recursive types. To do so we make use of
bounded quantification to state the rule of subsumption for recursive types:

∆, t type, t′ type, t′ <: t ` τ′ <: τ ∆, t′ type ` τ′ type ∆, t type ` τ type

∆ ` µt′.τ′ <: µt.τ
.

(23.13)
That is, to check whether µt′.τ′ <: µt.τ, we assume that t′ <: t, because t′

and t stand for the respective recursive types, and check that τ′ <: τ under
this assumption. It is instructive to check that the unsound subtyping is
not derivable using this rule: the subtyping assumption is at odds with the
contravariance of the function type in its domain.

23.4 Safety

Proving safety for a language with subtyping is considerably more delicate
than for languages without. The rule of subsumption means that the static
type of an expression reveals only partial information about the underly-
ing value. This changes the proof of the preservation and progress theo-
rems, and requires some care in stating and proving the auxiliary lemmas
required for the proof.
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As a representative case we will sketch the proof of safety for a language
with subtyping for product types. The subtyping relation is defined by
Rules (23.3) and (23.5). We assume that the statics includes subsumption,
Rule (23.2).

Lemma 23.2 (Structurality).

1. The tuple subtyping relation is reflexive and transitive.

2. The typing judgment Γ ` e : τ is closed under weakening and substitution.

Proof.

1. Reflexivity is proved by induction on the structure of types. Tran-
sitivity is proved by induction on the derivations of the judgments
τ′′ <: τ′ and τ′ <: τ to obtain a derivation of τ′′ <: τ.

2. By induction on Rules (11.3), augmented by Rule (23.2).

Lemma 23.3 (Inversion).

1. If e · j : τ, then e : ∏i∈I τi, j ∈ I, and τj <: τ.

2. If 〈ei〉i∈I : τ, then ∏i∈I τ′i <: τ where ei : τ′i for each i ∈ I.

3. If τ′ <: ∏j∈J τj, then τ′ = ∏i∈I τ′i for some I and some types τ′i for i ∈ I.

4. If ∏i∈I τ′i <: ∏j∈J τj, then J ⊆ I and τ′j <: τj for each j ∈ J.

Proof. By induction on the subtyping and typing rules, paying special at-
tention to Rule (23.2).

Theorem 23.4 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. By induction on Rules (11.4). For example, consider Rule (11.4d), so
that e = 〈ei〉i∈I · k, e′ = ek. By Lemma 23.3 we have that 〈ei〉i∈I : ∏j∈J τj,
k ∈ J, and τk <: τ. By another application of Lemma 23.3 for each i ∈ I
there exists τ′i such that ei : τ′i and ∏i∈I τ′i <: ∏j∈J τj. By Lemma 23.3 again,
we have J ⊆ I and τ′j <: τj for each j ∈ J. But then ek : τk, as desired. The
remaing cases are similar.

Lemma 23.5 (Canonical Forms). If e val and e : ∏j∈J τj, then e is of the form
〈ei〉i∈I , where J ⊆ I, and ej : τj for each j ∈ J.
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Proof. By induction on Rules (11.3) augmented by Rule (23.2).

Theorem 23.6 (Progress). If e : τ, then either e val or there exists e′ such that
e 7→ e′.

Proof. By induction on Rules (11.3) augmented by Rule (23.2). The rule
of subsumption is handled by appeal to the inductive hypothesis on the
premise of the rule. Rule (11.4d) follows from Lemma 23.5.

23.5 Notes

Subtyping is perhaps the most widely misunderstood concept in program-
ming languages. Subtyping is principally a convenience, akin to type in-
ference, that makes some programs simpler to write. But the subsumption
rule cuts both ways. Inasmuch as it allows the implicit passage from τ′

to τ whenever τ′ is a subtype of τ, it also weakens the meaning of a type
assertion e : τ to mean that e has some type contained in the type τ. This
precludes expressing the requirement that e has exactly the type τ, or that
two expressions jointly have the same type. And it is precisely this weak-
ness that creates so many of the difficulties with subtyping.

Much has been written about subtyping. Standard ML (Milner et al.,
1997) is one of the earliest full-scale languages to make essential use of sub-
typing. The statics of the ML module system makes use of two subtyping
relations, called enrichment and realization, corresponding to product sub-
typing and type definitions. The first systematic studies of subtyping in-
clude those by Mitchell (1984); Reynolds (1980), and Cardelli (1988). Pierce
(2002) gives a thorough account of subtyping, especially of recursive and
polymorphic types, and proves that subtyping for bounded impredicative
universal quantification is undecidable.
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Chapter 24

Singleton Kinds

The expression let e1:τ be x in e2 is a form of abbreviation mechanism by
which we may bind e1 to the variable x for use within e2. In the presence of
function types this expression is definable as the application (λ (x:τ) e2)(e1),
which accomplishes the same thing. It is natural to consider an analogous
form of let expression which permits a type expression to be bound to a
type variable within a specified scope. Using def t is τ in e to bind the type
variable t to τ within the expression e, we may write expressions such as

def t is nat× nat inλ (x:t) s(x · l),

which introduces a type abbreviation within an expression. To ensure that
this expression is well-typed, the type variable t must be synonymous with
the type nat× nat, for otherwise the body of the λ-abstraction is not type
correct.

Following the pattern of the expression-level let, we might guess that
def t is τ in e abbreviates the polymorphic instantiation Λ(t.e)[τ], which
binds t to τ within e. This does, indeed, capture the dynamics of type ab-
breviation, but it fails to validate the intended statics. The difficulty is that,
according to this interpretation of type definitions, the expression e is type-
checked in the absence of any knowledge of the binding of t, rather than
in the knowledge that t is synonymous with τ. Thus, in the above exam-
ple, the expression s(x · l) would fail to type check, unless the binding of
t were exposed.

The interpretation of type definition in terms of type abstraction and
type application fails. Lacking any other idea, we might argue that type
abbreviation ought to be considered as a primitive concept, rather than a
derived notion. The expression def t is τ in e would be taken as a primitive
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form of expression whose statics is given by the following rule:

Γ ` [τ/t]e : τ′

Γ ` def t is τ in e : τ′
(24.1)

This would address the problem of supporting type abbreviations, but it
does so in a rather ad hoc manner. We seek a more principled solution that
arises naturally from the type structure of the language.

The methodology of identifying language constructs with type struc-
ture suggests that we ask not how to support type abbreviations, but rather
what form of type structure gives rise to type abbreviations? Thinking
along these lines leads to the concept of singleton kinds, which not only ac-
count for type abbreviations but also play a crucial role in the design of
module systems, as will be discussed in detail in Chapters 45 and 46.

24.1 Overview

The central organizing principle of type theory is compositionality. To en-
sure that a program may be decomposed into separable parts, we ensure
that the composition of a program from constituent parts is mediated by
the types of those parts. Put in other terms, the only thing that one portion
of a program “knows” about another is its type. For example, the forma-
tion rule for addition of natural numbers depends only on the type of its
arguments (both must have type nat), and not on their specific form or
value. But in the case of a type abbreviation of the form def t is τ in e, the
principle of compositionality dictates that the only thing that e “knows”
about the type variable t is its kind, namely T, and not its binding, namely
τ. This is accurately captured by the proposed representation of type ab-
breviation as the combination of type abstraction and type application, but,
as we have just seen, this is not the intended meaning of the construct!

We could, as suggested in the introduction, abandon the core principles
of type theory, and introduce type abbreviations as a primitive notion. But
there is no need to do so. Instead we can simply note that what is needed
is for the kind of t to capture its identity. This may be achieved through
the notion of a singleton kind. Informally, the kind S(τ) is the kind of types
that are definitionally equal to τ. That is, up to definitional equality, this
kind has only one inhabitant, namely τ. Consequently, if u :: S(τ) is a vari-
able of singleton kind, then within its scope, the variable u is synonymous
with τ. Thus we may represent def t is τ in e by Λ(t::S(τ).e)[τ], which
correctly propagates the identity of t, namely τ, to e during type checking.
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A proper treatment of singleton kinds requires some additional machin-
ery at the constructor and kind level. First, we must capture the idea that a
constructor of singleton kind is a fortiori a constructor of kind T, and hence
is a type. Otherwise, a variable, u, of singleton kind cannot be used as a
type, even though it is explicitly defined to be one! This may be captured
by introducing a subkinding relation, κ1 :<: κ2, which is analogous to sub-
typing, except at the kind level. The fundamental axiom of subkinding is
S(τ) :<: T, stating that every constructor of singleton kind is a type.

Second, we must account for the occurrence of a constructor of kind T

within the singleton kind S(τ). This intermixing of the constructor and
kind level means that singletons are a form of dependent kind in that a kind
may depend on a constructor. Another way to say the same thing is that
S(τ) represents a family of kinds indexed by constructors of kind T. This,
in turn, implies that we must generalize the product and function kinds
to dependent products and dependent functions. The dependent product kind,
Σ u::κ1.κ2, classifies pairs 〈c1,c2〉 such that c1 :: κ1, as might be expected,
and c2 :: [c1/u]κ2, in which the kind of the second component is sensitive
to the first component itself, and not just its kind. The dependent function
kind, Π u::κ1.κ2 classifies functions that, when applied to a constructor
c1 :: κ1, results in a constructor of kind [c1/u]κ2. The important point is that
the kind of the result is sensitive to the argument, and not just to its kind.

Third, it is useful to consider singletons not just of kind T, but also
of higher kinds. To support this we introduce higher singletons, written
S(c :: κ), where κ is a kind and c is a constructor of kind k. These are defin-
able in terms of the basic form of singleton kinds using dependent function
and product kinds.

24.2 Singletons

The syntax of singleton kinds is given by the following grammar:

Kind κ ::= S(c) S(c) singleton

Informally, the singleton kind, S(c), classifies constructors that are equiv-
alent (in a sense to be made precise shortly) to c. For the time being we
tacitly include the constructors and kinds given in Chapter 22 (but see Sec-
tion 24.3).
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The following judgment forms comprise the statics of singletons:

∆ ` κ kind kind formation
∆ ` κ1 ≡ κ2 kind equivalence
∆ ` c :: κ constructor formation
∆ ` c1 ≡ c2 :: κ constructor equivalence
∆ ` κ1 :<: κ2 subkinding

These judgments are defined simultaneously by a collection of rules includ-
ing the following:

∆ ` c :: Type
∆ ` S(c) kind

(24.2a)

∆ ` c :: Type
∆ ` c :: S(c)

(24.2b)

∆ ` c :: S(d)
∆ ` c ≡ d :: Type (24.2c)

∆ ` c :: κ1 ∆ ` κ1 :<: κ2

∆ ` c :: κ2
(24.2d)

∆ ` c :: Type
∆ ` S(c) :<: Type

(24.2e)

∆ ` c ≡ d :: Type
∆ ` S(c) ≡ S(d)

(24.2f)

∆ ` κ1 ≡ κ2

∆ ` κ1 :<: κ2
(24.2g)

∆ ` κ1 :<: κ2 ∆ ` κ2 :<: κ3

∆ ` κ1 :<: κ3
(24.2h)

Omitted for brevity are rules stating that constructor and kind equivalence
are reflexive, symmetric, transitive, and preserved by kind and constructor
formation.

Rule (24.2b) expresses the principle of “self-recognition,” which states
that every constructor, c, of kind Type also has the kind S(c). By Rule (24.2c)
any constructor of kind S(c) is definitionally equal to c. Consequently, self-
recognition is in this sense an expression of the reflexivity of constructor
equivalence. Rule (24.2e) is just the subsumption principle re-stated at the
level of constructors and kinds. Rule (24.2f) states that the singleton kind
respects equivalence of its constructors, so that equivalent constructors de-
termine the same singletons. Rules (24.2g) and (24.2h) state that the sub-
kinding relation is a pre-order that respects kind equivalence.
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To see these rules in action let us consider a few illustrative examples.
First, consider the behavior of variables of singleton kind. Suppose that
∆ ` u :: S(c) is such a variable. Then by Rule (24.2c) we may deduce that
∆ ` u ≡ c :: T. Thus, the declaration of u with a singleton kind serves to
define u to be the constructor (of kind T) specified by its kind. Singletons
capture the concept of a type definition discussed in the introduction to this
chapter.

Taking this a step further, the existential type ∃ u :: S(c).τ is the type
of packages whose representation type is (equivalent to) c—it is an abstract
type whose identity is revealed by assigning it a singleton kind. By the gen-
eral principles of equivalence we have that the type ∃ u :: S(c).τ is equiva-
lent to the type ∃ :: S(c).[c/u]τ, wherein we have propagated the equiv-
alence of u and c into the type τ. On the other hand we may also “forget”
the definition of u, because the subtyping

∃ u :: S(c).τ <: ∃ u :: T.τ

is derivable using the following variance rule for existentials over a kind:

∆ ` κ1 :<: κ2 ∆, u :: κ1 ` τ1 <: τ2

∆ ` ∃ u :: κ1.τ1 <: ∃ u :: κ2.τ2
(24.3)

Similarly, we may derive the subtyping

∀ u :: T.τ <: ∀ u :: S(c).τ

from the following variance rule for universals over a kind:

∆ ` κ2 :<: κ1 ∆, u :: κ2 ` τ1 <: τ2

∆ ` ∀ u :: κ1.τ1 <: ∀ u :: κ2.τ2
(24.4)

Informally, the displayed subtyping states that a polymorphic function that
may be applied to any type is one that may only be applied to a particular
type, c.

These examples show that singleton kinds express the idea of a scoped
definition of a type variable in a way that is not tied to an ad hoc definition
mechanism, but rather arises naturally from general principles of binding
and scope. We will see in Chapters 45 and 46 more sophisticated uses of
singletons to manage the interaction among program modules.

24.3 Dependent Kinds

Although it is perfectly possible to add singleton kinds to the framework of
higher kinds introduced in Chapter 22, to do so would be to shortchange

REVISED 05.15.2012 VERSION 1.32



232 24.3 Dependent Kinds

the expressiveness of the language. Using higher kinds we can express
the kind of constructors that, when applied to a type, yield a specific type,
say int, as result, namely T→ S(int). But we cannot express the kind of
constructors that, when applied to a type, yield that very type as result, for
there is no way for the result kind to refer to the argument of the func-
tion. Similarly, using product kinds we can express the kind of pairs whose
first component is int and whose second component is an arbitrary type,
namely S(int) × T. But we cannot express the kind of pairs whose sec-
ond component is equivalent to its first component, for there is no way for
the kind of the second component to make reference to the first component
itself.

To express such concepts requires a generalization of product and func-
tion kinds in which the kind of the second component of a pair may men-
tion the first component of that pair, or the kind of the result of a function
may mention the argument to which it is applied. Such kinds are called
dependent kinds because they involve kinds that mention, or depend upon,
constructors (of kind T). The syntax of dependent kinds is given by the
following grammar:

Kind κ ::= S(c) S(c) singleton
Σ(κ1; u.κ2) Σ u::κ1.κ2 dependent product
Π(κ1; u.κ2) Π u::κ1.κ2 dependent function

Con c ::= u u variable
pair(c1; c2) 〈c1,c2〉 pair
proj[l](c) c · l first projection
proj[r](c) c · r second projection
lam[κ](u.c) λ (u::κ) c abstraction
app(c1; c2) c1[c2] application

As a notational convenience, when there is no dependency in a kind we
write κ1 × κ2 for Σ ::κ1.κ2, and κ1→ κ2 for Π ::κ1.κ2, where the “blank”
stands for an irrelevant variable.

The syntax of dependent kinds differs from that given in Chapter 22
for higher kinds in that we do not draw a distinction between atomic and
canonical constructors, and consider that substitution is defined conven-
tionally, rather than hereditarily. This simplifies the syntax, but at the ex-
pense of leaving open the decidability of constructor equivalence. The
method of hereditary substitution considered in Chapter 22 may be ex-
tended to singleton kinds, but we will not develop this extension here. In-
stead we will simply assert without proof that equivalence of well-formed
constructors is decidable.
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The dependent product kind Σ u::κ1.κ2 classifies pairs 〈c1,c2〉 of con-
structors in which c1 has kind κ1 and c2 has kind [c1/u]κ2. For example, the
kind Σ u::T.S(u) classifies pairs 〈c,c〉, where c is a constructor of kind T.
More generally, this kind classifies pairs of the form 〈c1,c2〉where c1 and c2
are equivalent, but not necessarily identical, constructors. The dependent
function kind Π u::κ1.κ2 classifies constructors c that, when applied to a
constructor c1 of kind κ1 yield a constructor of kind [c1/u]κ2. For example,
the kind Π u::T.S(u) classifies constructors that, when applied to a con-
structor, c, yield a constructor equivalent to c; a constructor of this kind is
essentially the identity function. We may, of course, combine these to form
kinds such as

Π u::T× T.S(u · r)× S(u · l),

which classifies functions that swap the components of a pair of types.
(Such examples may lead us to surmise that the behavior of any construc-
tor may be pinned down precisely using dependent kinds. We shall see in
Section 24.4 that this is indeed the case.)

The formation, introduction, and elimination rules for the product kind
are as follows:

∆ ` κ1 kind ∆, u :: κ1 ` κ2 kind

∆ ` Σ u::κ1.κ2 kind
(24.5a)

∆ ` c1 :: κ1 ∆ ` c2 :: [c1/u]κ2

∆ ` 〈c1,c2〉 :: Σ u::κ1.κ2
(24.5b)

∆ ` c :: Σ u::κ1.κ2

∆ ` c · l :: κ1
(24.5c)

∆ ` c :: Σ u::κ1.κ2

∆ ` c · r :: [c1/u]κ2
(24.5d)

In Rule (24.5a), observe that the variable, u, may occur in the kind κ2 by ap-
pearing in a singleton kind. Correspondingly, Rules (24.5b), (24.5c), and (24.5d)
substitute a constructor for this variable.

Constructor equivalence is defined to be an equivalence relation that is
compatible with all forms of constructors and kinds, so that a constructor
may always be replaced by an equivalent constructor and the result will
be equivalent. The following equivalence axioms govern the constructors
associated with the dependent product kind:

∆ ` c1 :: κ1 ∆ ` c2 :: κ2

∆ ` 〈c1,c2〉 · l ≡ c1 :: κ1
(24.6a)

∆ ` c1 :: κ1 ∆ ` c2 :: κ2

∆ ` 〈c1,c2〉 · r ≡ c2 :: κ2
(24.6b)
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The subkinding rule for the dependent product kind specifies that it is
covariant in both positions:

∆ ` κ1 :<: κ′1 ∆, u :: κ1 ` κ2 :<: κ′2
∆ ` Σ u::κ1.κ2 :<: Σ u::κ′1.κ′2

(24.7)

The congruence rule for equivalence of dependent product kinds is for-
mally similar:

∆ ` κ1 ≡ κ′1 ∆, u :: κ1 ` κ2 ≡ κ′2
∆ ` Σ u::κ1.κ2 ≡ Σ u::κ′1.κ′2

(24.8)

Notable consequences of these rules include the subkindings

Σ u::S(int).S(u) :<: Σ u::T.S(u)

and
Σ u::T.S(u) :<: T× T,

and the equivalence

Σ u::S(int).S(u) ≡ S(int)× S(int).

Subkinding is used to “forget” information about the identity of the com-
ponents of a pair, and equivalence is used to propagate such information
within a kind.

The formation, introduction, and elimination rules for dependent func-
tion kinds are as follows:

∆ ` κ1 kind ∆, u :: κ2 ` κ2 kind

∆ ` Π u::κ1.κ2 kind
(24.9a)

∆, u :: κ1 ` c :: κ2

∆ ` λ (u::κ1) c :: Π u::κ1.κ2
(24.9b)

∆ ` c :: Π u::κ1.κ2 ∆ ` c1 :: κ1

∆ ` c[c1] :: [c1/u]κ2
(24.9c)

Rule (24.9b) specifies that the result kind of a λ-abstraction depends uni-
formly on the argument, u. Correspondingly, Rule (24.9c) specifies that the
kind of an application is obtained by substitution of the argument into the
result kind of the function itself.

The following rule of equivalence governs the constructors associated
with the dependent product kind:

∆, u :: κ1 ` c :: κ2 ∆ ` c1 :: κ1

∆ ` (λ (u::κ1) c)[c1] ≡ [c1/u]c :: κ2
(24.10)
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The subkinding rule for the dependent function kind specifies that it is
contravariant in its domain and covariant in its range:

∆ ` κ′1 :<: κ1 ∆, u :: κ′1 ` κ2 :<: κ′2
∆ ` Π u::κ1.κ2 :<: Π u::κ′1.κ′2

(24.11)

The equivalence rule is similar, except that the symmetry of equivalence
obviates a choice of variance:

∆ ` κ1 ≡ κ′1 ∆, u :: κ1 ` κ2 ≡ κ′2
∆ ` Π u::κ1.κ2 ≡ Π u::κ′1.κ′2

(24.12)

Rule (24.11) gives rise to the subkinding

Π u::T.S(int) :<: Π u::S(int).T,

which illustrates the co- and contra-variance of the dependent function
kind. In particular a function that takes any type and delivers the type int

is also a function that takes the type int and delivers a type. Rule (24.12)
gives rise to the equivalence

Π u::S(int).S(u) ≡ S(int)→ S(int),

which propagates information about the argument into the range kind.
Combining these two rules we may derive the subkinding

Π u::T.S(u) :<: S(int)→ S(int).

Intuitively, a constructor function that yields its argument is, in particular,
a constructor function that may only be applied to int, and yields int.
Formally, by contravariance we have the subkinding

Π u::T.S(u) :<: Π u::S(int).S(u),

and by sharing propagation we may derive the indicated superkind.

24.4 Higher Singletons

Although singletons are restricted to constructors of kind T, we may use
dependent product and function kinds to define singletons of every kind.
Specifically, we wish to define the kind S(c :: κ), where c is of kind κ, that
classifies constructors equivalent to c. When κ = T this is, of course, just
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S(c); the problem is to define singletons for the higher kinds Σ u::κ1.κ2
and Π u::κ1.κ2.

To see what is involved, suppose that c :: κ1 × κ2. The singleton kind
S(c :: κ1 × κ2) should classify constructors equivalent to c. If we assume,
inductively, that singletons have been defined for κ1 and κ2, then we need
only observe that c is equivalent to 〈c · l,c · r〉. For then the singleton
S(c :: κ1 × κ2) may be defined to be S(c · l :: κ1) × S(c · r :: κ2). Similarly,
suppose that c :: κ1→ κ2. Using the equivalence of c and λ (u::κ1→ κ2) c[u],
we may define S(c :: κ1→ κ2) to be Π u::κ1.S(c[u] :: κ2).

In general the kind S(c :: κ) is defined by induction on the structure of
κ by the following kind equivalences:

∆ ` c :: S(c′)
∆ ` S(c :: S(c′)) ≡ S(c)

(24.13a)

∆ ` c :: Σ u::κ1.κ2

∆ ` S(c :: Σ u::κ1.κ2) ≡ Σ u::S(c · l :: κ1).S(c · r :: κ2)
(24.13b)

∆ ` c :: Π u::κ1.κ2

∆ ` S(c :: Π u::κ1.κ2) ≡ Π u::κ1.S(c[u] :: κ2)
(24.13c)

The sensibility of these equations relies on Rule (24.2c) together with the
following principles of constructor equivalence, called extensionality princi-
ples:

∆ ` c :: Σ u::κ1.κ2

∆ ` c ≡ 〈c · l,c · r〉 :: Σ u::κ1.κ2
(24.14a)

∆ ` c :: Π u::κ1.κ2

∆ ` c ≡ λ (u::κ1) c[u] :: Π u::κ1.κ2
(24.14b)

Rule (24.2c) states that the only constructors of kind S(c′) are those equiv-
alent to c′, and Rules (24.14a) and (24.14b) state that the only members of
the dependent product and function types are, respectively, pairs and λ-
abstractions of the appropriate kinds.

Finally, the following self-recognition rules are required to ensure that
Rule (24.2b) may be extended to higher kinds.

∆ ` c · l :: κ1 ∆ ` c · r :: [c · l/u]κ2

∆ ` c :: Σ u::κ1.κ2
(24.15a)

∆, u :: κ1 ` c[u] :: κ2

∆ ` c :: Π u::κ1.κ2
(24.15b)

An illustrative case arises when u is a constructor variable of kind Σ v::T.S(v).
We may derive that u · l :: S(u · l) using Rule (24.2b). We may also derive
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u · r :: S(u · l) using Rule (24.5d). Therefore, by Rule (24.15a), we may de-
rive u :: Σ v::S(u · l).S(u · l), which is a subkind of Σ v::T.S(v). This
more precise kind is a correct kinding for u, because the first component of
u is indeed u · l, and the second component of u is equivalent to the first
component, and hence is also u · l. But without Rule (24.15a) it is impossi-
ble to derive this fact.

The point of introducing higher singletons is to ensure that every con-
structor may be classified by a kind that determines it up to definitional
equality. Viewed as an extension of singleton types, we would expect that
higher singletons enjoy similar properties. This is captured by the follow-
ing lemma:

Theorem 24.1. If ∆ ` c :: κ, then ∆ ` S(c :: κ) :<: κ and ∆ ` c :: S(c :: κ).

The proof of this theorem is surprisingly intricate; the reader is referred
to the references below for details.

24.5 Notes

Singleton kinds were introduced by Stone and Harper (2006) to isolate
the concept of type sharing that arises in the ML module system (Milner
et al., 1997; Harper and Lillibridge, 1994; Leroy, 1994). Crary (2009) extends
the concept of hereditary substitution discussed in Chapter 22 to singleton
kinds.

REVISED 05.15.2012 VERSION 1.32



238 24.5 Notes

VERSION 1.32 REVISED 05.15.2012



Part IX

Classes and Methods





Chapter 25

Dynamic Dispatch

It frequently arises that the values of a type are partitioned into a variety of
classes, each classifying data with distinct internal structure. A good exam-
ple is provided by the type of points in the plane, which may be classified
according to whether they are represented in cartesian or polar form. Both
are represented by a pair of real numbers, but in the cartesian case these are
the x and y coordinates of the point, whereas in the polar case these are its
distance, r, from the origin and its angle, θ, with the polar axis. A classified
value is said to be an object, or instance, of its class. The class determines the
type of the classified data, which is called the instance type of the class. The
classified data itself is called the instance data of the object.

Functions that act on classified values are sometimes called methods.
The behavior of a method is determined by the class of its argument. The
method is said to dispatch on the class of the argument.1 Because it hap-
pens at run-time, this is called dynamic dispatch. For example, the squared
distance of a point from the origin is calculated differently according to
whether the point is represented in cartesian or polar form. In the former
case the required distance is x2 + y2, whereas in the latter it is simply r
itself. Similarly, the quadrant of a cartesian point may be determined by
examining the sign of its x and y coordinates, and the quadrant of a polar
point may be calculated by taking the integral part of the angle θ divided
by π/2.

Dynamic dispatch is often described in terms of a particular implemen-
tation strategy, which we will call the class-based organization. In this or-
ganization each object is represented by a vector of methods specialized to

1More generally, we may dispatch on the class of multiple arguments simultaneously.
We concentrate on single dispatch for the sake of simplicity.
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the class of that object. We may equivalently use a method-based organiza-
tion in which each method branches on the class of an object to determine
its behavior. Regardless of the organization used, the fundamental idea is
that (a) objects are classified, and (b) methods dispatch on the class of an
object. The class-based and method-based organizations are interchange-
able, and, in fact, related by a natural duality between sum and product
types. We elucidate this symmetry by focusing first on the behavior of each
method on each object, which is given by a dispatch matrix. From this we
derive both a class-based and a method-based organization in such a way
that their equivalence is evident.

25.1 The Dispatch Matrix

Because each method acts by dispatch on the class of its argument, we may
envision the entire system of classes and methods as a matrix, edm, called
the dispatch matrix, whose rows are classes, whose columns are methods,
and whose (c, d)-entry defines the behavior of method d acting on an argu-
ment of class c, expressed as a function of the instance data of the object.
Thus, the dispatch matrix has a type of the form

∏
c∈C

∏
d∈D

(τc → ρd),

where C is the set of class names, D is the set of method names, τc is the
instance type associated with class c and ρd is the result type of method d.
The instance type is the same for all methods acting on a given class, and
the result type is the same for all classes acted on by a given method.

As an illustrative example, let us consider the type of points in the plane
classified into two classes, cart and pol, corresponding to the cartesian and
polar representations. The instance data for a cartesian point has the type

τcart = 〈x ↪→ real, y ↪→ real〉,

and the instance data for a polar point has the type

τpol = 〈r ↪→ real, th ↪→ real〉.

Consider two methods acting on points, dist and quad, which com-
pute, respectively, the squared distance of a point from the origin and the
quadrant of a point. The squared distance method is given by the tuple
edist = 〈cart ↪→ ecartdist, pol ↪→ epoldist〉 of type

〈cart ↪→ τcart → ρdist, pol ↪→ τpol → ρdist〉,
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where ρdist = real is the result type,

ecartdist = λ (u:τcart) (u · x)2 + (u · y)2

is the squared distance computation for a cartesian point, and

epoldist = λ (v:τpol) (v · r)2

is the squared distance computation for a polar point. Similarly, the quad-
rant method is given by the tuple equad = 〈cart ↪→ ecartquad, pol ↪→ epolquad〉 of
type

〈cart ↪→ τcart → ρquad, pol ↪→ τpol → ρquad〉,

where ρquad = [I, II, III, IV] is the type of quadrants, and ecartquad and epolquad

are expressions that compute the quadrant of a point in rectangular and
polar forms, respectively.

Now let C = { cart, pol } and let D = { dist, quad }, and define the
dispatch matrix, edm, to be the value of type

∏
c∈C

∏
d∈D

(τc → ρd)

such that, for each class c and method d,

edm · c · d 7→∗ ec
d.

That is, the entry in the dispatch matrix, edm, for class c and method d de-
fines the behavior of that method acting on an object of that class.

Dynamic dispatch is an abstraction given by the following components:

• A type, obj, of objects, which are classified by the classes on which the
methods act.

• An operation new[c](e) of type obj that creates an object of the class
c with instance data given by the expression e of type τc.

• An operation e⇐ d of type ρd that invokes method d on the object
given by the expression e of type obj.

These operations are required to satisfy the defining characteristic of dy-
namic dispatch,

(new[c](e))⇐ d 7→∗ ec
d(e),

which states that invoking method d on an object of class c with instance
data e amounts to applying ec

d, the code in the dispatch matrix for class c
and method d, to the instance data, e.
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There are two main ways to implement this abstraction. One formula-
tion, called the class-based organization, defines objects as tuples of meth-
ods, and creates objects by specializing the methods to the given instance
data. Another formulation, called the method-based organization, creates
objects by tagging the instance data with the class, and defines methods
by dispatch on the class of the object. These two organizations are isomor-
phic to one another, and hence may be interchanged at will. Nevertheless,
many languages favor one representation over the other, asymmetrizing an
inherently symmetric situation.

25.2 Class-Based Organization

The class-based organization starts with the observation that the dispatch
matrix may be reorganized to “factor out” the instance data for each method
acting on that class to obtain the class vector, ecv, of type

τcv , ∏
c∈C

(τc → (∏
d∈D

ρd)).

Each row of the class vector consists of a constructor that determines the
result of each of the methods when acting on given instance data.

An object has the type ρ = ∏d∈D ρd consisting of the product over the
methods of the result types of the methods. For example, in the case of
points in the plane, the type ρ is the product type

〈dist ↪→ ρdist, quad ↪→ ρquad〉.

Each component specifies the result of each of the methods acting on that
object.

The message send operation, e⇐ d, is just the projection e · d. So, in the
case of points in the plane, e⇐ dist is the projection e · dist, and similarly
e⇐ quad is the projection e · quad.

The class-based organization consolidates the implementation of each
class into a class vector, ecv, a tuple of type τcv consisting of the constructor
of type τc → ρ for each class c ∈ C. The class vector is defined by ecv =
〈ec〉c∈C, where for each c ∈ C the expression ec is

λ (u:τc) 〈edm · c · d(u)〉d∈D.

For example, the constructor for the class cart is the function ecart

given by the expression

λ (u:τcart) 〈dist ↪→ edm · cart · dist(u), quad ↪→ edm · cart · quad(u)〉.
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Similarly, the constructor for the class pol is the function epol given by the
expression

λ (u:τpol) 〈dist ↪→ edm · pol · dist(u), quad ↪→ edm · pol · quad(u)〉.

The class vector, ecv, in this case is the tuple 〈cart ↪→ ecart, pol ↪→ epol〉 of
type 〈cart ↪→ τcart → ρ, pol ↪→ τpol → ρ〉.

An object of a class is obtained by applying the constructor for that class
to the instance data:

new[c](e) , ecv · c(e).

For example, a cartesian point is obtained by writing new[cart](〈x ↪→ x0, y ↪→ y0〉),
which is defined by the expression

ecv · cart(〈x ↪→ x0, y ↪→ y0〉).

Similarly, a polar point is obtained by writing new[pol](r ↪→ r0, th ↪→ θ0),
which is defined by the expression

ecv · pol(〈r ↪→ r0, th ↪→ θ0〉).

It is easy to check for this organization of points that for each class c and
method d, we may derive

(new[c](e))⇐ d 7→∗ (ecv · c(e)) · d
7→∗ edm · c · d(e).

That is, the message send evokes the behavior of the given method on the
instance data of the given object.

25.3 Method-Based Organization

The method-based organization starts with the transpose of the dispatch
matrix, which has the type

∏
d∈D

∏
c∈C

(τc → ρd).

By observing that each row of the transposed dispatch matrix determines a
method, we obtain the method vector, emv, of type

τmv , ∏
d∈D

(∑
c∈C

τc)→ ρd.
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Each entry of the method vector consists of a dispatcher that determines the
result as a function of the instance data associated with a given object.

An object is a value of type τ = ∑c∈C τc, the sum over the classes of the
instance types. For example, the type of points in the plane is the sum type

[cart ↪→ τcart, pol ↪→ τpol].

Each point is labeled with its class, specifying its representation as having
either cartesian or polar form.

An object of a class c is just the instance data labeled with its class to
form an element of the object type:

new[c](e) , c · e.

For example, a cartesian point with coordinates x0 and y0 is given by the
expression

new[cart](〈x ↪→ x0, y ↪→ y0〉) , cart · 〈x ↪→ x0, y ↪→ y0〉.

Similarly, a polar point with distance r0 and angle θ0 is given by the expres-
sion

new[pol](〈r ↪→ r0, th ↪→ θ0〉) , pol · 〈r ↪→ r0, th ↪→ θ0〉.

The method-based organization consolidates the implementation of each
method into the method vector, emv of type τmv, defined by 〈ed〉d∈D, where
for each d ∈ D the expression ed : τ → ρd is

λ (this:τ) case this {c · u⇒ edm · c · d(u)}c∈C.

Each entry in the method vector may be thought of as a dispatch function
that determines the action of that method on each class of object.

In the case of points in the plane, the method vector has the product
type

〈dist ↪→ τ → ρdist, quad ↪→ τ → ρquad〉.

The dispatch function for the dist method has the form

λ (this:τ) case this {cart · u⇒ edm · cart · dist(u) | pol · v⇒ edm · pol · dist(v)},

and the dispatch function for the quad method has the similar form

λ (this:τ) case this {cart · u⇒ edm · cart · quad(u) | pol · v⇒ edm · pol · quad(v)}.
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The message send operation, e⇐ d, applies the dispatch function for method
d to the object e:

e⇐ d , emv · d(e).

Thus we have, for each class, c, and method, d,

(new[c](e))⇐ d 7→∗ emv · d(c · e)
7→∗ edm · c · d(e)

The result is, of course, the same as for the class-based organization.

25.4 Self-Reference

It is often useful to allow methods to create new objects or to send messages
to objects. This is not possible using the simple dispatch matrix described
in Section 25.1, for the simple reason that there is no provision for self-
reference within its entries. This deficiency may be remedied by changing
the type of the entries of the dispatch matrix to account for sending mes-
sages and creating objects, as follows:

∏
c∈C

∏
d∈D
∀(t.τcv → τmv → τc → ρd).

The type variable, t, is an abstract type representing the object type. The
types τcv and τmv, are, respectively, the type of the class and method vectors,
defined in terms of the abstract type t. They are defined by the equations

τcv , ∏
c∈C

(τc → t)

and
τmv , ∏

d∈D
(t→ ρd).

The component of the class vector corresponding to a class, c, is a construc-
tor that builds a value of the abstract object type, t, from the instance data
for c. The component of the method vector corresponding to a method, d,
is a dispatcher that yields a result of type ρd when applied to a value of the
abstract object type, t.

In accordance with the revised type of the dispatch matrix the behavior
associated to class c and method d has the form

Λ(t.λ (cv:τcv)λ (mv:τmv)λ (u:τc) ec
d).
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The arguments cv and mv are used to create new objects and to send mes-
sages to objects. Within the expression ec

d an object of class c′ with instance
data e′ is created by writing cv · c′(e′), which selects the appropriate con-
structor from the class vector, cv, and applies it to the given instance data.
The class c′ may well be the class c itself; this is one form of self-reference
within ec

d. Similarly, within e a method d′ is invoked on e′ by writing
mv · d′(e′). The method d′ may well be the method d itself; this is another
aspect of self-reference within ec

d.

To account for self-reference the method vector will be defined to have
the self-referential type self([τ/t]τmv) in which the object type, τ, is, as
before, the sum of the instance types of the classes, ∑c∈C τc. The method
vector is defined by the following expression:

selfmv is 〈d ↪→ λ (this:τ) case this {c · u⇒ edm · c · d[τ](e′cv)(e′mv)(u)}c∈C〉d∈D,

where

e′cv , 〈c ↪→ λ (u:τc) c · u〉c∈C

and

e′mv , unroll(mv).

Object creation is defined by the equation

new[c](e) , c · e

and message send is defined by the equation

e⇐ d , unroll(emv) · d(e).

To account for self-reference in the class-based organization, the class
vector will be defined to have the type self([ρ/t]τcv) in which the object
type, ρ, is, as before, the product of the result types of the methods, ∏d∈D ρd.
The class vector is defined by the following expression:

self cv is 〈c ↪→ λ (u:τc) 〈d ↪→ edm · c · d[ρ](e′′cv)(e′′mv)(u)〉d∈D〉c∈C,

where

e′′cv , unroll(cv)
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and

e′′mv , 〈d ↪→ λ (this:ρ) this · d〉d∈D.

Object creation is defined by the equation

new[c](e) , unroll(ecv) · c(e)

and message send is defined by the equation

e⇐ d , e · d.

The symmetries between the two organizations are striking. They are a
reflection of the fundamental symmetries between sum and product types.

25.5 Notes

The term “object-oriented” means many things to many people, but cer-
tainly dynamic dispatch, the association of “methods” with “classes,” is
one of its central concepts. According to the present development these
characteristic features emerge as instances of the more general concepts of
sum-, product-, and function types, which are useful, alone and in combi-
nation, in a wide variety of circumstances. A bias towards either a class- or
method-based organization of functions defined on sums seems misplaced
in view of the inherent symmetries of the situation. Either formulation may
be readily combined with recursive types and self-reference as described in
Chapter 16 to account for methods that return objects as results.

The literature on object-oriented programming, of which dynamic dis-
patch is one aspect, is extensive. Abadi and Cardelli (1996) and Pierce
(2002) provide a thorough account of the foundations of the subject.
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Chapter 26

Inheritance

In this chapter we build on Chapter 25 and consider the process of defining
the dispatch matrix that determines the behavior of each method on each
class. A common strategy is to build the dispatch matrix incrementally by
adding new classes or methods to an existing dispatch matrix. To add a
class requires that we define the behavior of each method on objects of that
class, and to define a method requires that we define the behavior of that
method on objects of each of the classes. The definition of these behaviors
may be given by any means available in the language. However, it is of-
ten suggested that a useful means of defining a new class is to inherit the
behavior of another class on some methods, and to override its behavior on
others, resulting in an amalgam of the old and new behaviors. The new
class is often called a subclass of the old class, which is then called the super-
class. Similarly, a new method may be defined by inheriting the behavior of
another method on some classes, and overriding the behavior on others. By
analogy we may call the new method a submethod of a given supermethod. (It
is also possible to admit multiple superclasses or multiple supermethods,
but we will confine our attention to single, rather than multiple, inheritance.)
For simplicity we restrict attention to the simple, non-self-referential case
in the following development.

26.1 Class and Method Extension

We begin by considering the extension of a given dispatch matrix, edm, of
type

∏
c∈C

∏
d∈D

(τc → ρd)
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with a new class, c∗ /∈ C, and a new method, d∗ /∈ D, to obtain a new
dispatch matrix, e∗dm, of type

∏
c∈C∗

∏
d∈D∗

(τc → ρd),

where C∗ = C ∪ { c∗ } and D∗ = D ∪ { d∗ }.
To add a new class, c∗, to the dispatch matrix, we must specify the fol-

lowing information:1

1. The instance type τc∗ of the new class, c∗.

2. The behavior, ec∗
d , of each method d ∈ D on an object of the new class

c∗, a function of type τc∗ → ρd.

This determines a new dispatch matrix, e∗dm, such that the following condi-
tions are satisfied:

1. For each c ∈ C and d ∈ D, the behavior e∗dm · c · d is the same as the
behavior edm · c · d.

2. For each d ∈ D, the behavior e∗dm · c∗ · d is given by ec∗
d .

To define c∗ as a subclass of some class c ∈ C means to define the behavior
ec∗

d to be ec
d for some (perhaps many) d ∈ D. It is sensible to inherit a method

d in this manner only if the subtype relationship

τc → ρd <: τc∗ → ρd

is valid, which will be the case if τc∗ <: τc. This ensures that the inherited
behavior may be invoked on the instance data of the new class.

Similarly, to add a new method, d∗, to the dispatch matrix, we must
specify the following information:

1. The result type, ρd∗ , of the new method, d∗.

2. The behavior, ec
d∗ , of the new method, d∗, on an object of each class

c ∈ C, a function of type τc → ρd∗ .

This determines a new dispatch matrix, e∗dm, such that the following condi-
tions are satisfied:

1. For each c ∈ C and d ∈ D, the behavior e∗dm · c · d is the same as
edm · c · d.

1The extension with a new method will be considered separately for the sake of clarity.

VERSION 1.32 REVISED 05.15.2012



26.2 Class-Based Inheritance 253

2. The behavior e∗dm · c · d∗ is given by ec
d∗ .

To define d∗ as a submethod of some d ∈ D means to define the behavior
ec

d∗ to be ec
d for some (perhaps many) classes c ∈ C. This is only sensible if

the subtype relationship

τc → ρd <: τc → ρd∗

holds, which is the case if ρd <: ρd∗ . This ensures that the result of the old
behavior is sufficient for the new behavior.

We will now consider how inheritance relates to the method- and class-
based organizations of dynamic dispatch considered in Chapter 25.

26.2 Class-Based Inheritance

Recall that the class-based organization given in Chapter 25 consists of a
class vector, ecv, of type

τcv , ∏
c∈C

(τc → ρ),

where the object type, ρ, is the finite product type ∏d∈D ρd. The class vector
consists of a tuple of constructors that specialize the methods to a given
object of each class.

Let us consider the effect of adding a new class, c∗, as described in Sec-
tion 26.1. The new class vector, e∗cv, has type

τ∗cv , ∏
c∈C∗

(τc → ρ).

There is an isomorphism, written ( )†, between τ∗cv and the type

τcv × (τc∗ → ρ),

which may be used to define the new class vector, e∗cv, as follows:

〈ecv, λ (u:τc∗) 〈d ↪→ ec∗
d (u)〉d∈D〉

†
.

This definition makes clear that the old class vector, ecv, is reused intact in
the new class vector, which is just an extension of the old class vector with
a new constructor.
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Although the object type, ρ, is the same both before and after the exten-
sion with the new class, the behavior of an object of class c∗ may differ arbi-
trarily from that of any other object, even that of the superclass from which
it inherits its behavior. So, knowing that c∗ inherits from c tells us nothing
about the behavior of its objects, but only about the means by which the
class is defined. In short inheritance carries no semantic significance, but is
only a record of the history of how a class is defined.

Now let us consider the effect of adding a new method, d∗, as described
in Section 26.1. The new class vector, e∗cv, has type

τ∗cv , ∏
c∈C

(τc → ρ∗),

where ρ∗ is the product type ∏d∈D∗ ρd. There is an isomorphism, written
( )‡, between ρ∗ and the type ρ× ρd∗ , where ρ is the old object type. Using
this the new class vector, e∗cv, may be defined by

〈c ↪→ λ (u:τc) 〈〈d ↪→ ((ecv · c)(u)) · d〉d∈D, ec
d∗(u)〉‡〉c∈C.

Observe that each constructor must be re-defined to account for the new
method, but the definition makes use of the old class vector for the defini-
tions of the old methods.

By this construction the new object type, ρ∗, is a subtype of the old
object type, ρ. This means that any objects with the new method may be
used in situations expecting an object without the new method, as might
be expected. To avoid the redefinition of old classes when a new method
is introduced, we may restrict inheritance so that new methods are only
added to new subclasses. Subclasses may then have more methods than
superclasses, and objects of the subclass may be provided when an object
of the superclass is required.

26.3 Method-Based Inheritance

The situation with the method-based organization is dual to that of the
class-based organization. Recall that the method-based organization given
in Chapter 25 consists of a method vector, emv, of type

τmv , ∏
d∈D

τ → ρd,

where the instance type, τ, is the sum type ∑c∈C τc. The method vector
consists of a tuple of functions that dispatch on the class of the object to
determine their behavior.
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Let us consider the effect of adding a new method, d∗, as described in
Section 26.1. The new method vector, e∗mv, has type

τ∗mv , ∏
d∈D∗

τ → ρd.

There is an isomorphism, written ( )‡, between τ∗mv and the type

τmv × (τ → ρd∗).

Using this isomorphism, the new method vector, e∗mv, may be defined as

〈emv, λ (this:τ) case this {c · u⇒ ec
d∗(u)}c∈C〉‡.

The old method vector is re-used intact, extended with an additional dis-
patch function for the new method.

The object type does not change under the extension with a new method,
but because ρ∗ <: ρ, there is no difficulty using a new object in a context
expecting an old object—the additional method is ignored.

Finally, let us consider the effect of adding a new class, c∗, as described
in Section 26.1. The new method vector, e∗mv, has the type

τ∗mv , ∏
d∈D

τ∗ → ρd,

where τ∗ is the new object type ∑c∈C∗ τc, which is a supertype of the old
object type τ. There is an isomorphism, written ( )†, between τ∗ and the
sum type τ + τc∗ , which we may use to define the new method vector, e∗mv,
as follows:

〈d ↪→ λ (this:τ∗) case this† {l · u⇒ (emv · d)(u) | r · u⇒ ec∗
d (u)}〉d∈D.

Every method must be redefined to account for the new class, but the old
method vector is reused in this definition.

26.4 Notes

Advocates of object-oriented programming differ on the importance of in-
heritance. Philosophers tend to stress inheritance, but practitioners com-
monly avoid it, or reduce it to vestigial form. The most common restrictions
amount to a reformulation of some of the modularity mechanisms that are
discussed in Chapters 45 and 46.
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Abadi and Cardelli (1996) and Pierce (2002) provide thorough accounts
of the interaction of inheritance and subtyping. Liskov and Wing (1994)
discuss it from a behavioral perspective. They propose the methodological
requirement that subclasses respect the behavior of the superclass when-
ever inheritance is used.
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Chapter 27

Control Stacks

The technique of structural dynamics is very useful for theoretical pur-
poses, such as proving type safety, but is too high level to be directly usable
in an implementation. One reason is that the use of “search rules” requires
the traversal and reconstruction of an expression in order to simplify one
small part of it. In an implementation we would prefer to use some mech-
anism to record “where we are” in the expression so that we may resume
from that point after a simplification. This can be achieved by introduc-
ing an explicit mechanism, called a control stack, that keeps track of the
context of an instruction step for just this purpose. By making the control
stack explicit, the transition rules avoid the need for any premises—every
rule is an axiom. This is the formal expression of the informal idea that no
traversals or reconstructions are required to implement it. In this chapter
we introduce an abstract machine, K{nat⇀}, for the language L{nat⇀}.
The purpose of this machine is to make control flow explicit by introducing
a control stack that maintains a record of the pending sub-computations of
a computation. We then prove the equivalence ofK{nat⇀}with the struc-
tural dynamics of L{nat⇀}.

27.1 Machine Definition

A state, s, ofK{nat⇀} consists of a control stack, k, and a closed expression,
e. States may take one of two forms:

1. An evaluation state of the form k . e corresponds to the evaluation of
a closed expression, e, relative to a control stack, k.
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2. A return state of the form k / e, where e val, corresponds to the evalu-
ation of a stack, k, relative to a closed value, e.

As an aid to memory, note that the separator “points to” the focal entity
of the state, the expression in an evaluation state and the stack in a return
state.

The control stack represents the context of evaluation. It records the
“current location” of evaluation, the context into which the value of the
current expression is to be returned. Formally, a control stack is a list of
frames:

ε stack (27.1a)

f frame k stack

k; f stack
(27.1b)

The definition of frame depends on the language we are evaluating. The
frames of K{nat⇀} are inductively defined by the following rules:

s(−) frame (27.2a)

ifz(−; e1; x.e2) frame (27.2b)

ap(−; e2) frame (27.2c)

The frames correspond to search rules in the dynamics of L{nat⇀}. Thus,
instead of relying on the structure of the transition derivation to maintain a
record of pending computations, we make an explicit record of them in the
form of a frame on the control stack.

The transition judgment between states of the K{nat⇀} machine is
inductively defined by a set of inference rules. We begin with the rules for
natural numbers.

k . z 7→ k / z (27.3a)

k . s(e) 7→ k;s(−) . e (27.3b)

k;s(−) / e 7→ k / s(e) (27.3c)

To evaluate z we simply return it. To evaluate s(e), we push a frame on
the stack to record the pending successor, and evaluate e; when that returns
with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k . ifz(e; e1; x.e2) 7→ k;ifz(−; e1; x.e2) . e (27.4a)

k;ifz(−; e1; x.e2) / z 7→ k . e1 (27.4b)
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k;ifz(−; e1; x.e2) / s(e) 7→ k . [e/x]e2 (27.4c)

First, the test expression is evaluated, recording the pending case analysis
on the stack. Once the value of the test expression has been determined,
we branch to the appropriate arm of the conditional, substituting the pre-
decessor in the case of a positive number.

Finally, we consider the rules for functions and recursion.

k . lam[τ](x.e) 7→ k / lam[τ](x.e) (27.5a)

k . ap(e1; e2) 7→ k;ap(−; e2) . e1 (27.5b)

k;ap(−; e2) / lam[τ](x.e) 7→ k . [e2/x]e (27.5c)

k . fix[τ](x.e) 7→ k . [fix[τ](x.e)/x]e (27.5d)

These rules ensure that the function is evaluated before the argument, ap-
plying the function when both have been evaluated. Note that evaluation
of general recursion requires no stack space! (But see Chapter 37 for more
on evaluation of general recursion.)

The initial and final states of theK{nat⇀} are defined by the following
rules:

ε . e initial (27.6a)

e val
ε / e final

(27.6b)

27.2 Safety

To define and prove safety for K{nat⇀} requires that we introduce a new
typing judgment, k : τ, which states that the stack k expects a value of type
τ. This judgment is inductively defined by the following rules:

ε : τ (27.7a)

k : τ′ f : τ ⇒ τ′

k; f : τ
(27.7b)

This definition makes use of an auxiliary judgment, f : τ ⇒ τ′, stating that
a frame f transforms a value of type τ to a value of type τ′.

s(−) : nat⇒ nat (27.8a)

e1 : τ x : nat ` e2 : τ

ifz(−; e1; x.e2) : nat⇒ τ
(27.8b)

REVISED 05.15.2012 VERSION 1.32



262 27.3 Correctness of the Control Machine

e2 : τ2
ap(−; e2) : arr(τ2; τ)⇒ τ

(27.8c)

The states of K{nat⇀} are well-formed if their stack and expression
components match:

k : τ e : τ
k . e ok

(27.9a)

k : τ e : τ e val
k / e ok

(27.9b)

We leave the proof of safety of K{nat⇀} as an exercise.

Theorem 27.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

27.3 Correctness of the Control Machine

If we evaluate a given expression, e, using K{nat⇀}, do we get the same
result as would be given by L{nat⇀}, and vice versa?

Answering this question decomposes into two conditions relatingK{nat⇀}
to L{nat⇀}:

Completeness If e 7→∗ e′, where e′ val, then ε . e 7→∗ ε / e′.

Soundness If ε . e 7→∗ ε / e′, then e 7→∗ e′ with e′ val.

Let us consider, in turn, what is involved in the proof of each part.
For completeness a plausible first step is to consider a proof by induc-

tion on the definition of multistep transition, which reduces the theorem to
the following two lemmas:

1. If e val, then ε . e 7→∗ ε / e.

2. If e 7→ e′, then, for every v val, if ε . e′ 7→∗ ε / v, then ε . e 7→∗ ε / v.

The first can be proved easily by induction on the structure of e. The second
requires an inductive analysis of the derivation of e 7→ e′, giving rise to two
complications that must be accounted for in the proof. The first complica-
tion is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the machine is

ε . ap(e1; e2) 7→ ε;ap(−; e2) . e1,

and so we must consider evaluation of e1 on a non-empty stack.
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A generalization is to prove that if e 7→ e′ and k . e′ 7→∗ k / v, then
k . e 7→∗ k / v. Consider again the case e = ap(e1; e2), e′ = ap(e′1; e2), with
e1 7→ e′1. We are given that k . ap(e′1; e2) 7→∗ k / v, and we are to show that
k . ap(e1; e2) 7→∗ k / v. It is easy to show that the first step of the former
derivation is

k . ap(e′1; e2) 7→ k;ap(−; e2) . e′1.

We would like to apply induction to the derivation of e1 7→ e′1, but to do so
we must have a v1 such that e′1 7→∗ v1, which is not immediately at hand.

This means that we must consider the ultimate value of each sub-expression
of an expression in order to complete the proof. This information is pro-
vided by the evaluation dynamics described in Chapter 7, which has the
property that e ⇓ e′ iff e 7→∗ e′ and e′ val.

Lemma 27.2. If e ⇓ v, then for every k stack, k . e 7→∗ k / v.

The desired result follows by the analogue of Theorem 7.2 forL{nat⇀},
which states that e ⇓ v iff e 7→∗ v.

For the proof of soundness, it is awkward to reason inductively about
the multistep transition from ε . e 7→∗ ε / v, because the intervening
steps may involve alternations of evaluation and return states. Instead we
regard each K{nat⇀}machine state as encoding an expression, and show
that K{nat⇀} transitions are simulated by L{nat⇀} transitions under
this encoding.

Specifically, we define a judgment, s # e, stating that state s “unravels
to” expression e. It will turn out that for initial states, s = ε . e, and final
states, s = ε / e, we have s # e. Then we show that if s 7→∗ s′, where
s′ final, s # e, and s′ # e′, then e′ val and e 7→∗ e′. For this it is enough to
show the following two facts:

1. If s# e and s final, then e val.

2. If s 7→ s′, s# e, s′ # e′, and e′ 7→∗ v, where v val, then e 7→∗ v.

The first is quite simple, we need only observe that the unravelling of a
final state is a value. For the second, it is enough to show the following
lemma.

Lemma 27.3. If s 7→ s′, s# e, and s′ # e′, then e 7→∗ e′.

Corollary 27.4. e 7→∗ n iff ε . e 7→∗ ε / n.

The remainder of this section is devoted to the proofs of the soundness
and completeness lemmas.
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27.3.1 Completeness

Proof of Lemma 27.2. The proof is by induction on an evaluation dynamics
for L{nat⇀}.

Consider the evaluation rule

e1 ⇓ lam[τ2](x.e) [e2/x]e ⇓ v
ap(e1; e2) ⇓ v

(27.10)

For an arbitrary control stack, k, we are to show that k . ap(e1; e2) 7→∗ k / v.
Applying both of the inductive hypotheses in succession, interleaved with
steps of the abstract machine, we obtain

k . ap(e1; e2) 7→ k;ap(−; e2) . e1

7→∗ k;ap(−; e2) / lam[τ2](x.e)
7→ k . [e2/x]e
7→∗ k / v.

The other cases of the proof are handled similarly.

27.3.2 Soundness

The judgment s # e′, where s is either k . e or k / e, is defined in terms of
the auxiliary judgment k ./ e = e′ by the following rules:

k ./ e = e′

k . e# e′
(27.11a)

k ./ e = e′

k / e# e′
(27.11b)

In words, to unravel a state we wrap the stack around the expression. The
latter relation is inductively defined by the following rules:

ε ./ e = e (27.12a)

k ./ s(e) = e′

k;s(−) ./ e = e′
(27.12b)

k ./ ifz(e1; e2; x.e3) = e′

k;ifz(−; e2; x.e3) ./ e1 = e′
(27.12c)

k ./ ap(e1; e2) = e
k;ap(−; e2) ./ e1 = e

(27.12d)

These judgments both define total functions.
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Lemma 27.5. The judgment s# e has mode (∀, ∃!), and the judgment k ./ e = e′

has mode (∀, ∀, ∃!).

That is, each state unravels to a unique expression, and the result of
wrapping a stack around an expression is uniquely determined. We are
therefore justified in writing k ./ e for the unique e′ such that k ./ e = e′.

The following lemma is crucial. It states that unravelling preserves the
transition relation.

Lemma 27.6. If e 7→ e′, k ./ e = d, k ./ e′ = d′, then d 7→ d′.

Proof. The proof is by rule induction on the transition e 7→ e′. The inductive
cases, in which the transition rule has a premise, follow easily by induction.
The base cases, in which the transition is an axiom, are proved by an induc-
tive analysis of the stack, k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ =
ap(e′1; e2), and e1 7→ e′1. We have k ./ e = d and k ./ e′ = d′. It follows from
Rules (27.12) that k;ap(−; e2) ./ e1 = d and k;ap(−; e2) ./ e′1 = d′. So by
induction d 7→ d′, as desired.

For an example of a base case, suppose that e = ap(lam[τ2](x.e); e2)

and e′ = [e2/x]e with e 7→ e′ directly. Assume that k ./ e = d and k ./
e′ = d′; we are to show that d 7→ d′. We proceed by an inner induction
on the structure of k. If k = ε, the result follows immediately. Consider,
say, the stack k = k′;ap(−; c2). It follows from Rules (27.12) that k′ ./
ap(e; c2) = d and k′ ./ ap(e′; c2) = d′. But by the structural dynamics
ap(e; c2) 7→ ap(e′; c2), so by the inner inductive hypothesis we have d 7→
d′, as desired.

We are now in a position to complete the proof of Lemma 27.3.

Proof of Lemma 27.3. The proof is by case analysis on the transitions ofK{nat⇀}.
In each case, after unravelling, the transition will correspond to zero or one
transitions of L{nat⇀}.

Suppose that s = k . s(e) and s′ = k;s(−) . e. Note that k ./ s(e) = e′

iff k;s(−) ./ e = e′, from which the result follows immediately.
Suppose that s = k;ap(lam[τ](x.e1);−) / e2 and s′ = k . [e2/x]e1.

Let e′ be such that k;ap(lam[τ](x.e1);−) ./ e2 = e′ and let e′′ be such that
k ./ [e2/x]e1 = e′′. Observe that k ./ ap(lam[τ](x.e1); e2) = e′. The result
follows from Lemma 27.6.
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27.4 Notes

The abstract machine considered here is typical of a wide class of machines
that make control flow explicit in the state. The prototype is the SECD ma-
chine (Landin, 1965), which may be seen as a linearization of a structural
operational semantics (Plotkin, 1981). An advantage of a machine model
is that the explicit treatment of control is required for languages that allow
the control state to be explicitly manipulated (see Chapter 29 for a prime ex-
ample). A disadvantage is that we are required to make explicit the control
state of the computation, rather than leave it implicit as in structural opera-
tional semantics. Which is better depends wholly on the situation at hand,
though historically there has been greater emphasis on abstract machines
than on structural semantics.
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Chapter 28

Exceptions

Exceptions effect a non-local transfer of control from the point at which the
exception is raised to an enclosing handler for that exception. This transfer
interrupts the normal flow of control in a program in response to unusual
conditions. For example, exceptions can be used to signal an error con-
dition, or to indicate the need for special handling in certain circumstances
that arise only rarely. To be sure, we could use conditionals to check for and
process errors or unusual conditions, but using exceptions is often more
convenient, particularly because the transfer to the handler is direct and
immediate, rather than indirect via a series of explicit checks.

28.1 Failures

A failure is a control mechanism that permits a computation to refuse to
return a value to the point of its evaluation. A failure is detected by catching
it, which means to divert evaluation to a handler that turns the failure into
a success (unless the handler itself fails).

The following grammar defines the syntax of failures:

Exp e ::= fail fail failure
catch(e1; e2) catch e1 ow e2 handler

The expression fail aborts the current evaluation, and the expression catch(e1; e2)

handles any failure in e1 by evaluating e2 instead.
The statics of failures is straightforward:

Γ ` fail : τ
(28.1a)



268 28.1 Failures

Γ ` e1 : τ Γ ` e2 : τ

Γ ` catch(e1; e2) : τ
(28.1b)

A failure can have any type, because it never returns. The two expressions
in a catch expression must have the same type, because either might de-
termine the value of that expression.

The dynamics of failures may be given using stack unwinding. Evalua-
tion of a catch installs a handler on the control stack. Evaluation of a fail

unwinds the control stack by popping frames until it reaches the nearest
enclosing handler, to which control is passed. The handler is evaluated in
the context of the surrounding control stack, so that failures within it prop-
agate further up the stack.

Stack unwinding can be defined directly using structural dynamics, but
we prefer to make use of the stack machine defined in Chapter 27. In ad-
dition to states of the form k . e, which evaluates the expression e on the
stack k, and k / e, which passes the value e to the stack k, we make use of
an additional form of state, k J , which passes a failure up the stack to the
nearest enclosing handler.

The set of frames defined in Chapter 27 is extended with the additonal
form catch(−; e2). The transition rules given in Chapter 27 are extended
with the following additional rules:

k . fail 7→ k J
(28.2a)

k . catch(e1; e2) 7→ k;catch(−; e2) . e1
(28.2b)

k;catch(−; e2) / v 7→ k / v
(28.2c)

k;catch(−; e2) J 7→ k . e2
(28.2d)

k; f J 7→ k J (28.2e)

As a notational convenience, we require that Rule (28.2e) apply only if none
of the preceding rules apply. Evaluating fail propagates a failure up the
stack. The act of raising an exception may raise an exception. Evaluat-
ing catch(e1; e2) consists of pushing the handler onto the control stack and
evaluating e1. If a value is propagated to the handler, the handler is re-
moved and the value continues to propagate upwards. If a failure is prop-
agated to the handler, the stored expression is evaluated with the handler
removed from the control stack. All other frames propagate failures.
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The definition of initial state remains the same as for K{nat⇀}, but we
change the definition of final state to include these two forms:

e val
ε / e final

(28.3a)

ε J final
(28.3b)

The first of these is as before, corresponding to a normal result with the
specified value. The second is new, corresponding to an uncaught excep-
tion propagating through the entire program.

It is easy to extend the definition of stack typing given in Chapter 27 to
account for the new forms of frame, and then to prove safety in the usual
way. However, the meaning of progress must be weakened to take account
of failure: a well-typed expression is either a value, or may take a step, or
may signal failure.

Theorem 28.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

28.2 Exceptions

Failures are simplistic in that they do not distinguish different causes, and
hence do not permit handlers to react differently to different circumstances.
An exception is a generalization of a failure that associates a value with the
failure. This value is passed to the handler, allowing it to discriminate be-
tween various forms of failures, and to pass data appropriate to that form
of failure. The type of values associated with exceptions is discussed in
Section 28.3. For now, we simply assume that there is some type, τexn, of
values associated with a failure.

The syntax of exceptions is given by the following grammar:

Exp e ::= raise[τ](e) raise(e) exception
handle(e1; x.e2) handle e1 ow x⇒ e2 handler

The argument to raise is evaluated to determine the value passed to the
handler. The expression handle(e1; x.e2) binds a variable, x, in the han-
dler, e2, to which the associated value of the exception is bound, should an
exception be raised during the execution of e1.
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The statics of exceptions extends the statics of failures to account for the
type of the value carried with the exception:

Γ ` e : τexn
Γ ` raise[τ](e) : τ

(28.4a)

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` handle(e1; x.e2) : τ
(28.4b)

The dynamics of exceptions is a mild generalization of the dynamics of
failures in which we generalize the failure state, k J , to the exception state,
k J e, which passes a value of type τexn along with the failure. The syntax
of stack frames is extended to include raise[τ](−) and handle(−; x.e2).
The dynamics of exceptions is specified by the following rules:

k . raise[τ](e) 7→ k;raise[τ](−) . e
(28.5a)

k;raise[τ](−) / e 7→ k J e
(28.5b)

k;raise[τ](−) J e 7→ k J e
(28.5c)

k . handle(e1; x.e2) 7→ k;handle(−; x.e2) . e1
(28.5d)

k;handle(−; x.e2) / e 7→ k / e
(28.5e)

k;handle(−; x.e2) J e 7→ k . [e/x]e2
(28.5f)

( f 6= handle(−; x.e2))

k; f J e 7→ k J e
(28.5g)

It is a straightforward exercise to extend the safety theorem given in
Section 28.1 to exceptions.
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28.3 Exception Type

The statics of exceptions is parameterized by a type, τexn, of exception val-
ues. There is no restriction on the choice of this type, but it must be one and
the same for all exceptions in a program. For otherwise an exception han-
dler cannot analyze the value associated with the exception without risking
type safety.

But how is τexn to be chosen? A very naı̈ve choice would be to take it
to be the type, str, of strings. This allows us to associate an “explanation”
with an exception. For example, we may write

raise "Division by zero error."

to signal the obvious arithmetic fault. This is fine as far as it goes, but a
handler for such an exception would have to interpret the string if it is to
distinguish one exception from another, and this is clearly impractical and
inconvenient.

Another popular choice is to take τexn to be nat, so that exceptional con-
ditions are encoded as error numbers that describe the source of the error.1

By dispatching on the numeric code of the exception the handler can de-
termine how to recover from it. But the trouble is that we must establish a
globally agreed-upon system of numbering, which is clearly untenable and
incompatible with modular decomposition and component reuse. More-
over, it is practically impossible to associate meaningful data with an ex-
ceptional condition, information that might well be useful to a handler.

The latter concern—how to associate data specific to the exceptional
condition—can be addressed by taking τexn to be a sum type whose classes
are the exceptional conditions. The instance type of the class determines
the data associated with the exception. For example, the type τexn might be
chosen to be a sum type of the form

[div ↪→ unit, fnf ↪→ string, . . .].

The class div might represent an arithmetic fault, with no associated data,
and the class fnf might represent a “file not found” error, with associated
data being the name of the file.

Using a sum type for τexn makes it easy for the handler to discriminate
on the source of the failure, and to recover the associated data without fear
of a type safety violation. For example, we might write

1This convention is used in the Unix operating system, for example.
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try e1 ow x ⇒
match x {
div 〈〉 ⇒ ediv

| fnf s ⇒ efnf }

to handle the exceptions specified by the sum type given in the preceding
paragraph.

The problem with choosing a sum type for τexn is that it imposes a static
classification of the sources of failure in a program. There must be one, glob-
ally agreed-upon type that classifies all possible forms of failure, and speci-
fies their associated data. Using sums in this manner impedes modular de-
velopment and evolution, because all of the modules comprising a system
must agree on the one, central type of exception values. A better approach
is to use dynamic classification for exception values by choosing τexn to be an
extensible sum, one to which new classes may be added at execution time.
This allows separate program modules to introduce their own failure clas-
sification scheme without worrying about interference with one another;
the initialization of the module generates new classes at run-time that are
guaranteed to be distinct from all other classes previously or subsequently
generated. (See Chapter 34 for more on dynamic classification.)

28.4 Encapsulation of Exceptions

It is sometimes useful to distinguish expressions that can fail or raise an
exception from those that cannot. An expression is called fallible, or ex-
ceptional, if it can fail or raise an exception during its evaluation, and is
infallible, or unexceptional, otherwise. The concept of fallibility is intention-
ally permissive in that an infallible expression may be considered to be
(vacuously) fallible, whereas infallibility is intended to be strict in that an
infallible expression cannot fail. Consequently, if e1 and e2 are two infal-
lible expressions both of whose values are required in a computation, we
may evaluate them in either order without affecting the outcome. If, on
the other hand, one or both are fallible, then the outcome of the compu-
tation is sensitive to the evaluation order (whichever fails first determines
the overall result).

To formalize this distinction we distinguish two modes of expression,
the fallible and the infallible, linked by a modality classifying the fallible
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expressions of a type.

Type τ ::= fallible(τ) τ fallible fallible
Fall f ::= fail fail failure

ok(e) ok(e) success
try(e; x. f1; f2) let fall(x) be e in f1 ow f2 handler

Infall e ::= x x variable
fall( f) fall( f) fallible
try(e; x.e1; e2) let fall(x) be e in e1 ow e2 handler

The type fallible(τ) is the type of encapsulated fallible expressions of
type τ. Fallible expressions include failures, successes (infallible expres-
sions thought of as vacuously fallible), and handlers that intercept failures,
but which may itself fail. Infallible expressions include variables, encapsu-
lated fallible expressions, and handlers that intercept failures, always yield-
ing an infallible result.

The statics of encapsulated failures consists of two judgment forms, Γ `
e : τ for infallible expressions and Γ ` f ∼ τ for fallible expressions. These
judgments are defined by the following rules:

Γ, x : τ ` x : τ
(28.6a)

Γ ` f ∼ τ

Γ ` fall( f) : fallible(τ)
(28.6b)

Γ ` e : fallible(τ) Γ, x : τ ` e1 : τ′ Γ ` e2 : τ′

Γ ` try(e; x.e1; e2) : τ′
(28.6c)

Γ ` fail ∼ τ
(28.6d)

Γ ` e : τ
Γ ` ok(e) ∼ τ

(28.6e)

Γ ` e : fallible(τ) Γ, x : τ ` f1 ∼ τ′ Γ ` f2 ∼ τ′

Γ ` try(e; x. f1; f2) ∼ τ′
(28.6f)

Rule (28.6c) specifies that a handler may be used to turn a fallible expres-
sion (encapsulated by e) into an infallible computation, provided that the
result is infallible regardless of whether the encapsulated expression suc-
ceeds or fails.
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The dynamics of encapsulated failures is readily derived, though some
care must be taken with the elimination form for the modality.

fall( f) val
(28.7a)

k . try(e; x.e1; e2) 7→ k;try(−; x.e1; e2) . e
(28.7b)

k;try(−; x.e1; e2) / fall( f) 7→ k;try(−; x.e1; e2);fall(−) . f
(28.7c)

k . fail 7→ k J
(28.7d)

k . ok(e) 7→ k;ok(−) . e
(28.7e)

k;ok(−) / e 7→ k / ok(e) (28.7f)

e val
k;try(−; x.e1; e2);fall(−) / ok(e) 7→ k . [e/x]e1

(28.7g)

k;try(−; x.e1; e2);fall(−) J 7→ k . e2
(28.7h)

We have omitted the rules for the fallible form of handler; they are sim-
ilar to Rules (28.7b) to (28.7c) and (28.7g) to (28.7h), albeit with infallible
subexpressions e1 and e2 replaced by fallible subexpressions f1 and f2.

An initial state has the form k . e, where e is an infallible expression,
and k is a stack of suitable type. Consequently, a fallible expression, f , can
only be evaluated on a stack of the form

k;try(−; x.e1; e2);fall(−)

in which a handler for any failure that may arise from f is present. There-
fore, a final state has the form ε / e, where e val; no uncaught failure can
arise.
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28.5 Notes

Various forms of exceptions were explored in various dialects of Lisp (for
example, Steele (1990)). The original formulation of ML (Gordon et al.,
1979) as a metalanguage for mechanized logic made extensive use of ex-
ceptions, called “failures,” to implement tactics and tacticals. These days
most languages include an exception mechanism of the kind considered
here.

The essential distinction between the exception mechanism and excep-
tion values is often misunderstood. Exception values are often dynamically
classified (in the sense of Chapter 34), but dynamic classification has many
more uses than just exception values. Another common misconception is
to link exceptions erroneously with fluid binding (Chapter 33).
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Chapter 29

Continuations

The semantics of many control constructs (such as exceptions and co-routines)
can be expressed in terms of reified control stacks, a representation of a con-
trol stack as an ordinary value. This is achieved by allowing a stack to
be passed as a value within a program and to be restored at a later point,
even if control has long since returned past the point of reification. Rei-
fied control stacks of this kind are called continuations; they are values that
can be passed and returned at will in a computation. Continuations never
“expire”, and it is always sensible to reinstate a continuation without com-
promising safety. Thus continuations support unlimited “time travel” —
we can go back to a previous point in the computation and then return to
some point in its future, at will.

Why are continuations useful? Fundamentally, they are representations
of the control state of a computation at a given point in time. Using con-
tinuations we can “checkpoint” the control state of a program, save it in a
data structure, and return to it later. In fact this is precisely what is neces-
sary to implement threads (concurrently executing programs) — the thread
scheduler must be able to checkpoint a program and save it for later exe-
cution, perhaps after a pending event occurs or another thread yields the
processor.

29.1 Informal Overview

We will extend L{→} with the type cont(τ) of continuations accepting
values of type τ. The introduction form for cont(τ) is letcc[τ](x.e),
which binds the current continuation (that is, the current control stack) to the
variable x, and evaluates the expression e. The corresponding elimination
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form is throw[τ](e1; e2), which restores the value of e1 to the control stack
that is the value of e2.

To illustrate the use of these primitives, consider the problem of mul-
tiplying the first n elements of an infinite sequence q of natural numbers,
where q is represented by a function of type nat → nat. If zero occurs
among the first n elements, we would like to effect an “early return” with
the value zero, rather than perform the remaining multiplications. This
problem can be solved using exceptions (we leave this as an exercise), but
we will give a solution that uses continuations in preparation for what fol-
lows.

Here is the solution in L{nat⇀}, without short-cutting:

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ⇒ s(z)

| s(n’) ⇒ (q z) × (ms (q ◦ succ) n’)

}

The recursive call composes q with the successor function to shift the se-
quence by one step.

Here is the version with short-cutting:

λ q : nat ⇀ nat.

λ n : nat.

letcc ret : nat cont in

let ms be

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ⇒ s(z)

| s(n’) ⇒
case q z {
z ⇒ throw z to ret

| s(n’’) ⇒ (q z) × (ms (q ◦ succ) n’)

}
}

in

ms q n

VERSION 1.32 REVISED 05.15.2012



29.2 Semantics of Continuations 279

The letcc binds the return point of the function to the variable ret for use
within the main loop of the computation. If zero is encountered, control is
thrown to ret, effecting an early return with the value zero.

Let’s look at another example: given a continuation k of type τ cont and
a function f of type τ′ → τ, return a continuation k′ of type τ′ cont with
the following behavior: throwing a value v′ of type τ′ to k′ throws the value
f (v′) to k. This is called composition of a function with a continuation. We wish
to fill in the following template:

fun compose(f:τ′ → τ,k:τ cont):τ′ cont = ....

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one in
effect at the point of the ellipsis in the expression throw f(...) to k. This
is the continuation that, when given a value v′, applies f to it, and throws
the result to k. We can seize this continuation using letcc, writing

throw f(letcc x:τ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f:τ′ → τ, k:τ cont):τ′ cont =

letcc ret:τ′ cont cont in

throw (f (letcc r in throw r to ret)) to k

The type of ret is that of a continuation-expecting continuation.

29.2 Semantics of Continuations

We extend the language of L{→} expressions with these additional forms:

Type τ ::= cont(τ) τ cont continuation
Expr e ::= letcc[τ](x.e) letcc x in e mark

throw[τ](e1; e2) throw e1 to e2 goto
cont(k) cont(k) continuation

The expression cont(k) is a reified control stack, which arises during eval-
uation.
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The statics of this extension is defined by the following rules:

Γ, x : cont(τ) ` e : τ

Γ ` letcc[τ](x.e) : τ
(29.1a)

Γ ` e1 : τ1 Γ ` e2 : cont(τ1)

Γ ` throw[τ′](e1; e2) : τ′
(29.1b)

The result type of a throw expression is arbitrary because it does not return
to the point of the call.

The statics of continuation values is given by the following rule:

k : τ
Γ ` cont(k) : cont(τ)

(29.2)

A continuation value cont(k) has type cont(τ) exactly if it is a stack ac-
cepting values of type τ.

To define the dynamics we extendK{nat⇀} stacks with two new forms
of frame:

throw[τ](−; e2) frame
(29.3a)

e1 val

throw[τ](e1;−) frame
(29.3b)

Every reified control stack is a value:

k stack
cont(k) val

(29.4)

The transition rules for the continuation constructs are as follows:

k . letcc[τ](x.e) 7→ k . [cont(k)/x]e (29.5a)

k . throw[τ](e1; e2) 7→ k;throw[τ](−; e2) . e1 (29.5b)

e1 val

k;throw[τ](−; e2) / e1 7→ k;throw[τ](e1;−) . e2
(29.5c)

k;throw[τ](v;−) / cont(k′) 7→ k′ / v (29.5d)

Evaluation of a letcc expression duplicates the control stack; evaluation of
a throw expression destroys the current control stack.

The safety of this extension of L{→} may be established by a simple
extension to the safety proof for K{nat⇀} given in Chapter 27.

VERSION 1.32 REVISED 05.15.2012



29.3 Coroutines 281

We need only add typing rules for the two new forms of frame, which
are as follows:

e2 : cont(τ)

throw[τ′](−; e2) : τ ⇒ τ′
(29.6a)

e1 : τ e1 val

throw[τ′](e1;−) : cont(τ)⇒ τ′
(29.6b)

The rest of the definitions remain as in Chapter 27.

Lemma 29.1 (Canonical Forms). If e : cont(τ) and e val, then e = cont(k)
for some k such that k : τ.

Theorem 29.2 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

29.3 Coroutines

The distinction between a routine and a subroutine is the distinction be-
tween a manager and a worker. The routine calls upon the subroutine to
accomplish a piece of work, and the subroutine returns to the routine when
its work is done. The relationship is asymmetric in that there is a clear dis-
tinction between the caller, the main routine, and the callee, the subroutine.
Often it is useful to consider a symmetric situation in which two routines
each call the other to help accomplish a task. Such a pair of routines are
called coroutines; their relationship to one another is symmetric rather than
hierarchical.

The key to implementing a subroutine is for the caller to pass to the
callee a continuation representing the return point of the subroutine call.
When the subroutine is finished, it calls the continuation passed to it by
the calling routine. Because the subroutine is finished at that point, there is
no need for the callee to pass a continuation back to the caller. The key to
implementing coroutines is to have each routine treat the other as a subrou-
tine of itself. In particular, whenever a coroutine cedes control to its caller,
it provides a continuation that the caller may use to cede control back to
the callee, in the process providing a continuation for itself. (This raises an
interesting question of how the whole process gets started. We’ll return to
this shortly.)

To see how a pair of coroutines is implemented, let us consider the type
of each routine in the pair. A routine is a continuation accepting two ar-
guments, a datum to be passed to that routine when it is resumed, and
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a continuation to be resumed when the routine has finished its task. The
datum represents the state of the computation, and the continuation is a
coroutine that accepts arguments of the same form. Thus, the type of a
coroutine must satisfy the type isomorphism

τ coro ∼= (τ × τ coro) cont.

So we may take τ coro to be the recursive type

τ coro , µt.(τ × t) cont.

Up to isomorphism, the type τ coro is the type of continuations that accept
a value of type τ, representing the state of the coroutine, and the partner
coroutine, a value of the same type.

A coroutine, r, passes control to another coroutine, r′, by evaluating the
expression resume(〈s, r′〉), where s is the current state of the computation.
Doing so creates a new coroutine whose entry point is the return point
(calling site) of the application of resume. Therefore the type of resume is

τ × τ coro→ τ × τ coro.

The definition of resume is as follows:

λ (〈s, r′〉:τ × τ coro) letcc k in throw 〈s, fold(k)〉 to unfold(r′)

When applied, resume seizes the current continuation, and passes the state,
s, and the seized continuation (packaged as a coroutine) to the called corou-
tine.

But how do we create a system of coroutines in the first place? Because
the state is explicitly passed from one routine to the other, a coroutine may
be defined as a state transformation function that, when activated with the
current state, determines the next state of the computation. A system of
coroutines is created by establishing a joint exit point to which the result
of the system is thrown, and creating a pair of coroutines that iteratively
transform the state and pass control to the partner routine. If either rou-
tine wishes to terminate the computation, it does so by throwing a result
value to their common exit point. Thus, a coroutine may be specified by a
function of type

(ρ,τ) rout , ρ cont→ τ → τ,

where ρ is the result type and τ is the state type of the system of coroutines.
To set up a system of coroutines we define a function run that, given

two routines, creates a function of type τ → ρ that, when applied to the
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initial state, computes a result of type ρ. The computation consists of a
cooperating pair of routines that share a common exit point. The definition
of run begins as follows:

λ (〈r1, r2〉)λ (s0) letcc x0 in let r′1 be r1(x0) in let r′2 be r2(x0) in . . .

Given two routines, run establishes their common exit point, and passes
this continuation to both routines. By throwing to this continuation either
routine may terminate the computation with a result of type ρ. The body
of the run function continues as follows:

rep(r′2)(letcc k in rep(r′1)(〈s0, fold(k)〉))

The auxiliary function rep creates an infinite loop that transforms the state
and passes control to the other routine:

λ (t) fix l isλ (〈s, r〉) l(resume(〈t(s), r〉)).

The system is initialized by starting routine r1 with the initial state, and
arranging that, when it cedes control to its partner, it starts routine r2 with
the resulting state. At that point the system is bootstrapped: each routine
will resume the other on each iteration of the loop.

A good example of coroutining arises whenever we wish to interleave
input and output in a computation. We may achieve this using a coroutine
between a producer routine and a consumer routine. The producer emits the
next element of the input, if any, and passes control to the consumer with
that element removed from the input. The consumer processes the next
data item, and returns control to the producer, with the result of processing
attached to the output. The input and output are modeled as lists of type
τi list and τo list, respectively, which are passed back and forth between
the routines.1 The routines exchange messages according to the following
protocol. The message OK(〈i, o〉) is sent from the consumer to producer
to acknowledge receipt of the previous message, and to pass back the cur-
rent state of the input and output channels. The message EMIT(〈v, 〈i, o〉〉),
where v is a value of type τi opt, is sent from the producer to the consumer
to emit the next value (if any) from the input, and to pass the current state
of the input and output channels to the consumer.

This leads to the following implementation of the producer/consumer
model. The type τ of the state maintained by the routines is the labeled

1In practice the input and output state are implicit, but we prefer to make them explicit
for the sake of clarity.
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sum type

[OK ↪→ τi list× τo list, EMIT ↪→ τi opt× (τi list× τo list)].

This type specifies the message protocol between the producer and the con-
sumer described in the preceding paragraph.

The producer, P, is defined by the expression

λ (x0)λ (msg) casemsg {b1 | b2 | b3},

where the first branch, b1, is

OK · 〈nil, os〉 ⇒ EMIT · 〈null, 〈nil, os〉〉

and the second branch, b2, is

OK · 〈cons(i; is), os〉 ⇒ EMIT · 〈just(i), 〈is, os〉〉,

and the third branch, b3, is

EMIT · ⇒ error.

In words, if the input is exhausted, the producer emits the value null, along
with the current channel state. Otherwise, it emits just(i), where i is the
first remaining input, and removes that element from the passed channel
state. The producer cannot see an EMIT message, and signals an error if it
should occur.

The consumer, C, is defined by the expression

λ (x0)λ (msg) casemsg {b′1 | b′2 | b′3},

where the first branch, b′1, is

EMIT · 〈null, 〈 , os〉〉 ⇒ throw os to x0,

the second branch, b′2, is

EMIT · 〈just(i), 〈is, os〉〉 ⇒ OK · 〈is, cons( f(i); os)〉,

and the third branch, b′3, is

OK · ⇒ error.

The consumer dispatches on the emitted datum. If it is absent, the output
channel state is passed to x0 as the ultimate value of the computation. If
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it is present, the function f (unspecified here) of type τi → τo is applied
to transform the input to the output, and the result is added to the output
channel. If the message OK is received, the consumer signals an error, as the
producer never produces such a message.

The initial state, s0, has the form OK · 〈is, os〉, where is and os are the
initial input and output channel state, respectively. The computation is
created by the expression

run(〈P, C〉)(s0),

which sets up the coroutines as described earlier.
Although it is relatively easy to visualize and implement coroutines in-

volving only two partners, it is more complex, and less useful, to consider
a similar pattern of control among n ≥ 2 participants. In such cases it is
more common to structure the interaction as a collection of n routines, each
of which is a coroutine of a central scheduler. When a routine resumes its
partner, it passes control to the scheduler, which determines which routine
to execute next, again as a coroutine of itself. When structured as corou-
tines of a scheduler, the individual routines are called threads. A thread
yields control by resuming its partner, the scheduler, which then determines
which thread to execute next as a coroutine of itself. This pattern of control
is called cooperative multi-threading, because it is based on explicit yields,
rather than implicit yields imposed by asynchronous events such as timer
interrupts.

29.4 Notes

Continuations are a ubiquitous notion in programming languages. Reynolds
(1993) provides an excellent account of the multiple discoveries of continu-
ations. The formulation given here is inspired by Felleisen and Hieb (1992),
who pioneered the development of linguistic theories of control and state.
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Part XI

Types and Propositions





Chapter 30

Constructive Logic

Constructive logic codifies the principles of mathematical reasoning as it is
actually practiced. In mathematics a proposition may be judged to be true
exactly when it has a proof, and may be judged to be false exactly when it
has a refutation. Because there are, and always will be, unsolved problems,
we cannot expect in general that a proposition is either true or false, for in
most cases we have neither a proof nor a refutation of it. Constructive logic
may be described as logic as if people matter, as distinct from classical logic,
which may be described as the logic of the mind of god. From a constructive
viewpoint the judgment “φ true” means that “there is a proof of φ.”

What constitutes a proof is a social construct, an agreement among peo-
ple as to what is a valid argument. The rules of logic codify a set of prin-
ciples of reasoning that may be used in a valid proof. The valid forms of
proof are determined by the outermost structure of the proposition whose
truth is asserted. For example, a proof of a conjunction consists of a proof
of each of its conjuncts, and a proof of an implication consists of a trans-
formation of a proof of its antecedent to a proof of its consequent. When
spelled out in full, the forms of proof are seen to correspond exactly to the
forms of expression of a programming language. To each proposition is
associated the type of its proofs; a proof is an expression of the associated
type. This association between programs and proofs induces a dynamics
on proofs, for they are but programs of some type. In this way proofs in
constructive logic have computational content, which is to say that they may
be interpreted as executable programs of the associated type. Conversely,
programs have mathematical content as proofs of the proposition associated
to their type.

This unification of logic and programming is called the propositions as
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types principle. It is the central organizing principle of the theory of pro-
gramming languages. Propositions are identified with types, and proofs
are identified with programs. A programming technique corresponds to a
method of proof; a proof technique corresponds to a method of program-
ming. Viewing types as behavioral specifications of programs, propositions
may be seen as problem statements whose proofs are solutions that imple-
ment the specification.

30.1 Constructive Semantics

Constructive logic is concerned with two judgments, φ prop, stating that
φ expresses a proposition, and φ true, stating that φ is a true proposi-
tion. What distinguishes constructive from non-constructive logic is that
a proposition is not conceived of as merely a truth value, but instead as a
problem statement whose solution, if it has one, is given by a proof. A propo-
sition is said to be true exactly when it has a proof, in keeping with ordinary
mathematical practice. In practice there is no other criterion of truth than
the existence of a proof.

This principle has important, possibly surprising, consequences, the
most important of which is that we cannot say, in general, that a propo-
sition is either true or false. If for a proposition to be true means to have
a proof of it, what does it mean for a proposition to be false? It means
that we have a refutation of it, showing that it cannot be proved. That is, a
proposition is false if we can show that the assumption that it is true (has a
proof) contradicts known facts. In this sense constructive logic is a logic of
positive, or affirmative, information — we must have explicit evidence in the
form of a proof in order to affirm the truth or falsity of a proposition.

In light of this it should be clear that not every proposition is either
true or false. For if φ expresses an unsolved problem, such as the famous

P
?
= NP problem, then we have neither a proof nor a refutation of it (the

mere absence of a proof not being a refutation). Such a problem is undecided,
precisely because it is unsolved. Because there will always be unsolved
problems (there being infinitely many propositions, but only finitely many
proofs at a given point in the evolution of our knowledge), we cannot say
that every proposition is decidable, that is, either true or false.

Of course, some propositions are decidable, and hence may be consid-
ered to be either true or false. For example, if φ expresses an inequality be-
tween natural numbers, then φ is decidable, because we can always work
out, for given natural numbers m and n, whether m ≤ n or m 6≤ n — we can
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either prove or refute the given inequality. This argument does not extend
to the real numbers. To get an idea of why not, consider the presentation of
a real number by its decimal expansion. At any finite time we will have ex-
plored only a finite initial segment of the expansion, which is not enough to
determine if it is, say, less than 1. For if we have determined the expansion
to be 0.99 . . . 9, we cannot decide at any time, short of infinity, whether or
not the number is 1. (This argument is not a proof, because we may won-
der whether there is some other representation of real numbers that admits
such a decision to be made finitely, but it turns out that this is not the case.)

The constructive attitude is simply to accept the situation as inevitable,
and make our peace with that. When faced with a problem we have no
choice but to roll up our sleeves and try to prove it or refute it. There is no
guarantee of success! Life is hard, but we muddle through somehow.

30.2 Constructive Logic

The judgments φ prop and φ true of constructive logic are rarely of interest
by themselves, but rather in the context of a hypothetical judgment of the
form

φ1 true, . . . , φn true ` φ true.

This judgment expresses that the proposition φ is true (has a proof), under
the assumptions that each of φ1, . . . , φn are also true (have proofs). Of
course, when n = 0 this is just the same as the judgment φ true.

The structural properties of the hypothetical judgment, when special-
ized to constructive logic, define what we mean by reasoning under hy-
potheses:

Γ, φ true ` φ true (30.1a)

Γ ` φ1 true Γ, φ1 true ` φ2 true

Γ ` φ2 true
(30.1b)

Γ ` φ2 true

Γ, φ1 true ` φ2 true
(30.1c)

Γ, φ1 true, φ1 true ` φ2 true

Γ, φ1 true ` φ2 true
(30.1d)

Γ1, φ2 true, φ1 true, Γ2 ` φ true

Γ1, φ1 true, φ2 true, Γ2 ` φ true
(30.1e)
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The last two rules are implicit in that we regard Γ as a set of hypotheses, so
that two “copies” are as good as one, and the order of hypotheses does not
matter.

30.2.1 Provability

The syntax of propositional logic is given by the following grammar:

Prop φ ::= > > truth
⊥ ⊥ falsity
∧(φ1; φ2) φ1 ∧ φ2 conjunction
∨(φ1; φ2) φ1 ∨ φ2 disjunction
⊃(φ1; φ2) φ1 ⊃ φ2 implication

The connectives of propositional logic are given meaning by rules that de-
termine (a) what constitutes a “direct” proof of a proposition formed from
a given connective, and (b) how to exploit the existence of such a proof in
an “indirect” proof of another proposition. These are called the introduc-
tion and elimination rules for the connective. The principle of conservation
of proof states that these rules are inverse to one another — the elimination
rule cannot extract more information (in the form of a proof) than was put
into it by the introduction rule, and the introduction rules can be used to re-
construct a proof from the information extracted from it by the elimination
rules.

Truth Our first proposition is trivially true. No information goes into
proving it, and so no information can be obtained from it.

Γ ` > true (30.2a)

(no elimination rule)
(30.2b)

Conjunction Conjunction expresses the truth of both of its conjuncts.

Γ ` φ1 true Γ ` φ2 true

Γ ` φ1 ∧ φ2 true
(30.3a)

Γ ` φ1 ∧ φ2 true

Γ ` φ1 true
(30.3b)

Γ ` φ1 ∧ φ2 true

Γ ` φ2 true
(30.3c)
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Implication Implication states the truth of a proposition under an as-
sumption.

Γ, φ1 true ` φ2 true

Γ ` φ1 ⊃ φ2 true
(30.4a)

Γ ` φ1 ⊃ φ2 true Γ ` φ1 true

Γ ` φ2 true
(30.4b)

Falsehood Falsehood expresses the trivially false (refutable) proposition.

(no introduction rule)
(30.5a)

Γ ` ⊥ true
Γ ` φ true

(30.5b)

Disjunction Disjunction expresses the truth of either (or both) of two
propositions.

Γ ` φ1 true

Γ ` φ1 ∨ φ2 true
(30.6a)

Γ ` φ2 true

Γ ` φ1 ∨ φ2 true
(30.6b)

Γ ` φ1 ∨ φ2 true Γ, φ1 true ` φ true Γ, φ2 true ` φ true

Γ ` φ true
(30.6c)

Negation The negation, ¬φ, of a proposition, φ, may be defined as the
implication φ ⊃⊥. This means that ¬φ true if φ true ` ⊥ true, which
is to say that the truth of φ is refutable in that we may derive a proof of
falsehood from any purported proof of φ. Because constructive truth is
identified with the existence of a proof, the implied semantics of negation
is rather strong. In particular, a problem, φ, is open exactly when we can
neither affirm nor refute it. This is in contrast to the classical conception of
truth, which assigns a fixed truth value to each proposition, so that every
proposition is either true or false.

30.2.2 Proof Terms

The key to the propositions-as-types principle is to make explict the forms
of proof. The basic judgment φ true, which states that φ has a proof, is re-
placed by the judgment p : φ, stating that p is a proof of φ. (Sometimes p is
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called a “proof term”, but we will simply call p a “proof.”) The hypotheti-
cal judgment is modified correspondingly, with variables standing for the
presumed, but unknown, proofs:

x1 : φ1, . . . , xn : φn ` p : φ.

We again let Γ range over such hypothesis lists, subject to the restriction
that no variable occurs more than once.

The syntax of proof terms is given by the following grammar:

Prf p ::= >I 〈〉 truth intro
∧I(p1; p2) 〈p1, p2〉 conj. intro
∧E[l](p) p · l conj. elim
∧E[r](p) p · r conj. elim
⊃I[φ](x.p) λ (x:φ) p impl. intro
⊥E(p) abort(p) false elim
∨I[l](p) l · p disj. intro
∨I[r](p) r · p disj. intro
∨E(p; x1.p1; x2.p2) case p {l · x1⇒ p1 | r · x2⇒ p2} disj. elim

The concrete syntax of proof terms is chosen to stress the correspondence
between propositions and types discussed in Section 30.4 below.

The rules of constructive propositional logic may be restated using proof
terms as follows.

Γ ` 〈〉 : >
(30.7a)

Γ ` p1 : φ1 Γ ` p2 : φ2

Γ ` 〈p1, p2〉 : φ1 ∧ φ2
(30.7b)

Γ ` p1 : φ1 ∧ φ2

Γ ` p1 · l : φ1
(30.7c)

Γ ` p1 : φ1 ∧ φ2

Γ ` p1 · r : φ2
(30.7d)

Γ, x : φ1 ` p2 : φ2

Γ ` λ (x:φ1) p2 : φ1 ⊃ φ2
(30.7e)

Γ ` p : φ1 ⊃ φ2 Γ ` p1 : φ1

Γ ` p(p1) : φ2
(30.7f)

Γ ` p : ⊥
Γ ` abort(p) : φ

(30.7g)
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Γ ` p1 : φ1

Γ ` l · p1 : φ1 ∨ φ2
(30.7h)

Γ ` p2 : φ2

Γ ` r · p2 : φ1 ∨ φ2
(30.7i)

Γ ` p : φ1 ∨ φ2 Γ, x1 : φ1 ` p1 : φ Γ, x2 : φ2 ` p2 : φ

Γ ` case p {l · x1⇒ p1 | r · x2⇒ p2} : φ
(30.7j)

30.3 Proof Dynamics

Proof terms in constructive logic are equipped with a dynamics by Gentzen’s
Principle, which states that the eliminatory forms are to be thought of as
inverse to the introductory forms. One aspect of Gentzen’s Principle is
the principle of conservation of proof, which states that the information in-
troduced into a proof of a proposition may be extracted without loss by
elimination. So, for example, we may state that conjunction elimination is
post-inverse to conjunction introduction by the definitional equivalences

Γ ` p1 : φ1 Γ ` p2 : φ2

Γ ` 〈p1, p2〉 · l ≡ p1 : φ1
(30.8a)

Γ ` p1 : φ1 Γ ` p2 : φ2

Γ ` 〈p1, p2〉 · r ≡ p2 : φ2
(30.8b)

Another aspect of Gentzen’s Principle is that principle of reversability of
proof, which states that every proof may be reconstructed from the informa-
tion that may be extracted from it by elimination. In the case of conjunction
this may be stated by the definitional equivalence

Γ ` p1 : φ1 Γ ` p2 : φ2

Γ ` 〈p · l, p · r〉 ≡ p : φ1 ∧ φ2
(30.9)

Similar equivalences may be stated for the other connectives. For exam-
ple, the conservation and reversability principles for implication are given
by these rules:

Γ, x : φ1 ` p2 : φ2 Γ ` p2 : φ2

Γ ` (λ (x:φ1) p2)(p1) ≡ [p1/x]p2 : φ2
(30.10a)

Γ ` p : φ1 ⊃ φ2

Γ ` λ (x:φ1) (p(x)) ≡ p : φ1 ⊃ φ2
(30.10b)
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The corresponding rules for disjunction and falsehood are given as follows:

Γ ` p : φ1 ∨ φ2 Γ, x1 : φ1 ` p1 : ψ Γ, x2 : φ2 ` p2 : ψ

Γ ` case l · p {l · x1⇒ p1 | r · x2⇒ p2} ≡ [p/x1]p1 : ψ
(30.11a)

Γ ` p : φ1 ∨ φ2 Γ, x1 : φ1 ` p1 : ψ Γ, x2 : φ2 ` p2 : ψ

Γ ` case r · p {l · x1⇒ p1 | r · x2⇒ p2} ≡ [p/x2]p2 : ψ
(30.11b)

Γ ` p : φ1 ∨ φ2 Γ, x : φ1 ∨ φ2 ` q : ψ

Γ ` [p/x]q ≡ case p {l · x1⇒ [l · x1/x]q | r · x2⇒ [r · x2/x]q} : ψ
(30.11c)

Γ ` p : ⊥ Γ, x : ⊥ ` q : ψ

Γ ` [p/x]q ≡ abort(p) : ψ
(30.11d)

30.4 Propositions as Types

Reviewing the statics and dynamics of proofs in constructive logic reveals
a striking similarity to the statics and dynamics of expressions of various
types. For example, the introduction rule for conjunction specifies that a
proof of a conjunction consists of a pair of proofs, one for each conjunct,
and the elimination rule inverts this, allowing us to extract a proof of each
conjunct from any proof of a conjunction. There is an obvious analogy with
the static semantics of product types, whose introductory form is a pair
and whose eliminatory forms are projections. Gentzen’s Principle extends
the analogy to the dynamics as well, so that, for example, the elimination
forms for conjunction amount to projections that extract the appropriate
components from an ordered pair.

The correspondence between propositions and types and between proofs
and programs, is summarized by the following chart:

Prop Type
> unit

⊥ void

φ1 ∧ φ2 τ1 × τ2
φ1 ⊃ φ2 τ1 → τ2
φ1 ∨ φ2 τ1 + τ2

The correspondence between propositions and types is a cornerstone of the
theory of programming languages. It exposes a deep connection between
computation and deduction, and serves as a framework for the analysis
of language constructs and reasoning principles by relating them to one
another.
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30.5 Notes

The propositions as types principle has its origins in the semantics of in-
tuitionistic logic developed by Brouwer, according to which the truth of
a proposition is witnessed by a construction providing computable evi-
dence for it. The forms of evidence are determined by the form of the
proposition, so that, for example, evidence for an implication is a com-
putable function transforming evidence for the hypothesis into evidence
for the conclusion. An explicit formulation of this semantics was intro-
duced by Heyting, and further developed by a number of authors, includ-
ing de Bruijn, Curry, Gentzen, Girard, Howard, Kolmogorov, Martin-Löf,
and Tait. The propositions-as-types correspondence is sometimes called the
Curry-Howard Isomorphism, but this terminology neglects the crucial contri-
butions of the others just mentioned. Moreover, the correspondence is not,
in general, an isomorphism; rather, it is an expression of Brouwer’s Dictum
that the concept of proof is best explained by the more general concept of
construction (program).
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Chapter 31

Classical Logic

In constructive logic a proposition is true exactly when it has a proof, a
derivation of it from axioms and assumptions, and is false exactly when it
has a refutation, a derivation of a contradiction from the assumption that it
is true. Constructive logic is a logic of positive evidence. To affirm or deny
a proposition requires a proof, either of the proposition itself, or of a con-
tradiction, under the assumption that it has a proof. We are not always in a
position to affirm or deny a proposition. An open problem is one for which
we have neither a proof nor a refutation—so that, constructively speaking,
it is neither true nor false.

In contrast classical logic (the one we learned in school) is a logic of
perfect information in which every proposition is either true or false. We
may say that classical logic corresponds to “god’s view” of the world—
there are no open problems, rather all propositions are either true or false.
Put another way, to assert that every proposition is either true or false is to
weaken the notion of truth to encompass all that is not false, dually to the
constructively (and classically) valid interpretation of falsity as all that is
not true. The symmetry between truth and falsity is appealing, but there is
a price to pay for this: the meanings of the logical connectives are weaker
in the classical case than in the constructive.

A prime example is provided by the law of the excluded middle, the as-
sertion that φ ∨ ¬φ true is valid for all propositions φ. Constructively, this
principle is not universally valid, because it would mean that every propo-
sition either has a proof or a refutation, which is manifestly not the case.
Classically, however, the law of the excluded middle is valid, because ev-
ery proposition is either considered to be either false or not false (which
is identified with being true in classical logic, in contrast to constructive
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logic). Nevertheless, classical logic is consistent with constructive logic in
that constructive logic does not refute classical logic. As we have seen, con-
structive logic proves that the law of the excluded middle is positively not
refuted (its double negation is constructively true). This shows that con-
structive logic is stronger (more expressive) than classical logic, because it
can express more distinctions (namely, between affirmation and irrefutabil-
ity), and because it is consistent with classical logic (the law of the excluded
middle can be added without fear of contradiction).

Proofs in constructive logic have computational content: they can be ex-
ecuted as programs, and their behavior is constrained by their type. Proofs
in classical logic also have computational content, but in a weaker sense
than in classical logic. Rather than positively affirm a proposition, a proof
in classical logic is a computation that cannot be refuted. Computationally,
a refutation consists of a continuation, or control stack, that takes a proof of
a proposition and derives a contradiction from it. So a proof of a proposi-
tion in classical logic is a computation that, when given a refutation of that
proposition derives a contradiction, witnessing the impossibility of refut-
ing it. In this sense the law of the excluded middle has a proof, precisely
because it is irrefutable.

31.1 Classical Logic

In constructive logic a connective is defined by giving its introduction and
elimination rules. In classical logic a connective is defined by giving its
truth and falsity conditions. Its truth rules correspond to introduction, and
its falsity rules to elimination. The symmetry between truth and falsity is
expressed by the principle of indirect proof. To show that φ true it is enough
to show that φ false entails a contradiction, and, conversely, to show that
φ false it is enough to show that φ true leads to a contradiction. Although
the second of these is constructively valid, the first is fundamentally classi-
cal, expressing the principle of indirect proof.

31.1.1 Provability and Refutability

There are three basic judgment forms in classical logic:

1. φ true, stating that the proposition φ is provable;

2. φ false, stating that the proposition φ is refutable;

3. #, stating that a contradiction has been derived.
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These are extended to hypothetical judgments in which we admit both
provability and refutability assumptions:

φ1 false, . . . , φm false ψ1 true, . . . , ψn true ` J.

The hypotheses are divided into two zones, one for falsity assumptions, ∆,
and one for truth assumptions, Γ.

The rules of classical logic are organized around the symmetry between
truth and falsity, which is mediated by the contradiction judgment.

The hypothetical judgment is reflexive:

∆, φ false Γ ` φ false (31.1a)

∆ Γ, φ true ` φ true (31.1b)

The remaining rules are stated so that the structural properties of weaken-
ing, contraction, and transitivity are admissible.

A contradiction arises when a proposition is judged to be both true and
false. A proposition is true if its falsity is absurd, and is false if its truth is
absurd.

∆ Γ ` φ false ∆ Γ ` φ true

∆ Γ ` #
(31.1c)

∆, φ false Γ ` #
∆ Γ ` φ true

(31.1d)

∆ Γ, φ true ` #
∆ Γ ` φ false

(31.1e)

Truth is trivially true, and cannot be refuted.

∆ Γ ` > true (31.1f)

A conjunction is true if both conjuncts are true, and is false if either
conjunct is false.

∆ Γ ` φ1 true ∆ Γ ` φ2 true

∆ Γ ` φ1 ∧ φ2 true
(31.1g)

∆ Γ ` φ1 false

∆ Γ ` φ1 ∧ φ2 false
(31.1h)

∆ Γ ` φ2 false

∆ Γ ` φ1 ∧ φ2 false
(31.1i)
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Falsity is trivially false, and cannot be proved.

∆ Γ ` ⊥ false (31.1j)

A disjunction is true if either disjunct is true, and is false if both dis-
juncts are false.

∆ Γ ` φ1 true

∆ Γ ` φ1 ∨ φ2 true
(31.1k)

∆ Γ ` φ2 true

∆ Γ ` φ1 ∨ φ2 true
(31.1l)

∆ Γ ` φ1 false ∆ Γ ` φ2 false

∆ Γ ` φ1 ∨ φ2 false
(31.1m)

Negation inverts the sense of each judgment:

∆ Γ ` φ false

∆ Γ ` ¬φ true
(31.1n)

∆ Γ ` φ true

∆ Γ ` ¬φ false
(31.1o)

An implication is true if its conclusion is true whenever the assumption
is true, and is false if its conclusion is false yet its assumption is true.

∆ Γ, φ1 true ` φ2 true

∆ Γ ` φ1 ⊃ φ2 true
(31.1p)

∆ Γ ` φ1 true ∆ Γ ` φ2 false

∆ Γ ` φ1 ⊃ φ2 false
(31.1q)

31.1.2 Proofs and Refutations

To explain the dynamics of classical proofs we first introduce an explicit
syntax for proofs and refutations. We will define three hypothetical judg-
ments for classical logic with explicit derivations:

1. ∆ Γ ` p : φ, stating that p is a proof of φ;

2. ∆ Γ ` k ÷ φ, stating that k is a refutation of φ;

3. ∆ Γ ` k # p, stating that k and p are contradictory.
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The falsity assumptions, ∆, are represented by a context of the form

u1 ÷ φ1, . . . , um ÷ φm,

where m ≥ 0, in which the variables u1, . . . , un stand for refutations. The
truth assumptions, Γ, are represented by a context of the form

x1 : ψ1, . . . , xn : ψn,

where n ≥ 0, in which the variables x1, . . . , xn stand for proofs.
The syntax of proofs and refutations is given by the following grammar:

Prf p ::= >T 〈〉 truth
∧T(p1; p2) 〈p1, p2〉 conjunction
∨T[l](p) l · p disjunction left
∨T[r](p) r · p disjunction right
¬T(k) not(k) negation
⊃T(φ; x.p) λ (x:φ) p implication

Ref k ::= ⊥F abort falsehood
∧F[l](k) fst ; k conjunction left
∧F[r](k) snd ; k conjunction right
∨F(k1; k2) case(k1; k2) disjunction
¬F(p) not(p) negation
⊃F(p; k) ap(p) ; k implication

Proofs serve as evidence for truth judgments, and refutations serve as evi-
dence for false judgments. Contradictions are witnessed by the juxtaposi-
tion of a proof and a refutation.

A contradiction arises whenever a proposition is both true and false:

∆ Γ ` k ÷ φ ∆ Γ ` p : φ

∆ Γ ` k # p
(31.2a)

Truth and falsity are defined symmetrically in terms of contradiction:

∆, u ÷ φ Γ ` k # p
∆ Γ ` ccr(u ÷ φ.k # p) : φ

(31.2b)

∆ Γ, x : φ ` k # p
∆ Γ ` ccp(x : φ.k # p) ÷ φ

(31.2c)

Reflexivity corresponds to the use of a variable hypothesis:

∆, u ÷ φ Γ ` u ÷ φ (31.2d)
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∆ Γ, x : φ ` x : φ (31.2e)

The other structure properties are admissible.
Truth is trivially true, and cannot be refuted.

∆ Γ ` 〈〉 : > (31.2f)

A conjunction is true if both conjuncts are true, and is false if either
conjunct is false.

∆ Γ ` p1 : φ1 ∆ Γ ` p2 : φ2

∆ Γ ` 〈p1, p2〉 : φ1 ∧ φ2
(31.2g)

∆ Γ ` k1 ÷ φ1

∆ Γ ` fst ; k1 ÷ φ1 ∧ φ2
(31.2h)

∆ Γ ` k2 ÷ φ2

∆ Γ ` snd ; k2 ÷ φ1 ∧ φ2
(31.2i)

Falsity is trivially false, and cannot be proved.

∆ Γ ` abort ÷ ⊥ (31.2j)

A disjunction is true if either disjunct is true, and is false if both dis-
juncts are false.

∆ Γ ` p1 : φ1

∆ Γ ` l · p1 : φ1 ∨ φ2
(31.2k)

∆ Γ ` p2 : φ2

∆ Γ ` r · p2 : φ1 ∨ φ2
(31.2l)

∆ Γ ` k1 ÷ φ1 ∆ Γ ` k2 ÷ φ2

∆ Γ ` case(k1; k2) ÷ φ1 ∨ φ2
(31.2m)

Negation inverts the sense of each judgment:

∆ Γ ` k ÷ φ

∆ Γ ` not(k) : ¬φ
(31.2n)

∆ Γ ` p : φ

∆ Γ ` not(p) ÷ ¬φ
(31.2o)

An implication is true if its conclusion is true whenever the assumption
is true, and is false if its conclusion is false, yet its assumption is true.

∆ Γ, x : φ1 ` p2 : φ2

∆ Γ ` λ (x:φ1) p2 : φ1 ⊃ φ2
(31.2p)

∆ Γ ` p1 : φ1 ∆ Γ ` k2 ÷ φ2

∆ Γ ` ap(p1) ; k2 ÷ φ1 ⊃ φ2
(31.2q)
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31.2 Deriving Elimination Forms

The price of achieving a symmetry between truth and falsity in classical
logic is that we must very often rely on the principle of indirect proof: to
show that a proposition is true, we often must derive a contradiction from
the assumption of its falsity. For example, a proof of

(φ ∧ (ψ ∧ θ)) ⊃ (θ ∧ φ)

in classical logic has the form

λ (w:φ ∧ (ψ ∧ θ)) ccr(u ÷ θ ∧ φ.k # w),

where k is the refutation

fst ; ccp(x : φ.snd ; ccp(y : ψ ∧ θ.snd ; ccp(z : θ.u # 〈z, x〉) # y) # w).

And yet in constructive logic this proposition has a direct proof that avoids
the circumlocutions of proof by contradiction:

λ (w:φ ∧ (ψ ∧ θ)) 〈w · r · r, w · l〉.

But this proof cannot be expressed (as is) in classical logic, because classical
logic lacks the elimination forms of constructive logic.

However, we may package the use of indirect proof into a slightly more
palatable form by deriving the elimination rules of constructive logic. For
example, the rule

∆ Γ ` φ ∧ ψ true

∆ Γ ` φ true

is derivable in classical logic:

∆, φ false Γ ` φ false

∆, φ false Γ ` φ ∧ ψ false

∆ Γ ` φ ∧ ψ true

∆, φ false Γ ` φ ∧ ψ true

∆, φ false Γ ` #
∆ Γ ` φ true

The other elimination forms are derivable in a similar manner, in each case
relying on indirect proof to construct a proof of the truth of a proposition
from a derivation of a contradiction from the assumption of its falsity.
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The derivations of the elimination forms of constructive logic are most
easily exhibited using proof and refutation expressions, as follows:

abort(p) = ccr(u ÷ φ.abort # p)
p · l = ccr(u ÷ φ.fst ; u # p)
p · r = ccr(u ÷ ψ.snd ; u # p)

p1(p2) = ccr(u ÷ ψ.ap(p2) ; u # p1)

case p1 {l · x⇒ p2 | r · y⇒ p} = ccr(u ÷ γ.case(ccp(x : φ.u # p2); ccp(y : ψ.u # p)) # p1)

It is straightforward to check that the expected elimination rules hold. For
example, the rule

∆ Γ ` p1 : φ ⊃ ψ ∆ Γ ` p2 : φ

∆ Γ ` p1(p2) : ψ
(31.3)

is derivable using the definition of p1(p2) given above. By suppressing
proof terms, we may derive the corresponding provability rule

∆ Γ ` φ ⊃ ψ true ∆ Γ ` φ true

∆ Γ ` ψ true
. (31.4)

31.3 Proof Dynamics

The dynamics of classical logic arises from the simplification of the con-
tradiction between a proof and a refutation of a proposition. To make this
explicit we will define a transition system whose states are contradictions
k # p consisting of a proof, p, and a refutation, k, of the same proposition.
The steps of the computation consist of simplifications of the contradictory
state based on the form of p and k.

The truth and falsity rules for the connectives play off one another in a
pleasing manner:

fst ; k # 〈p1, p2〉 7→ k # p1 (31.5a)
snd ; k # 〈p1, p2〉 7→ k # p2 (31.5b)

case(k1; k2) # l · p1 7→ k1 # p1 (31.5c)
case(k1; k2) # r · p2 7→ k2 # p2 (31.5d)

not(p) # not(k) 7→ k # p (31.5e)
ap(p1) ; k # λ (x:φ) p2 7→ k # [p1/x]p2 (31.5f)
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The rules of indirect proof give rise to the following transitions:

ccp(x : φ.k1 # p1) # p2 7→ [p2/x]k1 # [p2/x]p1 (31.5g)
k1 # ccr(u ÷ φ.k2 # p2) 7→ [k1/u]k2 # [k1/u]p2 (31.5h)

The first of these defines the behavior of the refutation of φ that proceeds
by contradicting the assumption that φ is true. This refutation is activated
by presenting it with a proof of φ, which is then substituted for the assump-
tion in the new state. Thus, “ccp” stands for “call with current proof.” The
second transition defines the behavior of the proof of φ that proceeds by
contradicting the assumption that φ is false. This proof is activated by pre-
senting it with a refutation of φ, which is then substituted for the assump-
tion in the new state. Thus, “ccr” stands for “call with current refutation.”

Rules (31.5g) to (31.5h) overlap in that there are two possible transitions
for a state of the form

ccp(x : φ.k1 # p1) # ccr(u ÷ φ.k2 # p2),

one to the state [p/x]k1 # [p/x]p1, where p is ccr(u ÷ φ.k2 # p2), and one
to the state [k/u]k2 # [k/u]p2, where k is ccp(x : φ.k1 # p1). The dynam-
ics of classical logic is therefore non-deterministic. To avoid this one may
impose a priority ordering among the two cases, preferring one transition
over the other when there is a choice. Preferring the first corresponds to
a “lazy” dynamics for proofs, because we pass the unevaluated proof, p,
to the refutation on the left, which is thereby activated. Preferring the sec-
ond corresponds to an “eager” dynamics for proofs, in which we pass the
unevaluated refutation, k, to the proof, which is thereby activated.

Theorem 31.1 (Preservation). If k ÷ φ, p : φ, and k # p 7→ k′ # p′, then there
exists φ′ such that k′ ÷ φ′ and p′ : φ′.

Proof. By rule induction on the dynamics of classical logic.

Theorem 31.2 (Progress). If k ÷ φ and p : φ, then either k # p final or k # p 7→
k′ # p′.

Proof. By rule induction on the statics of classical logic.

To initiate computation we postulate that halt is a refutation of any
proposition. The initial and final states of a computation are defined as
follows:

halt # p initial
(31.6a)
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p canonical

halt # p final
(31.6b)

The judgment p canonical states that p is a canonical proof, which is defined
to be any proof other than an indirect proof.

31.4 Law of the Excluded Middle

The law of the excluded middle is derivable in classical logic:

φ ∨ ¬φ false, φ true ` φ true

φ ∨ ¬φ false, φ true ` φ ∨ ¬φ true φ ∨ ¬φ false, φ true ` φ ∨ ¬φ false

φ ∨ ¬φ false, φ true ` #
φ ∨ ¬φ false ` φ false

φ ∨ ¬φ false ` ¬φ true

φ ∨ ¬φ false ` φ ∨ ¬φ true φ ∨ ¬φ false ` φ ∨ ¬φ false

φ ∨ ¬φ false ` #
φ ∨ ¬φ true

When written out using explicit proofs and refutations, we obtain the
proof term p0 : φ ∨ ¬φ:

ccr(u ÷ φ ∨ ¬φ.u # r · not(ccp(x : φ.u # l · x))).

To understand the computational meaning of this proof, let us juxtapose it
with a refutation, k ÷ φ ∨ ¬φ, and simplify it using the dynamics given in
Section 31.3. The first step is the transition

k # ccr(u ÷ φ ∨ ¬φ.u # r · not(ccp(x : φ.u # l · x)))
7→

k # r · not(ccp(x : φ.k # l · x)),

wherein we have replicated k so that it occurs in two places in the result
state. By virtue of its type the refutation k must have the form case(k1; k2),
where k1 ÷ φ and k2 ÷ ¬φ. Continuing the reduction, we obtain:

case(k1; k2) # r · not(ccp(x : φ.case(k1; k2) # l · x))
7→

k2 # not(ccp(x : φ.case(k1; k2) # l · x)).
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By virtue of its type k2 must have the form not(p2), where p2 : φ, and
hence the transition proceeds as follows:

not(p2) # not(ccp(x : φ.case(k1; k2) # l · x))
7→

ccp(x : φ.case(k1; k2) # l · x) # p2.

Observe that p2 is a valid proof of φ. Proceeding, we obtain

ccp(x : φ.case(k1; k2) # l · x) # p2

7→
case(k1; k2) # l · p2

7→
k1 # p2

The first of these two steps is the crux of the matter: the refutation, k =
case(k1; k2), which was replicated at the outset of the derivation, is re-
used, but with a different argument. At the first use, the refutation, k, which
is provided by the context of use of the law of the excluded middle, is pre-
sented with a proof r · p1 of φ∨¬φ. That is, the proof behaves as though the
right disjunct of the law is true, which is to say that φ is false. If the context
is such that it inspects this proof, it can only be by providing the proof, p2,
of φ that refutes the claim that φ is false. Should this occur, the proof of the
law of the excluded middle “backtracks” the context, providing instead the
proof l · p2 to k, which then passes p2 to k1 without further incident. The
proof of the law of the excluded middle boldly asserts ¬φ true, regardless
of the form of φ. Then, if caught in its lie by the context providing a proof
of φ, it “changes its mind” and asserts φ to the original context, k, after all.
No further reversion is possible, because the context has itself provided a
proof, p2, of φ.

The law of the excluded middle illustrates that classical proofs are to be
thought of as interactions between proofs and refutations, which is to say
interactions between a proof and the context in which it is used. In pro-
gramming terms this corresponds to an abstract machine with an explicit
control stack, or continuation, representing the context of evaluation of an
expression. That expression may access the context (stack, continuation)
to effect backtracking as necessary to maintain the perfect symmetry be-
tween truth and falsity. The penalty is that a closed proof of a disjunction
no longer need reveal which disjunct it proves, for as we have just seen, it
may, on further inspection, “change its mind.”
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31.5 The Double-Negation Translation

One consequence of the greater expressiveness of constructive logic is that
classical proofs may be translated systematically into constructive proofs of
a classically equivalent proposition. This means that by systematically re-
organizing the classical proof we may, without changing its meaning from
a classical perspective, turn it into a constructive proof of a constructively
weaker proposition. This shows that there is no loss in adhering to con-
structive proofs, because every classical proof can be seen as a constructive
proof of a constructively weaker, but classically equivalent, proposition.
Moreover, it proves that classical logic is weaker (less expressive) than con-
structive logic, contrary to a naı̈ve interpretation which would say that the
additional reasoning principles, such as the law of the excluded middle, af-
forded by classical logic makes it stronger. In programming language terms
adding a “feature” does not necessarily strengthen (improve the expressive
power) of your language; on the contrary, it may weaken it.

We will define a translation φ∗ of propositions that provides an inter-
pretation of classical into constructive logic according to the following cor-
respondences:

Classical Constructive
∆ Γ ` φ true ¬∆∗ Γ∗ ` ¬¬φ∗ true truth
∆ Γ ` φ false ¬∆∗ Γ∗ ` ¬φ∗ true falsity
∆ Γ ` # ¬∆∗ Γ∗ ` ⊥ true contradiction

Classical truth is weakened to constructive irrefutability; classical false-
hood is represented as constructive refutability; classical contradiction is
represented by constructive falsehood. Falsity assumptions are negated
after translation to express their falsehood; truth assumptions are merely
translated as is. Because the double negations are classically cancellable,
the translation will be easily seen to yield a classically equivalent propo-
sition. But because ¬¬φ is constructively weaker than φ, we also see that
a proof in classical logic is translated to a constructive proof of a weaker
statement.

Many choices for the translation of propositions are available; we have
chosen one that makes the proof of the correspondence between classical
and constructive logic go smoothly:

>∗ = >
(φ1 ∧ φ2)

∗ = φ∗1 ∧ φ∗2
⊥∗ =⊥
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(φ1 ∨ φ2)
∗ = φ∗1 ∨ φ∗2

(φ1 ⊃ φ2)
∗ = φ∗1 ⊃ ¬¬φ∗2

(¬φ)∗ = ¬φ∗

It is straightforward to show by induction on the rules of classical logic
that the correspondences summarized above hold. Some simple lemmas
are required. For example, we must show that the entailment

¬¬φ true¬¬ψ true ` ¬¬(φ ∧ ψ) true

is derivable in constructive logic.

31.6 Notes

The computational interpretation of classical logic was first explored by
Griffin (1990) and Murthy (1991). The account given here was influenced
by Wadler (2003), transposed by Nanevski from sequent calculus to nat-
ural deduction using multiple forms of judgment. The terminology is in-
spired by Lakatos (1976), an insightful and inspiring analysis of the discov-
ery of proofs and refutations of conjectures in mathematics. Versions of the
double-negation translation were originally given by Gödel and Gentzen,
and have been extended and modified in numerous other studies. The
computational content of the double negation translation was first eluci-
dated by Murthy (1991), who established the connection with the continuation-
passing transformation used in compilers.
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Chapter 32

Symbols

A symbol is an atomic datum with no internal structure. Whereas a variable
is given meaning by substitution, a symbol is given meaning by a family
of operations indexed by symbols. A symbol is therefore just a name, or
index, for an instance of a family of operations. Many different interpre-
tations may be given to symbols according to the operations we choose to
consider, giving rise to concepts such as fluid binding, dynamic classifi-
cation, mutable storage, and communication channels. To each symbol is
associated a type whose interpretation depends on the particular applica-
tion. The type of a symbol influences the type of its associated operations
under each interpretation. For example, in the case of mutable storage, the
type of a symbol constrains the contents of the cell named by that symbol
to values of that type. It is important to bear in mind that a symbol is not a
value of its associated type, but only a constraint on how that symbol may
be interpreted by the operations associated with it.

In this chapter we consider two constructs for computing with symbols.
The first is a means of declaring new symbols for use within a specified
scope. The expresssion ν a:ρ in e introduces a “new” symbol, a, with associ-
ated type, ρ, for use within e. The declared symbol, a, is “new” in the sense
that it is bound by the declaration within e, and so may be renamed at will
to ensure that it differs from any finite set of active symbols. Whereas the
statics determines the scope of a declared symbol, its range of significance,
or extent, is determined by the dynamics. There are two different dynamic
interpretations of symbols, the scoped and the free (short for scope-free) dy-
namics. The scoped dynamics limits the extent of the symbol to its scope;
the lifetime of the symbol is restricted to the evaluation of its scope. Alter-
natively, under the free dynamics the extent of a symbol exceeds its scope,
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extending to the entire computation of which it is a part. We may say that
in the free dynamics a symbol “escapes its scope,” but it is more accurate
to say that its scope widens to encompass the rest of the computation.

The second construct associated with symbols is the concept of a sym-
bolic reference, a form of expression whose sole purpose is to refer to a par-
ticular symbol. Symbolic references are values of a type, ρ sym, and have
the form & a for some symbol, a, with associated type, ρ. The eliminatory
form for the type ρ sym is a conditional branch that determines whether or
not a symbolic reference refers to a statically specified symbol. Crucially,
the statics of the eliminatory form is carefully designed so that, in the pos-
itive case, the type associated to the referenced symbol is made manifest,
whereas in the negative case, no type information is gleaned because the
referenced symbol could be of any type.

32.1 Symbol Declaration

The ability to declare a new symbol is shared by all applications of symbols
in subsequent chapters. The syntax for symbol declaration is given by the
following grammar:

Exp e ::= new[τ](a.e) ν a:τ in e generation

The statics of symbol declaration makes use of a signature, or symbol context,
that associates a type to each of a finite set of symbols. We use the letter Σ
to range over signatures, which are finite sets of pairs a ∼ τ, where a is a
symbol and τ is a type. The typing judgment Γ `Σ e : τ is parameterized
by a signature, Σ, associating types to symbols.

The statics of symbol declaration makes use of a judgment, τ mobile,
whose definition depends on whether the dynamics is scoped or not. In
a scoped dynamics mobility is defined so that the computed value of a
mobile type cannot depend on any symbol. By constraining the scope of a
declaration to have mobile type, we can, under this interpretation, ensure
that the extent of a symbol is confined to its scope. In a free dynamics every
type is deemed mobile, because the dynamics ensures that the scope of a
symbol is widened to accommodate the possibility that the value returned
from the scope of a declaration may depend on the declared symbol. The
term “mobile” reflects the informal idea that symbols may or may not be
“moved” from the scope of their declaration according to the dynamics
given to them. A free dynamics allows symbols to be moved freely, whereas
a scoped dynamics limits their range of motion.
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The statics of symbol declaration itself is given by the following rule:

Γ `Σ,a∼ρ e : τ τ mobile

Γ `Σ new[ρ](a.e) : τ
(32.1)

As mentioned, the condition on τ is to be chosen so as to ensure that the
returned value is meaningful in which dynamics we are using.

32.1.1 Scoped Dynamics

The scoped dynamics of symbol declaration is given by a transition judg-
ment of the form e 7−→

Σ
e′ indexed by a signature, Σ, specifying the active

symbols of the transition. Either e or e′ may involve the symbols declared
in Σ, but no others.

e 7−−−→
Σ,a∼ρ

e′

new[ρ](a.e) 7−→
Σ

new[ρ](a.e′)
(32.2a)

e valΣ
new[ρ](a.e) 7−→

Σ
e (32.2b)

Rule (32.2a) specifies that evaluation takes place within the scope of the
declaration of a symbol. Rule (32.2b) specifies that the declared symbol is
“forgotten” once its scope has been evaluated.

The definition of the judgment τ mobile must be chosen to ensure that
the following mobility condition is satisfied:

If τ mobile, `Σ,a∼ρ e : τ, and e valΣ,a∼ρ, then `Σ e : τ and e valΣ.

For example, in the presence of symbolic references (see Section 32.2 be-
low), a function type cannot be deemed mobile, because a function may
contain a reference to a local symbol. The type nat may only be deemed
mobile if the successor is evaluated eagerly, for otherwise a symbolic refer-
ence may occur within a value of this type, invalidating the condition.

Theorem 32.1 (Preservation). If `Σ e : τ and e 7−→
Σ

e′, then `Σ e′ : τ.

Proof. By induction on the dynamics of symbol declaration. Rule (32.2a)
follows directly by induction, applying Rule (32.1). Rule (32.2b) follows
directly from the condition on mobility.

Theorem 32.2 (Progress). If `Σ e : τ, then either e 7−→
Σ

e′, or e valΣ.
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Proof. There is only one rule to consider, Rule (32.1). By induction we have
either e 7−−−→

Σ,a∼ρ
e′, in which case Rule (32.2a) applies, or e valΣ,a∼ρ, in which

case by the mobility condition we have e valΣ, and hence Rule (32.2b) ap-
plies.

32.1.2 Scope-Free Dynamics

The scope-free dynamics of symbols is defined by a transition system be-
tween states of the form ν Σ { e }, where Σ is a signature and e is an ex-
pression over this signature. The judgment ν Σ { e } 7→ ν Σ′ { e′ } states that
evaluation of e relative to symbols Σ results in the expression e′ in the ex-
tension Σ′ of Σ.

ν Σ { new[ρ](a.e) } 7→ ν Σ, a∼ ρ { e }
(32.3)

Rule (32.3) specifies that symbol generation enriches the signature with the
newly introduced symbol by extending the signature for all future transi-
tions.

All other rules of the dynamics must be changed accordingly to account
for the allocated symbols. For example, the dynamics of function applica-
tion cannot simply be inherited from Chapter 10, but must be reformulated
as follows:

ν Σ { e1 } 7→ ν Σ′ { e′1 }
ν Σ { e1(e2) } 7→ ν Σ′ { e′1(e2) }

(32.4a)

ν Σ { λ (x:τ) e(e2) } 7→ ν Σ { [e2/x]e }
(32.4b)

These rules shuffle around the signature so as to account for symbol decla-
rations within the constituent expressions of the application. Similar rules
must be given for all other constructs of the language.

Theorem 32.3 (Preservation). If ν Σ { e } 7→ ν Σ′ { e′ } and `Σ e : τ, then
Σ′ ⊇ Σ and `Σ′ e′ : τ.

Proof. There is only one rule to consider, Rule (32.3), which is easily han-
dled by inversion of Rule (32.1).

Theorem 32.4 (Progress). If `Σ e : τ, then either e valΣ or ν Σ { e } 7→ ν Σ′ { e′ }
for some Σ′ and e′.

Proof. Immediate, by Rule (32.3).

VERSION 1.32 REVISED 05.15.2012



32.2 Symbolic References 319

32.2 Symbolic References

Symbols are not themselves values, but they may be used to form values.
One useful example is provided by the type τ sym of symbolic references. A
value of this type has the form & a, where a is a symbol in the signature.
To compute with a reference we may branch according to whether it is a
reference to a specified symbol or not. The syntax of symbolic references is
given by the following chart:

Typ τ ::= sym(τ) τ sym symbols
Exp e sym[a] & a reference

is[a][t.τ](e; e1; e2) if e is a then e1 ow e2 comparison

The expression sym[a] is a reference to the symbol a, a value of type sym(τ).
The expression is[a][t.τ](e; e1; e2) compares the value of e, which must
be a reference to some symbol b, with the given symbol, a. If b is a, the
expression evaluates to e1, and otherwise to e2.

32.2.1 Statics

The typing rules for symbolic references are as follows:

Γ `Σ,a∼ρ sym[a] : sym(ρ)
(32.5a)

Γ `Σ,a∼ρ e : sym(ρ′) Γ `Σ,a∼ρ e1 : [ρ/t]τ Γ `Σ,a∼ρ e2 : [ρ′/t]τ
Γ `Σ,a∼ρ is[a][t.τ](e; e1; e2) : [ρ′/t]τ

(32.5b)

Rule (32.5a) is the introduction rule for the type sym(ρ). It states that if a
is a symbol with associated type ρ, then sym[a] is an expression of type
sym(ρ). Rule (32.5b) is the elimination rule for the type sym(ρ). The type
associated to the given symbol, a, is not required to be the same as the type
of the symbol referred to by the expression e. If e evaluates to a reference
to a, then these types will coincide, but if it refers to another symbol, b 6= a,
then these types may well differ.

With this in mind, let us examine carefully Rule (32.5b). A priori there
is a discrepancy between the type, ρ, of a and the type, ρ′, of the symbol
referred to by e. This discrepancy is mediated by the type operator t.τ.1

Regardless of the outcome of the comparison, the overall type of the ex-
pression is [ρ′/t]τ. To ensure safety, we must ensure that this is a valid type

1See Chapter 14 for a discussion of type operators.
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for the result, regardless of whether the comparison succeeds or fails. If e
evaluates to the symbol a, then we “learn” that the types ρ′ and ρ coincide,
because the specified and referenced symbol coincide. This is reflected by
the type [ρ/t]τ for e1. If e evaluates to some other symbol, a′ 6= a, then
the comparison evaluates to e2, which is required to have type [ρ′/t]τ; no
further information about the type of the symbol is acquired in this branch.

32.2.2 Dynamics

The (scoped) dynamics of symbolic references is given by the following
rules:

sym[a] valΣ,a∼ρ
(32.6a)

is[a][t.τ](sym[a]; e1; e2) 7−−−→
Σ,a∼ρ

e1
(32.6b)

(a 6= a′)
is[a][t.τ](sym[a′]; e1; e2) 7−−−−−−→

Σ,a∼ρ,a′∼ρ′
e2

(32.6c)

e 7−−−→
Σ,a∼ρ

e′

is[a][t.τ](e; e1; e2) 7−−−→
Σ,a∼ρ

is[a][t.τ](e′; e1; e2)
(32.6d)

Rules (32.6b) and (32.6c) specify that is[a][t.τ](e; e1; e2) branches accord-
ing to whether the value of e is a reference to the symbol, a, or not.

32.2.3 Safety

To ensure that the mobility condition is satisfied, it is important that sym-
bolic reference types not be deemed mobile.

Theorem 32.5 (Preservation). If `Σ e : τ and e 7−→
Σ

e′, then `Σ e′ : τ.

Proof. By rule induction on Rules (32.6). The most interesting case is Rule (32.6b).
When the comparison is positive, the types ρ and ρ′ must be the same, be-
cause each symbol has at most one associated type. Therefore, e1, which
has type [ρ′/t]τ, also has type [ρ/t]τ, as required.

Lemma 32.6 (Canonical Forms). If `Σ e : sym(ρ) and e valΣ, then e = sym[a]
for some a such that Σ = Σ′, a∼ ρ.
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Proof. By rule induction on Rules (32.5), taking account of the definition of
values.

Theorem 32.7 (Progress). Suppose that `Σ e : τ. Then either e valΣ, or there
exists e′ such that e 7−→

Σ
e′.

Proof. By rule induction on Rules (32.5). For example, consider Rule (32.5b),
in which we have that is[a][t.τ](e; e1; e2) has some type τ and that e :
sym(ρ) for some ρ. By induction either Rule (32.6d) applies, or else we have
that e valΣ, in which case we are assured by Lemma 32.6 that e is sym[a] for
some symbol b of type ρ declared in Σ. But then progress is assured by
Rules (32.6b) and (32.6c), because equality of symbols is decidable (either a
is b or it is not).

32.3 Notes

The concept of a symbol in a programming language was considered by
McCarthy in the original formulation of Lisp (McCarthy, 1965). Unfortu-
nately, symbols were, and often continue to be, confused with variables,
as they were in the original formulation of Lisp. Although symbols are
frequently encountered in dynamically typed languages, the formulation
given here makes clear that they are equally sensible in statically typed
languages. The present account was influenced by Pitts and Stark (1993)
and on the declaration of names in the π-calculus (Milner (1999).)
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Chapter 33

Fluid Binding

In this chapter we return to the concept of dynamic scoping of variables
that was criticized in Chapter 8. There it was observed that dynamic scop-
ing is problematic for at least two reasons:

• A bound variable may not always be renamed in an expression with-
out changing its meaning.

• Because the scope of a variable is resolved dynamically, type safety is
compromised.

These violations of the expected behavior of variables is intolerable, be-
cause it is at variance with mathematical practice and because it compro-
mises modularity.

It is possible, however, to recover a type-safe analogue of dynamic scop-
ing by divorcing it from the concept of a variable, and instead introducing
a new mechanism, called fluid, or dynamic, binding of a symbol. Fluid bind-
ing associates to a symbol a value of its associated type within a specified
scope. Upon exiting that scope, the binding is dropped (or, more accurately,
reverted to its binding in the surrounding context).

33.1 Statics

The language L{fluid} extends the language L{sym} defined in Chap-
ter 32 with the following additional constructs:

Exp e ::= put[a](e1; e2) put e1 for a in e2 binding
get[a] get a retrieval
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As in Chapter 32, we use a to stand for some unspecified symbol. The ex-
pression get[a] evaluates to the value of the current binding of a, if it has
one, and is stuck otherwise. The expression put[a](e1; e2) binds the sym-
bol a to the value e1 for the duration of the evaluation of e2, at which point
the binding of a reverts to what it was prior to the execution. The symbol a
is not bound by the put expression, but is instead a parameter of it.

The statics of L{fluid} is defined by judgments of the form

Γ `Σ e : τ,

where Σ is a finite set of symbol declarations of the form a∼ τ such that no
symbol is declared more than once.

The statics of L{fluid} extends that of L{sym} (see Chapter 32) with
the following rules:

Γ `Σ,a∼τ get[a] : τ (33.1a)

Γ `Σ,a∼τ1 e1 : τ1 Γ `Σ,a∼τ1 e2 : τ2

Γ `Σ,a∼τ1 put[a](e1; e2) : τ2
(33.1b)

Rule (33.1b) specifies that the symbol a is a parameter of the expression that
must be declared in Σ.

33.2 Dynamics

We assume a stack-like dynamics for symbols, as described in Chapter 32.
The dynamics of L{fluid} maintains an association of values to symbols
that changes in a stack-like manner during execution. We define a family
of transition judgments of the form e

µ7−→
Σ

e′, where Σ is as in the statics,

and µ is a finite function mapping some subset of the symbols declared in
Σ to values of appropriate type. If µ is defined for some symbol a, then
it has the form µ′ ⊗ a ↪→ e for some µ′ and value e. If, on the other hand,
µ is undefined for some symbol a, we may regard it as having the form
µ′ ⊗ a ↪→ •. We will write a ↪→ to stand ambiguously for either a ↪→ • or
a ↪→ e for some expression e.

The dynamics of L{fluid} is given by the following rules:

e valΣ,a∼τ

get[a]
µ⊗a↪→e7−−−−→
Σ,a∼τ

e (33.2a)
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e1
µ7−→
Σ

e′1

put[a](e1; e2)
µ7−→
Σ

put[a](e′1; e2)
(33.2b)

e1 valΣ,a∼τ e2
µ⊗a↪→e17−−−−→

Σ,a∼τ
e′2

put[a](e1; e2)
µ⊗a↪→7−−−−→
Σ,a∼τ

put[a](e1; e′2)
(33.2c)

e1 valΣ,a∼τ e2 valΣ,a∼τ

put[a](e1; e2)
µ7−→
Σ

e2
(33.2d)

Rule (33.2a) specifies that get[a] evaluates to the current binding of a, if
any. Rule (33.2b) specifies that the binding for the symbol a is to be evalu-
ated before the binding is created. Rule (33.2c) evaluates e2 in an environ-
ment in which the symbol a is bound to the value e1, regardless of whether
or not a is already bound in the environment. Rule (33.2d) eliminates the
fluid binding for a once evaluation of the extent of the binding has com-
pleted.

According to the dynamics defined by Rules (33.2), there is no transition
of the form get[a]

µ7−→
Σ

e if µ(a) = •. The judgment e unboundΣ states that

execution of e will lead to such a “stuck” state, and is inductively defined
by the following rules:

µ(a) = •
get[a] unboundµ

(33.3a)

e1 unboundµ

put[a](e1; e2) unboundµ
(33.3b)

e1 valΣ e2 unboundµ

put[a](e1; e2) unboundµ
(33.3c)

In a larger language it would also be necessary to include error propagation
rules of the sort discussed in Chapter 6.

33.3 Type Safety

Define the auxiliary judgment µ : Σ by the following rules:

∅ : ∅ (33.4a)
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`Σ e : τ µ : Σ
µ⊗ a ↪→ e : Σ, a∼ τ

(33.4b)

µ : Σ
µ⊗ a ↪→• : Σ, a∼ τ

(33.4c)

These rules specify that if a symbol is bound to a value, then that value
must be of the type associated to the symbol by Σ. No demand is made
in the case that the symbol is unbound (equivalently, bound to a “black
hole”).

Theorem 33.1 (Preservation). If e
µ7−→
Σ

e′, where µ : Σ and `Σ e : τ, then

`Σ e′ : τ.

Proof. By rule induction on Rules (33.2). Rule (33.2a) is handled by the defi-
nition of µ : Σ. Rule (33.2b) follows immediately by induction. Rule (33.2d)
is handled by inversion of Rules (33.1). Finally, Rule (33.2c) is handled by
inversion of Rules (33.1) and induction.

Theorem 33.2 (Progress). If `Σ e : τ and µ : Σ, then either e valΣ, or e unboundµ,

or there exists e′ such that e
µ7−→
Σ

e′.

Proof. By induction on Rules (33.1). For Rule (33.1a), we have Σ ` a ∼ τ
from the premise of the rule, and hence, because µ : Σ, we have either
µ(a) = • or µ(a) = e for some e such that `Σ e : τ. In the former case we
have e unboundµ, and in the latter we have get[a]

µ7−→
Σ

e. For Rule (33.1b),

we have by induction that either e1 valΣ or e1 unboundµ, or e1
µ7−→
Σ

e′1. In

the latter two cases we may apply Rule (33.2b) or Rule (33.3b), respectively.
If e1 valΣ, we apply induction to obtain that either e2 valΣ, in which case
Rule (33.2d) applies; e2 unboundµ, in which case Rule (33.3c) applies; or

e2
µ7−→
Σ

e′2, in which case Rule (33.2c) applies.

33.4 Some Subtleties

The value of put e1 for a in e2 is the value of e2, calculated in a context in
which a is bound to the value of e1. If e2 is of a basic type, such as nat,
then the reversion of the binding of a cannot influence the meaning of the
result.1

1As long as the the successor is evaluated eagerly; if not, the following examples may be
adapted to situations in which the value of e2 is a lazily evaluated number.
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But what if the type of put e1 for a in e2 is a function type, so that the
returned value is a λ-abstraction? The body of the returned λ may refer to
the binding of a, which is reverted upon return from the put. For example,
consider the expression

put 17 for a inλ (x:nat) x + get a, (33.5)

which has type nat → nat, given that a is a symbol of type nat. Let us
assume, for the sake of discussion, that a is unbound at the point at which
this expression is evaluated. Evaluating the put binds a to the number 17,
and returns the function λ (x:nat) x + get a. But because a is reverted to
its unbound state upon exiting the put, applying this function to an argu-
ment will result in an error, unless a binding for a is provided. Thus, if f is
bound to the result of evaluating (33.5), then the expression

put 21 for a in f(7) (33.6)

will evaluate successfully to 28, whereas evaluation of f(7) in the absence
of a surrounding binding for a will incur an error.

Contrast this with the superficially similar expression

let y be 17 inλ (x:nat) x + y, (33.7)

in which we have replaced the fluid-bound symbol, a, by a statically bound
variable, y. This expression evaluates to λ (x:nat) x + 17, which adds 17
to its argument when applied. There is no possibility of an unbound sym-
bol arising at execution time, precisely because variables are interpreted by
substitution.

One way to think about this situation is to consider that fluid-bound
symbols serve as an alternative to passing additional arguments to a func-
tion to specialize its value whenever it is called. To see this, let e stand for
the value of expression (33.5), a λ-abstraction whose body is dependent on
the binding of the symbol a. To use this function safely, it is necessary that
the programmer provide a binding for a prior to calling it. For example,
the expression

put 7 for a in (e(9))

evaluates to 16, and the expression

put 8 for a in (e(9))

evaluates to 17. Writing just e(9), without a surrounding binding for a, re-
sults in a run-time error attempting to retrieve the binding of the unbound
symbol a.
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This behavior may be simulated by adding an additional argument to
the function value that will be bound to the current binding of the symbol
a at the point where the function is called. Instead of using fluid binding,
we would provide an additional argument at each call site, writing

e′(7)(9)

and
e′(8)(9),

respectively, where e′ is the λ-abstraction

λ (y:nat)λ (x:nat) x + y.

Additional arguments can be cumbersome, though, especially when sev-
eral call sites provide the same binding for a. Using fluid binding we may
write

put 7 for a in 〈e(8), e(9)〉,

whereas using an additional argument we must write

〈e′(7)(8), e′(7)(9)〉.

However, such redundancy can be mitigated by simply factoring out the
common part, writing

let f be e′(7) in 〈 f(8), f(9)〉.

The awkwardness of this simulation is usually taken as an argument
in favor of including fluid binding in a language. The drawback, which is
often perceived as an advantage, is that nothing in the type of a function
reveals its dependency on the binding of a symbol. It is therefore quite easy
to forget that such a binding is required, leading to run-time failures that
might better be caught at compile time.

33.5 Fluid References

The get and put operations for fluid binding are indexed by a symbol that
must be given as part of the syntax of the operator. Rather than insist that
the target symbol be given statically, it is useful to be able to defer until run-
time the choice of fluid on which a get or put acts. This may be achieved
by introducing references to fluids, which allow the name of a fluid to be
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represented as a value. References come equipped with analogues of the
get and put primitives, but for a dynamically determined symbol.

The syntax of references as an extension to L{fluid} is given by the
following grammar:

Typ τ ::= fluid(τ) τ fluid fluid
Exp e ::= fl[a] fl[a] reference

getfl(e) getfl e retrieval
putfl(e; e1; e2) putfl e is e1 in e2 binding

The expression fl[a] is the symbol a considered as a value of type fluid(τ).
The expressions getfl(e) and putfl(e; e1; e2) are analogues of the get and
put operations for fluid-bound symbols.

The statics of these constructs is given by the following rules:

Γ `Σ,a∼τ fl[a] : fluid(τ)
(33.8a)

Γ `Σ e : fluid(τ)

Γ `Σ getfl(e) : τ
(33.8b)

Γ `Σ e : fluid(τ) Γ `Σ e1 : τ Γ `Σ e2 : τ2

Γ `Σ putfl(e; e1; e2) : τ2
(33.8c)

Because we are using a scoped dynamics, references to fluids cannot be
deemed mobile.

The dynamics of references consists of resolving the referent and defer-
ring to the underlying primitives acting on symbols.

fl[a] valΣ,a∼τ

(33.9a)

e
µ7−→
Σ

e′

getfl(e)
µ7−→
Σ

getfl(e′)
(33.9b)

getfl(fl[a])
µ7−→
Σ

get[a]
(33.9c)

e
µ7−→
Σ

e′

putfl(e; e1; e2)
µ7−→
Σ

putfl(e′; e1; e2)
(33.9d)
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putfl(fl[a]; e1; e2)
µ7−→
Σ

put[a](e1; e2)
(33.9e)

33.6 Notes

The concept of dynamic binding arose from the confusion of variables and
symbols in early dialects of Lisp. When properly separated, variables re-
tain their substitutive meaning, and symbols give rise to a separate con-
cept of fluid binding. Allen (1978) contains a thorough discussion of the
implementation of fluid binding. The formulation given here also draws
on Nanevski (2003).
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Chapter 34

Dynamic Classification

In Chapters 12 and 25 we investigated the use of sums for the classification
of values of disparate type. Every value of a classified type is labeled with
a symbol that determines the type of the instance data. A classified value is
decomposed by pattern matching against a known class, which reveals the
type of the instance data.

Under this representation the possible classes of an object are fully de-
termined statically by its type. However, it is sometimes useful to allow
the possible classes of data value to be determined dynamically. There are
many uses for such a capability, some less apparent than others. The most
obvious is simply extensibility, when we wish to introduce new classes of
data during execution (and, presumably, define how methods act on values
of those new classes).

A less obvious application exploits the fact that the new class is guar-
anteed to be distinct from any other class that has already been introduced.
The class itself is a kind of “secret” that can be disclosed only if the compu-
tation that creates the class discloses its existence to another computation.
In particular, the class is opaque to any computation to which this disclo-
sure has not been explicitly made. This capability has a number of practical
applications.

One application is to use dynamic classification as a “perfect encryp-
tion” mechanism that guarantees that a value cannot be determined with-
out access to the appropriate “keys”. Keys are, in this scenario, pattern
matching functions that are created when the class is defined. No party
that lacks access to the matcher for that class can recover its underlying
instance data, and so we may think of that value as encrypted.1 This can

1In practice this is implemented using probabilistic techniques to avoid the need for a
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be useful when building programs that communicate over an insecure net-
work: dynamic classification allows us to build private channels between
two parties in the computation (see Chapter 42 for more on this applica-
tion).

Another application is to exception handling within a program. Excep-
tion handling may be seen as a communication between two agents, one
that may raise an exception, and one that may handle it. We wish to en-
sure that an exception can be caught only by a designated handler, without
fear that any intervening handler may intercept it. This can be achieved
by dynamic class allocation. A new class is declared, with the capability
to create an instance given only to the raising agent and the capability to
match an instance given only to the handler. The exception value cannot
be intercepted by any other handler, because no other handler is capable of
matching it.

34.1 Dynamic Classes

A dynamic class is a symbol that may be generated at run-time. A classified
value consists of a symbol of type τ together with a value of that type. To
compute with a classified value, it is compared with a known class. If the
value is of this class, the underlying instance data is passed to the positive
branch, otherwise the negative branch is taken, where it may be matched
against other known classes.

34.1.1 Statics

The syntax of the language clsfd of dynamic classification is given by the
following grammar:

Typ τ ::= clsfd clsfd classified
Exp e ::= in[a](e) a · e instance

isin[a](e; x.e1; e2) match e as a · x ⇒ e1 ow⇒ e2 comparison

The expression in[a](e) is a classified value with class a and underlying
value e. The expression isin[a](e; x.e1; e2) checks whether the class of the
value given by e is a. If so, the classified value is passed to e1; if not, the
expression e2 is evaluated instead.

central arbiter of unicity of symbol names. However, such methods require a source of
randomness, which may be seen as just such an arbiter in disguise. There is no free lunch.
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The statics of clsfd is defined by the following rules:

Γ `Σ,a∼ρ e : ρ

Γ `Σ,a∼ρ in[a](e) : clsfd
(34.1a)

Γ `Σ,a∼ρ e : clsfd Γ, x : ρ `Σ,a∼ρ e1 : τ Γ `Σ,a∼ρ e2 : τ

Γ `Σ,a∼ρ isin[a](e; x.e1; e2) : τ
(34.1b)

The type associated to the symbol in the signature determines the type of
the instance data.

34.1.2 Dynamics

To maximize the flexibility in the use of dynamic classification, we will
give only a free dynamics for symbol generation. Within this framework
the dynamics of classification is given by the following rules:

e valΣ
in[a](e) valΣ

(34.2a)

ν Σ { e } 7→ ν Σ′ { e′ }
ν Σ { in[a](e) } 7→ ν Σ′ { in[a](e′) }

(34.2b)

e valΣ
ν Σ { isin[a](in[a](e); x.e1; e2) } 7→ ν Σ { [e/x]e1 }

(34.2c)

(a 6= a′)
ν Σ { isin[a](in[a′](e′); x.e1; e2) } 7→ ν Σ { e2 }

(34.2d)

ν Σ { e } 7→ ν Σ′ { e′ }
ν Σ { isin[a](e; x.e1; e2) } 7→ ν Σ′ { isin[a](e′; x.e1; e2) }

(34.2e)

Throughout, if the states involved are well-formed, then there will be a
declaration a∼ τ for some type τ in Σ.

The dynamics of the elimination form for the type clsfd relies on dis-
equality of names (specifically, Rule (34.2d)). Because disequality is not
preserved under substitution, it is not sensible to consider any language
construct whose dynamics relies on such a substitution. To see what goes
wrong, consider the expression

match b · 〈〉 as a · ⇒ true ow⇒ match b · 〈〉 as b · ⇒ false ow⇒ true.
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This is easily seen to evaluate to false, because the outer conditional is on
the class a, which is a priori different from b. However, if we substitute b for
a in this expression we obtain

match b · 〈〉 as b · ⇒ true ow⇒ match b · 〈〉 as b · ⇒ false ow⇒ true,

which evaluate to true, because now the outer conditional governs the
evaluation.

34.1.3 Safety

Theorem 34.1 (Safety).

1. If `Σ e : τ and ν Σ { e } 7→ ν Σ′ { e′ }, then Σ′ ⊇ Σ and `Σ′ e′ : τ.

2. If `Σ e : τ, then either e valΣ or ν Σ { e } 7→ ν Σ′ { e′ } for some e′ and Σ′.

Proof. Similar to the safety proofs given in Chapters 12, 13, and 32.

34.2 Class References

The type class(τ) has as values references to classes.

Typ τ ::= class(τ) τ class class reference
Exp e ::= cls[a] & a reference

mk(e1; e2) mk(e1; e2) instance
isofcls(e0; e1; x.e2; e3) isofcls(e0; e1; x.e2; e3) dispatch

The statics of these constructs is given by the following rules:

Γ `Σ,a∼τ cls[a] : class(τ)
(34.3a)

Γ `Σ e1 : class(τ) Γ `Σ e2 : τ

Γ `Σ mk(e1; e2) : clsfd
(34.3b)

Γ `Σ e0 : class(ρ) Γ `Σ e1 : clsfd Γ, x : ρ `Σ e2 : τ Γ `Σ e3 : τ

Γ `Σ isofcls(e0; e1; x.e2; e3) : τ
(34.3c)

The corresponding dynamics is given by these rules:

ν Σ { e1 } 7→ ν Σ′ { e′1 }
ν Σ { mk(e1; e2) } 7→ ν Σ′ { mk(e′1; e2) }

(34.4a)
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e1 valΣ ν Σ { e2 } 7→ ν Σ′ { e′2 }
ν Σ { mk(e1; e2) } 7→ ν Σ′ { mk(e1; e′2) }

(34.4b)

e valΣ
ν Σ { mk(cls[a]; e) } 7→ ν Σ { in[a](e) } (34.4c)

ν Σ { e0 } 7→ ν Σ′ { e′0 }
ν Σ { isofcls(e0; e1; x.e2; e3) } 7→ ν Σ′ { isofcls(e′0; e1; x.e2; e3) }

(34.4d)

ν Σ { isofcls(cls[a]; e1; x.e2; e3) } 7→ ν Σ { isin[a](e1; x.e2; e3) }
(34.4e)

Rules (34.4d) and (34.4e) specify that the first argument is evaluated to de-
termine the target class, which is then used to check whether the second
argument, a classified data value, is of the target class. This may be seen as
a two-stage pattern matching process in which evaluation of e0 determines
the pattern against which to match the classified value of e1.

34.3 Definability of Dynamic Classes

The type clsfd may be defined in terms of symbolic references, product
types, and existential types by the type expression

clsfd , ∃(t.t sym× t).

The introductory form, in[a](e), where a is a symbol whose associated
type is ρ and e is an expression of type ρ, is defined to be the package

pack ρ with 〈& a, e〉 as ∃(t.t sym× t).

The eliminatory form, isin[a](e; x.e1; e2), is defined in terms of symbol
comparison as defined in Chapter 32. Suppose that the overall type of the
conditional is τ and that the type associated to the symbol a is ρ. The type
of e must be clsfd, defined as above, and the type of the branches e1 and e2
must be τ, with x assumed to be of type ρ in e1. The conditional is defined
to be the expression

open e as t with 〈x, y〉:t sym× t in (ebody(y)),

where ebody is an expression to be defined shortly. The comparison opens
the package, e, representing the classified value, and decomposes it into a
type, t, a symbol, x, of type t sym, and an underlying value, y, of type t. The
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expression ebody, which is to be defined shortly, will have the type t→ τ, so
that the application to y is type correct.

The expression ebody compares the symbolic reference, x, to the symbol,
a, of type ρ, and yields a value of type t → τ regardless of the outcome. It
is therefore defined to be the expression

is[a][u.u→ τ](x; e′1; e′2)

where, in accordance with Rule (32.5b), e′1 has type [ρ/u](u→ τ) = ρ→ τ,
and e′2 has type [t/u](u→ τ) = t → τ. The expression e′1 “knows” that
the abstract type, t, is ρ, the type associated to the symbol a, because the
comparison has come out positively. On the other hand, e′2 does not “learn”
anything about the identity of t.

It remains to choose the expressions e′1 and e′2. In the case of a positive
comparison, we wish to pass the classified value to the expression e1 by
substitution for the variable x. This is accomplished by defining e′1 to be
the expression

λ (x:ρ) e1 : ρ→ τ.

In the case of a negative comparison no value is to be propagated to e2. We
therefore define e′2 to be the expression

λ ( :t) e2 : t→ τ.

We may then check that the statics and dynamics given in Section 34.1 are
derivable, given the definitions of the type of classified values and its in-
troductory and eliminator forms.

34.4 Classifying Secrets

Dynamic classification may be used to enforce confidentiality and integrity
of data values in a program. A value of type clsfd may only be con-
structed by sealing it with some class, a, and may only be deconstructed
by a case analysis that includes a branch for a. By controlling which parties
in a multi-party interaction have access to the classifier, a, we may control
how classified values are created (ensuring their integrity) and how they
are inspected (ensuring their confidentiality). Any party that lacks access
to a cannot decipher a value classified by a, nor may it create a classified
value with this class. Because classes are dynamically generated symbols,
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they provide an absolute confidentiality guarantee among parties in a com-
putation.2

Consider the following simple protocol for controlling the integrity and
confidentiality of data in a program. A fresh symbol, a, is introduced, and
we return a pair of functions of type

(τ → clsfd)× (clsfd→ τ opt),

called the constructor and destructor functions for that class, which is accom-
plished by writing

newsym a:τ in

〈 λ (x:τ) a · x,
λ (x:clsfd) match x as a · y⇒ just(y) ow⇒ null 〉.

The first function creates a value classified by a, and the second function
recovers the instance data of a value classified by a. Outside of the scope of
the declaration the symbol a is an absolutely unguessable secret.

To enforce the integrity of a value of type τ, it is sufficient to ensure that
only trusted parties have access to the constructor. To enforce the confiden-
tiality of a value of type τ, it is sufficient to ensure that only trusted parties
have access to the destructor. Ensuring the integrity of a value amounts to
associating an invariant to it that is maintained by the trusted parties that
may create an instance of that class. Ensuring the confidentiality of a value
amounts to propagating the invariant to parties that may decipher it.

34.5 Notes

Dynamic classification appears in Standard ML (Milner et al., 1997) as the
type, exn, of exception values. The utility of this type is obscured by a
too-close association with its application to exception values. The use of
dynamic classification to control information flow was popularized in the
π-calculus (Milner, 1999) in the form of “channel passing.” (See Chapter 42
for more on this correspondence.)

2Of course, this guarantee is for programs written in conformance with the statics given
here. If the abstraction imposed by the type system is violated, no guarantees of confiden-
tiality can be made.
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Chapter 35

Modernized Algol

Modernized Algol, or L{nat cmd⇀}, is an imperative, block-structured pro-
gramming language based on the classic language Algol. L{nat cmd⇀}
may be seen as an extension to L{nat⇀} with a new syntactic sort of
commands that act on assignables by retrieving and altering their contents.
Assignables are introduced by declaring them for use within a specified
scope; this is the essence of block structure. Commands may be combined
by sequencing, and may be iterated using recursion.
L{nat cmd⇀}maintains a careful separation between pure expressions,

whose meaning does not depend on any assignables, and impure commands,
whose meaning is given in terms of assignables. This ensures that the eval-
uation order for expressions is not constrained by the presence of assignables
in the language, and allows for expressions to be manipulated much as in
PCF. Commands, on the other hand, have a tightly constrained execution
order, because the execution of one may affect the meaning of another.

A distinctive feature of L{nat cmd⇀} is that it adheres to the stack dis-
cipline, which means that assignables are allocated on entry to the scope
of their declaration, and deallocated on exit, using a conventional stack
discipline. This avoids the need for more complex forms of storage man-
agement, at the expense of reducing the expressiveness of the language.

35.1 Basic Commands

The syntax of the languageL{nat cmd⇀} of modernized Algol distinguishes
pure expressions from impure commands. The expressions include those of
L{nat⇀} (as described in Chapter 10), augmented with one additional
construct, and the commands are those of a simple imperative program-
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ming language based on assignment. The language maintains a sharp dis-
tinction between variables and assignables. Variables are introduced by λ-
abstraction, and are given meaning by substitution. Assignables are intro-
duced by a declaration, and are given meaning by assignment and retrieval
of their contents, which is, for the time being, restricted to natural numbers.
Expressions evaluate to values, and have no effect on assignables. Com-
mands are executed for their effect on assignables, and also return a value.
Composition of commands not only sequences their execution order, but
also passes the value returned by the first to the second before it is exe-
cuted. The returned value of a command is, for the time being, restricted to
the natural numbers. (But see Section 35.3 for the general case.)

The syntax of L{nat cmd⇀} is given by the following grammar, from
which we have omitted repetition of the expression syntax of L{nat⇀}
for the sake of brevity.

Typ τ ::= cmd cmd command
Exp e ::= cmd(m) cmdm encapsulation
Cmd m ::= ret(e) ret e return

bnd(e; x.m) bnd x← e ; m sequence
dcl(e; a.m) dcl a := e inm new assignable
get[a] @ a fetch
set[a](e) a := e assign

The expression cmd(m) consists of the unevaluated command, m, thought
of as a value of type cmd. The command, ret(e), returns the value of the
expression e without having any effect on the assignables. The command
bnd(e; x.m) evaluates e to an encapsulated command, then this command
is executed for its effects on assignables, with its value substituted for x
in m. The command dcl(e; a.m) introduces a new assignable, a, for use
within the command, m, whose initial contents is given by the expression,
e. The command get[a] returns the current contents of the assignable, a,
and the command set[a](e) changes the contents of the assignable a to the
value of e, and returns that value.

35.1.1 Statics

The statics of L{nat cmd⇀} consists of two forms of judgment:

1. Expression typing: Γ `Σ e : τ.

2. Command formation: Γ `Σ m ok.
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The context, Γ, specifies the types of variables, as usual, and the signature,
Σ, consists of a finite set of assignables. These judgments are inductively
defined by the following rules:

Γ `Σ m ok

Γ `Σ cmd(m) : cmd
(35.1a)

Γ `Σ e : nat
Γ `Σ ret(e) ok

(35.1b)

Γ `Σ e : cmd Γ, x : nat `Σ m ok

Γ `Σ bnd(e; x.m) ok
(35.1c)

Γ `Σ e : nat Γ `Σ,a m ok

Γ `Σ dcl(e; a.m) ok
(35.1d)

Γ `Σ,a get[a] ok
(35.1e)

Γ `Σ,a e : nat
Γ `Σ,a set[a](e) ok

(35.1f)

Rule (35.1a) is the introductory rule for the type cmd, and Rule (35.1c) is the
corresponding eliminatory form. Rule (35.1d) introduces a new assignable
for use within a specified command. The name, a, of the assignable is
bound by the declaration, and hence may be renamed to satisfy the im-
plicit constraint that it not already be present in Σ. Rule (35.1e) states that
the command to retrieve the contents of an assignable, a, returns a natu-
ral number. Rule (35.1f) states that we may assign a natural number to an
assignable.

35.1.2 Dynamics

The dynamics of L{nat cmd⇀} is defined in terms of a memory, µ, a finite
function assigning a numeral to each of a finite set of assignables.

The dynamics of expressions consists of these two judgment forms:

1. e valΣ, stating that e is a value relative to Σ.

2. e 7−→
Σ

e′, stating that the expression e steps to the expression e′.

These judgments are inductively defined by the following rules, together
with the rules defining the dynamics of L{nat⇀} (see Chapter 10). It is
important, however, that the successor operation be given an eager, rather
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than lazy, dynamics so that a closed value of type nat is a numeral (for
reasons that will be explained in Section 35.3).

cmd(m) valΣ
(35.2a)

Rule (35.2a) states that an encapsulated command is a value.
The dynamics of commands is defined in terms of states m ‖ µ, where

µ is a memory mapping assignables to values, and m is a command. There
are two judgments governing such states:

1. m ‖ µ finalΣ. The state m ‖ µ is fully executed.

2. m ‖ µ 7−→
Σ

m′ ‖ µ′. The state m ‖ µ steps to the state m′ ‖ µ′; the set of

active assignables is given by the signature Σ.

These judgments are inductively defined by the following rules:

e valΣ
ret(e) ‖ µ finalΣ

(35.3a)

e 7−→
Σ

e′

ret(e) ‖ µ 7−→
Σ

ret(e′) ‖ µ
(35.3b)

e 7−→
Σ

e′

bnd(e; x.m) ‖ µ 7−→
Σ

bnd(e′; x.m) ‖ µ
(35.3c)

e valΣ
bnd(cmd(ret(e)); x.m) ‖ µ 7−→

Σ
[e/x]m ‖ µ (35.3d)

m1 ‖ µ 7−→
Σ

m′1 ‖ µ′

bnd(cmd(m1); x.m2) ‖ µ 7−→
Σ

bnd(cmd(m′1); x.m2) ‖ µ′
(35.3e)

get[a] ‖ µ⊗ a ↪→ e 7−→
Σ,a

ret(e) ‖ µ⊗ a ↪→ e (35.3f)

e 7−→
Σ

e′

set[a](e) ‖ µ 7−→
Σ

set[a](e′) ‖ µ
(35.3g)

e valΣ
set[a](e) ‖ µ⊗ a ↪→ 7−→

Σ
ret(e) ‖ µ⊗ a ↪→ e (35.3h)
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e 7−→
Σ

e′

dcl(e; a.m) ‖ µ 7−→
Σ

dcl(e′; a.m) ‖ µ
(35.3i)

e valΣ m ‖ µ⊗ a ↪→ e 7−→
Σ,a

m′ ‖ µ′ ⊗ a ↪→ e′

dcl(e; a.m) ‖ µ 7−→
Σ

dcl(e′; a.m′) ‖ µ′
(35.3j)

e valΣ e′ valΣ,a

dcl(e; a.ret(e′)) ‖ µ 7−→
Σ

ret(e′) ‖ µ (35.3k)

Rule (35.3a) specifies that a ret command is final if its argument is a value.
Rules (35.3c) to (35.3e) specify the dynamics of sequential composition. The
expression, e, must, by virtue of the type system, evaluate to an encap-
sulated command, which is to be executed to determine its return value,
which is then substituted into m before executing it.

Rules (35.3i) to (35.3k) define the concept of block structure in a pro-
gramming language. Declarations adhere to the stack discipline in that an
assignable is allocated for the duration of evaluation of the body of the dec-
laration, and deallocated after evaluation of the body is complete. There-
fore the lifetime of an assignable can be identified with its scope, and hence
we may visualize the dynamic lifetimes of assignables as being nested in-
side one another, in the same manner as their static scopes are nested inside
one another. This stack-like behavior of assignables is a characteristic fea-
ture of what are known as Algol-like languages.

35.1.3 Safety

The judgment m ‖ µ okΣ is defined by the rule

`Σ m ok µ : Σ
m ‖ µ okΣ

(35.4)

where the auxiliary judgment µ : Σ is defined by the rule

∀a ∈ Σ ∃e µ(a) = e and e val∅ and `∅ e : nat
µ : Σ

(35.5)

That is, the memory must bind a number to each location in Σ.

Theorem 35.1 (Preservation).

1. If e 7−→
Σ

e′ and `Σ e : τ, then `Σ e′ : τ.
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2. If m ‖ µ 7−→
Σ

m′ ‖ µ′, with `Σ m ok and µ : Σ, then `Σ m′ ok and µ′ : Σ.

Proof. Simultaneously, by induction on Rules (35.2) and (35.3).
Consider Rule (35.3j). Assume that `Σ dcl(e; a.m) ok and µ : Σ. By

inversion of typing we have `Σ e : nat and `Σ,a m ok. Because e valΣ and
µ : Σ, we have µ⊗ a ↪→ e : Σ, a. By induction we have `Σ,a m′ ok and
µ′ ⊗ a ↪→ e : Σ, a, from which the result follows immediately.

Consider Rule (35.3k). Assume that `Σ dcl(e; a.ret(e′)) ok and µ : Σ.
By inversion we have `Σ e : nat, `Σ,a ret(e′) ok, and hence that `Σ,a
e′ : nat. But because e′ valΣ,a, e′ is a numeral, and hence we also have
`Σ e′ : nat, as required.

Theorem 35.2 (Progress).

1. If `Σ e : τ, then either e valΣ, or there exists e′ such that e 7−→
Σ

e′.

2. If `Σ m ok and µ : Σ, then either m ‖ µ finalΣ or m ‖ µ 7−→
Σ

m′ ‖ µ′ for

some µ′ and m′.

Proof. Simultaneously, by induction on Rules (35.1). Consider Rule (35.1d).
By the first inductive hypothesis we have either e 7−→

Σ
e′ or e valΣ. In the for-

mer case Rule (35.3i) applies. In the latter, we have by the second inductive
hypothesis,

m ‖ µ⊗ a ↪→ e finalΣ,a or m ‖ µ⊗ a ↪→ e 7−→
Σ,a

m′ ‖ µ′ ⊗ a ↪→ e′.

In the former case we apply Rule (35.3k), and in the latter, Rule (35.3j).

35.2 Some Programming Idioms

The language L{nat cmd⇀} is designed to expose the elegant interplay
between the execution of an expression for its value and the execution of a
command for its effect on assignables. In this section we show how to de-
rive several standard idioms of imperative programming in L{nat cmd⇀}.

We define the sequential composition of commands, written {x←m1 ; m2},
to stand for the command bnd x← cmd (m1) ; m2. This generalizes to an n-
ary form by defining

{x1←m1 ; . . . xn−1←mn−1 ; mn},
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to stand for the iterated composition

{x1←m1 ; . . . {xn−1←mn−1 ; mn}}.

We sometimes write just {m1 ; m2} for the composition { ←m1 ; m2} in
which the returned value from m1 is ignored; this generalizes in the ob-
vious way to an n-ary form.

A related idiom, the command do e, executes an encapsulated command
and returns its result. By definition do e stands for the command bnd x← e ;
ret x.

The conditional command, if (m)m1 elsem2, executes either m1 or m2
according to whether the result of executing m is zero or not:

{x←m ; do (ifz x {z⇒ cmdm1 | s( )⇒ cmdm2})}.

The returned value of the conditional is the value returned by the selected
command.

The while loop command, while (m1)m2, repeatedly executes the com-
mand m2 while the command m1 yields a non-zero number. It is defined as
follows:

do (fix loop:cmd is cmd (if (m1) {ret z} else {m2 ; do loop})).

This commands runs the self-referential encapsulated command that, when
executed, first executes m1, branching on the result. If the result is zero, the
loop returns zero (arbitrarily). If the result is non-zero, the command m2 is
executed and the loop is repeated.

A procedure is a function of type τ ⇀ cmd that takes an argument of some
type, τ, and yields an unexecuted command as result. Many procedures
have the form λ (x:τ) cmdm, which we abbreviate to proc (x:τ)m. A pro-
cedure call is the composition of a function application with the activation
of the resulting command. If e1 is a procedure and e2 is its argument, then
the procedure call call e1(e2) is defined to be the command do (e1(e2)),
which immediately runs the result of applying e1 to e2.

As an example, here is a procedure of type nat⇀ cmd that returns the
factorial of its argument:
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proc (x:nat) {
dcl r := 1 in

dcl a := x in

{ while ( @ a ) {
y ← @ r

; z ← @ a

; r := (x-z+1)× y

; a := z-1

}
; @ r

}
}

The loop maintains the invariant that the contents of r is the factorial of x
minus the contents of a. Initialization makes this invariant true, and it is
preserved by each iteration of the loop, so that upon completion of the loop
the assignable a contains 0 and r contains the factorial of x, as required.

35.3 Typed Commands and Typed Assignables

So far we have restricted the type of the returned value of a command, and
the contents of an assignable, to be nat. Can this restriction be relaxed,
while adhering to the stack discipline?

The key to admitting returned and assignable values of other types lies
in the details of the proof of Theorem 35.1. The proof of this theorem relies
on an eager interpretation of the successor to ensure that the value is well-
typed even in the absence of the locally declared assignable, a. The proof
breaks down, and indeed the preservation theorem is false, when the return
type of a command or the contents type of an assignable is unrestricted.

For example, if we may return values of procedure type, then the fol-
lowing command violates safety:

dcl a := z in {ret (proc (x:nat) {a := x})}.

This command, when executed, allocates a new assignable, a, and returns
a procedure that, when called, assigns its argument to a. But this makes
no sense, because the assignable, a, is deallocated when the body of the
declaration returns, but the returned value still refers to it. If the returned
procedure is called, execution will get stuck in the attempt to assign to a.
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A similar example shows that admitting assignables of arbitrary type is
also unsound. For example, suppose that b is an assignable whose contents
are of type nat→ unit, and consider the command

dcl a := z in {b := proc (x:nat) {a := x} ; ret z}.

We assign to b a procedure that uses a locally declared assignable, a, and
then leaves the scope of the declaration. If we then call the procedure
stored in b, execution will get stuck attempting to assign to the non-existent
assignable, a.

To admit declarations to return values and to admit assignables of types
other than nat, we must rework the statics of L{nat cmd⇀} to record the
returned type of a command and to record the type of the contents of each
assignable. First, we generalize the finite set, Σ, of active assignables to
assign a type to each active assignable so that Σ has the form of a finite
set of assumptions of the form a ∼ τ, where a is an assignable. Second,
we replace the judgment Γ `Σ m ok by the more general form Γ `Σ m ∼ τ,
stating that m is a well-formed command returning a value of type τ. Third,
the type cmd must be generalized to cmd(τ), which is written in examples
as τ cmd, to specify the return type of the encapsulated command.

The statics given in Section 35.1.1 may be generalized to admit typed
commands and typed assignables, as follows:

Γ `Σ m ∼ τ

Γ `Σ cmd(m) : cmd(τ)
(35.6a)

Γ `Σ e : τ τ mobile

Γ `Σ ret(e) ∼ τ
(35.6b)

Γ `Σ e : cmd(τ) Γ, x : τ `Σ m ∼ τ′

Γ `Σ bnd(e; x.m) ∼ τ′
(35.6c)

Γ `Σ e : τ τ mobile Γ `Σ,a∼τ m ∼ τ′

Γ `Σ dcl(e; a.m) ∼ τ′
(35.6d)

Γ `Σ,a∼τ get[a] ∼ τ
(35.6e)

Γ `Σ,a∼τ e : τ

Γ `Σ,a∼τ set[a](e) ∼ τ
(35.6f)

Apart from the generalization to track returned types and content types,
the most important change is to require that the types of assignables and of
returned values must be mobile.
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As in Chapter 32, these rules make use of the judgment τ mobile, which
states that the type τ is mobile. The definition of this judgment is guided by
the following mobility condition:

if τ mobile, `Σ e : τ and e valΣ, then `∅ e : τ and e val∅. (35.7)

That is, a value of mobile type does not depend on any active assignables.
Because the successor is evaluated eagerly, the type nat may be deemed

mobile:

nat mobile
(35.8)

Because the body of a procedure may involve an assignable, no procedure
type may be considered mobile, nor may the type of commands returning
a given type, for similar reasons. On the other hand, a product of mobile
types may safely be deemed mobile, provided that pairing is evaluated
eagerly:

τ1 mobile τ2 mobile

τ1 × τ2 mobile
(35.9)

Similarly, sums may be deemed mobile so long as the injections are evalu-
ated eagerly:

τ1 mobile τ2 mobile

τ1 + τ2 mobile
(35.10)

Laziness defeats mobility, because values may contain suspended compu-
tations that depend on an assignable. For example, if the successor oper-
ation for the natural numbers were evaluated lazily, then s(e) would be a
value for any expression, e, including one that refers to an assignable, a.
Similarly, if pairing were lazy, then products may not be deemed mobile,
and if injections were evaluated lazily, then sums may not either.

What about function types other than procedure types? We may think
they are mobile, because a pure expression cannot depend on an assignable.
Although this is indeed the case, the mobility condition need not hold. For
example, consider the following value of type nat⇀ nat:

λ (x:nat) (λ ( :cmd) z)(cmd {@ a}).

Although the assignable a is not actually needed to compute the result, it
nevertheless occurs in the value, in violation of the safety condition.

The mobility restriction on the statics of assignable declaration ensures
that the type associated to an assignable is always mobile. We may there-
fore assume, without loss of generality, that the types associated to the
assignables in the signature Σ are mobile.
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Theorem 35.3 (Preservation for Typed Commands).

1. If e 7−→
Σ

e′ and `Σ e : τ, then `Σ e′ : τ.

2. If m ‖ µ 7−→
Σ

m′ ‖ µ′, with `Σ m ∼ τ and µ : Σ, then `Σ m′ ∼ τ and

µ′ : Σ.

Theorem 35.4 (Progress for Typed Commands).

1. If `Σ e : τ, then either e valΣ, or there exists e′ such that e 7−→
Σ

e′.

2. If `Σ m ∼ τ and µ : Σ, then either m ‖ µ finalΣ or m ‖ µ 7−→
Σ

m′ ‖ µ′ for

some µ′ and m′.

The proofs of Theorems 35.3 and 35.4 follows very closely the proof
of Theorems 35.1 and 35.2. The main difference is that we appeal to the
mobility condition to ensure that returned values and stored values are
independent of the active assignables.

35.4 Notes

Modernized Algol is essentially a reformulation of Idealized Algol (Reynolds,
1981) in which we have maintained a clearer separation between computa-
tions that depend on the store and those that do not. The modal distinction
between expressions and commands was present in the original formula-
tion of Algol 60. The same separation has been popularized by Haskell,
under the rubric “the IO monad.”

What are called here assignables are regrettably called variables in the
programming language literature. This clash of terminology is the source
of considerable confusion and misunderstanding. It is preferable to retain
the well-established meaning of a variable as standing for an unspecified
object of a specified type, but to do so requires that we invent a new word
for the name of a piece of mutable storage. The word assignable seems apt,
and equally as convenient as the misappropriated word variable.

In Idealized Algol, as in the original, an assignable may be used as a
form of expression standing for its current contents. Although syntacti-
cally convenient, this convention introduces an unfortunate dependency
of expression evaluation on the store that we avoid here.

The concept of mobility of a type was introduced in the ML5 language
for distributed computing (Murphy et al., 2004), with the similar meaning
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that a value of a mobile type cannot depend on local resources. Here the
mobility restriction is used to ensure that the language adheres to the stack
discipline.
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Chapter 36

Assignable References

A reference to an assignable, a, is a value, written & a, of reference type that
uniquely determines the assignable, a. A reference to an assignable pro-
vides the capability to get or set the contents of that assignable, even if the
assignable itself is not in scope at the point at which it is used. Two refer-
ences may also be compared for equality to test whether or not they govern
the same underlying assignable. If two references are equal, then setting
one will affect the result of getting the other; if they are not equal, then
setting one cannot influence the result of getting from the other. Two refer-
ences that govern the same underlying assignable are said to be aliases. The
possibility of aliasing complicates reasoning about the correctness of code
that uses references, for we must always consider for any two references
whether or not they might be aliases.

Reference types are compatible with both a scoped and a scope-free al-
location of assignables. When assignables are scoped, the range of signif-
icance of a reference type must be limited to the scope of the assignable
to which it refers. This may be achieved by declaring that reference types
are immobile, so that they cannot be returned from the body of a declara-
tion, nor stored in an assignable. Although ensuring adherence to the stack
discipline, this restriction precludes the use of references to create muta-
ble data structures, those whose structure can be altered during execution.
Mutable data structures have a number of applications in programming, in-
cluding improving efficiency (often at the expense of expressiveness) and
allowing the creation of cyclic (self-referential) structures. Supporting mu-
tability requires that assignables be given a scope-free dynamics, so that
their lifetime persists beyond the scope of their declaration. Consequently,
all types may be regarded as mobile, and hence values of any type may be
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stored in assignables or returned from commands.

36.1 Capabilities

The commands get[a] and set[a](e) in L{nat cmd⇀} operate on a stat-
ically specified assignable, a. To even write these commands requires that
the assignable, a, be in scope at the point where the command occurs. But
suppose that we wish to define a procedure that, say, updates an assignable
to double its previous value, and returns the previous value. We can easily
write such a procedure for any given assignable, a, but what if we wish to
write a generic procedure that works for any given assignable?

One way to do this is provide the procedure with the capability to get
and set the contents of some caller-specified assignable. Such a capability
is a pair consisting of a getter and a setter for that assignable. The getter for
an assignable, a, is a command that, when executed, returns the contents
of a. The setter for an assignable, a, is a procedure that, when applied to
a value of suitable type, assigns that value to a. Thus, a capability for an
assignable a containing a value of type τ is a value of type

τ cmd× (τ ⇀ τ cmd)

given by the pair
〈cmd (@ a), proc (x:τ) a := x〉

Because a capability type is a product of a command type and a procedure
type, no capability type is mobile. This means, in particular, that a capa-
bility cannot be returned from a command, nor stored into an assignable.
This is as it should be, for otherwise we would violate the stack discipline
for allocating assignables.

Using capabilities, the proposed generic doubling procedure may be
programmed as follows:

proc (〈get, set〉:nat cmd× (τ ⇀ τ cmd)) {x← do get ; y← do (set(x + x)) ; ret x}.

The procedure is to be called with the capability to access an assignable, a.
When executed, it invokes the getter to obtain the contents of a, and then
invokes the setter to assign to a, returning the previous value. Observe
that the assignable, a, need not be directly accessible by this procedure; the
capability provided by the caller comprises the commands required to get
and set a.
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36.2 Scoped Assignables

A weakness of using a capability to provide indirect access to an assignable
is that there is no guarantee that a given getter/setter pair are in fact the ca-
pability for a particular assignable. For example, we might (deliberately or
accidentally) pair the getter for a with the setter for b, leading to unexpected
behavior. There is nothing in the type system that prevents the creation of
such mismatched pairs.

To avoid this we introduce the concept of a reference to an assignable.
A reference is a value from which we may obtain the capability to get and
set a particular assignable. Moreover, two references may be compared for
equality to determine whether or not they act on the same assignable.1 The
reference type ref(τ) has as values references to assignables of type τ. The
introduction and elimination forms for this type are given by the following
syntax chart:

Typ τ ::= ref(τ) τ ref assignable
Exp e ::= ref[a] & a reference
Cmd m ::= getref(e) * e contents

setref(e1; e2) e1 := e2 update

The statics of reference types is defined by the following rules:

Γ `Σ,a∼τ ref[a] : ref(τ)
(36.1a)

Γ `Σ e : ref(τ)

Γ `Σ getref(e) ∼ τ
(36.1b)

Γ `Σ e1 : ref(τ) Γ `Σ e2 : τ

Γ `Σ setref(e1; e2) ∼ τ
(36.1c)

Rule (36.1a) specifies that the name of any active assignable is an expression
of type ref(τ).

The dynamics of reference types simply defers to the corresponding
operations on assignables, and does not alter the underlying dynamics of
assignables:

ref[a] valΣ,a
(36.2a)

1The getter and setter are not quite sufficient to define equality, because not all types
admit a run-time equality test. When they do, and when there are at least two distinct
values of the contents type, we can determine whether they are aliases by assigning to one
and checking whether the contents of the other is changed.

REVISED 05.15.2012 VERSION 1.32



356 36.2 Scoped Assignables

e 7−→
Σ

e′

getref(e) ‖ µ 7−→
Σ

getref(e′) ‖ µ
(36.2b)

getref(ref[a]) ‖ µ 7−→
Σ

get[a] ‖ µ
(36.2c)

e1 7−→
Σ

e′1

setref(e1; e2) ‖ µ 7−→
Σ

setref(e′1; e2) ‖ µ
(36.2d)

setref(ref[a]; e) ‖ µ 7−→
Σ

set[a](e) ‖ µ
(36.2e)

A reference to an assignable is a value. The getref and setref operations
on references defer to the corresponding operations on assignables once the
reference has been determined.

Because references give rise to capabilities, the reference type is deemed
to be immobile. Consequently, references cannot be stored in assignables or
returned from commands. This ensures safety, as may be readily verified
by extending the proof given in Chapter 35.

As an example of the use of references, the generic doubling procedure
discussed in the preceding section may be programmed with references as
follows:

proc (r:nat ref) {x← * r ; r := x + x ; ret x}.

Because the argument is a reference, rather than a capability, there is no
possibility that the getter and setter refer to different assignables.

The ability to pass references to procedures comes at a price. When han-
dling two or more references at the same time, we must consider the pos-
sibility that they are aliases, which is to say that both refer to the same un-
derlying assignable. Consider, for example, a procedure that, when given
two references, x and y, adds twice the contents of y to the contents of x.
One way to write this code creates no complications:

λ (x:nat ref)λ (y:nat ref) cmd {x′← * x ; y′← * y ; x := x′ + y′ + y′}.

Even if x and y refer to the same assignable, the effect will be to set the
contents of the assignable referenced by x to the sum of its orginal contents
and twice the contents of the assignable referenced by y.
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But now consider the following apparently equivalent implementation
of this procedure:

λ (x:nat ref)λ (y:nat ref) cmd {x += y ; x += y},

where x += y is the command

{x′← * x ; y′← * y ; x := x′ + y′}

that adds the contents of y to the contents of x. The second implementation
works properly provided that x and y do not refer to the same assignable.
For if they both reference the same assignable, a, with contents n, the result
is that a is to set 4× n, instead of the intended 3× n, because the second get
of y is influenced by the first assignment to x.

In this case it is entirely obvious how to avoid the problem: use the first
implementation, rather than the second. But the difficulty is not in fixing
the problem once it has been uncovered, but rather noticing the problem in
the first place. Wherever references (or capabilities) are used, the problems
of interference lurk. Avoiding them requires very careful consideration of
all possible aliasing relationships among all of the references in play at a
given point of a computation. The problem is that the number of possible
aliasing relationships among n references grows quadratically in n, because
we must consider all possible pairings.

36.3 Free Assignables

Although it is interesting to note that references and capabilities are com-
patible with the stack discipline, this is achieved at the expense of their util-
ity. Because references are not mobile, it is not possible to build a data struc-
ture containing references internally. In particular, this restriction precludes
programming mutable data structures (those whose structure changes dur-
ing execution).

To allow for more flexible uses of references, we must relax the re-
quirement that assignables are to be stack-allocated, and instead arrange
that the lifetime of an assignable extends beyond the scope of its declara-
tion. Such assignables are called scope-free, or just free, assignables. If all
assignables are scope-free, then every type may safely be deemed mobile.
Consequently, references may be used to implement mutable and cyclic
data structures.
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Supporting free assignables amounts to changing the dynamics so that
allocation of assignables persists across transitions. This is achieved by
employing transition judgments of the form

ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }.

Execution of a command may allocate new assignables, may alter the con-
tents of existing assignables, and may give rise to a new command to be
executed at the next step.

The rules defining the dynamics of free assignables are as follows:

e valΣ
ν Σ { ret(e) ‖ µ } final

(36.3a)

e 7−→
Σ

e′

ν Σ { ret(e) ‖ µ } 7→ ν Σ { ret(e′) ‖ µ }
(36.3b)

e 7−→
Σ

e′

ν Σ { bnd(e; x.m) ‖ µ } 7→ ν Σ { bnd(e′; x.m) ‖ µ }
(36.3c)

e valΣ
ν Σ { bnd(cmd(ret(e)); x.m) ‖ µ } 7→ ν Σ { [e/x]m ‖ µ } (36.3d)

ν Σ {m1 ‖ µ } 7→ ν Σ′ {m′1 ‖ µ′ }
ν Σ { bnd(cmd(m1); x.m2) ‖ µ } 7→ ν Σ′ { bnd(cmd(m′1); x.m2) ‖ µ′ }

(36.3e)

ν Σ, a∼ τ { get[a] ‖ µ⊗ a ↪→ e } 7→ ν Σ, a∼ τ { ret(e) ‖ µ⊗ a ↪→ e }
(36.3f)

e 7−→
Σ

e′

ν Σ { set[a](e) ‖ µ } 7→ ν Σ { set[a](e′) ‖ µ }
(36.3g)

e valΣ,a∼τ

ν Σ, a∼ τ { set[a](e) ‖ µ⊗ a ↪→ } 7→ ν Σ, a∼ τ { ret(e) ‖ µ⊗ a ↪→ e }
(36.3h)

e 7−→
Σ

e′

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ { dcl(e′; a.m) ‖ µ }
(36.3i)

e valΣ
ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ, a∼ τ {m ‖ µ⊗ a ↪→ e } (36.3j)
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The languageL{nat cmd ref⇀} extendsL{nat cmd⇀}with references
to free assignables. Its dynamics is similar to that of references to scoped
assignables given earlier.

e 7−→
Σ

e′

ν Σ { getref(e) ‖ µ } 7→ ν Σ { getref(e′) ‖ µ }
(36.4a)

ν Σ { getref(ref[a]) ‖ µ } 7→ ν Σ { get[a] ‖ µ }
(36.4b)

e1 7−→
Σ

e′1

ν Σ { setref(e1; e2) ‖ µ } 7→ ν Σ { setref(e′1; e2) ‖ µ }
(36.4c)

ν Σ { setref(ref[a]; e2) ‖ µ } 7→ ν Σ { set[a](e2) ‖ µ }
(36.4d)

Observe that the evaluation of expressions cannot alter or extend the mem-
ory, only commands may do this.

As an illustrative example of the use of references to scope-free assignables,
consider the command newref[τ](e) defined by

dcl a := e in ret (& a). (36.5)

This command allocates a fresh assignable, and returns a reference to it. Its
static and dynamics may be derived from the foregoing rules, as follows:

Γ `Σ e : τ

Γ `Σ newref[τ](e) ∼ ref(τ)
(36.6)

e 7−→
Σ

e′

ν Σ { newref[τ](e) ‖ µ } 7→ ν Σ { newref[τ](e′) ‖ µ }
(36.7a)

e valΣ
ν Σ { newref[τ](e) ‖ µ } 7→ ν Σ, a∼ τ { ret(ref[a]) ‖ µ⊗ a ↪→ e }

(36.7b)
Oftentimes the command newref[τ](e) is taken as primitive, and the dec-
laration command is omitted. In that case all assignables are accessed by
reference, and no direct access to assignables is provided.
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36.4 Safety for Free Assignables

Although the proof of safety for references to scoped assignables presents
few difficulties, the safety for free assignables is suprisingly tricky. The
main difficulty is to account for the possibility of cyclic dependencies of
data structures in memory. The contents of one assignable may contain
a reference to itself, or a reference to another assignable that contains a
reference to it, and so forth. For example, consider the following procedure,
e, of type nat→ nat cmd:

proc (x:nat) {if (x) ret (1) else { f ← @ a ; y← f(x− 1) ; ret (x ∗ y)}}.

Let µ be a memory of the form µ′ ⊗ a ↪→ e in which the contents of a con-
tains, via the body of the procedure, a reference to a itself. Indeed, if the
procedure e is called with a non-zero argument, it will “call itself” by indi-
rect reference through a.

The possibility of cyclic dependencies means that some care in the def-
inition of the judgment µ : Σ is required. The following rule defines the
well-formed states:

`Σ m ∼ τ `Σ µ : Σ
ν Σ {m ‖ µ } ok

(36.8)

The first premise of the rule states that the command m is well-formed rel-
ative to Σ. The second premise states that the memory, µ, conforms to Σ,
relative to the whole of Σ so that cyclic dependencies are permitted. The judg-
ment `Σ′ µ : Σ is defined as follows:

∀a∼ ρ ∈ Σ ∃e µ(a) = e and `Σ′ e : ρ

`Σ′ µ : Σ
(36.9)

Theorem 36.1 (Preservation).

1. If `Σ e : τ and e 7−→
Σ

e′, then `Σ e′ : τ.

2. If ν Σ {m ‖ µ } ok and ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }, then ν Σ′ {m′ ‖ µ′ } ok.

Proof. Simultaneously, by induction on transition. We prove the following
stronger form of the second statement:

If ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }, where `Σ m ∼ τ, `Σ µ : Σ,
then Σ′ extends Σ, and `Σ′ m′ ∼ τ, and `Σ′ µ′ : Σ′.
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Consider, for example, the transition

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ, a∼ ρ {m ‖ µ⊗ a ↪→ e }

where e valΣ. By assumption and inversion of Rule (35.6d) we have ρ such
that `Σ e : ρ, `Σ,a∼ρ m ∼ τ, and `Σ µ : Σ. But because extension of Σ with
a fresh assignable does not affect typing, we also have `Σ,a∼ρ µ : Σ and
`Σ,a∼ρ e : ρ, from which it follows by Rule (36.9) that `Σ,a∼ρ µ⊗ a ↪→ e :
Σ, a∼ ρ.

The other cases follow a similar pattern, and are left as an exercise for
the reader.

Theorem 36.2 (Progress).

1. If `Σ e : τ, then either e valΣ or there exists e′ such that e 7−→
Σ

e′.

2. If ν Σ {m ‖ µ } ok then either ν Σ {m ‖ µ } final or ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }
for some Σ′, µ′, and m′.

Proof. Simultaneously, by induction on typing. For the second statement
we prove the stronger form

If `Σ m ∼ τ and `Σ µ : Σ, then either ν Σ {m ‖ µ } final, or
ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ } for some Σ′, µ′, and m′.

Consider, for example, the typing rule

Γ `Σ e : ρ Γ `Σ,a∼ρ m ∼ τ

Γ `Σ dcl(e; a.m) ∼ τ

We have by the first inductive hypothesis that either e valΣ or e 7−→
Σ

e′ for

some e′. In the latter case we have by Rule (36.3i)

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ { dcl(e′; a.m) ‖ µ }.

In the former case we have by Rule (36.3j) that

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ, a∼ ρ {m ‖ µ⊗ a ↪→ e }.

As another example, consider the typing rule

Γ `Σ,a∼τ get[a] ∼ τ
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By assumption `Σ,a∼τ µ : Σ, a∼ τ, and hence there exists e valΣ,a∼τ such
that µ = µ′ ⊗ a ↪→ e and `Σ,a∼τ e : τ. By Rule (36.3f)

ν Σ, a∼ τ { get[a] ‖ µ′ ⊗ a ↪→ e } 7→ ν Σ, a∼ τ { ret(e) ‖ µ′ ⊗ a ↪→ e },

as required. The other cases are handled similarly.

36.5 Benign Effects

The modal separation between commands and expressions ensures that the
meaning of an expression does not depend on the (ever-changing) contents
of assignables. Although this is advantageous in many, perhaps most, sit-
uations, it also precludes programming techniques that use storage effects
to implement purely functional behavior. A prime example is memoization
in a lazy language (which is described in detail in Chapter 37.) Externally, a
suspended computation behaves exactly like the underlying computation;
internally, an assignable is associated with the computation that stores the
result of any evaluation of the computation for future use. Another class
of examples are self-adjusting data structures, which use state internally to
improve their efficiency without changing their overall purely functional
behavior. For example, a splay tree is a binary search tree that uses muta-
tion internally to rebalance the tree as elements are inserted, deleted, and
retrieved. This ensures that, for example, lookup operations take time pro-
portional to the logarithm of the number of elements.

These are examples of benign storage effects, uses of mutation in a data
structure to improve efficiency without disrupting its functional behavior.
Because values are forms of expression, it is essential to relax the strict sep-
aration between expressions and commands that characterizes the modal
type system for storage effects described in Chapter 35. Although several
ad hoc methods have been considered in the literature, the most general
approach is to simply do away with the distinction entirely, coalescing ex-
pressions and commands into a single syntactic category. The penalty is
that the type system no longer ensures that an expression of type τ denotes
a value of that type; it might, in addition, engender storage effects dur-
ing evaluation. The benefit of this approach is that it is straightforward to
implement benign effects that are impossible to implement when a strict
modal separation between expressions and commands is maintained.

The language L{nat ref⇀} is a reformulation of L{nat cmd ref⇀} in
which commands are integrated with expressions. For example, the fol-
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lowing rules illustrate the structure of the statics of L{nat cmd ref⇀}:

Γ `Σ e1 : τ1 Γ `Σ,a∼τ1 e2 : τ2

Γ `Σ dcl(e1; a.e2) : τ2
(36.10a)

Γ `Σ,a∼τ get[a] : τ
(36.10b)

Γ `Σ,a∼τ e : τ

Γ `Σ,a∼τ set[a](e) : τ
(36.10c)

Correspondingly, the dynamics of L{nat ref⇀} is given by transitions of
the form

ν Σ { e ‖ µ } 7→ ν Σ { e′ ‖ µ′ },

where e is an expression, rather than a command. The rules defining the
dynamics are very similar to those for L{nat cmd ref⇀}, but with com-
mands and expressions integrated into a single category.

To illustrate the concept of a benign effect, consider the technique of
backpatching to implement recursion. Here is a formulation of the facto-
rial function in L{nat ref⇀} in which recursive calls are mediated by an
assignable containing the function itself:

dcl a := λn:nat.0 in

{ f ← a := λn:nat.ifz(n, 1, n′.n×(@a)(n′))
; ret( f)
}

This expression returns a function of type nat⇀ nat that is obtained by (a)
allocating a free assignable initialized arbitrarily (and immaterially) with
a function of this type, (b) defining a λ-abstraction in which each “recur-
sive call” consists of retrieving and applying the function stored in that
assignable, (c) assigning this function to the assignable, and (d) returning
that function. The result is a function on the natural numbers, even though
it uses state internally to its implementation.

Backpatching is impossible in L{nat cmd ref⇀}, because it makes ex-
plicit the reliance on state. To see this, let us consider recoding the above
example in the language with a command modality:

dcl a := proc(n:nat){ret 0} in

{ f ← a := . . .
; ret( f)
},
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where the elided procedure assigned to a is given by

proc(n:nat){if(ret(n)){ret(1)}else{f←@a;x←f(n-1);ret(n×x)}}.

The difficulty is that what we have is a command, rather than an expres-
sion. Moreover, the result of the command is of procedure type nat →
(nat cmd), rather than function type nat→ nat. This means that we cannot
use the factorial “function” (so implemented) in an expression, but must
instead execute it as a command, so that the factorial of n is computed by
writing

{ f ← fact ; x ← f(n); ret(x) }.

In short, the use of storage effects is exposed, rather than hidden, as is
possible in L{nat ref⇀}.

36.6 Notes

Reynolds (1981) uses capabilities to provide indirect access to assignables;
it is a short step from there to references in the form considered here. Often
references are considered only for free assignables, but this is not essential.
It is perfectly possible to have references to scoped assignables as well, pro-
vided that suitable mobility restrictions are imposed to ensure adherence to
the stack discipline. The proof of safety of free references given here is in-
spired by Wright and Felleisen (1994) and Harper (1994).

Benign effects are central to the distinction between Haskell, which is
based on an Algol-like separation between commands and expressions,
and ML, which is based on the integration of evaluation with execution.
Each approach has its advantages and complementary disadvantages; nei-
ther is uniformly superior to the other.
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Chapter 37

Lazy Evaluation

Lazy evaluation refers to a variety of concepts that seek to defer evaluation of
an expression until it is definitely required, and to share the results of any
such evaluation among all instances of a single deferred computation. The
net result is that a computation is performed at most once among all of its
instances. Laziness manifests itself in a number of ways.

One form of laziness is the by-need evaluation strategy for function ap-
plication. Recall from Chapter 8 that the by-name evaluation order passes
the argument to a function in unevaluated form so that it is only evaluated
if it is actually used. But because the argument is replicated by substitu-
tion, it may be evaluated more than once. By-need evaluation ensures that
the argument to a function is evaluated at most once, by ensuring that all
copies of an argument share the result of evaluating any one copy.

Another form of laziness is the concept of a lazy data structure. As we
have seen in Chapters 11, 12, and 16, we may choose to defer evaluation of
the components of a data structure until they are actually required, rather
than when the data structure is created. But if a component is required
more than once, then the same computation will, without further provi-
sion, be repeated on each use. To avoid this, the deferred portions of a
data structure are shared so an access to one will propagate its result to all
occurrences of the same computation.

Yet another form of laziness arises from the concept of general recursion
considered in Chapter 10. Recall that the dynamics of general recursion
is given by unrolling, which replicates the recursive computation on each
use. It would be preferable to share the results of such computation across
unrollings. A lazy implementation of recursion avoids such replications by
sharing the unrollings.



368 37.1 By-Need Dynamics

Traditionally, languages are biased towards either eager or lazy eval-
uation. Eager languages use a by-value dynamics for function applica-
tions, and evaluate the components of data structures when they are cre-
ated. Lazy languages adopt the opposite strategy, preferring a by-name
dynamics for functions, and a lazy dynamics for data structures. The over-
head of laziness is mitigated by managing sharing to avoid redundancy.
Experience has shown, however, that the distinction is better drawn at the
level of types, rather than at the level of a language design. What is impor-
tant is to have available both lazy and eager types, so that the programmer
may choose which to use in a given situation, rather than having the choice
forced by the language designer.

In this chapter we make precise the means by which sharing of com-
putations is achieved in the implementation of laziness. We then isolate
these mechanisms into a type of suspended computations whose results
are shared across all copies of a given suspension.

37.1 By-Need Dynamics

By-need evaluation of functions uses memoization to record the value of a
computation so that any future use of the same computation may return the
previously computed value (or compute it from scratch if there is none).
This is achieved by “naming” each deferred computation with a symbol,
which is then used to access its value whenever it is used. A memo table
records the deferred computation associated to each symbol until such time
as it is evaluated, after which it records the value of that computation. Thus
naming implements sharing, and the memo table ensures irredundancy.

The by-need dynamics for L{nat⇀} is based on a transition system
with states of the form ν Σ { e ‖ µ }, where Σ is a finite set of hypotheses
a1∼ τ1, . . . , an∼ τn associating types to symbols, e is an expression that may
involve the symbols in Σ, and µ maps each symbol declared in Σ to either
an expression or a special symbol, •, called the black hole. (The role of the
black hole will be made clear below.) As a notational convenience, we em-
ploy a bit of legerdemain with the concrete syntax similar to that employed
in Chapter 35. Specifically, the concrete syntax for the expression get[a],
which fetches the contents of the assignable a, is just @ a, omitting explicit
mention of the “get” operation.

The by-need dynamics consists of the following two forms of judgment:

1. e valΣ, stating that e is a value that may involve the symbols in Σ.
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2. ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }, stating that one step of evaluation of
the expression e relative to memo table µ with the symbols declared
in Σ results in the expression e′ relative to the memo table µ′ with
symbols declared in Σ′.

The dynamics is defined so that the collection of active symbols grows
monotonically, and so that the type of a symbol never changes. The memo
table may be altered destructively during execution to reflect progress in
the evaluation of the expression associated with a given symbol.

The judgment e valΣ expressing that e is a closed value is defined by the
following rules:

z valΣ
(37.1a)

s(a) valΣ,a∼nat
(37.1b)

λ (x:τ) e valΣ
(37.1c)

Rules (37.1a) through (37.1c) specify that z is a value, any expression of
the form s(a), where a is a symbol, is a value, and that any λ-abstraction,
possibly containing symbols, is a value. It is important that symbols them-
selves are not values, rather they stand for (possibly unevaluated) expres-
sions as specified by the memo table. The expression @ a, which is short
for get[a], is not closed. Rather, it must be evaluated to determine, and
possibly update, the binding of the symbol a in memory.

The initial and final states of evaluation are defined as follows:

ν ∅ { e ‖ ∅ } initial
(37.2a)

e valΣ
ν Σ { e ‖ µ } final

(37.2b)

Rule (37.2a) specifies that an initial state consists of an expression eval-
uated relative to an empty memo table. Rule (37.2b) specifies that a final
state has the form ν Σ { e ‖ µ }, where e is a value relative to Σ.

The transition judgment for the by-need dynamics of L{nat⇀} is de-
fined by the following rules:
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e valΣ,a∼τ

ν Σ, a∼ τ { a ‖ µ⊗ a ↪→ e } 7→ ν Σ, a∼ τ { e ‖ µ⊗ a ↪→ e } (37.3a)

ν Σ, a∼ τ { e ‖ µ⊗ a ↪→•} 7→ ν Σ′, a∼ τ { e′ ‖ µ′ ⊗ a ↪→•}
ν Σ, a∼ τ { a ‖ µ⊗ a ↪→ e } 7→ ν Σ′, a∼ τ { a ‖ µ′ ⊗ a ↪→ e′ }

(37.3b)

ν Σ { s(e) ‖ µ } 7→ ν Σ, a∼ nat { s(a) ‖ µ⊗ a ↪→ e }
(37.3c)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { ifz e {z⇒ e0 | s(x)⇒ e1} ‖ µ } 7→ ν Σ′ { ifz e′ {z⇒ e0 | s(x)⇒ e1} ‖ µ′ }

(37.3d)

ν Σ { ifz z {z⇒ e0 | s(x)⇒ e1} ‖ µ } 7→ ν Σ { e0 ‖ µ }
(37.3e)


ν Σ, a∼ nat { ifz s(a) {z⇒ e0 | s(x)⇒ e1} ‖ µ⊗ a ↪→ e }

7→
ν Σ, a∼ nat { [a/x]e1 ‖ µ⊗ a ↪→ e }

 (37.3f)

ν Σ { e1 ‖ µ } 7→ ν Σ′ { e′1 ‖ µ′ }
ν Σ { e1(e2) ‖ µ } 7→ ν Σ′ { e′1(e2) ‖ µ′ }

(37.3g)


ν Σ { λ (x:τ) e(e2) ‖ µ }

7→
ν Σ, a∼ τ { [a/x]e ‖ µ⊗ a ↪→ e2 }

 (37.3h)

ν Σ { fix x:τ is e ‖ µ } 7→ ν Σ, a∼ τ { a ‖ µ⊗ a ↪→ [a/x]e }
(37.3i)

Rule (37.3a) governs a symbol whose associated expression is a value;
the value of the symbol is the value associated to that symbol in the memo
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table. Rule (37.3b) specifies that if the expression associated to a symbol is
not a value, then it is evaluated “in place” until such time as Rule (37.3a)
applies. This is achieved by switching the focus of evaluation to the asso-
ciated expression, while at the same time associating the black hole to that
symbol. The black hole represents the absence of a value for that symbol,
so that any attempt to access it during evaluation of its associated expres-
sion cannot make progress. This signals a circular dependency that, if not
caught using a black hole, would initiate an infinite regress. We may there-
fore think of the black hole as catching a particular form of non-termination
that arises when the value of an expression associated to a symbol depends
on the symbol itself.

Rule (37.3c) specifies that evaluation of s(e) allocates a fresh symbol, a,
for the expression e, and yields the value s(a). The value of e is not deter-
mined until such time as the predecessor is required in a subsequent com-
putation. This implements a lazy dynamics for the successor. Rule (37.3f),
which governs a conditional branch on a successor, substitutes the sym-
bol, a, for the variable, x, when computing the predecessor of a non-zero
number, ensuring that all occurrences of x share the same predecessor com-
putation.

Rule (37.3g) specifies that the value of the function position of an appli-
cation must be determined before the application can be executed. Rule (37.3h)
specifies that to evaluate an application of a λ-abstraction we allocate a
fresh symbol for the argument, and substitute this symbol for the param-
eter of the function. The argument is evaluated only if it is needed in the
subsequent computation, and then that value is shared among all occur-
rences of the parameter in the body of the function.

General recursion is implemented by Rule (37.3i). Recall from Chap-
ter 10 that the expression fix x:τ is e stands for the solution of the recur-
sion equation x = e. Rule (37.3i) computes this solution by associating a
fresh symbol, a, with the body, e, substituting a for x within e to effect the
self-reference. It is this substitution that permits a named expression to de-
pend on its own name. For example, the expression fix x:τ is x associates
the expression a to a in the memo table, and returns a. The next step of
evaluation is stuck, because it seeks to evaluate a with a bound to the black
hole. In contrast an expression such as fix f:ρ→ τ isλ (x:ρ) e does not
get stuck, because the self-reference is “hidden” within the λ-abstraction,
and hence need not be evaluated to determine the value of the binding.
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37.2 Safety

We write Γ `Σ e : τ to mean that e has type τ under the assumptions
Γ, treating symbols declared in Σ as expressions of their associated type.
The rules are as in Chapter 10, with the addition of the following rule for
symbols:

Γ `Σ,a∼τ a : τ
(37.4)

This rule amounts to an implicit coercion that turns a symbol into a form of
expression. The expression involves a tacit operation to obtain the binding
of a symbol.

The judgment ν Σ { e ‖ µ } ok is defined by the following rules:

`Σ e : τ `Σ µ : Σ
ν Σ { e ‖ µ } ok

(37.5a)

∀a∼ τ ∈ Σ µ(a) = e 6= • =⇒`Σ′ e : τ

`Σ′ µ : Σ
(37.5b)

Rule (37.5b) permits self-reference through the memo table by allowing the
expression associated to a symbol, a, to contain a, or, more generally, to con-
tain a symbol whose associated expression contains a, and so on through
any finite chain of such dependencies. Moreover, a symbol that is bound to
the “black hole” is deemed to be of any type.

Theorem 37.1 (Preservation). Suppose that ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }. If
ν Σ { e ‖ µ } ok, then ν Σ′ { e′ ‖ µ′ } ok.

Proof. We prove by induction on Rules (37.3) that if ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
and `Σ µ : Σ and `Σ e : τ, then Σ′ ⊇ Σ and `Σ′ µ′ : Σ′ and `Σ′ e′ : τ.

Consider Rule (37.3b), for which we have e = e′ = a, µ = µ0 ⊗ a ↪→ e0,
µ′ = µ′0 ⊗ a ↪→ e′0, and

ν Σ, a∼ τ { e0 ‖ µ0 ⊗ a ↪→•} 7→ ν Σ′, a∼ τ { e′0 ‖ µ′0 ⊗ a ↪→•}.

Assume that `Σ,a∼τ µ : Σ, a∼ τ. It follows that `Σ,a∼τ e0 : τ and `Σ,a∼τ µ0 :
Σ, and hence that

`Σ,a∼τ µ0 ⊗ a ↪→• : Σ, a∼ τ.

We have by induction that Σ′ ⊇ Σ and `Σ′,a∼τ e′0 : τ′ and

`Σ′,a∼τ µ0 ⊗ a ↪→• : Σ, a∼ τ.

VERSION 1.32 REVISED 05.15.2012



37.2 Safety 373

But then
`Σ′,a∼τ µ′ : Σ′, a∼ τ,

which suffices for the result.
Consider Rule (37.3g), so that e is the application e1(e2) and

ν Σ { e1 ‖ µ } 7→ ν Σ′ { e′1 ‖ µ′ }.

Suppose that `Σ µ : Σ and `Σ e : τ. By inversion of typing `Σ e1 : τ2 → τ
for some type τ2 such that `Σ e2 : τ2. By induction Σ′ ⊇ Σ and `Σ′ µ′ : Σ′

and `Σ′ e′1 : τ2 → τ. By weakening we have `Σ′ e2 : τ2, so that `Σ′ e′1(e2) :
τ, which is enough for the result.

The statement of the progress theorem allows for the possibility of en-
countering a black hole, representing a checkable form of non-termination.
The judgment ν Σ { e ‖ µ } loops, stating that e diverges by virtue of encoun-
tering the black hole, is defined by the following rules:

ν Σ, a∼ τ { a ‖ µ⊗ a ↪→•} loops
(37.6a)

ν Σ, a∼ τ { e ‖ µ⊗ a ↪→•} loops

ν Σ, a∼ τ { a ‖ µ⊗ a ↪→ e } loops
(37.6b)

ν Σ { e ‖ µ } loops

ν Σ { ifz e {z⇒ e0 | s(x)⇒ e1} ‖ µ } loops
(37.6c)

ν Σ { e1 ‖ µ } loops

ν Σ { e1(e2) ‖ µ } loops
(37.6d)

Theorem 37.2 (Progress). If ν Σ { e ‖ µ } ok, then either ν Σ { e ‖ µ } final, or
ν Σ { e ‖ µ } loops, or there exists µ′ and e′ such that ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }.

Proof. We proceed by induction on the derivations of `Σ e : τ and `Σ µ : Σ
implicit in the derivation of ν Σ { e ‖ µ } ok.

Consider Rule (10.1a), where the variable, a, is declared in Σ. Thus
Σ = Σ0, a∼ τ and `Σ µ : Σ. It follows that µ = µ0 ⊗ a ↪→ e0 with `Σ µ0 : Σ0
and `Σ e0 : τ. Note that `Σ µ0 ⊗ a ↪→• : Σ. Applying induction to the
derivation of `Σ e0 : τ, we consider three cases:

1. ν Σ { e0 ‖ µ⊗ a ↪→•} final. By inversion of Rule (37.2b) we have e0 valΣ,
and hence by Rule (37.3a) we obtain ν Σ { a ‖ µ } 7→ ν Σ { e0 ‖ µ }.
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2. ν Σ { e0 ‖ µ0 ⊗ a ↪→•} loops. By applying Rule (37.6b) we obtain ν Σ { a ‖ µ } loops.

3. ν Σ { e0 ‖ µ0 ⊗ a ↪→•} 7→ ν Σ′ { e′0 ‖ µ′0 ⊗ a ↪→•}. By applying Rule (37.3b)
we obtain

ν Σ { a ‖ µ⊗ a ↪→ e0 } 7→ ν Σ′ { a ‖ µ′ ⊗ a ↪→ e′0 }.

37.3 Lazy Data Structures

The by-need dynamics extends to product, sum, and recursive types in a
straightforward manner. For example, the by-need dynamics of lazy prod-
uct types is given by the following rules:

〈a1, a2〉 valΣ,a1∼τ1,a2∼τ2

(37.7a)


ν Σ { 〈e1, e2〉 ‖ µ }

7→
ν Σ, a1 ∼ τ1, a2 ∼ τ2 { 〈a1, a2〉 ‖ µ⊗ a1 ↪→ e1 ⊗ a2 ↪→ e2 }

 (37.7b)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { e · l ‖ µ } 7→ ν Σ′ { e′ · l ‖ µ′ }

(37.7c)

ν Σ { e ‖ µ } loops

ν Σ { e · l ‖ µ } loops
(37.7d)


ν Σ, a1 ∼ τ1, a2 ∼ τ2 { 〈a1, a2〉 · l ‖ µ }

7→
ν Σ, a1 ∼ τ1, a2 ∼ τ2 { a1 ‖ µ }

 (37.7e)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { e · r ‖ µ } 7→ ν Σ′ { e′ · r ‖ µ′ }

(37.7f)

ν Σ { e ‖ µ } loops

ν Σ { e · r ‖ µ } loops
(37.7g)
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
ν Σ, a1 ∼ τ1, a2 ∼ τ2 { 〈a1, a2〉 · r ‖ µ }

7→
ν Σ, a1 ∼ τ1, a2 ∼ τ2 { a2 ‖ µ }

 (37.7h)

A pair is considered a value only if its arguments are symbols (Rule (37.7a)),
which are introduced when the pair is created (Rule (37.7b)). The first and
second projections evaluate to one or the other symbol in the pair, inducing
a demand for the value of that component (Rules (37.7e) and (37.7h)).

Similar techniques may be used to give a by-need dynamics to sums
and recursive types.

37.4 Suspensions

Another way to introduce laziness is to consolidate the machinery of the
by-need dynamics into a single type whose values are possibly uneval-
uated, memoized computations. The type of suspensions of type τ, writ-
ten τ susp, has as introductory form susp x : τ is e representing the sus-
pended, possibly self-referential, computation, e, of type τ, and as elimi-
natory form the operation force(e) that evaluates the suspended compu-
tation presented by e, records the value in a memo table, and returns that
value as result.

Using suspension types we may construct other lazy types according to
our needs in a particular program. For example, the type of lazy pairs with
components of type τ1 and τ2 is expressible as the type

τ1 susp× τ2 susp

and the type of by-need functions with domain τ1 and range τ2 is express-
ible as the type

τ1 susp→ τ2.

We may also express more complex combinations of eagerness and lazi-
ness, such as the type of “lazy lists” consisting of computations that, when
forced, evaluate either to the empty list, or a non-empty list consisting of a
natural number and another lazy list:

µt.(unit+ (nat× t)) susp.

This type should be contrasted with the type

µt.(unit+ (nat× t susp))
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whose values are the empty list and a pair consisting of a natural number
and a computation of another such value.

The syntax of suspensions is given by the following grammar:

Typ τ ::= susp(τ) τ susp suspension
Exp e ::= susp[τ](x.e) susp x : τ is e delay

force(e) force(e) force
susp[a] susp[a] self-reference

Suspensions are self-referential; the bound variable, x, refers to the suspen-
sion itself. The expression susp[a] is a reference to the suspension named
a.

The statics of the suspension type is given using a judgment of the form
Γ `Σ e : τ, where Σ assigns types to the names of suspensions. It is defined
by the following rules:

Γ, x : susp(τ) `Σ e : τ

Γ `Σ susp[τ](x.e) : susp(τ)
(37.8a)

Γ `Σ e : susp(τ)

Γ `Σ force(e) : τ
(37.8b)

Γ `Σ,a∼τ susp[a] : susp(τ)
(37.8c)

Rule (37.8a) checks that the expression, e, has type τ under the assumption
that x, which stands for the suspension itself, has type susp(τ).

The by-need dynamics of suspensions is defined by the following rules:

susp[a] valΣ,a∼τ

(37.9a)


ν Σ { susp[τ](x.e) ‖ µ }

7→
ν Σ, a∼ τ { susp[a] ‖ µ⊗ a ↪→ [a/x]e }

 (37.9b)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { force(e) ‖ µ } 7→ ν Σ′ { force(e′) ‖ µ′ }

(37.9c)

e valΣ,a∼τ
ν Σ, a∼ τ { force(susp[a]) ‖ µ⊗ a ↪→ e }

7→
ν Σ, a∼ τ { e ‖ µ⊗ a ↪→ e }

 (37.9d)
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ν Σ, a∼ τ { e ‖ µ⊗ a ↪→•}
7→

ν Σ′, a∼ τ { e′ ‖ µ′ ⊗ a ↪→•}
ν Σ, a∼ τ { force(susp[a]) ‖ µ⊗ a ↪→ e }

7→
ν Σ′, a∼ τ { force(susp[a]) ‖ µ′ ⊗ a ↪→ e′ }


(37.9e)

Rule (37.9a) specifies that a reference to a suspension is a value. Rule (37.9b)
specifies that evaluation of a delayed computation consists of allocating a
fresh symbol for it in the memo table, and returning a reference to that
suspension. Rules (37.9c) to (37.9e) specify that demanding the value of a
suspension forces evaluation of the suspended computation, which is then
stored in the memo table and returned as the result.

37.5 Notes

The by-need dynamics given here is inspired by Ariola and Felleisen (1997),
but with the crucial distinction that by-need cells are regarded as assignables,
rather than variables. This is in keeping with the principle that a variable is
given meaning by substitution. The goal of by-need evaluation is to limit
substitution in the interest of avoiding redundant computations. As such it
cannot properly be modeled using variables, but rather requires a form of
assignable (introduced in Chapter 35) to which at most one assignment is
ever performed.
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Chapter 38

Polarization

Up to this point we have frequently encountered arbitrary choices in the
dynamics of various language constructs. For example, when specifying
the dynamics of pairs, we must choose, rather arbitrarily, between the lazy
dynamics, in which all pairs are values regardless of the value status of
their components, and the eager dynamics, in which a pair is a value only
if its components are both values. We could even consider a half-eager (or,
equivalently, half-lazy) dynamics, in which a pair is a value only if, say, the
first component is a value, but without regard to the second.

Similar questions arise with sums (all injections are values, or only in-
jections of values are values), recursive types (all folds are values, or only
folds of values are values), and function types (functions should be called
by-name or by-value). Whole languages are built around adherence to
one policy or another. For example, Haskell decrees that products, sums,
and recursive types are to be lazy, and functions are to be called by name,
whereas ML decrees the exact opposite policy. Not only are these choices
arbitrary, but it is also unclear why they should be linked. For example,
we could very sensibly decree that products, sums, and recursive types are
lazy, yet impose a call-by-value discipline on functions. Or we could have
eager products, sums, and recursive types, yet insist on call-by-name. It is
not at all clear which of these points in the space of choices is right; each
has its adherents, and each has its detractors.

Are we therefore stuck in a tarpit of subjectivity? No! The way out is
to recognize that these distinctions should not be imposed by the language
designer, but rather are choices that are to be made by the programmer.
This may be achieved by recognizing that differences in dynamics reflect
fundamental type distinctions that are being obscured by languages that im-
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pose one policy or another. We can have both eager and lazy pairs in the
same language by simply distinguishing them as two distinct types, and
similarly we can have both eager and lazy sums in the same language, and
both by-name and by-value function spaces, by providing sufficient type
distinctions as to make the choice available to the programmer.

Eager and lazy types are distinguished by their polarity, which is either
positive or negative according to whether the type is defined by the values
that inhabit the type or the behavior of expressions of that type. Positive
types are eager, or inductive, in that they are defined by their values. Neg-
ative types are lazy, or coinductive, in that they are defined by the behavior
of their elements. The polarity of types is made explicit using a technique
called focusing. A focused presentation of a programming language dis-
tinguishes three general forms of expression, (positive and negative) values,
(positive and negative) continuations, and (neutral) computations.

38.1 Positive and Negative Types

Polarization consists of distinguishing positive from negative types accord-
ing to the following two principles:

1. A positive type is defined by its introduction rules, which specify the
values of that type in terms of other values. The elimination rules are
inversions that specify a computation by pattern matching on values
of that type.

2. A negative type is defined by its elimination rules, which specify the
observations that may be performed on elements of that type. The
introduction rules specify the values of that type by specifying how
they respond to observations.

Based on this characterization we can anticipate that the type of natural
numbers would be positive, because it is defined by zero and successor,
whereas function types would be negative, because they are characterized
by their behavior when applied, and not by their internal structure.

The language L±{nat⇀} is a polarized formulation of L{nat⇀}. The
syntax of types in this language is given by the following grammar:

PTyp τ+ ::= dn(τ−) ↓ τ− suspension
nat nat naturals

NTyp τ− ::= up(τ+) ↑ τ+ inclusion
parr(τ+

1 ; τ−2 ) τ+

1 ⇀ τ−2 partial function

VERSION 1.32 REVISED 05.15.2012



38.2 Focusing 381

The types ↓ τ− and ↑ τ+ effect a polarity shift from negative to positive and
positive to negative, respectively. Intuitively, the shifted type ↑ τ+ is just
the inclusion of positive into negative values, whereas the shifted type ↓ τ−

represents the type of suspended computations of negative type.
The domain of the negative function type is required to be positive, but

its range is negative. This allows us to form right-iterated function types

τ+

1 ⇀ (τ+
2 ⇀ (. . . (τ+

n−1 ⇀ τ−n )))

directly, but to form a left-iterated function type requires shifting,

↓ (τ+

1 ⇀ τ−2 )⇀ τ−,

to turn the negative function type into a positive type. Conversely, shifting
is needed to define a function whose range is positive, τ+

1 ⇀ ↑ τ+
2 .

38.2 Focusing

The syntax of L±{nat⇀} is motivated by the polarization of its types. For
each polarity we have a sort of values and a sort of continuations with
which we may create (neutral) computations.

PVal v+ ::= z z zero
s(v+) s(v+) successor
del-(e) del-(e) delay

PCont k+ ::= ifz(e0; x.e1) ifz(e0; x.e1) conditional
force-(k−) force-(k−) evaluate

NVal v− ::= lam[τ+](x.e) λ (x:τ+) e abstraction
del+(v+) del+(v+) inclusion
fix(x.v−) fix x is v− recursion

NCont k− ::= ap(v+; k−) ap(v+; k−) application
force+(x.e) force+(x.e) evaluate

Comp e ::= ret(v−) ret(v−) return
cut+(v+; k+) v+ . k+ cut
cut-(v−; k−) v− . k− cut

The positive values include the numerals, and the negative values include
functions. In addition we may delay a computation of a negative value to
form a positive value using del-(e), and we may consider a positive value
to be a negative value using del+(v+). The positive continuations include
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the conditional branch, sans argument, and the negative continuations in-
clude application sites for functions consisting of a positive argument value
and a continuation for the negative result. In addition we include positive
continuations to force the computation of a suspended negative value, and
to extract an included positive value. Computations, which correspond to
machine states, consist of returned negative values (these are final states),
states passing a positive value to a positive continuation, and states pass-
ing a negative value to a negative continuation. General recursion appears
as a form of negative value; the recursion is unrolled when it is made the
subject of an observation.

38.3 Statics

The statics of L±{nat⇀} consists of a collection of rules for deriving judg-
ments of the following forms:

• Positive values: Γ ` v+ : τ+.

• Positive continuations: Γ ` k+ : τ+ > γ−.

• Negative values: Γ ` v− : τ−.

• Negative continuations: Γ ` k− : τ− > γ−.

• Computations: Γ ` e : γ−.

Throughout Γ is a finite set of hypotheses of the form

x1 : τ+

1 , . . . , xn : τ+
n ,

for some n ≥ 0, and γ− is any negative type.
The typing rules for continuations specify both an argument type (on

which values they act) and a result type (of the computation resulting from
the action on a value). The typing rules for computations specify that the
outcome of a computation is a negative type. All typing judgments specify
that variables range over positive types. (These restrictions may always be
met by appropriate use of shifting.)

The statics of positive values consists of the following rules:

Γ, x : τ+ ` x : τ+ (38.1a)

Γ ` z : nat (38.1b)
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Γ ` v+ : nat
Γ ` s(v+) : nat

(38.1c)

Γ ` e : τ−

Γ ` del-(e) : ↓ τ−
(38.1d)

Rule (38.1a) specifies that variables range over positive values. Rules (38.1b)
and (38.1c) specify that the values of type nat are just the numerals. Rule (38.1d)
specifies that a suspended computation (necessarily of negative type) is a
positive value.

The statics of positive continuations consists of the following rules:

Γ ` e0 : γ− Γ, x : nat ` e1 : γ−

Γ ` ifz(e0; x.e1) : nat> γ−
(38.2a)

Γ ` k− : τ− > γ−

Γ ` force-(k−) : ↓ τ− > γ−
(38.2b)

Rule (38.2a) governs the continuation that chooses between two computa-
tions according to whether a natural number is zero or non-zero. Rule (38.2b)
specifies the continuation that forces a delayed computation with the spec-
ified negative continuation.

The statics of negative values is defined by these rules:

Γ, x : τ+

1 ` e : τ−2
Γ ` λ (x:τ+

1 ) e : τ+

1 ⇀ τ−2
(38.3a)

Γ ` v+ : τ+

Γ ` del+(v+) : ↑ τ+
(38.3b)

Γ, x : ↓ τ− ` v− : τ−

Γ ` fix x is v− : τ−
(38.3c)

Rule (38.3a) specifies the statics of a λ-abstraction whose argument is a pos-
itive value, and whose result is a computation of negative type. Rule (38.3b)
specifies the inclusion of positive values as negative values. Rule (38.3c)
specifies that negative types admit general recursion.

The statics of negative continuations is defined by these rules:

Γ ` v+

1 : τ+

1 Γ ` k−2 : τ−2 > γ−

Γ ` ap(v+

1 ; k−2) : τ+

1 ⇀ τ−2 > γ−
(38.4a)

Γ, x : τ+ ` e : γ−

Γ ` force+(x.e) : ↑ τ+ > γ−
(38.4b)
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Rule (38.4a) is the continuation representing the application of a function to
the positive argument, v+

1 , and executing the body with negative continua-
tion, k−2 . Rule (38.4b) specifies the continuation that passes a positive value,
viewed as a negative value, to a computation.

The statics of computations is given by these rules:

Γ ` v− : τ−

Γ ` ret(v−) : τ−
(38.5a)

Γ ` v+ : τ+ Γ ` k+ : τ+ > γ−

Γ ` v+ . k+ : γ−
(38.5b)

Γ ` v− : τ− Γ ` k− : τ− > γ−

Γ ` v− . k− : γ−
(38.5c)

Rule (38.5a) specifies the basic form of computation that simply returns the
negative value v−. Rules (38.5b) and (38.5c) specify computations that pass
a value to a continuation of appropriate polarity.

38.4 Dynamics

The dynamics of L±{nat⇀} is given by a transition system e 7→ e′ speci-
fying the steps of computation. The rules are all axioms; no premises are
required because the continuation is used to manage pending computa-
tions.

The dynamics consists of the following rules:

z . ifz(e0; x.e1) 7→ e0 (38.6a)

s(v+) . ifz(e0; x.e1) 7→ [v+/x]e1 (38.6b)

del-(e) . force-(k−) 7→ e ; k− (38.6c)

λ (x:τ+) e . ap(v+; k−) 7→ [v+/x]e ; k− (38.6d)

del+(v+) . force+(x.e) 7→ [v+/x]e (38.6e)

fix x is v− . k− 7→ [del-(fix x is v−)/x]v− . k− (38.6f)

These rules specify the interaction between values and continuations.
Rules (38.6) make use of two forms of substitution, [v+/x]e and [v+/x]v−,

which are defined as in Chapter 1. They also employ a new form of com-
position, written e ; k−0 , which composes a computation with a continuation
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by attaching k−0 to the end of the computation specified by e. This composi-
tion is defined mutually recursive with the compositions k+ ; k−0 and k− ; k−0 ,
which essentially concatenate continuations (stacks).

ret(v−) ; k−0 = v− . k−0 (38.7a)

k− ; k−0 = k−1
(v− . k−) ; k−0 = v− . k−1

(38.7b)

k+ ; k−0 = k+

1

(v+ . k+) ; k−0 = v+ . k+

1
(38.7c)

e0 ; k− = e′0 x | e1 ; k− = e′1
ifz(e0; x.e1) ; k− = ifz(e′0; x.e′1)

(38.7d)

k− ; k−0 = k−1
force-(k−) ; k−0 = force-(k−1)

(38.7e)

k− ; k−0 = k1

ap(v+; k−) ; k−0 = ap(v+; k−1)
(38.7f)

x | e ; k−0 = e′

force+(x.e) ; k−0 = force+(x.e′)
(38.7g)

Rules (38.7d) and (38.7g) make use of the generic hypothetical judgment
defined in Chapter 3 to express that the composition is defined uniformly
in the bound variable.

38.5 Safety

The proof of preservation for L±{nat⇀} reduces to the proof of the typing
properties of substitution and composition.

Lemma 38.1 (Substitution). Suppose that Γ ` v+ : ρ+.

1. If Γ, x : ρ+ ` e : γ−, then Γ ` [v+/x]e : γ−.

2. If Γ, x : ρ+ ` v− : τ−, then Γ ` [v+/x]v− : τ−.

3. If Γ, x : ρ+ ` k+ : τ+ > γ−, then Γ ` [v+/x]k+ : τ+ > γ−.

4. If Γ, x : ρ+ ` v+

1 : τ+, then Γ ` [v+/x]v+

1 : τ+.

5. If Γ, x : ρ+ ` k− : τ− > γ−, then Γ ` [v+/x]k− : τ− > γ−.
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Proof. Simultaneously, by induction on the derivation of the typing of the
target of the substitution.

Lemma 38.2 (Composition).

1. If Γ ` e : τ− and Γ ` k− : τ− > γ−, then Γ ` e ; k− : τ− > γ−.

2. If Γ ` k+
0 : τ+ > γ−0 , and Γ ` k−1 : γ−0 > γ−1 , then Γ ` k+

0 ; k−1 : τ+ > γ−1 .

3. If Γ ` k−0 : τ− > γ−0 , and Γ ` k−1 : γ−0 > γ−1 , then Γ ` k−0 ; k−1 : τ− > γ−1 .

Proof. Simultaneously, by induction on the derivations of the first premises
of each clause of the lemma.

Theorem 38.3 (Preservation). If Γ ` e : γ− and e 7→ e′, then Γ ` e′ : γ−.

Proof. By induction on transition, appealing to inversion for typing and
Lemmas 38.1 and 38.2.

The progress theorem reduces to the characterization of the values of
each type. Focusing makes the required properties evident, because it de-
fines directly the values of each type.

Theorem 38.4 (Progress). If Γ ` e : γ−, then either e = ret(v−) for some v−,
or there exists e′ such that e 7→ e′.

38.6 Notes

The concept of polarization originates with Andreoli (1992), which intro-
duced focusing as a technique for proof search in linear logic. The formula-
tion given here is inspired by Zeilberger (2008), wherein focusing is related
to evaluation order in programming languages.
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Chapter 39

Nested Parallelism

Parallel computation seeks to reduce the running times of programs by al-
lowing many computations to be carried out simultaneously. For example,
if we wish to add two numbers, each given by a complex computation,
we may consider evaluating the addends simultaneously, then computing
their sum. The ability to exploit parallelism is limited by the dependencies
among parts of a program. Obviously, if one computation depends on the
result of another, then we have no choice but to execute them sequentially
so that we may propagate the result of the first to the second. Consequently,
the fewer dependencies among sub-computations, the greater the opportu-
nities for parallelism. This argues for functional models of computation,
because the possibility of mutation of shared assignables imposes sequen-
tialization constraints on imperative code.

In this chapter we discuss nested parallelism in which we nest parallel
computations within one another in a hierarchical manner. Nested paral-
lelism is sometimes called fork-join parallelism to emphasize the hierarchi-
cal structure arising from forking two (or more) parallel computations, then
joining these computations to combine their results before proceeding. We
will consider two forms of dynamics for nested parallelism. The first is a
structural dynamics in which a single transition on a compound expression
may involve multiple transitions on its constituent expressions. The second
is a cost dynamics (introduced in Chapter 7) that focuses attention on the
sequential and parallel complexity (also known as the work and depth) of a
parallel program by associating a series-parallel graph with each computa-
tion.
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39.1 Binary Fork-Join

We begin with a parallel language whose sole source of parallelism is the
simultaneous evaluation of two variable bindings. This is modelled by a
construct of the form par x1 = e1 and x2 = e2 in e, in which we bind two vari-
ables, x1 and x2, to two expressions, e1 and e2, respectively, for use within
a single expression, e. This represents a simple fork-join primitive in which
e1 and e2 may be evaluated independently of one another, with their re-
sults combined by the expression e. Some other forms of parallelism may
be defined in terms of this primitive. As an example, parallel pairing may be
defined as the expression

par x1 = e1 and x2 = e2 in 〈x1, x2〉,

which evaluates the components of the pair in parallel, then constructs the
pair itself from these values.

The abstract syntax of the parallel binding construct is given by the ab-
stract binding tree

par(e1; e2; x1.x2.e),

which makes clear that the variables x1 and x2 are bound only within e, and
not within their bindings. This ensures that evaluation of e1 is independent
of evaluation of e2, and vice versa. The typing rule for an expression of this
form is given as follows:

Γ ` e1 : τ1 Γ ` e2 : τ2 Γ, x1 : τ1, x2 : τ2 ` e : τ

Γ ` par(e1; e2; x1.x2.e) : τ
(39.1)

Although we emphasize the case of binary parallelism, it should be clear
that this construct easily generalizes to n-way parallelism for any static
value of n. We may also define an n-way parallel let construct from the
binary parallel let by cascading binary splits. (For a treatment of n-way
parallelism for a dynamic value of n, see Section 39.3.)

We will give both a sequential and a parallel dynamics of the parallel
let construct. The definition of the sequential dynamics as a transition
judgment of the form e 7→seq e′ is entirely straightforward:

e1 7→ e′1
par(e1; e2; x1.x2.e) 7→seq par(e′1; e2; x1.x2.e)

(39.2a)

e1 val e2 7→ e′2
par(e1; e2; x1.x2.e) 7→seq par(e1; e′2; x1.x2.e)

(39.2b)
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e1 val e2 val

par(e1; e2; x1.x2.e) 7→seq [e1, e2/x1, x2]e
(39.2c)

The parallel dynamics is given by a transition judgment of the form e 7→par

e′, defined as follows:

e1 7→par e′1 e2 7→par e′2
par(e1; e2; x1.x2.e) 7→par par(e′1; e′2; x1.x2.e)

(39.3a)

e1 7→par e′1 e2 val

par(e1; e2; x1.x2.e) 7→par par(e′1; e2; x1.x2.e)
(39.3b)

e1 val e2 7→par e′2
par(e1; e2; x1.x2.e) 7→par par(e1; e′2; x1.x2.e)

(39.3c)

e1 val e2 val

par(e1; e2; x1.x2.e) 7→par [e1, e2/x1, x2]e
(39.3d)

The parallel dynamics is idealized in that it abstracts away from any limi-
tations on parallelism that would necessarily be imposed in practice by the
availability of computing resources.

An important advantage of the present approach is captured by the im-
plicit parallelism theorem, which states that the sequential and the parallel
dynamics coincide. This means that we need never be concerned with the
semantics of a parallel program (its meaning is determined by the sequen-
tial dynamics), but only with its efficiency. As a practical matter, this means
that a program may be developed on a sequential platform, even if it is in-
tended to run on a parallel platform, because the behavior is not affected
by whether we execute it using a sequential or a parallel dynamics.

Because the sequential dynamics is deterministic (every expression has
at most one value), the implicit parallelism theorem implies that the paral-
lel dynamics is also deterministic. For this reason the implicit parallelism
theorem is also known as the deterministic parallelism theorem. This clearly
distinguishes deterministic parallelism, the subject of this chapter, from non-
deterministic concurrency, the subject of Chapters 41 and 42.

A proof of the implicit parallelism theorem may be given by giving an
evaluation dynamics, e ⇓ v, in the style of Chapter 7, and showing that

e 7→∗par v iff e ⇓ v iff e 7→∗seq v

(where v is a closed expression such that v val). The crucial rule of the
evaluation dynamics is the one governing the parallel let construct:

e1 ⇓ v1 e2 ⇓ v2 [v1, v2/x1, x2]e ⇓ v
par(e1; e2; x1.x2.e) ⇓ v

(39.4)
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It is easy to show that the sequential dynamics agrees with the evalua-
tion dynamics by a straightforward extension of the proof of Theorem 7.2.

Lemma 39.1. e 7→∗seq v iff e ⇓ v.

Proof. It suffices to show that if e 7→seq e′ and e′ ⇓ v, then e ⇓ v, and that if
e1 7→∗seq v1 and e2 7→∗seq v2 and [v1, v2/x1, x2]e 7→∗seq v, then

par x1 = e1 and x2 = e2 in e 7→∗seq v.

By a similar argument we may show that the parallel dynamics also
agrees with the evaluation dynamics, and hence with the sequential dy-
namics.

Lemma 39.2. e 7→∗par v iff e ⇓ v.

Proof. It suffices to show that if e 7→par e′ and e′ ⇓ v, then e ⇓ v, and that if
e1 7→∗par v1 and e2 7→∗par v2 and [v1, v2/x1, x2]e 7→∗par v, then

par x1 = e1 and x2 = e2 in e 7→∗par v.

The proof of the first is by a straightforward induction on the parallel dy-
namics. The proof of the second proceeds by simultaneous induction on
the derivations of e1 7→∗par v1 and e2 7→∗par v2. If e1 = v1 with v1 val and
e2 = v2 with v2 val, then the result follows immediately from the third
premise. If e2 = v2 but e1 7→par e′1 7→∗par v1, then by induction we have
that par x1 = e′1 and x2 = v2 in e 7→∗par v, and hence the result follows by an
application of Rule (39.3b). The symmetric case follows similarly by an ap-
plication of Rule (39.3c), and in the case that both e1 and e2 take a step, the
result follows by induction and Rule (39.3a).

Theorem 39.3 (Implicit Parallelism). The sequential and parallel dynamics co-
incide: for all v val, e 7→∗seq v iff e 7→∗par v.

Proof. By Lemmas 39.1 and 39.2.

The implicit parallelism theorem states that parallelism does not affect
the semantics of a program, only the efficiency of its execution. Correctness
concerns are factored out, focusing attention on complexity.
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39.2 Cost Dynamics

In this section we define a parallel cost dynamics that assigns a cost graph to
the evaluation of an expression. Cost graphs are defined by the following
grammar:

Cost c ::= 0 zero cost
1 unit cost
c1 ⊗ c2 parallel combination
c1 ⊕ c2 sequential combination

A cost graph is a form of series-parallel directed acyclic graph, with a des-
ignated source node and sink node. For 0 the graph consists of one node
and no edges, with the source and sink both being the node itself. For 1 the
graph consists of two nodes and one edge directed from the source to the
sink. For c1 ⊗ c2, if g1 and g2 are the graphs of c1 and c2, respectively, then
the graph has two additional nodes, a source node with two edges to the
source nodes of g1 and g2, and a sink node, with edges from the sink nodes
of g1 and g2 to it. Finally, for c1 ⊕ c2, where g1 and g2 are the graphs of c1
and c2, the graph has as source node the source of g1, as sink node the sink
of g2, and an edge from the sink of g1 to the source of g2.

The intuition behind a cost graph is that nodes represent subcompu-
tations of an overall computation, and edges represent sequentiality con-
straints stating that one computation depends on the result of another, and
hence cannot be started before the one on which it depends completes. The
product of two graphs represents parallelism opportunities in which there are
no sequentiality constraints between the two computations. The assign-
ment of source and sink nodes reflects the overhead of forking two parallel
computations and joining them after they have both completed.

We associate with each cost graph two numeric measures, the work,
wk(c), and the depth, dp(c). The work is defined by the following equa-
tions:

wk(c) =


0 if c = 0
1 if c = 1
wk(c1) + wk(c2) if c = c1 ⊗ c2

wk(c1) + wk(c2) if c = c1 ⊕ c2

(39.5)
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The depth is defined by the following equations:

dp(c) =


0 if c = 0
1 if c = 1
max(dp(c1), dp(c2)) if c = c1 ⊗ c2

dp(c1) + dp(c2) if c = c1 ⊕ c2

(39.6)

Informally, the work of a cost graph determines the total number of com-
putation steps represented by the cost graph, and thus corresponds to the
sequential complexity of the computation. The depth of the cost graph de-
termines the critical path length, the length of the longest dependency chain
within the computation, which imposes a lower bound on the parallel com-
plexity of a computation. The critical path length is the least number of
sequential steps that can be taken, even if we have unlimited parallelism
available to us, because of steps that can be taken only after the completion
of another.

In Chapter 7 we introduced cost dynamics as a means of assigning time
complexity to evaluation. The proof of Theorem 7.7 shows that e ⇓k v iff
e 7→k v. That is, the step complexity of an evaluation of e to a value v is
just the number of transitions required to derive e 7→∗ v. Here we use cost
graphs as the measure of complexity, then relate these cost graphs to the
structural dynamics given in Section 39.1.

The judgment e ⇓c v, where e is a closed expression, v is a closed value,
and c is a cost graph specifies the cost dynamics. By definition we arrange
that e ⇓0 e when e val. The cost assignment for let is given by the following
rule:

e1 ⇓c1 v1 e2 ⇓c2 v2 [v1, v2/x1, x2]e ⇓c v

par(e1; e2; x1.x2.e) ⇓(c1⊗c2)⊕1⊕c v
(39.7)

The cost assignment specifies that, under ideal conditions, e1 and e2 are to
be evaluated in parallel, and that their results are to be propagated to e.
The cost of fork and join is implicit in the parallel combination of costs, and
assign unit cost to the substitution because we expect it to be implemented
in practice by a constant-time mechanism for updating an environment.
The cost dynamics of other language constructs is specified in a similar
manner, using only sequential combination so as to isolate the source of
parallelism to the let construct.

Two simple facts about the cost dynamics are important to keep in
mind. First, the cost assignment does not influence the outcome.

Lemma 39.4. e ⇓ v iff e ⇓c v for some c.
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Proof. From right to left, erase the cost assignments to obtain an evalua-
tion derivation. From left to right, decorate the evaluation derivations with
costs as determined by the rules defining the cost dynamics.

Second, the cost of evaluating an expression is uniquely determined.

Lemma 39.5. If e ⇓c v and e ⇓c′ v, then c is c′.

Proof. A routine induction on the derivation of e ⇓c v.

The link between the cost dynamics and the structural dynamics given
in the preceding section is established by the following theorem, which
states that the work cost is the sequential complexity, and the depth cost is
the parallel complexity, of the computation.

Theorem 39.6. If e ⇓c v, then e 7→w
seq v and e 7→d

par v, where w = wk(c)
and d = dp(c). Conversely, if e 7→w

seq v, then there exists c such that e ⇓c v
with wk(c) = w, and if e 7→d

par v′, then there exists c′ such that e ⇓c′ v′ with
dp(c′) = d.

Proof. The first part is proved by induction on the derivation of e ⇓c v,
the interesting case being Rule (39.7). By induction we have e1 7→w1

seq v1,
e2 7→w2

seq v2, and [v1, v2/x1, x2]e 7→w
seq v, where w1 = wk(c1), w2 = wk(c2),

and w = wk(c). By pasting together derivations we obtain a derivation

par(e1; e2; x1.x2.e) 7→w1
seq par(v1; e2; x1.x2.e)

7→w2
seq par(v1; v2; x1.x2.e)

7→seq [v1, v2/x1, x2]e
7→w

seq v.

Noting that wk((c1 ⊗ c2)⊕ 1⊕ c) = w1 + w2 + 1 + w completes the proof.
Similarly, we have by induction that e1 7→d1

par v1, e2 7→d2
par v2, and e 7→d

par v,
where d1 = dp(c1), d2 = dp(c2), and d = dp(c). Assume, without loss of
generality, that d1 ≤ d2 (otherwise simply swap the roles of d1 and d2 in
what follows). We may paste together derivations as follows:

par(e1; e2; x1.x2.e) 7→d1
par par(v1; e′2; x1.x2.e)

7→d2−d1
par par(v1; v2; x1.x2.e)

7→par [v1, v2/x1, x2]e

7→d
par v.
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Calculating dp((c1 ⊗ c2)⊕ 1⊕ c) = max(d1, d2)+ 1+ d completes the proof.
Turning to the second part, it suffices to show that if e 7→seq e′ with

e′ ⇓c′ v, then e ⇓c v with wk(c) = wk(c′) + 1, and if e 7→par e′ with e′ ⇓c′ v,
then e ⇓c v with dp(c) = dp(c′) + 1.

Suppose that e = par(e1; e2; x1.x2.e0) with e1 val and e2 val. Then
e 7→seq e′, where e = [e1, e2/x1, x2]e0 and there exists c′ such that e′ ⇓c′ v.
But then e ⇓c v, where c = (0⊗ 0)⊕ 1⊕ c′, and a simple calculation shows
that wk(c) = wk(c′) + 1, as required. Similarly, e 7→par e′ for e′ as above,
and hence e ⇓c v for some c such that dp(c) = dp(c′) + 1, as required.

Suppose that e = par(e1; e2; x1.x2.e0) and e 7→seq e′, where e′ = par(e′1; e2; x1.x2.e0)

and e1 7→seq e′1. From the assumption that e′ ⇓c′ v, we have by inversion
that e′1 ⇓c′1 v1, e2 ⇓c′2 v2, and [v1, v2/x1, x2]e0 ⇓c′0 v, with c′ = (c′1 ⊗ c′2)⊕ 1⊕
c′0. By induction there exists c1 such that wk(c1) = 1 + wk(c′1) and e1 ⇓c1 v1.
But then e ⇓c v, with c = (c1 ⊗ c′2)⊕ 1⊕ c′0.

By a similar argument, suppose that e = par(e1; e2; x1.x2.e0) and e 7→par

e′, where e′ = par(e′1; e′2; x1.x2.e0) and e1 7→par e′1, e2 7→par e′2, and e′ ⇓c′ v.
Then by inversion e′1 ⇓c′1 v1, e′2 ⇓c′2 v2, [v1, v2/x1, x2]e0 ⇓c0 v. But then e ⇓c v,
where c = (c1 ⊗ c2)⊕ 1⊕ c0, e1 ⇓c1 v1 with dp(c1) = 1 + dp(c′1), e2 ⇓c2 v2
with dp(c2) = 1 + dp(c′2), and [v1, v2/x1, x2]e0 ⇓c0 v. Calculating, we obtain

dp(c) = max(dp(c′1) + 1, dp(c′2) + 1) + 1 + dp(c0)

= max(dp(c′1), dp(c′2)) + 1 + 1 + dp(c0)

= dp((c′1 ⊗ c′2)⊕ 1⊕ c0) + 1
= dp(c′) + 1,

which completes the proof.

Corollary 39.7. If e 7→w
seq v and e 7→d

par v′, then v is v′ and e ⇓c v for some c
such that wk(c) = w and dp(c) = d.

39.3 Multiple Fork-Join

So far we have confined attention to binary fork/join parallelism induced
by the parallel let construct. Although technically sufficient for many pur-
poses, a more natural programming model admits an unbounded number
of parallel tasks to be spawned simultaneously, rather than forcing them
to be created by a cascade of binary forks and corresponding joins. Such a
model, often called data parallelism, ties the source of parallelism to a data
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structure of unbounded size. The principal example of such a data struc-
ture is a sequence of values of a specified type. The primitive operations on
sequences provide a natural source of unbounded parallelism. For exam-
ple, we may consider a parallel map construct that applies a given function
to every element of a sequence simultaneously, forming a sequence of the
results.

We will consider here a simple language of sequence operations to il-
lustrate the main ideas.

Typ τ ::= seq(τ) τ seq sequence
Exp e ::= seq(e0, . . . ,en−1) [e0, . . . ,en−1] sequence

len(e) |e| size
sub(e1; e2) e1[e2] element
tab(x.e1; e2) tab(x.e1; e2) tabulate
map(x.e1; e2) [e1 | x∈ e2] map
cat(e1; e2) cat(e1; e2) concatenate

The expression seq(e0, . . . ,en−1) evaluates to an n-sequence whose ele-
ments are given by the expressions e0, . . . , en−1. The operation len(e) re-
turns the number of elements in the sequence given by e. The operation
sub(e1; e2) retrieves the element of the sequence given by e1 at the index
given by e2. The tabulate operation, tab(x.e1; e2), yields the sequence
of length given by e2 whose ith element is given by [i/x]e1. The opera-
tion map(x.e1; e2) computes the sequence whose ith element is given by
[e/x]e1, where e is the ith element of the sequence given by e2. The opera-
tion cat(e1; e2) concatenates two sequences of the same type.

The statics of these operations is given by the following typing rules:

Γ ` e0 : τ . . . Γ ` en−1 : τ

Γ ` seq(e0, . . . ,en−1) : seq(τ)
(39.8a)

Γ ` e : seq(τ)

Γ ` len(e) : nat
(39.8b)

Γ ` e1 : seq(τ) Γ ` e2 : nat
Γ ` sub(e1; e2) : τ

(39.8c)

Γ, x : nat ` e1 : τ Γ ` e2 : nat
Γ ` tab(x.e1; e2) : seq(τ)

(39.8d)

Γ ` e2 : seq(τ) Γ, x : τ ` e1 : τ′

Γ ` map(x.e1; e2) : seq(τ′)
(39.8e)

Γ ` e1 : seq(τ) Γ ` e2 : seq(τ)

Γ ` cat(e1; e2) : seq(τ)
(39.8f)
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The cost dynamics of these constructs is defined by the following rules:

e0 ⇓c0 v0 . . . en−1 ⇓cn−1 vn−1

seq(e0, . . . ,en−1) ⇓
⊗n−1

i=0 ci seq(v0, . . . ,vn−1)
(39.9a)

e ⇓c seq(v0, . . . ,vn−1)

len(e) ⇓c⊕1 num[n]
(39.9b)

e1 ⇓c1 seq(v0, . . . ,vn−1) e2 ⇓c2 num[i] (0 ≤ i < n)
sub(e1; e2) ⇓c1⊕c2⊕1 vi

(39.9c)

e2 ⇓c num[n] [num[0]/x]e1 ⇓c0 v0 . . . [num[n− 1]/x]e1 ⇓cn−1 vn−1

tab(x.e1; e2) ⇓c⊕⊗n−1
i=0 ci seq(v0, . . . ,vn−1)

(39.9d)
e2 ⇓c seq(v0, . . . ,vn−1)

[v0/x]e1 ⇓c0 v′0 . . . [vn−1/x]e1 ⇓cn−1 v′n−1

map(x.e1; e2) ⇓c⊕⊗n−1
i=0 ci seq(v′0, . . . ,v′n−1)

(39.9e)

e1 ⇓c1 seq(v0, . . . , vm−1) e2 ⇓c2 seq(v′0, . . . , v′n−1)

cat(e1; e2) ⇓c1⊕c2⊕
⊗m+n−1

i=0 1 seq(v0, . . . , vm−1, v′0, . . . , v′n−1)
(39.9f)

The cost dynamics for sequence operations may be validated by intro-
ducing a sequential and parallel cost dynamics and extending the proof of
Theorem 39.6 to cover this extension.

39.4 Provably Efficient Implementations

Theorem 39.6 states that the cost dynamics accurately models the dynamics
of the parallel let construct, whether executed sequentially or in parallel.
This validates the cost dynamics from the point of view of the dynamics
of the language, and permits us to draw conclusions about the asymptotic
complexity of a parallel program that abstracts away from the limitations
imposed by a concrete implementation. Chief among these is the restriction
to a fixed number, p > 0, of processors on which to schedule the workload.
In addition to limiting the available parallelism this also imposes some syn-
chronization overhead that must be accounted for in order to make accurate
predictions of run-time behavior on a concrete parallel platform. A provably
efficient implementation is one for which we may establish an asymptotic
bound on the actual execution time once these overheads are taken into
account.
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A provably efficient implementation must take account of the limita-
tions and capabilities of the actual hardware on which the program is to
be run. Because we are only interested in asymptotic upper bounds, it is
convenient to formulate an abstract machine model, and to show that the
primitives of the language can be implemented on this model with guar-
anteed time (and space) bounds. One popular model is the SMP, or shared-
memory multiprocessor, which consists of p > 0 sequential processors co-
ordinated by an interconnect network that provides constant-time access
to shared memory by each of the processors.1 The multiprocessor is as-
sumed to provide a constant-time synchronization primitive with which to
control simultaneous access to a memory cell. There are a variety of such
primitives, any of which is sufficient to provide a parallel fetch-and-add
instruction that allows each processor to obtain the current contents of a
memory cell and update it by adding a fixed constant in a single atomic
operation—the interconnect serializes any simultaneous accesses by more
than one processor.

Building a provably efficient implementation of parallelism involves
two majors tasks. First, we must show that each of the primitives of the
language may be implemented efficiently on the abstract machine model.
Second, we must show how to schedule the workload across the proces-
sors so as to minimize execution time by maximizing parallelism. When
working with a low-level machine model such as an SMP, both tasks in-
volve a fair bit of technical detail to show how to use low-level machine
instructions, including a synchronization primitive, to implement the lan-
guage primitives and to schedule the workload. Collecting these together,
we may then give an asymptotic bound on the time complexity of the im-
plementation that relates the abstract cost of the computation to cost of
implementing the workload on a p-way multiprocessor. The prototypical
result of this kind is called Brent’s Theorem.

Theorem 39.8. If e ⇓c v with wk(c) = w and dp(c) = d, then e may be evaluated
on a p-processor SMP in time O(max(w/p, d)).

The theorem tells us that we can never execute a program in fewer steps
than its depth, d, and that, at best, we can divide the work up evenly into
w/p rounds of execution by the p processors. Observe that if p = 1 then
the theorem establishes an upper bound of O(w) steps, the sequential com-
plexity of the computation. Moreover, if the work is proportional to the

1A slightly weaker assumption is that each access may require up to lg p time to account
for the overhead of synchronization, but we shall neglect this refinement in the present,
simplified account.
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depth, then we are unable to exploit parallelism, and the overall time is
proportional to the work alone.

This motivates the definition of a useful figure of merit, called the par-
allelizability ratio, which is the ratio, w/d, of work to depth. If w/d � p,
then the program is said to be parallelizable, because then w/p � d, and
we may therefore reduce running time by using p processors at each step.
If, on the other hand, the parallelizability ratio is a constant, then d will
dominate w/p, and we will have little opportunity to exploit parallelism to
reduce running time. It is not known, in general, whether a problem admits
a parallelizable solution. The best we can say, on present knowledge, is that
there are algorithms for some problems that have a high degree of paral-
lelizability, and there are problems for which no such algorithm is known.
It is a open problem in complexity theory to characterize which problems
are parallelizable, and which are not.

To illustrate the essential ingredients of the proof of Brent’s Theorem we
will consider a dynamics that models the scheduling of work onto p par-
allel processors, each of which implements the dynamics of L{nat⇀} as
described in Chapter 10. The parallel dynamics is defined on states ν Σ { µ }
of the form

ν a1 ∼ τ1, . . . an ∼ τn { a1 ↪→ e1 ⊗ . . .⊗ an ↪→ en },

where n ≥ 1. Such a state represents a computation that has been decom-
posed into n parallel tasks. Each task is given a name. The occurrence of
a name within a task represents a dependency of that task on the named
task. A task is said to be blocked on the tasks on which it depends; a task
with no dependencies is said to be ready.

There are two forms of transition, the local and the global. The local
transitions represent the steps of the individual processors. These consist of
the steps of execution of expressions as defined in Chapter 10, augmented
with transitions governing parallelism. The global transitions represent the
simultaneous execution of local transitions on up to some fixed number, p,
of processors.

Local transitions have the form

ν Σ a∼ τ { µ⊗ a ↪→ e } 7→loc ν Σ′ a∼ τ { µ′ ⊗ a ↪→ e′ },

where e is ready, and either (a) Σ and Σ′ are empty, and µ and µ′ are empty;
or (b) Σ and µ are empty, and Σ′ and µ′ declare the types and bindings of
two distinct names; or (c) Σ′ and µ′ are both empty, and Σ and µ declare
the types and bindings of two distinct names. These conditions correspond
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to the three possible outcomes of a local step by a task: (a) the task takes a
step of computation in the sense of Chapter 10; (b) the task forks two new
tasks, and waits for their completion; (c) the task joins two parallel tasks
that have completed execution.

ν a∼ τ { a ↪→ (λ (x:τ2) e)(e2) } 7→loc ν a∼ τ { a ↪→ [e2/x]e }
(39.10a)


ν a∼ τ { a ↪→ par(e1; e2; x1.x2.e) }

7→loc

ν a1 ∼ τ1 a2 ∼ τ2 a∼ τ { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ par(a1; a2; x1.x2.e) }


(39.10b)

e1 val e2 val
ν a1 ∼ τ1 a2 ∼ τ2 a∼ τ { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ par(a1; a2; x1.x2.e) }

7→loc

ν a∼ τ { a ↪→ [e1, e2/x1, x2]e }


(39.10c)

Rule (39.10a) illustrates one rule for the dynamics of the non-parallel as-
pects of the language; additional rules are required to cover the other cases,
allowing for nested uses of parallelism. Rule (39.10b) represents the cre-
ation of two parallel tasks on which the executing task depends. The ex-
pression par(a1; a2; x1.x2.e) is blocked on tasks a1 and a2, so that no local
step applies to it. Rule (39.10c) synchronizes a task with the tasks on which
it depends once their execution has completed; those tasks are no longer
required, and are therefore eliminated from the state.

Each global transition represents the simultaneous execution of one step
of computation on each of up to p ≥ 1 processors.

ν Σ1a1 ∼ τ1 { µ1 ⊗ a1 ↪→ e1 } 7→loc ν Σ′1a1 ∼ τ1 { µ′1 ⊗ a1 ↪→ e′1 }
. . .

ν Σnan ∼ τn { µn ⊗ an ↪→ en } 7→loc ν Σ′nan ∼ τn { µ′n ⊗ an ↪→ e′n }
ν Σ0 Σ1 a1 ∼ τ1 . . . Σn an ∼ τn { µ0 ⊗ µ1 ⊗ a1 ↪→ e1 ⊗ . . .⊗ µn ⊗ an ↪→ en }

7→glo

ν Σ0 Σ′1 a1 ∼ τ1 . . . Σ′n an ∼ τn { µ0 ⊗ µ′1 ⊗ a1 ↪→ e′1 ⊗ . . .⊗ µ′n ⊗ an ↪→ e′n }


(39.11)

At each global step some number, 1 ≤ n ≤ p, of ready tasks are scheduled
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for execution.2 Because no two distinct tasks may depend on the same
task, we may partition the n tasks so that each scheduled task is grouped
with the tasks on which it depends as necessary for any local join step.
Any local fork step introduces two fresh tasks that are added to the state
as a result of the global transition; any local join step eliminates two tasks
whose execution has completed.

A subtle point is that it is implicit in our name binding conventions that
the names of any created tasks are to be globally unique, even though they
are locally created. In implementation terms this requires a synchronization
step among the processors to ensure that task names are not acccidentally
reused among the parallel processors.

The proof of Brent’s Theorem for this high-level dynamics is now obvi-
ous, provided only that the global scheduling steps are performed greedily
so as to maximize the use of processors at each round. If, at each stage of a
computation, there are p ready tasks, then the computation will complete
in w/p steps, where w is the work complexity of the program. We may,
however, be unable to make full use of all p processors at any given stage.
This would only be because the dependencies among computations, which
are reflected in the variable occurrences and in the definition of the depth
complexity of the computation, inhibits parallelism to the extent that evalu-
ation cannot complete in fewer than d rounds. This limitation is significant
only to the extent that d is larger than w/p; otherwise, the overall time is
bounded by w/p, making maximal use of all p processors.

39.5 Notes

Parallelism should not be confused with concurrency. Parallelism is about
efficiency, not semantics; the meaning of a program is independent of whether
it is executed in parallel or not. Concurrency is about composition, not ef-
ficiency; the meaning of a concurrent program is very weakly specified so
that we may compose it with other programs without altering its mean-
ing. This distinction, and the formulation of it given here, was pioneered
by Blelloch (1990). The concept of a cost semantics and the idea of a prov-
ably efficient implementation are derived from Blelloch and Greiner (1995,
1996a).

2The rule does not require that n be chosen as large as possible. A scheduler that always
chooses the largest possible 1 ≤ n ≤ p is said to be greedy.
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Futures and Speculations

A future is a computation whose evaluation is initiated in advance of any
demand for its value. Like a suspension, a future represents a value that is
to be determined later. Unlike a suspension, a future is always evaluated,
regardless of whether its value is actually required. In a sequential setting
futures are of little interest; a future of type τ is just an expression of type τ.
In a parallel setting, however, futures are of interest because they provide a
means of initiating a parallel computation whose result is not needed until
(presumably) much later, by which time it will have been completed.

The prototypical example of the use of futures is to implementing pipelin-
ing, a method for overlapping the stages of a multistage computation to
the fullest extent possible. This minimizes the latency caused by one stage
waiting for the completion of a previous stage by allowing the two stages
to proceed in parallel until such time as an explicit dependency is encoun-
tered. Ideally, the computation of the result of an earlier stage is completed
by the time a later stage requires it. At worst the later stage must be delayed
until the earlier stage completes, incurring what is known as a pipeline stall.

A speculation is a delayed computation whose result may or may not
be needed for the overall computation to finish. The dynamics for specu-
lations executes suspended computations in parallel with the main thread
of computation, without regard to whether the value of the speculation is
actually required by the main thread. If the value of the speculation is re-
quired, then such a dynamics pays off, but if not, the effort to compute it is
wasted.

Futures are work efficient in that the overall work done by a computa-
tion involving futures is no more than the work required by a sequential
execution. Speculations, in contrast, are work inefficient in that speculative
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execution may be in vain—the overall computation may involve more steps
than the work required to compute the result. For this reason speculation
is a risky strategy for exploiting parallelism. It can make good use of avail-
able resources, but perhaps only at the expense of doing more work than
necessary!

40.1 Futures

The syntax of futures is given by the following grammar:

Typ τ ::= fut(τ) τ fut future
Exp e ::= fut(e) fut(e) future

fsyn(e) fsyn(e) synchronize

The type τ fut is the type of futures of type τ. Futures are introduced by the
expression fut(e), which schedules e for evaluation and returns a reference
to it. Futures are eliminated by the expression fsyn(e), which synchronizes
with the future referred to by e, returning its value.

40.1.1 Statics

The statics of futures is given by the following rules:

Γ ` e : τ
Γ ` fut(e) : fut(τ)

(40.1a)

Γ ` e : fut(τ)
Γ ` fsyn(e) : τ

(40.1b)

These rules are unsurprising, because futures add no new capabilities to
the language beyond providing an opportunity for parallel evaluation.

40.1.2 Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated
eagerly; synchronization returns the value of the future.

e val
fut(e) val

(40.2a)

e 7→ e′

fut(e) 7→ fut(e′)
(40.2b)
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e 7→ e′

fsyn(e) 7→ fsyn(e′)
(40.2c)

e val
fsyn(fut(e)) 7→ e (40.2d)

40.2 Speculations

The syntax of (non-recursive) speculations is given by the following gram-
mar:1

Typ τ ::= spec(τ) τ spec speculation
Exp e ::= spec(e) spec(e) speculate

ssyn(e) ssyn(e) synchronize

The type τ spec is the type of speculations of type τ. The introductory
form, spec(e), creates a computation that may be speculatively evaluated,
and the eliminatory form, ssyn(e), synchronizes with a speculation.

40.2.1 Statics

The statics of speculations is given by the following rules:

Γ ` e : τ
Γ ` spec(e) : spec(τ)

(40.3a)

Γ ` e : spec(τ)

Γ ` ssyn(e) : τ
(40.3b)

Thus, the statics for speculations as given by Rules (40.3) is essentially
equivalent to the statics for futures given by Rules (40.1).

40.2.2 Sequential Dynamics

The definition of the sequential dynamics of speculations is similar to that
of futures, except that speculations are values.

spec(e) val
(40.4a)

ssyn(spec(e)) 7→ e
(40.4b)

The only difference compared to a future is that synchronization with a
speculation may proceed even if the speculated computation is not com-
pleted.

1We confine ourselves to the non-recursive case to facilitate the comparison with futures.
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40.3 Parallel Dynamics

Futures are only interesting insofar as they admit a parallel dynamics that
allows the computation of the future to proceed concurrently with some
other computation. In this section we give a parallel dynamics of futures
and speculation in which the creation, execution, and synchronization of
tasks is made explicit. Interestingly, the parallel dynamics of futures and
speculations is identical, except for the termination condition. Whereas
futures require all tasks to be completed before termination, speculations
may be abandoned before they are completed. For the sake of concision we
will give the parallel dynamics of futures, remarking only where alterations
must be made for the parallel dynamics of speculations.

The parallel dynamics of futures relies on a modest extension to the
language given in Section 40.1 to introduce names for tasks. Let Σ be a
finite mapping assigning types to names. The expression fut[a] is a value
referring to the outcome of task a. The statics of this expression is given by
the following rule:2

Γ `Σ,a∼τ fut[a] : fut(τ)
(40.5)

Rules (40.1) carry over in the obvious way with Σ recording the types of the
task names.

States of the parallel dynamics have the form ν Σ { e ‖ µ }, where e is
the focus of evaluation, and µ records the parallel futures (or speculations)
that have been activated thus far in the computation. Formally, µ is a finite
mapping assigning expressions to the task names declared in Σ. A state is
well-formed according to the following rule:

`Σ e : τ (∀a ∈ dom(Σ)) `Σ µ(a) : Σ(a)
ν Σ { e ‖ µ } ok

(40.6)

As discussed in Chapter 36 this rule admits self-referential and mutually
referential futures. A more refined condition could as well be given that
avoids circularities; we leave this as an exercise for the reader.

The parallel dynamics is divided into two phases, the local phase, which
defines the basic steps of evaluation of an expression, and the global phase,
which executes all possible local steps in parallel. The local dynamics of

2A similar rule governs the analogous construct, spec[a], in the case of speculations.
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futures is defined by the following rules:3

fut[a] valΣ,a∼τ

(40.7a)

ν Σ { fut(e) ‖ µ } 7→loc ν Σ, a∼ τ { fut[a] ‖ µ⊗ a ↪→ e }
(40.7b)

ν Σ { e ‖ µ } 7→loc ν Σ′ { e′ ‖ µ′ }
ν Σ { fsyn(e) ‖ µ } 7→loc ν Σ′ { fsyn(e′) ‖ µ′ }

(40.7c)

e′ valΣ,a∼τ
ν Σ, a∼ τ { fsyn(fut[a]) ‖ µ⊗ a ↪→ e′ }

7→loc

ν Σ, a∼ τ { e′ ‖ µ⊗ a ↪→ e′ }

 (40.7d)

Rule (40.7b) activates a future named a executing the expression e and re-
turns a reference to it. Rule (40.7d) synchronizes with a future whose value
has been determined. Note that a local transition always has the form

ν Σ { e ‖ µ } 7→loc ν Σ Σ′ { e′ ‖ µ⊗ µ′ }

where Σ′ is either empty or declares the type of a single symbol, and µ′ is
either empty or of the form a ↪→ e′ for some expression e′.

A global step of the parallel dynamics consists of at most one local step
for the focal expression and one local step for each of up to p futures, where
p > 0 is a fixed parameter representing the number of processors.

µ = µ0 ⊗ a1 ↪→ e1 ⊗ . . .⊗ an ↪→ en

µ′′ = µ0 ⊗ a1 ↪→ e′1 ⊗ . . .⊗ an ↪→ e′n
ν Σ { e ‖ µ } 7→0,1

loc ν Σ Σ′ { e′ ‖ µ⊗ µ′ }
(∀1 ≤ i ≤ n) ν Σ { ei ‖ µ } 7→loc ν Σ Σ′i { e′i ‖ µ⊗ µ′i }

ν Σ { e ‖ µ }
7→glo

ν Σ Σ′ Σ′1 . . . Σ′n { e′ ‖ µ′′ ⊗ µ′ ⊗ µ′1 ⊗ . . .⊗ µ′n }


(40.8a)

Rule (40.8a) allows the focus expression to take either zero or one steps be-
cause it may be blocked awaiting the completion of evaluation of a parallel

3These rules must be augmented by a reformulation of the dynamics of the other con-
structs of the language phrased in terms of the present notion of state.
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future (or synchronizing with a speculation). The futures allocated by the
local steps of execution are consolidated in the result of the global step. We
assume without loss of generality that the names of the new futures in each
local step are pairwise disjoint so that the combination makes sense. In im-
plementation terms satisfying this disjointness assumption means that the
processors must synchronize their access to memory.

The initial state of a computation, whether for futures or speculations,
is defined by the rule

ν ∅ { e ‖ ∅ } initial
(40.9)

Final states differ according to whether we are considering futures or spec-
ulations. In the case of futures a state is final iff both the focus and all
parallel futures have completed evaluation:

e valΣ µ valΣ

ν Σ { e ‖ µ } final
(40.10a)

(∀a ∈ dom(Σ)) µ(a) valΣ
µ valΣ

(40.10b)

In the case of speculations a state is final iff the focus is a value:

e valΣ
ν Σ { e ‖ µ } final

(40.11)

This corresponds to the speculative nature of the parallel evaluation of
speculations whose outcome may not be needed to determine the final out-
come of the program.

40.4 Applications of Futures

Pipelining provides a good example of the use of parallel futures. Consider
a situation in which a producer builds a list whose elements represent units
of work, and a consumer traverses the work list and acts on each element of
that list. The elements of the work list can be thought of as “instructions”
to the consumer, which maps a function over that list to carry out those
instructions. An obvious sequential implementation first builds the work
list, then traverses it to perform the work indicated by the list. This is fine as
long as the elements of the list can be produced quickly, but if each element
requires a substantial amount of computation, it would be preferable to
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overlap production of the next list element with execution of the previous
unit of work. This can be easily programmed using futures.

Let flist be the recursive type µt.unit+ (nat× t fut), whose ele-
ments are nil, defined to be fold(l · 〈〉), and cons(e1,e2), defined to be
fold(r · 〈e1, fut(e2)〉). The producer is a recursive function that generates
a value of type flist:

fix produce : (nat → nat opt) → nat → flist is

λ f. λ i.

case f(i) {
null ⇒ nil

| just x ⇒ cons(x, fut (produce f (i+1)))

}

On each iteration the producer generates a parallel future to produce the
tail. This computation proceeds after the producer returns so that it over-
laps subsequent computation.

The consumer folds an operation over the work list as follows:

fix consume : ((nat×nat)→nat) → nat → flist → nat is

λ g. λ a. λ xs.

case xs {
nil ⇒ a

| cons (x, xs) ⇒ consume g (g (x, a)) (syn xs)

}

The consumer synchronizes with the tail of the work list just at the point
where it makes a recursive call and hence requires the head element of
the tail to continue processing. At this point the consumer will block, if
necessary, to await computation of the tail before continuing the recursion.

Another application of futures is to provide more control over paral-
lelism in a language with lazy suspensions (as described in Chapter 37).
Rather than evaluate suspensions speculatively, which is not work efficient,
we may instead add futures to the language in addition to suspensions.
One application of futures in such a setting is called a spark. A spark is a
computation that is executed in parallel with another purely for its effect on
suspensions. The spark traverses a data structure, forcing the suspensions
within so that their values are computed and stored, but otherwise yielding
no useful result. The idea is that the spark forces the suspensions that will
be needed by the main computation, but taking advantage of parallelism
in the hope that their values will have been computed by the time the main
computation requires them.
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The sequential dynamics of the spark expression spark(e1; e2) is simply
to evaluate e1 before evaluating e2. This is useful in the context of a by-
need dynamics for suspensions, because evaluation of e1 will record the
values of some suspensions in the memo table for subsequent use by the
computation e2. The parallel dynamics specifies, in addition, that e1 and e2
are to be evaluated in parallel. The behavior of sparks is captured by the
definition of spark(e1; e2) in terms of futures:

let be fut(e1) in e2.

Evaluation of e1 commences immediately, but its value, if any, is aban-
doned. This encoding does not allow for evaluation of e1 to be abandoned
as soon as e2 reaches a value, but this scenario is not expected to arise for
the intended mode of use of sparks. The expression e1 should be a quick
traversal that does nothing other than force the suspensions in some data
structure, exiting as soon as this is complete. Presumably this computation
takes less time than it takes for e2 to perform its work before forcing the
suspensions that were forced by e2, otherwise there is little to be gained
from the use of sparks in the first place!

As an example, consider the type strm of streams of numbers defined
by the recursive type µt.(unit+ (nat× t)) spec. Elements of this type
are suspended computations that, when forced, either signals the end of
stream, or produces a number and another such stream. Suppose that s
is such a stream, and assume that we know, for reasons of its construc-
tion, that it is finite. We wish to compute map( f)(s) for some function
f , and to overlap this computation with the production of the stream el-
ements. We will make use of a function mapforce that forces successive
elements of the input stream, but yields no useful output. The compu-
tation spark(mapforce(s); map( f)(s)) forces the elements of the stream
in parallel with the computation of map( f)(s), with the intention that all
suspensions in s are forced before their values are required by the main
computation.

As another example, we may use futures to encode binary nested par-
allelism by defining par(e1; e2; x1.x2.e) to stand for the expression

let x′1 be fut(e1) in let x2 be e2 in let x1 be fsyn(x′1) in e

The order of bindings is important to ensure that evaluation of e2 proceeds
in parallel with evaluation of e1. Observe that evaluation of e cannot, in any
case, proceed until both are complete.
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40.5 Notes

Futures were introduced in the MultiLisp language (Halstead, 1985). The
same concept was considered by Arvind et al. (1986) under the name “I-
structures.” The formulation given here is based on Greiner and Blelloch
(1999).
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Concurrency





Chapter 41

Process Calculus

So far we have mainly studied the statics and dynamics of programs in iso-
lation, without regard to their interaction with the world. But to extend this
analysis to even the most rudimentary forms of input and output requires
that we consider external agents that interact with the program. After all,
the whole purpose of a computer is, ultimately, to interact with a person!

To extend our investigations to interactive systems, we begin with the
study of process calculi, which are abstract formalisms that capture the essence
of interaction among independent agents. The development will proceed
in stages, starting with simple action models, then extending to interacting
concurrent processes, and finally to synchronous and asynchronous com-
munication. The calculus consists of two main syntactic categories, pro-
cesses and events. The basic form of process is one that awaits the arrival
of an event. Processes are closed under parallel composition (the product
of processes), replication, and declaration of a channel. The basic forms of
event are signaling on a channel and querying a channel; these are later
generalized to sending and receiving data on a channel. Events are closed
under a finite choice (sum) of events. When enriched with types of mes-
sages and channel references, the process calculus may be seen to be uni-
versal in that it is at least as powerful as the untyped λ-caclulus.

41.1 Actions and Events

Our treatment of concurrent interaction is based on the notion of an event,
which specifies the actions that a process is prepared to undertake in con-
cert with another process. Two processes interact by undertaking two com-
plementary actions, which may be thought of as a signal and a query on a



416 41.1 Actions and Events

channel. The processes synchronize when one signals on a channel that the
other is querying, after which they both proceed independently to interact
with other processes.

To begin with we will focus on sequential processes, which simply await
the arrival of one of several possible actions, known as an event.

Proc P ::= await(E) $ E synchronize
Evt E ::= null 0 null

or(E1; E2) E1 + E2 choice
que[a](P) ?a;P query
sig[a](P) !a;P signal

The variable a ranges over symbols serving as channel names that mediate
communication among the processes.

We will not distinguish between events that differ only up to structural
congruence, which is defined to be the strongest equivalence relation closed
under these rules:

E ≡ E′
$ E ≡ $ E′

(41.1a)

E1 ≡ E′1 E2 ≡ E′2
E1 + E2 ≡ E′1 + E′2

(41.1b)

P ≡ P′
?a;P ≡ ?a;P′

(41.1c)

P ≡ P′
!a;P ≡ !a;P′

(41.1d)

E + 0 ≡ E
(41.1e)

E1 + E2 ≡ E2 + E1
(41.1f)

E1 + (E2 + E3) ≡ (E1 + E2)+ E3
(41.1g)

Imposing structural congruence on sequential processes enables us to think
of an event as having the form

!a;P1 + . . . + ?a;Q1 + . . .

consisting of a sum of signal and query events, with the sum of no events
being the null event, 0.
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An illustrative example of Milner’s is a simple vending machine that
may take in a 2p coin, then optionally either permit selection of a cup of
tea, or take another 2p coin, then permit selection of a cup of coffee.

V = $ (?2p;$ (!tea;V + ?2p;$ (!cof;V)))

As the example indicates, we permit recursive definitions of processes,
with the understanding that a defined identifier may always be replaced
with its definition wherever it occurs. (Later we will show how to avoid
reliance on recursive definitions.)

Because the computation occurring within a process is suppressed, se-
quential processes have no dynamics on their own, but only through their
interaction with other processes. For the vending machine to operate there
must be another process (you) who initiates the events expected by the ma-
chine, causing both your state (the coins in your pocket) and its state (as
just described) to change as a result.

41.2 Interaction

Processes become interesting when they are allowed to interact with one
another to achieve a common goal. To account for interaction we enrich
the language of processes with concurrent composition:

Proc P ::= await(E) $ E synchronize
stop 1 inert
par(P1; P2) P1 ‖ P2 composition

The process 1 represents the inert process, and the process P1 ‖ P2 represents
the concurrent composition of P1 and P2. We may identify 1 with $ 0, the
process that awaits the event that will never occur, but we prefer to treat
the inert process as a primitive concept.

We will identify processes up to structural congruence, which is defined
to be the strongest equivalence relation closed under these rules:

P ‖ 1 ≡ P
(41.2a)

P1 ‖ P2 ≡ P2 ‖ P1
(41.2b)

P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3
(41.2c)
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P1 ≡ P′1 P2 ≡ P′2
P1 ‖ P2 ≡ P′1 ‖ P′2

(41.2d)

Up to structural congruence every process has the form

$ E1 ‖ . . . ‖ $ En

for some n ≥ 0, it being understood that when n = 0 this stands for the
null process, 1.

Interaction between processes consists of synchronization of two com-
plementary actions. The dynamics of interaction is defined by two forms
of judgment. The transition judgment P 7→ P′ states that the process P
evolves to the process P′ as a result of a single step of computation. The
family of transition judgments, P α7−→ P′, where α is an action, states that
the process P may evolve to the process P′ provided that the action α is
permissible in the context in which the transition occurs (in a sense to be
made precise momentarily). As a notational convenience, we often regard
the unlabeled transition to be the labeled transition corresponding to the
special silent action.

The possible actions are given by the following grammar:

Act α ::= que[a] a ? query
sig[a] a ! signal
sil ε silent

The query action, a ?, and the signal action, a !, are complementary, and the
silent action, ε, is self-complementary. We define the complementary action to
α to be the action α given by the equations a ? = a !, a ! = a ?, and ε = ε.

$ (!a;P + E) a !7−→ P
(41.3a)

$ (?a;P + E) a ?7−→ P
(41.3b)

P1
α7−→ P′1

P1 ‖ P2
α7−→ P′1 ‖ P2

(41.3c)

P1
α7−→ P′1 P2

α7−→ P′2 α 6= ε

P1 ‖ P2 7→ P′1 ‖ P′2
(41.3d)
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Rules (41.3a) and (41.3b) specify that any of the events on which a pro-
cess is synchronizing may occur. Rule (41.3d) synchronizes two processes
that take complementary actions.

As an example, let us consider the interaction of the vending machine,
V, with the user process, U, defined as follows:

U = $ !2p;$ !2p;$ ?cof;1.

Here is a trace of the interaction between V and U:

V ‖U 7→ $ (!tea;V + ?2p;$ !cof;V) ‖ $ !2p;$ ?cof;1
7→ $ !cof;V ‖ $ ?cof;1
7→ V

These steps are justified, respectively, by the following pairs of labeled tran-
sitions:

U
2p !7−→ U′ = $ !2p;$ ?cof;1

V
2p ?7−−→ V ′ = $ (!tea;V + ?2p;$ !cof;V)

U′
2p !7−→ U′′ = $ ?cof;1

V ′
2p ?7−−→ V ′′ = $ !cof;V

U′′ cof ?7−−→ 1

V ′′ cof !7−−→ V

We have suppressed uses of structural congruence in the above derivations
to avoid clutter, but it is important to see its role in managing the non-
deterministic choice of events by a process.

41.3 Replication

Some presentations of process calculi forego reliance on defining equations
for processes in favor of a replication construct, which we write ∗ P. This
process stands for as many concurrently executing copies of P as we may
require, which may be modeled by the structural congruence

∗ P ≡ P ‖ ∗ P. (41.4)
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Understood as a principle of structural congruence, this rule hides the steps
of process creation, and gives no hint as to how often it can or should be ap-
plied. We could alternatively build replication into the dynamics to model
the details of replication more closely:

∗ P 7→ P ‖ ∗ P. (41.5)

Because the application of this rule is unconstrained, it may be applied at
any time to effect a new copy of the replicated process P.

So far we have been using recursive process definitions to define pro-
cesses that interact repeatedly according to some protocol. Rather than take
recursive definition as a primitive notion, we may instead use replication
to model repetition. This may be achieved by introducing an “activator”
process that is contacted to effect the replication. Consider the recursive
definition X = P(X), where P is a process expression that may refer to it-
self as X. Such a self-referential process may be simulated by defining the
activator process

A = ∗ $ (?a;P($ (!a;1))),

in which we have replaced occurrences of X within P by an initiator process
that signals the event a to the activator. Observe that the activator, A, is
structurally congruent to the process A′ ‖ A, where A′ is the process

$ (?a;P($ (!a;1))).

To start process P we concurrently compose the activator, A, with an initia-
tor process, $ (!a;1). Observe that

A ‖ $ (!a;1) 7→ A ‖ P(!a;1),

which starts the process P while maintaining a running copy of the activa-
tor, A.

As an example, let us consider Milner’s vending machine written using
replication, rather than using recursive process definition:

V0 = $ (!v;1) (41.6)
V1 = ∗ $ (?v;V2) (41.7)
V2 = $ (?2p;$ (!tea;V0 + ?2p;$ (!cof;V0))) (41.8)

The process V1 is a replicated server that awaits a signal on channel v to
create another instance of the vending machine. The recursive calls are
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replaced by signals along v to re-start the machine. The original machine,
V, is simulated by the concurrent composition V0 ‖V1.

This example motivates a commonly-considered restriction on replica-
tion that avoids the indeterminacy inherent in choosing when and whether
to expand a replication into a parallel composition. To avoid this, we may
replace general replication by replicated synchronization, which is governed
by the following rules:

∗ $ (!a;P + E) a !7−→ P ‖ ∗ $ (!a;P + E)
(41.9a)

∗ $ (?a;P + E) a ?7−→ P ‖ ∗ $ (?a;P + E)
(41.9b)

The process ∗ $ (E) is to be regarded not as a composition of replication
and synchronization, but as the inseparable combination of these two con-
structs. The advantage is that the replication occurs only as needed, pre-
cisely when a synchronization with another process is possible. This avoids
the need to “guess”, either by structural congruence or an explicit step,
when to replicate a process.

41.4 Allocating Channels

It is often useful (particularly once we have introduced inter-process com-
munication) to introduce new channels within a process, rather than as-
sume that all channels of interaction are given a priori. To allow for this, the
syntax of processes is enriched with a channel declaration primitive:

Proc P ::= new(a.P) ν a.P new channel

The channel, a, is bound within the process P, and hence may be renamed
at will (avoiding conflicts) within P. To simplify notation we sometimes
write ν a1, . . . , ak.P for the iterated declaration ν a1.. . . ν ak.P.

Structural congruence is extended with the following rules:

P =α P′

P ≡ P′
(41.10a)

P ≡ P′
ν a.P ≡ ν a.P′

(41.10b)
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a /∈ P2

(ν a.P1) ‖ P2 ≡ ν a.(P1 ‖ P2)
(41.10c)

(a /∈ P)
ν a.P ≡ P

(41.10d)

Rule (41.10c), called scope extrusion, will be especially important in Sec-
tion 41.5. Rule (41.10d) states that channels may be de-allocated once they
are no longer in use.

To account for the scopes of names (and to prepare for later generaliza-
tions) it is useful to introduce a static semantics for processes that ensures
that names are properly scoped. A signature, Σ, is, for the time being, a
finite set of channels. The judgment `Σ P proc states that a process, P, is
well-formed relative to the channels declared in the signature, Σ.

`Σ 1 proc
(41.11a)

`Σ P1 proc `Σ P2 proc

`Σ P1 ‖ P2 proc
(41.11b)

`Σ E event

`Σ $ E proc
(41.11c)

`Σ,a P proc

`Σ ν a.P proc
(41.11d)

The foregoing rules make use of an auxiliary judgment, `Σ E event, stating
that E is a well-formed event relative to Σ.

`Σ 0 event
(41.12a)

`Σ,a P proc

`Σ,a ?a;P event
(41.12b)

`Σ,a P proc

`Σ,a !a;P event
(41.12c)

`Σ E1 event `Σ E2 event

`Σ E1 + E2 event
(41.12d)

We shall also have need of the judgment `Σ α action stating that α is a
well-formed action relative to Σ:

`Σ,a a ? action
(41.13a)
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`Σ,a a ! action
(41.13b)

`Σ ε action
(41.13c)

The dynamics is correspondingly generalized to keep track of the set of
active channels. The judgment P α7−→

Σ
P′ states that P transitions to P′ with

action α relative to channels Σ. The rules defining the dynamics are indexed
forms of those given above, augmented by an additional rule governing the
declaration of a channel. We give the complete set of rules here for the sake
of clarity.

$ (!a;P + E) a !7−→
Σ,a

P
(41.14a)

$ (?a;P + E) a ?7−→
Σ,a

P
(41.14b)

P1
α7−→
Σ

P′1

P1 ‖ P2
α7−→
Σ

P′1 ‖ P2

(41.14c)

P1
α7−→
Σ

P′1 P2
α7−→
Σ

P′2 α 6= ε

P1 ‖ P2 7−→
Σ

P′1 ‖ P′2
(41.14d)

P α7−→
Σ,a

P′ `Σ α action

ν a.P α7−→
Σ

ν a.P′
(41.14e)

Rule (41.14e) states that no process may interact with ν a.P along the locally-
allocated channel, a, because to do so would require that a already be de-
clared in Σ, which is precluded by the freshness convention on binders.

As an example, let us consider again the definition of the vending ma-
chine using replication, rather than recursion. The channel, v, used to ini-
tialize the machine should be considered private to the machine itself, and
not be made available to a user process. This is naturally expressed by the
process expression ν v.(V0 ‖V1), where V0 and V1 are as defined above us-
ing the designated channel, v. This process correctly simulates the original

REVISED 05.15.2012 VERSION 1.32



424 41.5 Communication

machine, V, because it precludes interaction with a user process on channel
v. If U is a user process, the interaction begins as follows:

(ν v.(V0 ‖V1)) ‖U 7−→
Σ

(ν v.V2) ‖U ≡ ν v.(V2 ‖U).

(The processes V0, V1, and V2 are those defined earlier.) The interaction
continues as before, albeit within the scope of the binder, provided that v
has been chosen (by structural congruence) to be apart from U, ensuring
that it is private to the internal workings of the machine.

41.5 Communication

Synchronization is the coordination of the execution of two processes that
are willing to undertake the complementary actions of signalling and query-
ing a common channel. Synchronous communication is a natural generaliza-
tion of synchronization to allow more than one bit of data to be communi-
cated between two coordinating processes, a sender and a receiver. In prin-
ciple any type of data may be communicated from one process to another,
and we can give a uniform account of communication that is independent
of the type of data communicated between processes. Communication be-
comes more interesting in the presence of a type of channel references, which
allow access to a communication channel to be propagated from one pro-
cess to another, allowing alteration of the interconnection topology among
processes during execution. (Channel references will be discussed in Sec-
tion 41.6.)

To account for interprocess communication we must enrich the lan-
guage of processes to include variables, as well as channels, in the formalism.
Variables range, as always, over types, and are given meaning by substitu-
tion. Channels, on the other hand, are assigned types that classify the data
carried on that channel, and are given meaning by send and receive events
that generalize the signal and query events considered earlier. The abstract
syntax of communication events is given by the following grammar:

Evt E ::= snd[a](e; P) ! a(e;P) send
rcv[a](x.P) ? a(x.P) receive

The event rcv[a](x.P) represents the receipt of a value, x, on the channel
a, passing x to the process P. The variable, x, is bound within P, and hence
may be chosen freely, subject to the usual restrictions on the choice of names
of bound variables. The event snd[a](e; P) represents the transmission of
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(the value of) the expression e on channel a, continuing with the process P
only once this value has been received.

To account for the type of data that may be sent on a channel, the syntax
of channel declaration is generalized to associate a type with each channel
name.

Proc P ::= new[τ](a.P) ν a∼τ.P typed channel

The process new[τ](a.P) introduces a new channel name, a, with associ-
ated type τ for use within the process P. The name, a, is bound within P,
and hence may be chosen at will, subject only to avoidance of confusion of
distinct names.

The statics of communication extends that of synchronization by associ-
ating types to channels and by considering variables that range over a type.
The judgment Γ `Σ P proc states that P is a well-formed process involving
the channels declared in Σ and the variables declared in Γ. It is inductively
defined by the following rules, wherein we assume that the typing judg-
ment Γ `Σ e : τ is given separately.

Γ `Σ 1 proc
(41.15a)

Γ `Σ P1 proc Γ `Σ P2 proc

Γ `Σ P1 ‖ P2 proc
(41.15b)

Γ `Σ,a∼τ P proc

Γ `Σ ν a∼τ.P proc
(41.15c)

Γ `Σ E event

Γ `Σ $ E proc
(41.15d)

Rules (41.15) make use of the auxiliary judgment Γ `Σ E event, stating that
E is a well-formed event relative to Γ and Σ, which is defined as follows:

Γ `Σ 0 event
(41.16a)

Γ `Σ E1 event Γ `Σ E2 event

Γ `Σ E1 + E2 event
(41.16b)

Γ, x : τ `Σ,a∼τ P proc

Γ `Σ,a∼τ ? a(x.P) event
(41.16c)

Γ `Σ,a∼τ e : τ Γ `Σ,a∼τ P proc

Γ `Σ,a∼τ ! a(e;P) event
(41.16d)

REVISED 05.15.2012 VERSION 1.32



426 41.5 Communication

Rule (41.16d) makes use of a typing judgment for expressions that ensures
that the type of a channel is respected by communication.

The dynamics of synchronous communication is similarly an extension
of the dynamics of synchronization. Actions are generalized to include the
transmitted value, as well as the channel and its orientation:

Act α ::= rcv[a](e) a ? e receive
snd[a](e) a ! e send
sil ε silent

Complementarity is defined, essentially as before, to switch the orientation
of an action: a ? e = a ! e, a ! e = a ? e, and ε = ε.

The statics ensures that the expression associated with these actions is
a value of a type suitable for the channel:

`Σ,a∼τ e : τ e valΣ,a∼τ

`Σ,a∼τ a ! e action
(41.17a)

`Σ,a∼τ e : τ e valΣ,a∼τ

`Σ,a∼τ a ? e action
(41.17b)

`Σ ε action
(41.17c)

The dynamics of synchronous communication is defined by replacing
Rules (41.14a) and (41.14b) with the following rules:

e 7−−−→
Σ,a∼τ

e′

$ (! a(e;P)+ E) 7−−−→
Σ,a∼τ

$ (! a(e′;P)+ E)
(41.18a)

e valΣ,a∼τ

$ (! a(e;P)+ E) a!e7−−−→
Σ,a∼τ

P (41.18b)

e valΣ,a∼τ

$ (? a(x.P)+ E) a?e7−−−→
Σ,a∼τ

[e/x]P (41.18c)

Rule (41.18c) is non-deterministic in that it “guesses” the value, e, to be re-
ceived along channel a. Rules (41.18) make reference to the dynamics of
expressions, which is left unspecified here so as to avoid an a priori com-
mitment as to the nature of values communicated on a channel.
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Using synchronous communication, both the sender and the receiver of
a message are blocked until the interaction is completed. This means that
the sender must be notified whenever a message is received, and hence
there must be an implicit reply channel from the receiver to the sender for
the notification. This suggests that synchronous communication may be
decomposed into a simpler asynchronous send operation, which transmits a
message on a channel without waiting for its receipt, together with channel
passing to transmit an acknowledgement channel along with the message
data.

Asynchronous communication is defined by removing the synchronous
send event from the process calculus, and adding a new form of process
that simply sends a message on a channel. The syntax of asynchronous
send is as follows:

Proc P ::= asnd[a](e) ! a(e) send

The process asnd[a](e) sends the message e on channel a, and then termi-
nates immediately. Without the synchronous send event, every event is, up
to structural congruence, a choice of zero or more read events. The statics
of asnychronous send is given by the following rule:

Γ `Σ,a∼τ e : τ

Γ `Σ,a∼τ ! a(e) proc
(41.19)

The dynamics is similarly straightforward:

e valΣ

! a(e) a!e7−→
Σ

1 (41.20)

The rule for interprocess communication given earlier remains unchanged,
because the action associated with the asychronous send is the same as in
the synchronous case. We may regard a pending asynchronous send as a
“buffer” in which the message is held until a receiver is selected.

41.6 Channel Passing

An interesting case of interprocess communication arises when one pro-
cess passes one channel to another along a common channel. The channel
passed by the sending process need not have been known a priori to the
receiving process. This allows for new patterns of communication to be
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established among processes. For example, two processes, P and Q, may
share a channel, a, along which they may send and receive messages. If
the scope of a is limited to these processes, then no other process, R, may
communicate on that channel; it is, in effect, a private channel between P
and Q.

It frequently arises, however, that P and Q wish to include the process
R in their conversation in a controlled manner. This may be accomplished
by first expanding the scope of the channel a to encompass R, then send-
ing (a reference to) the channel a to R along a pre-arranged channel. Upon
receipt of the channel reference, R may communicate with P and Q using
send and receive operations that act on channel references. Bearing in mind
that channels are not themselves forms of expression, such a scenario can
be enacted by introducing a type, τ chan, whose values are references to
channels carrying values of type τ. The elimination forms for the chan-
nel type are send and receive operations that act on references, rather than
explicitly given channels.1

Such a situation may be described schematically by the process expres-
sion

(ν a∼τ.(P ‖Q)) ‖ R,

in which the process R is initially excluded from the scope of the chan-
nel a, whose scope encompasses both the processes P and Q. The type τ
represents the type of data communicated along channel a; it may be cho-
sen arbitrarily for the sake of this example. The processes P and Q may
communicate with each other by sending and receiving along channel a. If
these two processes wish to include R in the conversation, then they must
communicate the identity of channel a to the process R along some pre-
arranged channel, b. If a is a channel carrying values of type τ, then b
will be a channel carrying values of type τ chan, which are references to
τ-carrying channels. The channel b must be known to at least one of P and
Q, and also to channel R. This can be described by the following process
expression:

ν b∼τ chan.((ν a∼τ.(P ‖Q)) ‖ R).

Suppose that P wishes to include R in the conversation by sending a
reference to the channel a along b. The process R correspondingly receives
a reference to a channel on the channel b, and commences communication

1It may be helpful to compare channel types with reference types as described in Chap-
ters 35 and 36. Channels correspond to assignables, and channel types correspond to refer-
ence types.
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with P and Q along that channel. Thus P has the form $ (! b(& a;P′)) and
R has the form $ (? b(x.R′)). The overall process has the form

ν b∼τ chan.(ν a∼τ.($ (! b(& a;P′)) ‖Q) ‖ $ (? b(x.R′))).

Note carefully that the declaration of the channel b specifies that it carries a
channel reference, not that it is a channel reference.

The process P is prepared to send a reference to the channel a along the
channel b, where it may be received by the process R. But the scope of a is
limited to processes P and Q, so in order for the communication to succeed,
we must first expand its scope to encompass R using the concept of scope
extrusion introduced in Section 41.4 to obtain the structurally equivalent
process

ν b∼τ chan.ν a∼τ.($ (! b(& a;P′)) ‖Q ‖ $ (? b(x.R′))).

The scope of a has been expanded to encompass R, preparing the ground
for communication between P and R, which results in the process

ν b∼τ chan.ν a∼τ.(P′ ‖Q ‖ [& a/x]R′).

The reference to the channel a has been substituted for the variable x within
R′.

The process R may now communicate with P and Q by sending and
receiving messages along the channel referenced by x. This is accomplished
using dynamic forms of send and receive in which the channel on which
to communicate is determined by evaluation of an expression, rather than
specified statically by an explicit channel name. For example, to send a
message e of type τ along the channel referred to by x, the process R′ would
have the form

$ (!! (x;e;R′′)).

Similarly, to receive along the referenced channel, the process R′ would
have the form

$ (?? (x;y.R′′)).

In both cases the dynamic communication forms evolve to the static com-
munication forms once the referenced channel has been determined.

The syntax of channel types is given by the following grammar:

Typ τ ::= chan(τ) τ chan channel type
Exp e ::= ch[a] & a reference
Evt E ::= sndref(e1; e2; P) !! (e1;e2;P) send

rcvref(e; x.P) ?? (e;x.P) receive
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The events sndref(e1; e2; P) and rcvref(e; x.P) are dynamic versions of
the events snd[a](e; P) and rcv[a](x.P) in which the channel is deter-
mined dynamically by evaluation of an expression, rather than statically as
a fixed parameter of the event.

The statics of channel references is given by the following rules:

Γ `Σ,a∼τ & a : τ chan
(41.21a)

Γ `Σ e1 : τ chan Γ `Σ e2 : τ Γ `Σ P proc

Γ `Σ !! (e1;e2;P) event
(41.21b)

Γ `Σ e : τ chan Γ, x : τ `Σ P proc

Γ `Σ ?? (e;x.P) event
(41.21c)

The introduction of channel references requires that events be evalu-
ated to determine the referent of a dynamically determined channel. This
is accomplished by adding the following rules for evaluation of a synchro-
nizing process:

e valΣ
$ (!! (& a;e;P)+ E) 7−−−→

Σ,a∼τ
$ (! a(e;P)+ E) (41.22a)

$ (?? (& a;x.P)+ E) 7−−−→
Σ,a∼τ

$ (? a(x.P)+ E) (41.22b)

In addition we require rules for evaluating each of the constituent expres-
sions of a dynamically determined event; these rules are omitted here for
the sake of concision.

41.7 Universality

In the presence of both channel references and recursive types the process
calculus with communication is a universal programming language. One
way to prove this is to show that it is capable of encoding the untyped λ-
calculus with a call-by-name dynamics (see Chapter 17). The main idea of
the encoding is to associate with each untyped λ-term, u, a process that
represents it. This encoding is defined by induction on the structure of
the untyped term, u. For the sake of the induction, the representation is
defined relative to a channel reference that represents the context in which
the term occurs. Because every term in the untyped λ-calculus is a function,

VERSION 1.32 REVISED 05.15.2012



41.7 Universality 431

the context consists of an argument and the continuation for the result of the
application. Because of the by-name interpretation of application, variables
are represented by references to “servers” that listen on a channel for a
channel reference representing a call site, and activate their bindings with
that channel reference.

We will write u @ z, where u is an untyped λ-term and z is a channel
reference representing the continuation of u. The free variables of u will be
represented by channels on which we may pass an argument and a contin-
uation. Thus, the channel reference z will be a value of type π, and a free
variable, x, will be a value of type π chan. The type π is chosen to satisfy
the isomorphism

π ∼= (π chan× π) chan.

That is, a continuation is a channel on which is passed an argument and an-
other continuation. An argument, in turn, is a channel on which is passed
a continuation.

The encoding of untyped λ-terms as processes is given by the following
equations:

x @ z = !! (x;z)

λ (x) u @ z = $ ?? (unfold(z);〈x, z′〉.u @ z′)
u1(u2) @ z =

ν a1∼π chan× π.(u1 @ fold(& a1)) ‖ ν a∼π.∗ $ ? a(z2.u2 @ z2) ‖ ! a1(〈& a, z〉)

Here we have taken a few liberties with the syntax for the sake of read-
ability. We use the asynchronous form of dynamic send operation, because
there is no need to be aware of the receipt of the message. Moreover, we use
a product pattern, rather than explicit projections, in the dynamic receive
to obtain the components of a pair.

The use of static and dynamic communication operations in the trans-
lation merits careful examination. The call site of a λ-term is determined
dynamically; we cannot predict at translation time the continuation of the
term. In particular, the binding of a variable may be used at many different
call sites, corresponding to the multiple possible uses of that variable. On
the other hand the channel associated to an argument is determined stati-
cally. The server associated to the variable listens on a statically determined
channel for a continuation in which to evaluate its binding, which, as just
remarked, is determined dynamically.

As a quick check on the correctness of the representation, consider the
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following derivation:

(λ (x) x)(y) @ z 7→∗

ν a1∼τ.($ ? a1(〈x, z′〉.!! (x;z′))) ‖ ν a∼π.∗ $ ? a(z2.!! (y;z2)) ‖ ! a1(〈& a, z〉)
7→∗ ν a∼π.∗ $ ? a(z2.!! (y;z2)) ‖ ! a(z)
7→∗ ν a∼π.∗ $ ? a(z2.!! (y;z2)) ‖ !! (y;z)

Apart from the idle server process listening on channel a, this is just the
translation y @ z. (Using the methods to be developed in detail in Chap-
ter 50, we may show that the result of the computation step is “bisimilar”
to the translation of y @ z, and hence equivalent to it for all purposes.)

41.8 Notes

Process calculi as models of concurrency and interaction were introduced
and extensively developed by Hoare (1978) and Milner (1999). Milner’s
original formulation, CCS, was introduced to model pure synchronization,
whereas Hoare’s, CSP, included value-passing. CCS was subsequently ex-
tended to become the π-calculus (Milner, 1999), which includes channel-
passing. Dozens upon dozens of variations and extensions of CSP, CCS,
and the π-calculus have been considered in the literature, and continue to
be a subject of intensive study. (See Engberg and Nielsen (2000) for an ac-
count of some of the critical developments in the area.)

The process calculus given here is derived from the π-calculus as pre-
sented in Milner (1999). (In particular, the vending machine example is
adapted from Milner’s monograph.) Unlike Milner’s account (but like re-
lated formalisms such as Abadi and Fournet (2001)) we enforce a distinc-
tion between variables and names. Variables are given meaning by sub-
stitution; a type is the range of significance of a variable, the collection of
values that may be substituted for it. Names, on the other hand, are given
meaning by the operations associated with them; the type associated with
a name is the type of data associated with the operations defined on it. The
distinction between variables and names is important, because disequality
is well-defined for names, but not for variables. We use the general concept
of a reference to pass channel names as data; this is sufficient to ensure the
universality of the process calculus.

The distinction drawn here between static and dynamic events (that
is, those that are given syntactically versus those that arise by evaluation)
flows naturally from the prior distinction between variables and names. It
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is possible to formulate the process calculus so that all uses of names are
suppressed, but then the dynamics cannot be expressed using only the ma-
chinery of the calculus itself, but instead must be augmented by an internal
concept of names. It seems preferable, in the interest of maintaining a struc-
tural operational semantics, to work with a formalism that is closed under
its own execution rules. The concept of dynamic events is taken one step
further in Concurrent ML (Reppy, 1999), wherein events are values of an
event type (see also Chapter 42).
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Chapter 42

Concurrent Algol

In this chapter we integrate concurrency into the framework of Modern-
ized Algol described in Chapter 35. The resulting language, called Concur-
rent Algol, L{nat cmd⇀ ‖}, illustrates the integration of the mechanisms
of the process calculus described in Chapter 41 into a practical program-
ming language. To avoid distracting complications, we drop assignables
from Modernized Algol entirely. (There is no loss of generality, however,
because free assignables are definable in Concurrent Algol using processes
as cells.)

The process calculus described in Chapter 41 is intended as a self-standing
model of concurrent computation. When viewed in the context of a pro-
gramming language, however, it is possible to streamline the machinery
to take full advantage of types that are in any case required for other pur-
poses. In particular the concept of a channel, which features prominently
in Chapter 41, may be identified with the concept of a dynamic class as de-
scribed in Chapter 34. More precisely, we take broadcast communication of
dynamically classified values as the basic synchronization mechanism of
the language. Being dynamically classified, messages consist of a payload
tagged with a class, or channel. The type of the channel determines the
type of the payload. Importantly, only those processes that have access to
the channel may decode the message; all others must treat it as inscrutable
data that may be passed around but not examined. In this way we can
model not only the mechanisms described in Chapter 41, but also formu-
late an abstract account of encryption and decryption in a network using
the methods described in Chapter 41.

The formulation of Concurrent Algol is based on a modal separation be-
tween commands and expressions, much as in Modernized Algol. It is also
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possible to consolidate these two levels (so as to allow benign concurrency
effects), but we do not develop this approach in detail here.

42.1 Concurrent Algol

The syntax ofL{nat cmd⇀ ‖} is obtained by stripping out assignables from
L{nat cmd⇀}, and adding a syntactic level of processes:

Typ τ ::= cmd(τ) τ cmd commands
Exp e ::= cmd(m) cmdm command
Cmd m ::= ret e ret e return

bnd(e; x.m) bnd x← e ; m sequence
Proc p ::= stop 1 idle

proc(m) proc(m) atomic
par(p1; p2) p1 ‖ p2 parallel
new[τ](a.p) ν a∼τ.p new channel

The process proc(m) is an atomic process executing the command, m. The
other forms of process are adapted from Chapter 41. If Σ has the form
a1 ∼ τ1, . . . , an ∼ τn, then we sometimes write ν Σ{p} for the iterated form
ν a1∼τ1.. . . ν an∼τn.p.

The statics is given by the judgments Γ `Σ e : τ and Γ `Σ m ∼ τ
introduced in Chapter 35, augmented by the judgment `Σ p proc stating
that p is a well-formed process over the signature Σ. The latter judgment is
defined by the following rules:

`Σ 1 proc
(42.1a)

`Σ m ∼ τ

`Σ proc(m) proc
(42.1b)

`Σ p1 proc `Σ p2 proc

`Σ p1 ‖ p2 proc
(42.1c)

`Σ,a∼τ p proc

`Σ ν a∼τ.p proc
(42.1d)

Processes are tacitly identified up to structural equivalence, as described in
Chapter 41.

The transition judgment p α7−→
Σ

p′ states that the process p evolves in

one step to the process p′ with associated action α. The particular actions
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are specified when specific commands are introduced in Section 42.2. As
in Chapter 41 we assume that to each action is associated a complementary
action, and that the silent action indexes the unlabeled transition judgment.

m α
=⇒
Σ

ν Σ′ {m′ ‖ p }

proc(m)
α7−→
Σ

ν Σ′{proc(m′) ‖ p}
(42.2a)

e valΣ
proc(ret e) 7−→

Σ
1 (42.2b)

p1
α7−→
Σ

p′1

p1 ‖ p2
α7−→
Σ

p′1 ‖ p2

(42.2c)

p1
α7−→
Σ

p′1 p2
α7−→
Σ

p′2

p1 ‖ p2 7−→
Σ

p′1 ‖ p′2
(42.2d)

p α7−−−→
Σ,a∼τ

p′ `Σ α action

ν a∼τ.p α7−→
Σ

ν a∼τ.p′
(42.2e)

Rule (42.2a) states that a step of execution of the atomic process proc(m)

consists of a step of execution of the command m, which may result in the
allocation of some set, Σ′, of symbols and the creation of a concurrent pro-
cess, p. This rule implements scope extrusion for classes (channels) by ex-
panding the scope of the declaration of a channel to the context in which
the command, m, occurs. Rule (42.2b) states that a completed command
evolves to the inert (stopped) process; processes are executed solely for
their effect, and not for their value. The remaining rules are those of the
process calculus that define the interaction between processes and the allo-
cation of symbols within a process.

The auxiliary judgment m α
=⇒
Σ

ν Σ′ {m′ ‖ p′ } defines the execution be-

havior of commands. It states that the command, m, transitions to the com-
mand, m′, while creating new channels, Σ′, and new processes, p′. The
action, α, specifies the interactions of which m is capable when executed.
As a notational convenience we drop mention of the new channels or pro-
cesses when either are trivial. It is important that the right-hand side of this
judgment be construed as a triple consisting of Σ′, m′, and p′, rather than
as a process expression comprising these parts.
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The general rules defining this auxiliary judgment are as follows:

e 7−→
Σ

e′

ret e ε
=⇒
Σ

ret e′
(42.3a)

m1
α
=⇒
Σ

ν Σ′ {m′1 ‖ p′ }

bnd x← cmdm1 ; m2
α
=⇒
Σ

ν Σ′{bnd x← cmdm′1 ; m2 ‖ p′}
(42.3b)

e valΣ

bnd x← cmd ret e ; m2
ε
=⇒
Σ

[e/x]m2
(42.3c)

e1 7−→
Σ

e′1

bnd x← e1 ; m2
ε
=⇒
Σ

bnd x← e′1 ; m2
(42.3d)

These generic rules are supplemented by rules governing commands for
communication and synchronization among processes.

42.2 Broadcast Communication

In this section we consider a very general form of process synchronization
called broadcast. Processes emit and accept messages of type clsfd, the
type of dynamically classified values considered in Chapter 34. A message
consists of a channel, which is its class, and a payload, which is a value of
the type associated with the channel (class). Recipients may pattern match
against a message to determine whether it is of a given class, and, if so,
recover the associated payload. No process that lacks access to the class of
a message may recover the payload of that message. (See Section 34.4 for a
discussion of how to enforce confidentiality and integrity restrictions using
dynamic classification).

The syntax of the commands pertinent to broadcast communication is
given by the following grammar:

Cmd m ::= spawn(e) spawn(e) spawn
emit(e) emit(e) emit message
acc acc accept message
newch[τ] newch new channel

The command spawn(e) spawns a process that executes the encapsulated
command given by e. The commands emit(e) and acc emit and accept
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messages, which are classified values whose class is the channel on which
the message is sent. The command newch[τ] returns a reference to a fresh
class carrying values of type τ.

The statics of broadcast communication is given by the following rules:

Γ `Σ e : cmd(unit)
Γ `Σ spawn(e) ∼ unit

(42.4a)

Γ `Σ e : clsfd
Γ `Σ emit(e) ∼ unit

(42.4b)

Γ `Σ acc ∼ clsfd
(42.4c)

Γ `Σ newch[τ] ∼ class(τ)
(42.4d)

The execution of commands for broadcast communication is defined by
these rules:

spawn(cmd(m))
ε
=⇒
Σ

ret 〈〉 ‖ proc(m)
(42.5a)

e 7−→
Σ

e′

spawn(e) ε
=⇒
Σ

spawn(e′)
(42.5b)

e valΣ

emit(e) e !
=⇒
Σ

ret 〈〉 (42.5c)

e 7−→
Σ

e′

emit(e) ε
=⇒
Σ

emit(e′)
(42.5d)

e valΣ

acc
e ?
=⇒
Σ

ret e (42.5e)

newch[τ]
ε
=⇒
Σ

ν a∼τ.ret (& a)
(42.5f)

Rule (42.5c) specifies that emit(e) has the effect of emitting the message e.
Correspondingly, Rule (42.5e) specifies that acc may accept (any) message
that is being sent.
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As usual, the preservation theorem for L{nat cmd⇀ ‖} ensures that
well-typed programs remain well-typed during execution. The proof of
preservation requires a lemma governing the execution of commands. First,
let us define the judgment `Σ α action by the following rules:

`Σ ε action
(42.6a)

`Σ e : clsfd
`Σ e ! action

(42.6b)

`Σ e : clsfd
`Σ e ? action

(42.6c)

Lemma 42.1. If m α
=⇒
Σ

ν Σ′ {m′ ‖ p′ } and `Σ m ∼ τ, then `Σ α action, `Σ Σ′

m′ ∼ τ, and `Σ Σ′ p′ proc.

Proof. By induction on Rules (42.3).

With this in hand the proof of preservation is straightforward.

Theorem 42.2 (Preservation). If `Σ p proc and p 7−→
Σ

p′, then `Σ p′ proc.

Proof. By induction on transition, appealing to Lemma 42.1 for the crucial
steps.

Typing does not, however, guarantee progress with respect to unlabeled
transition, for the simple reason that there may be no other process with
which to communicate. By extending progress to labeled transitions we
may state that this is the only way for the execution of a process to get
stuck.

Theorem 42.3 (Progress). If `Σ p proc, then either p ≡ 1, or there exists p′ and
α such that p α7−→

Σ
p′.

Proof. By induction on Rules (42.1) and (42.4).

The assumption that there exists an action rules out degenerate situ-
ations in which there are no channels, or all channels carry values of an
empty type.
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42.3 Selective Communication

Broadcast communication provides no means of restricting acceptance to
messages of a particular class (that is, of messages on a particular channel).
Using broadcast communication we may restrict attention to a particular
channel, a, of type, τ, by running the following command:

fix loop:τ cmd is {x← acc ; match x as a · y⇒ ret y ow⇒ emit(x) ; do loop}

This command is always capable of receiving a broadcast message. When
one arrives, it is examined to determine whether it is classified by the class,
a. If so, the underlying value is returned; otherwise the message is re-
broadcast to make it available to another process that may be executing a
similar command. Polling consists of repeatedly executing the above com-
mand until such time as a message of channel a is successfully accepted, if
ever.

Polling is evidently impractical in most situations. An alternative is
to change the language to allow for selective communication. Rather than
accept any broadcast message, we may confine attention to messages that
are sent on any of several possible channels. This may be accomplished
by introducing a type, event(τ), of events consisting of a finite choice of
accepts, all of whose associated payload has the type τ.

Typ τ ::= event(τ) τ event events
Exp e ::= rcv[a] ? a select

never[τ] never null
or(e1; e2) e1 or e2 choice

Cmd m ::= sync(e) sync(e) synchronize

Events in L{nat cmd⇀ ‖} correspond directly to those of the asynchronous
process calculus described in Chapter 41. One difference is that the se-
lect event need not carry with it a continuation, as it does in the process
calculus; this is handled by the ambient modal structure of commands.
(However, note that all events in a choice share the same continuation,
whereas in process calculus a separate continuation is associated to each
event in a choice.) Another difference between the two formalisms is that
in L{nat cmd⇀ ‖} events are values of the type τ event, whereas in the
process calculus events are not regarded as a form of expression.

The statics of event expressions is given by the following rules:

Γ `Σ,a∼τ rcv[a] : event(τ)
(42.7a)
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Γ `Σ never[τ] : event(τ)
(42.7b)

Γ `Σ e1 : event(τ) Γ `Σ e2 : event(τ)

Γ `Σ or(e1; e2) : event(τ)
(42.7c)

The corresponding dynamics is defined by these rules:

rcv[a] valΣ,a∼τ

(42.8a)

never[τ] valΣ
(42.8b)

e1 valΣ e2 valΣ
or(e1; e2) valΣ

(42.8c)

e1 7−→
Σ

e′1

or(e1; e2) 7−→
Σ

or(e′1; e2)
(42.8d)

e1 valΣ e2 7−→
Σ

e′2

or(e1; e2) 7−→
Σ

or(e1; e′2)
(42.8e)

Event values are identified up to structural congruence as described in
Chapter 41. This ensures that the ordering of events in a choice is immate-
rial.

Channel references (see Section 34.2) give rise to an additional form of
event, rcvref(e), in which the argument, e, is a reference to the channel on
which to accept a message. Its statics is given by the rule

Γ `Σ e : class(τ)

Γ `Σ rcvref(e) : event(τ)
(42.9)

Its dynamics is defined to dereference its argument and evaluate to an ac-
cept event for the referenced channel:

e 7−→
Σ

e′

rcvref(e) 7−→
Σ

rcvref(e′)
(42.10a)

rcvref(& a) 7−−−→
Σ,a∼τ

rcv[a] (42.10b)
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Turning now to the synchronization command, the statics is given by
the following rule:

Γ `Σ e : event(τ)

Γ `Σ sync(e) ∼ τ
(42.11a)

Its execution is defined by these rules:

e 7−→
Σ

e′

sync(e) ε
=⇒
Σ

sync(e′)
(42.12a)

e α
=⇒
Σ

m

sync(e) α
=⇒
Σ

m
(42.12b)

Rule (42.12b) specifies that synchronization may take any action engen-
dered by the event given as argument.

The possible actions engendered by an event value are defined by the
judgment e α

=⇒
Σ

m, which states that the event value e engenders action α

and activates command m. It is defined by the following rules:

e valΣ,a∼τ `Σ,a∼τ e : τ

rcv[a] a·e ?
===⇒
Σ,a∼τ

ret(e) (42.13a)

e1
α
=⇒
Σ

m1

or(e1; e2)
α
=⇒
Σ

m1

(42.13b)

Rule (42.13a) states that an acceptance on a channel a may synchronize
only with messages classified by a. In conjunction with the identification of
event values up to structural congruence Rule (42.13b) states that any event
among a set of choices may be engender an action.

Selective communication and dynamic events may be used together
to implement a communication protocol in which a channel reference is
passed on a channel in order to establish a communication path with the
recipient. Let a be a channel carrying values of type class(τ), and let b be
a channel carrying values of type τ, so that & b may be passed as a message
along channel a. A process that wishes to accept a channel reference on a
and then accept on that channel has the form

{x← sync(? a) ; y← sync(?? x) ; . . .}.
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The event ? a specifies a selective receipt on channel a. Once the value, x,
has been accepted, the event ?? x specifies a selective receipt on the channel
referenced by x. So, if & b is sent along a, then the event ?? & b evaluates
to ? b, which accepts selectively on channel b, even though the receiving
process may have no direct access to the channel b itself.

Selective communication may be seen as a simple form of pattern match-
ing in which patterns are restricted to a · x, where a is a channel carrying
values of some type τ, and x is a variable of type τ. The idea is that selective
communication filters for messages that match a pattern of this form, and
proceeds by returning the associated value, x. From this point of view it is
natural to generalize selective communication to allow arbitrary patterns
of type clsfd. Because different patterns may bind different variables, it
is then natural to associate a separate continuation with each pattern, as
in Chapter 13. Basic events are of the form p ⇒ m, where p is a pattern
of type clsfd, x1, . . . , xk are its variables, and m is a command involving
these variables. Compound events are compositions of such rules, written
r1 | . . . | rn, quotiented by structural congruence to ensure that the order of
rules is insignificant.

The statics of pattern-driven events may be readily derived from the
statics of pattern matching given in Chapter 13. The dynamics is defined
by the following rule defining the action engendered by an event:

e valΣ `Σ e : clsfd θ 
 p / e

p⇒ m|rs e ?
=⇒
Σ

θ̂(m)
(42.14)

This rule states that we may choose any accept action by a value matching
the pattern p, continuing with the corresponding instance of the continua-
tion of the rule.

42.4 Free Assignables as Processes

Scope-free assignables are definable in L{nat cmd⇀ ‖} by associating to
each assignable a server process that sets and gets the contents of the assignable.
To each assignable, a, of type ρ is associated a server that selectively accepts
a message on channel a with one of two forms:

1. get · (& b), where b is a channel of type ρ. This message requests that
the contents of a be sent on channel b.
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2. set · (〈e, & b〉), where e is a value of type ρ, and b is a channel of type
ρ. This message requests that the contents of a be set to e, and that the
new contents be transmitted on channel b.

In other words, a is a channel of type τsrvr given by

[get ↪→ ρ class, set ↪→ ρ× ρ class].

The server selectively accepts on channel a, then dispatches on the class of
the message to satisfy the request.

The server associated with the assignable, a, of type ρ maintains the
contents of a using recursion. When called with the current contents of
the assignable, the server selectively accepts on channel a, dispatching on
the associated request, and calling itself recursively with the (updated, if
necessary) contents:

λ (u:τsrvr class) fix srvr:ρ→ void cmd isλ (x:ρ) cmd {y← sync(?? u) ; e(42.16)}.
(42.15)

The server is a procedure that takes an argument of type ρ, the current
contents of the assignable, and yields a command that never terminates,
because it restarts the server loop after each request. The server selectively
accepts a message on channel a, and dispatches on it as follows:

case y {get · z⇒ e(42.17) | set · 〈x′, z〉 ⇒ e(42.18)}. (42.16)

A request to get the contents of the assignable a is served as follows:

{ ← emit(mk(z; x)) ; do srvr(x)} (42.17)

A request to set the contents of the assignable a is served as follows:

{ ← emit(mk(z; x′)) ; do srvr(x′)} (42.18)

The type τ ref is defined to be τ class, the type of channels (classes)
carrying a value of type τ. A new free assignable is created by the com-
mand ref e0, which is defined to be

{x← newch ; ← spawn(e(42.15)(x)(e0)) ; ret x}. (42.19)

A channel carrying a value of type τsrvr is allocated to serve as the name of
the assignable, and a new server is spawned that accepts requests on that
channel, with initial value e0.
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The commands * e0 and e0 := e1 send a message to the server to get and
set the contents of an assignable. The code for * e0 is as follows:

{x← newch ; ← emit(mk(e0; get · x)) ; sync(?? (x))} (42.20)

A channel is allocated for the return value, the server is contacted with
a get message specifying this channel, and the result of receiving on this
channel is returned. Similarly, the code for e0 := e1 is as follows:

{x← newch ; ← emit(mk(e0; set · 〈e1, x〉)) ; sync(?? (x))} (42.21)

42.5 Notes

Concurrent Algol is a synthesis of process calculus and Modernized Algol,
and may be seen as an “Algol-like” formulation of Concurrent ML (Reppy,
1999) in which interaction is confined to the command modality. The de-
sign is influenced by Parallel Algol (Brookes, 2002). The reduction of chan-
nels to dynamic classification appears to be new. Most work on concurrent
interaction seems to take the notion of communication channel as a central
concept (but see Linda (Gelernter, 1985) for an alternative viewpoint, albeit
in a unityped setting).
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Chapter 43

Distributed Algol

A distributed computation is one that takes place at many different sites,
each of which controls some resources located at that site. For example, the
sites might be nodes on a network, and a resource might be a device or sen-
sor located at that site, or a database controlled by that site. Only programs
that execute at a particular site may access the resources situated at that
site. Consequently, command execution always takes place at a particular
site, called the locus of execution. Access to resources at a remote site from
a local site is achieved by moving the locus of execution to the remote site,
running code to access the local resource, and returning a value to the local
site.

In this chapter we consider the language L{nat cmd⇀ ‖@}, an exten-
sion of Concurrent Algol with a spatial type system that mediates access to
located resources on a network. The type safety theorem ensures that all
accesses to a resource controlled by a site are through a program executing
at that site, even though references to local resources may be freely passed
around to other sites on the network. The key idea is that channels and
events are located at a particular site, and that synchronization on an event
may only occur at the site appropriate to that event. Issues of concurrency,
which are to do with non-deterministic composition, are thereby cleanly
separated from those of distribution, which are to do with the locality of
resources on a network.

The concept of location in L{nat cmd⇀ ‖@} is sufficiently abstract that
it admits another useful interpretation that can be useful in computer se-
curity settings. The “location” of a computation may also be thought of as
the principal on whose behalf the computation is executing. From this point
of view, a local resource is one that is accessible to a particular principal,
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and a mobile computation is one that may be executed by any principal.
Movement from one location to another may then be interpreted as execut-
ing a piece of code on behalf of another principal, returning its result to the
principal that initiated the transfer.

43.1 Statics

The statics of L{nat cmd⇀ ‖@} is inspired by the possible worlds interpre-
tation of modal logic. Under that interpretation the truth of a proposition
is relative to a world, which determines the state of affairs described by that
proposition. A proposition may be true in one world, and false in another.
For example, one may use possible worlds to model counterfactual reason-
ing, in which one postulates that certain facts that happen to be true in this,
the actual, world, might be otherwise in some other, possible, world. For
instance, in the actual world you, the reader, are reading this book, but in
a possible world you may never have taken up the study of programming
languages at all. Of course not everything is possible: there is no possible
world in which 2 + 2 is other than 4, for example. Moreover, once a com-
mitment has been made to one counterfactual, others are ruled out. We
say that one world is accessible from another when the first is a sensible
counterfactual relative to the first. So, for example, one may consider that
relative to a possible world in which you are the king, there is no further
possible world in which someone else is also the king (there being only one
sovereign).

InL{nat cmd⇀ ‖@}we shall interpret possible worlds as sites on a net-
work, with accessibility between worlds expressing network connectivity.
We postulate that every site is connected to itself (reflexivity); that if one
site is reachable from another, then the second is also reachable from the
first (symmetry); and that if a site is reachable from a reachable site, then
this site is itself reachable from the first (transitivity). From the point of
view of modal logics, the type system of L{nat cmd⇀ ‖@} is derived from
the logic S5, for which accessibility is an equivalence relation.

The syntax ofL{nat cmd⇀ ‖@} is a modification of that ofL{nat cmd⇀ ‖}.
The following grammar summarizes the key changes:

Typ τ ::= cmd[w](τ) τ cmd[w] commands
chan[w](τ) τ chan[w] channels
event[w](τ) τ event[w] events

Cmd m ::= at[w](m) atw {m} change site
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The command, channel, and event types are indexed by the site, w, to
which they pertain. There is a new form of command, at[w](m), that
changes the locus of execution from one site to another.

A signature, Σ, in L{nat cmd⇀ ‖@}, consists of a finite set of decla-
rations of the form a ∼ ρ @ w, where ρ is a type and w is a site. Such a
declaration specifies that a is a channel carrying a payload of type ρ located
at the site w. We may think of a signature, Σ, as a family of signatures, Σw,
one for each world w, containing the decalarations of the channels located
at that world. This partitioning corresponds to the idea that channels are
located resources in that they are uniquely associated with a site. They may
be handled passively at other sites, but their only active role is at the site at
which they are declared.

The statics of L{nat cmd⇀ ‖@} is given by the following two judgment
forms:

Γ `Σ e : τ expression typing
Γ `Σ m ∼ τ @ w command typing

The expression typing judgment is independent of the site. This corre-
sponds to the idea that the values of a type have a site-independent mean-
ing: the number 3 is the number 3, regardless of where it is used. On the
other hand commands can only be executed at a particular site, because
they depend on the state located at that site.

A representative selection of the rules defining the statics ofL{nat cmd⇀ ‖@}
is given below:

Γ `Σ m ∼ τ @ w
Γ `Σ cmd(m) : cmd[w](τ)

(43.1a)

Γ `Σ,a∼ρ@w ch[a] : chan[w](ρ)
(43.1b)

Γ `Σ never[τ] : event[w](τ)
(43.1c)

Γ `Σ,a∼ρ@w rcv[a] : event[w](ρ)
(43.1d)

Γ `Σ e : chan[w](τ)

Γ `Σ rcvref(e) : event[w](τ)
(43.1e)

Γ `Σ e1 : event[w](τ) Γ `Σ e2 : event[w](τ)

Γ `Σ or(e1; e2) : event[w](τ)
(43.1f)

Γ `Σ e : event[w](τ)

Γ `Σ sync(e) ∼ τ @ w
(43.1g)
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Γ `Σ m′ ∼ τ′ @ w′

Γ `Σ at[w′](m′) ∼ τ′ @ w
(43.1h)

Rule (43.1a) states that the type of an encapsulated command records the
site at which the command is to be executed. Rules (43.1d) and (43.1e)
specify that the type of a (static or dynamic) receive event records the site
at which the channel resides. Rules (43.1c) and (43.1f) state that a choice
can only be made between events at the same site; there are no cross-site
choices. Rule (43.1g) states that the sync command returns a value of the
same type as that of the event, and may be executed only at the site to
which the given event pertains. Finally, Rule (43.1h) states that to execute a
command at a site, w′, requires that the command pertain to that site. The
returned value is then passed to the original site.

43.2 Dynamics

The dynamics is given by a labeled transition judgment between processes,
much as in Chapter 42. The principal difference is that the atomic process
consisting of a single command has the form proc[w](m), which specifies
the site, w, at which the command, m, is to be executed. The dynamics of
processes remains much as in Chapter 42, except for the following rules
governing the atomic process:

m α
==⇒
Σ , w

ν Σ′ {m′ ‖ p }

proc[w](m)
α7−→
Σ

ν Σ′ { proc[w](m′) ‖ p }
(43.2a)

proc[w](ret(〈〉)) ε7−→
Σ

stop
(43.2b)

The command execution judgment

m α
==⇒
Σ , w

ν Σ′ {m′ ‖ p }

states that the command, m, when executed at site, w, may undertake the
action, α, and in the process create new channels, Σ′, and a new process, p.
(The result of the transition is not a process expression, but rather should be
construed as a structure having three parts, the newly allocated channels,
the newly created processes, and a new command; we omit any part when
it is trivial.) This may be understood as a family of judgments indexed
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by signatures, Σ, and sites, w. At each site there is an associated labeled
transition system defining concurrent interaction of processes at that site.

The command execution judgment is defined by the following rules:

spawn(cmd(m))
ε

==⇒
Σ , w

ret(〈〉) ‖ proc[w](m)
(43.3a)

newch[τ]
ε

==⇒
Σ , w

ν a∼τ@w.ret (& a)
(43.3b)

m α
==⇒
Σ , w′

ν Σ′ {m′ ‖ p′ }

at[w′](m)
α

==⇒
Σ , w

ν Σ′ { at[w′](m′) ‖ p′ }
(43.3c)

e valΣ

at[w′](ret(e)) ε
==⇒
Σ , w

ret(e) (43.3d)

e α
=⇒
Σ

m

sync(e) α
==⇒
Σ , w

m
(43.3e)

Rule (43.3a) states that new processes created at a site remain at that site—
the new process executes the given command at the current site. Rules (43.3c)
and (43.3d) state that the command at[w′](m) is executed at site w by exe-
cuting m at site w′, and returning the result to the site w. Rule (43.3e) states
that an action may be undertaken at site w if the given event engenders
that action. Notice that no cross-site synchronization is possible. Move-
ment between sites is handled separately from synchronization among the
processes at a site.

43.3 Safety

The safety theorem for L{nat cmd⇀ ‖@} ensures that synchronization on
a channel may only occur at the site on which the channel resides, even
though channel references may be propagated from one site to another
during a computation. By the time the reference is resolved and synchro-
nization is attempted the computation will, as a consequence of typing, be
located at the appropriate site.
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The key to the safety proof is the definition of a well-formed process.
The judgment `Σ p proc states that the process p is well-formed. Most
importantly, the following rule governs the formation of atomic processes:

`Σ m ∼ unit @ w
`Σ proc[w](m) proc

(43.4)

That is, an atomic process is well-formed if and only if the command it is
executing is well-formed at the site at which the process is located.

The proof of preservation relies on a lemma stating the typing proper-
ties of the execution judgment.

Lemma 43.1 (Execution). Suppose that m α
==⇒
Σ , w

ν Σ′ {m′ ‖ p }. If `Σ m ∼ τ @

w, then `Σ α action and `Σ ν Σ{proc[w](m′) ‖ p} proc.

Proof. By a straightforward induction on Rules (43.3).

Theorem 43.2 (Preservation). If p α7−→
Σ

p′ and `Σ p proc, then `Σ p′ proc.

Proof. By induction on Rules (43.1), appealing to Lemma 43.1 for atomic
processes.

The progress theorem states that the only impediment to execution of a
well-typed program is the possiblity of synchronizing on an event that will
never arise.

Theorem 43.3 (Progress). If `Σ p proc, then either p ≡ 1 or there exists α and
p′ such that p α7−→

Σ
p′.

43.4 Situated Types

The foregoing formulation of L{nat cmd⇀ ‖@} relies on indexing com-
mand, channel, and event types by the site to which they pertain so that
values of these types may be passed around at will without fear of misin-
terpretation. The price to pay, however, is that the command, channel, and
event types are indexed by the site to which they pertain, leading to repe-
tition and redundancy. One way to mitigate this cost is to separate out the
skeleton, φ, of a type from its specialization to a particular site, w, which is
written φ〈w〉.

We will now reformulate the statics of L{nat cmd⇀ ‖@} using judg-
ments of the form Φ `Σ e : φ @ w and Φ `Σ m ∼ φ @ w, where Φ consists of
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hypotheses of the form xi : φi @ wi. The type of an expression or command
is factored into two parts, the skeleton, φ, and a site, w, at which to special-
ize it. The meaning of the factored judgments is captured by the following
conditions:

1. If Φ `Σ e : φ @ w, then Φ̂ `Σ e : φ〈w〉.

2. If Φ `Σ m ∼ φ @ w, then Φ̂ `Σ m ∼ φ〈w〉 @ w.

If Φ is a context of the form x1 : φ1 @ w1, . . . , xn : φn @ wn, then Φ̂ is the
context x1 : φ1〈w1〉, . . . , xn : φn〈wn〉.

The syntax of skeletons is similar to that for types, with the addition of
a means of specializing a skeleton to a particular site.

Fam φ ::= nat nat numbers
arr(φ1; φ2) φ1 → φ2 functions
cmd(φ) φ cmd computations
chan(φ) φ chan channels
event(φ) φ event events
at[w](φ) φ atw situated

The situated type φ atw fixes the interpretation of φ at the site w.
The instantiation of a family, φ, at a site, w, is written φ〈w〉, and is in-

ductively defined by the following rules:

nat〈w〉 = nat
(43.5a)

φ1〈w〉 = τ1 φ2〈w〉 = τ2

(φ1 → φ2)〈w〉 = τ1 → τ2
(43.5b)

φ〈w〉 = τ

φ cmd〈w〉 = τ cmd[w]
(43.5c)

φ〈w〉 = τ

φ chan〈w〉 = τ chan[w]
(43.5d)

φ〈w〉 = τ

φ event〈w〉 = τ event[w]
(43.5e)

φ〈w′〉 = τ′

(φ atw′)〈w〉 = τ′
(43.5f)

Crucially, Rule (43.5f) states that the situated family φ atw′ is to be inter-
preted at w by the interpretation of φ at w′. Otherwise instantiation serves
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merely to decorate the constituent command, channel, and event skeletons
with the site at which they are being interpreted.

Any type, τ, of L{nat cmd⇀ ‖@}may be embedded as a constant fam-
ily, exactly(τ), such that exactly(τ)〈w〉 = τ for any site w. The constant
family is inductively defined by the following rules:

exactly(nat) = nat
(43.6a)

exactly(τ1) = φ1 exactly(τ2) = φ2

exactly(τ1 → τ2) = φ1 → φ2
(43.6b)

exactly(τ) = φ

exactly(τ cmd[w]) = φ cmd atw
(43.6c)

exactly(τ) = φ

exactly(τ chan[w]) = φ chan atw
(43.6d)

exactly(τ) = φ

exactly(τ event[w]) = φ event atw
(43.6e)

It is easy to check that exactly(τ) is a constant family:

Lemma 43.4. For any site w, exactly(τ)〈w〉 = τ.

The statics of L{nat cmd⇀ ‖@} may be given in factored form, as is
illustrated by the following selection of typing rules:

Φ `Σ e : φ @ w
Φ `Σ ret e ∼ φ @ w

(43.7a)

Φ `Σ e1 : φ1 @ w Φ, x : φ1 @ w `Σ m2 ∼ φ2 @ w
Φ `Σ bnd x← e1 ; m2 ∼ φ2 @ w

(43.7b)

Φ `Σ m ∼ φ @ w
Φ `Σ cmdm : φ cmd @ w

(43.7c)

exactly(ρ) = φ

Φ `Σ,a∼ρ@w & a : φ chan @ w (43.7d)

Φ `Σ never : φ event @ w
(43.7e)

exactly(ρ) = φ

Φ `Σ,a∼ρ@w ? a : φ event @ w (43.7f)
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Φ `Σ e : φ chan @ w
Φ `Σ ?? e : φ event @ w

(43.7g)

Φ `Σ e1 : φ event @ w Φ `Σ e2 : φ event @ w
Φ `Σ e1 or e2 : φ event @ w

(43.7h)

Φ `Σ e : φ event @ w
Φ `Σ sync(e) ∼ φ @ w

(43.7i)

Φ `Σ m′ ∼ φ′ @ w′ φ′ mobile

Φ `Σ atw′ {m′} ∼ φ′ @ w
(43.7j)

Rule (43.7d) specifies that a reference to a channel carrying a value of type ρ
is classified by the constant family yielding the type ρ at each site. Rule (43.7j)
is the most interesting rule, because it include a restriction on the family φ′.
To see how this arises, inductively we have that Φ̂ `Σ m′ ∼ φ′〈w′〉 @ w′,
which is enough to ensure that Φ̂ `Σ atw′ {m′} ∼ φ′〈w′〉 @ w. But we are
required to show that Φ̂ `Σ atw′ {m′} ∼ φ′〈w〉 @ w! This will only be the
case if φ′〈w〉 = φ′〈w′〉, which is to say that φ′ is a constant family, whose
meaning does not depend on the site at which it is instantiated.

The judgment φ mobile states that φ is a mobile family. It is inductively
defined by the following rules:

nat mobile
(43.8a)

φ1 mobile φ2 mobile

φ1 → φ2 mobile
(43.8b)

φ atw mobile
(43.8c)

The remaining families are not mobile, precisely because their instantiation
specifies the site of their instances; these do not determine constant fami-
lies.

Lemma 43.5.

1. If φ mobile, then for every w and w′, φ〈w〉 = φ〈w′〉.

2. For any type τ, exactly(τ) mobile.

We may then verify that the intended interpretation is valid:

Theorem 43.6.
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1. If Φ `Σ e : φ @ w, then Φ̂ `Σ e : φ〈w〉.

2. If Φ `Σ m ∼ φ @ w, then Φ̂ `Σ m ∼ φ〈w〉 @ w.

Proof. By induction on Rules (43.7).

43.5 Notes

The use of a spatial modality to express locality and mobility constraints in
a distributed program was inspired by ML5 (Murphy et al., 2004). The sep-
aration of locality concerns from concurrency concerns is expressed here by
supporting communication and synchronization within a site, and treating
movement between sites separately. The formulation of situated types is
based on Licata and Harper (2010).
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Modularity





Chapter 44

Components and Linking

Modularity is the most important technique for controlling the complex-
ity of programs. Programs are decomposed into separate components with
precisely specified, and tightly controlled, interactions. The pathways for
interaction among components determine dependencies that constrain the
process by which the components are integrated, or linked, to form a com-
plete system. Different systems may use the same components, and a single
system may use multiple instances of a single component. Sharing of com-
ponents amortizes the cost of their development across systems, and helps
limit errors by limiting coding effort.

Modularity is not limited to programming languages. In mathematics
the proof of a theorem is decomposed into a collection of definitions and
lemmas. Cross-references among lemmas determine a dependency struc-
ture that constrains their integration to form a complete proof of the main
theorem. Of course, one person’s theorem is another person’s lemma; there
is no intrinsic limit on the depth and complexity of the hierarchies of re-
sults in mathematics. Mathematical structures are themselves composed
of separable parts, as, for example a Lie group is a group structure on a
manifold.

Modularity arises from the structural properties of the hypothetical and
general judgments. Dependencies among components are expressed by
free variables whose typing assumptions state the presumed properties of
the component. Linking consists of substitution and discharge of the hy-
pothesis.
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44.1 Simple Units and Linking

Decomposing a program into units amounts to exploiting the transitivity of
the hypothetical judgment (see Chapter 3). The decomposition may be ex-
pressed as an interaction between two parties, the client and the implemen-
tor, that is mediated by an agreed-upon contract, called an interface. The
client assumes that the implementor upholds the contract, and the imple-
mentor guarantees that the contract will be upheld. The assumption made
by the client amounts to a declaration of its dependence on the implemen-
tor that is discharged by linking the two parties in accordance with their
agreed-upon contract.

The interface that mediates the interaction between a client and an im-
plementor is a type. Linking is nothing other than the implementation of
the composite structural rules of substitution and transitivity:

Γ ` eimpl : τintf Γ, x : τintf ` eclient : τclient

Γ ` [eimpl/x]eclient : τclient
(44.1)

The type τintf is the interface type. It defines the capabilities to be provided
by the implementor, eimpl, that are relied upon by the client, eclient. The free
variable, x, expresses the dependency of eclient on eimpl. That is, the client
accesses the implementation by using the variable, x.

The interface type, τintf, is the contract between the client and the im-
plementor. It determines the properties of the implementation on which
the client may depend and, at the same time, determines the obligations
that the implementor must fulfill. The simplest form of interface type is
a finite product type of the form 〈 f1 ↪→ τ1, . . . , fn ↪→ τn〉, specifying a com-
ponent with components fi of type τi. Such a type is commonly called an
application program interface, or API, because it determines the operations
that the client (application) may expect from the implementor. A more so-
phisticated form of interface is one that defines an abstract type of the form
∃(t.〈 f1 ↪→ τ1, . . . , fn ↪→ τn〉), which defines an abstract type, t, representing
the internal state of an “abstract machine” whose “instruction set” consists
of the operations f1, . . . , fn whose types may involve t. Being abstract, the
type t is not revealed to the client, but is known only to the implementor.1

Conceptually, linking is just substitution, but practically this can be im-
plemented in a variety of ways. One method is called separate compilation.
The expressions eclient and eimpl, called in this context source modules, are

1See Chapters 21 and 49 for a discussion of type abstraction.
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translated (compiled) into another, lower-level, language, resulting in ob-
ject modules. Linking consists of performing the required substitution at the
level of the object language in such a way that the result corresponds to
the translation of [eimpl/x]eclient.2 Another method, called separate checking,
shifts the requirement for translation to the linker. The client and imple-
mentor units are ensured to be type-correct with respect to the interface
requirements, but are not translated into lower-level form. Linking then
consists of translating the composite program as a whole, often resulting
in a more efficient outcome than would be possible when compiling sepa-
rately.

A more sophisticated, and widely used, implementation of substitu-
tion is called dynamic linking. Informally, this means that execution of the
client commences before the implementation of the components on which
it depends are provided. Rather than link prior to execution, we instead
execute and link “on the fly.” At first blush this might seem to be a radical
departure from the methodology developed in this book, because we have
consistently required that execution be defined only on expressions with
no free variables. But looks can be deceiving. What is really going on with
dynamic linking is that the client is implemented by a stub that forwards
accesses to a stored implementation (typically, in a “file system” or similar
data structure). The actual implementation code is not accessed until the
client requests it, which may not happen at all. This tends to reduce latency
and makes it possible to replace the implementation without recompiling
the client.

What is important is not how linking is implemented, but rather that the
linking principle enables separate development. Once the common interface
has been agreed upon, the client and implementor are free to proceed with
their work independently of one another. All that is required is that both
parties complete their work before the system as a whole can be built.

44.2 Initialization and Effects

Linking resolves the dependencies among the components of a program
by substitution. This view is valid so long as the components are given
by pure expressions, those that evaluate to a value without inducing any
effects. For in such cases there is no problem with the replication, or com-
plete omission, of a component arising from repeated, or absent, uses of

2The correspondence need not be exact, but must be equivalent for all practical purposes,
in the sense discussed in Chapter 48.
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a variable representing it. But what if the expression defining the imple-
mentation of a component has an effect when evaluated? At a minimum
replication of the component implies replication of its effects. Worse, ef-
fects introduce implicit dependencies among components that are not appar-
ent from their types. For example, if each of two components mutates a
shared assignable, the order in which they are linked with a client program
affects the behavior of the whole.

This may raise doubts about the treatment of linking as substitution,
but on closer inspection it becomes clear that implicit dependencies are
naturally managed by paying attention to the modal distinction between
expressions and commands introduced in Chapter 35. Specifically, a com-
ponent that may have an effect when executed does not have type τintf of
implementations of the interface type, but rather the type τintf cmd of en-
capsulated commands that, when executed, have effects and yield such an
implementation. Being encapsulated, a value of this type is itself free of
effects, but it may have effects when evaluated.

The distinction between the types τintf and τintf cmd is mediated by the
sequentialization command introduced in Chapter 35. For the sake of gen-
erality, let us assume that the client is itself an encapsulated command of
type τclient cmd, so that it may itself have effects when executed, and may
serve as a component of a yet larger system. Assuming that the client refers
to the encapsulated implementation by the variable x, the command

bnd x← x ; do eclient

first determines the implementation of the interface by running the encap-
sulated command, x, then running the client code with the result bound to
x. The implicit dependencies of the client on the implementor are made ex-
plicit by the sequentialization command, which ensures that the implemen-
tor’s effects occur prior to those of the client, precisely because the client
depends on the implementor for its execution.

More generally, to manage such interactions in a large program it is
common to isolate an initialization procedure whose role is to stage the ef-
fects engendered by the various components according to some policy or
convention. Rather than attempt to survey all possible policies, which are
numerous and complex, let us simply observe that the upshot of such con-
ventions is that the initialization procedure is a command of the form

{x1← x1 ; . . . xn← xn ; mmain},

where x1, . . . , xn represent the components of the system and mmain is the
main (startup) routine. After linking the initialization procedure has the
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form
{x1← e1 ; . . . xn← en ; mmain},

where e1, . . . , en are the encapsulated implementations of the linked com-
ponents. When the initialization procedure is executed, it results in the
substitution

[v1, . . . , vn/x1, . . . , xn]mmain,

where the expressions v1, . . . , vn represent the values resulting from exe-
cuting e1, . . . , en, respectively, and the implicit effects have occurred in the
order specified by the initializer.

44.3 Notes

The relationship between the structural properties of entailment and the
practical problem of separate development was implicit in much early work
on programming languages, but became explicit once the correspondence
between propositions and types was developed. There are many indica-
tions of this correspondence, for example in Proofs and Types (Girard, 1989)
and Intuitionistic Type Theory (Martin-Löf, 1984), but it was first made ex-
plicit by Cardelli (1997).
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Chapter 45

Type Abstractions and Type
Classes

An interface is a contract that specifies the rights of a client and the respon-
sibilities of an implementor. Being a specification of behavior, an interface
is a type. In principle any type may serve as an interface, but in practice it
is usual to structure code into modules consisting of separable and reusable
components. An interface specifies the behavior of a module expected by
a client and imposed on the implementor. It is the fulcrum on which is bal-
anced the tension between separability and integration. As a rule, a mod-
ule should have a well-defined behavior that can be understood separately,
but it is equally important that it be easy to combine modules to form an
integrated whole.

A fundamental question is, what is the type of a module? That is, what
form should an interface take? One long-standing idea is for an interface
to be a labeled tuple of functions and procedures with specified types. The
types of the fields of the tuple are traditionally called function headers, be-
cause they summarize the call and return types of each function. Using
interfaces of this form is called procedural abstraction, because it limits the
dependencies between modules to a specified set of procedures. We may
think of the fields of the tuple as being the instruction set of an abstract
machine. The client makes use of these instructions in its code, and the
implementor agrees to provide their implementations.

The problem with procedural abstraction is that it does not provide as
much insulation as one might like. For example, a module that implements
a dictionary must expose in the types of its operations the exact representa-
tion of the tree as, say, a recursive type (or, in more rudimentary languages,
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a pointer to a structure that itself may contain such pointers). Yet the client
really should not depend on this representation: the whole point of ab-
straction is to eliminate such dependencies. The solution, as discussed in
Chapter 21, is to extend the abstract machine metaphor to allow the internal
state of the machine to be hidden from the client. In the case of a dictionary
the representation of the dictionary as a binary search tree is hidden by ex-
istential quantification. This is called type abstraction, because the type of
the underlying data (state of the abstract machine) is hidden.

Type abstraction is a powerful method for limiting the dependencies
among the modules that constitute a program. It is very useful in many
circumstances, but is not universally applicable. It is not always appropri-
ate to use abstract types; often it is useful to expose, rather than obscure,
type information across a module boundary. A typical example is the im-
plementation of a dictionary, which is a mapping from keys to values. To
use, say, a binary search tree to implement a dictionary, we require that the
key type admit a total ordering with which keys can be compared. The dic-
tionary abstraction does not depend on the exact type of the keys, but only
requires that the key type be constrained to provide a comparison opera-
tion. A type class is a specification of such a requirement. The class of com-
parable types, for example, specifies a type, t, together with an operation,
leq, of type (t× t) → bool with which to compare them. Superficially,
such a specification looks like a type abstraction, because it specifies a type
and one or more operations on it, but with the important difference that the
type, t, is not hidden from the client. For if it were, the client would only
be able to compare keys using leq, but would have no means of obtain-
ing keys to compare. A type class, in contrast to a type abstraction, is not
intended to be an exhaustive specification of the operations on a type, but
rather as a constraint on its behavior expressed by demanding that certain
operations, such as comparison, be available, without limiting the other
operations that might be defined on it.

Type abstractions and type classes are extremal cases of a general con-
cept of module type that we shall discuss in detail in this chapter. The
crucial idea is the controlled revelation of type information across module
boundaries. Type abstractions are opaque; type classes are transparent.
These are both instances of translucency, which arises from the combina-
tion of existential types (Chapter 21), subtyping (Chapter 23), and singleton
kinds and subkinding (Chapter 24). Unlike in Chapter 21, however, we will
distinguish the types of modules, which we will called signatures, from the
types of ordinary values. The distinction is not essential, but it will be help-
ful to keep the two concepts separate at the outset, deferring discussion of
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how to relax the segregation once the basic concepts are in place.

45.1 Type Abstraction

Type abstraction is captured by a form of existential type quantification
similar to that described in Chapter 21. For example, a dictionary with keys
of type τkey and values of type τval implements the signature, σdict, defined
as follows:

[t :: T;〈emp ↪→ t,ins ↪→ τkey × τval × t→ t,fnd ↪→ τkey × t→ τval opt〉].

The type variable, t, of kind T is the abstract type of dictionaries on which
are defined three operations, emp, ins, and fnd, with the specified types. It
is not essential to fix the type τval, because the dictionary operations impose
no restrictions on it; we will do so only for the sake of simplicity. However,
it is essential, at this stage, that the key type, τkey, be fixed, for reasons that
will become clearer as we proceed.

An implementation of the signature σdict is a structure, Mdict, of the form

[τdict;〈emp ↪→ . . . ,ins ↪→ . . .,fnd ↪→ . . .〉],

where the elided parts implement the dictionary operations in terms of the
chosen representation type, τdict. For example, τdict might be a recursive
type defining a balanced binary search tree, such as a red-black tree. The
dictionary operations work on the underlying representation of the dictio-
nary as such a tree, just as would a package of existential type discussed in
Chapter 21.

To ensure that the representation of the dictionary is hidden from a
client, the structure Mdict is sealed with the signature σdict to obtain the mod-
ule

Mdict � σdict.

The effect of sealing is to ensure that the only information about Mdict that
is propagated to the client is given by σdict. In particular, because σdict only
specifies that the type, t, have kind T, no information about the choice of t
as τdict in Mdict is made available to the client.

A module is a two-phase object consisting of a static part and a dynamic
part. The static part is a constructor of a specified kind; the dynamic part
is a value of a specified type. There are two elimination forms that extract
the static and dynamic parts of a module. These are, respectively, a form
of constructor and a form of expression. More precisely, the constructor
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M · s stands for the static part of M, and the expression M · d stands for its
dynamic part. According to the inversion principle, if a module, M, has
introductory form, then M · s should be equivalent to the static part of M.
So, for example, Mdict · s should be equivalent to τdict.

But consider the static part of a sealed module, which has the form
(Mdict � σdict) · s. Because sealing hides the representation of an abstract
type, this constructor should not be equivalent to τdict. If M′dict is another
implementation of σdict, should (Mdict � σdict) · s be equivalent to (M′dict � σdict) ·
s? To ensure reflexivity of type equivalence this equation should hold when-
ever M and M′ are equivalent modules. But this violates representation
independence for abstract types by making equivalence of abstract types
sensitive to their implementation.

It would seem, then, that there is a fundamental contradiction between
two very fundamental concepts, type equivalence and representation in-
dependence. The way out of this conundrum is to disallow reference to
the static part of a sealed module: the type expression M � σ · s is deemed
ill-formed. More generally, we disallow formation of M · s unless M is a
module value, whose static part is always manifest. An explicit structure is a
module value, as is any module variable (provided that module variables
are bound by-value).

One effect of this restriction is that sealed modules must be bound to
a variable before they are used. Because module variables are bound by-
value, doing so has the effect of imposing abstraction at the binding site.
In fact, we may think of sealing as a kind of computational effect that “oc-
curs” at the binding site, much as the bind operation in Algol discussed in
Chapter 35 engenders the effects induced by an encapsulated command. A
consequence of this is that two distinct bindings of the same sealed module
result in two distinct abstract types. The type system willfully ignores the
identity of the two occurrences of the same module in order to ensure that
their representations can be changed independently of one another with-
out disrupting the behavior of any client code (because the client cannot
rely on their identity, it must be prepared for them to be different).

45.2 Type Classes

Type abstraction is an essential tool for limiting dependencies among mod-
ules in a program. The signature of a type abstraction determines all that
is known about a module by a client; no other uses of the values of an ab-
stract type are permissible. A complementary tool is to use a signature to
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partially specify the capabilities of a module. Such a mechanism is called a
type class, or a view, in which case an implementation is called an instance of
the type class or view. Because the signature of a type class serves only as
a constraint specifying the minimum capabilities of an unknown module,
some other means of working with values of that type must be available.
The key to achieving this is to expose, rather than hide, the identity of the
static part of a module. In this sense type classes are the “opposite” of type
abstractions, but we shall see below that there is a smooth progression be-
tween them, mediated by a subsignature judgment.

Let us consider the implementation of dictionaries as a client of the im-
plementation of its keys. To implement a dictionary using a binary search
tree, for example, the only requirement is that keys come equipped with a
total ordering given by a comparison operation. This can be expressed by
a signature, σord, given by

[t :: T;〈leq ↪→ (t× t)→ bool〉].

Because a given type may be ordered in many ways, it is essential that the
ordering be packaged with the type to determine a type of keys.

The implementation of dictionaries as binary search trees takes the form

X : σord ` MX
bstdict : σX

dict,

where σX
dict is the signature

[t :: T;〈emp ↪→ t,ins ↪→ X · s× τval × t→ t,fnd ↪→ X · s× t→ τval opt〉],

and MX
bstdict is a structure (not given explicitly here) that implements the

dictionary operations using binary search trees.1 Within MX
bstdict, the static

and dynamic parts of the module X are accessed by writing X · s and X · d,
respectively. In particular, the comparison operation on keys is accessed by
the projection X · d · leq.

The declared signature of the module variable, X, expresses a constraint
on the capabilities of a key type by specifying an upper bound on its sig-
nature in the subsignature ordering. This implies that any module bound
to X must provide a type of keys and a comparison operation on that type,
but nothing else is assumed of it. Because this is all we know about the
unknown module, X, the dictionary implementation is constrained to rely
only on these specified capabilities, and no others. When linking with a

1Here and elsewhere in this chapter and the next, the superscript X serves as a reminder
that the module variable, X, may occur free in the annotated module or signature.
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module defining X, the implementation need not be sealed with this sig-
nature, but must rather have a signature that is no larger than it in the
subsignature relation. Indeed, the signature σord is useless for sealing, as
is easily seen by example. Suppose that Mnatord : σord is an instance of the
class of ordered types under the usual ordering. If we seal Mnatord with σord
by writing

Mnatord � σord,

the resulting module is useless, because we would then have no way to
create values of the key type.

We see, then, that a type class amounts to a categorization of a pre-
existing type, not a means of introducing a new type. Rather than obscure
the identity of the static part of Mnatord, we wish to propagate its identity as
nat while specifying a comparison with which to order them. This may be
achieved using singleton kinds (Chapter 24). Specifically, the most precise,
or principal, signature of a structure is the one that exposes its static part
using a singleton kind. In the case of the module Mnatord, the principal
signature is the signature, σnatord, given by

[t :: S(nat);leq ↪→ (t× t)→ bool],

which, by the rules of equivalence (defined formally in Section 45.3), is
equivalent to the signature

[ :: S(nat);leq ↪→ (nat× nat)→ bool].

The dictionary implementation, MX
bstdict expects a module, X, with sig-

nature σord, but the module Mnatord provides the signature σnatord. Applying
the rules of subkinding given in Chapter 24, together with the evident co-
variance principle for signatures, we obtain the subsignature relationship

σnatord <: σord.

By the subsumption principle, a module of signature σnatord may be pro-
vided whenever a module of signature σord is required. Therefore Mnatord

may be linked to X in MX
bstdict.

The combination of subtyping and sealing provides a smooth gradation
between type classes and type abstractions. The principal signature for
MX

bstdict is the signature ρX
dict given by

[t :: S(τX
bst);〈emp ↪→ t,ins ↪→ X · s× τval × t→ t,fnd ↪→ X · s× t→ τval opt〉],
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where τX
bst is the type of binary search trees with keys given by the module

X of signature σord. This is a subsignature of σX
dict given earlier, so that the

sealed module
MX

bstdict � σX
dict

is well-formed, and has type σX
dict, which hides the representation type of

the dictionary abstraction.
After linking X to Mnatord, the signature of the dictionary is special-

ized by propagating the identity of the static part of Mnatord. This, too, is
achieved by using the subsignature judgment. As remarked earlier, the
dictionary implementation satisfies the typing

X : σord ` MX
bstdict : σX

dict.

But because σnatord <: σord, we have, by contravariance, that

X : σnatord ` MX
bstdict : σX

dict.

is also a valid typing judgment. If X : σnatord, then X · s is equivalent to nat,
because it has kind S(nat), and hence the following typing is also valid:

X : σnatord ` MX
bstdict : σnatdict.

Here σnatdict is the closed signature

[t :: T;〈emp ↪→ t,ins ↪→ nat× τval × t→ t,fnd ↪→ nat× t→ τval opt〉]

in which the representation of dictionaries is held abstract, but the repre-
sentation of keys as natural numbers is publicized. The dependency on X
has been eliminated by replacing all occurrences of X · s within σX

dict by the
type nat. Having derived this typing we may link X with Mnatord as de-
scribed in Chapter 44 to obtain a composite module, Mnatdict, of signature
σnatdict, in which keys are natural numbers ordered as specified by Mnatord.

It is convenient to exploit subtyping for labeled tuple types to avoid
creating an ad hoc module specifying the standard ordering on the natural
numbers. Instead we can extract the required module directly from the
implementation of the abstract type of numbers using subsumption. As an
illustration, let Xnat be a module variable of signature σnat, which has the
form

[t :: T;〈zero ↪→ t,succ ↪→ t→ t,leq ↪→ (t× t)→ bool, . . . 〉]

The fields of the tuple provide all and only the operations that are available
on the abstract type of natural numbers. Among them is the comparison
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operation, leq, which is required by the dictionary module. Applying the
subtyping rules for labeled tuples given in Chapter 23, together with the
covariance of signatures, we obtain the subsignature relationship

σnat <: σord,

so that by subsumption the variable, Xnat, may be linked to the variable,
X, postulated by the dictionary implementation. Subtyping takes care of
extracting the required leq field from the abstract type of natural numbers,
demonstrating that the natural numbers are an instance of the class of or-
dered types. Of course, this approach only works if we wish to order the
natural numbers in the natural way provided by the abstract type. If, in-
stead, we wish to use another ordering, then we must construct instances
of σord “by hand” to define the appropriate ordering.

45.3 A Module Language

The language L{mod} is a codification of the ideas outlined in the preced-
ing section. The syntax is divided into five levels: expressions classified
by types, constructors classified by kinds, and modules classified by signa-
tures. The expression and type level consists of various language mecha-
nisms described earlier in this book, including at least product, sum, and
partial function types. The constructor and kind level is as described in
Chapters 22 and 24, with singleton and dependent kinds. The syntax of
L{mod} is summarized by the following grammar:

Sig σ ::= sig[κ](t.τ) [t :: κ;τ] signature
Mod M ::= X X variable

str(c;e) [c;e] structure
seal[σ](M) M � σ seal
let[σ](M1; X.M2) (let X be M1 in M2):σ definition

Con c ::= stat(M) M · s static part
Exp e ::= dyn(M) M · d dynamic part

The statics of L{mod} consists of the following forms of judgment, in
addition to those governing the kind and type levels:
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Γ ` σ sig well-formed signature
Γ ` σ1 ≡ σ2 equivalent signatures
Γ ` σ1 <: σ2 subsignature
Γ ` M : σ well-formed module
Γ ` M val module value
Γ ` e val expression value

Rather than segregate hypotheses into zones, we instead admit the follow-
ing three forms of hypothesis groups:

X : σ, X val module value variable
u :: κ constructor variable
x : τ, x val expression value variable

It is important that module and expression variables are always regarded
as values to ensure that type abstraction is properly enforced. Correspond-
ingly, each module and expression variable appears in Γ paired with the
hypothesis that it is a value. As a notational convenience we will not explic-
itly state the value hypotheses associated with module and expression vari-
ables, under the convention that all such variables implicitly come paired
with such an assumption.

The formation, equivalence, and subsignature judgments are defined
by the following rules:

Γ ` κ kind Γ, u :: κ ` τ type

Γ ` [u :: κ;τ] sig
(45.1a)

Γ ` κ1 ≡ κ2 Γ, u :: κ1 ` τ1 ≡ τ2

Γ ` [u :: κ1;τ1] ≡ [u :: κ2;τ2]
(45.1b)

Γ ` κ1 :<: κ2 Γ, u :: κ1 ` τ1 <: τ2

Γ ` [u :: κ1;τ1] <: [u :: κ2;τ2]
(45.1c)

Most importantly, signatures are covariant in both the kind and type posi-
tions: subkinding and subtyping are preserved by the formation of a sig-
nature. It is a consequence of Rule (45.1b) that

[u :: S(c);τ] ≡ [ :: S(c);[c/u]τ]

and, further, it is a consequence of Rule (45.1c) that

[ :: S(c);[c/u]τ] <: [ :: T;[c/u]τ]

and therefore
[u :: S(c);τ] <: [ :: T;[c/u]τ].

REVISED 05.15.2012 VERSION 1.32



474 45.3 A Module Language

It is also the case that

[u :: S(c);τ] <: [u :: T;τ].

But the two supersignatures of [u :: S(c);τ] are incomparable with respect
to the subsignature judgment. This fact is important in the statics of module
definitions, as will be detailed shortly.

The statics of module expressions is given by the following rules:

Γ, X : σ ` X : σ
(45.2a)

Γ ` c :: κ Γ ` e :: [c/u]τ
Γ ` [c;e] : [u :: κ;τ]

(45.2b)

Γ ` σ sig Γ ` M : σ

Γ ` M � σ : σ
(45.2c)

Γ ` σ sig Γ ` M1 : σ1 Γ, X : σ1 ` M2 : σ

Γ ` (let X be M1 in M2):σ : σ
(45.2d)

Γ ` M : σ Γ ` σ <: σ′

Γ ` M : σ′
(45.2e)

In Rule (45.2b) it is always possible to choose κ to be the most specific kind
of c in the subkind ordering, which uniquely determines c up to construc-
tor equivalence. For such a choice, the signature [u :: κ;τ] is equivalent to
[ :: κ;[c/u]τ], which propagates the identity of the static part of the mod-
ule expression into the type of its dynamic part. Rule (45.2c) is to be used
in conjunction with subsumption (Rule (45.2e)) to ensure that M has the
specified signature.

The need for a signature annotation on a module definition is a mani-
festation of the avoidance problem. Rule (45.2d) would be perfectly sensible
were the signature, σ, omitted from the syntax of the definition. How-
ever, omitting this information greatly complicates type checking. If σ were
omitted from the syntax of the definition, the type checker would be re-
quired to find a signature, σ, for the body of the definition that avoids the
module variable, X. Inductively, we may suppose that we have found a
signature, σ1, for the module M1, and a signature, σ2, for the module M2,
under the assumption that X has signature σ1. To find a signature for an
unadorned definition, we must find a supersignature, σ, of σ2 that avoids
X. To ensure that all possible choices of σ are accounted for, we seek to
find the least (most precise) such signature with respect to the subsigna-
ture relation; this is called the principal signature of a module. The problem
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is that there may be no least supersignature of a given signature that avoids
a specified variable. (Consider the example above of a signature with two
incomparable supersignatures. The example may be chosen so that the
supersignatures avoid a variable, X, that occurs in the subsignature.) Con-
sequently, modules do not have principal signatures, a significant compli-
cation for type checking. To avoid this problem, we insist that the avoiding
supersignature, σ, be given by the programmer so that the type checker is
not required to find one.

In the presence of modules we have a new form of constructor expres-
sion, M · s, and a new form of value expression, M · d. These operations,
respectively, extract the static and dynamic parts of the module M. Their
formation rules are as follows:

Γ ` M val Γ ` M : [u :: κ;τ]

Γ ` M · s :: κ
(45.3a)

Γ ` M : [ :: κ;τ]

Γ ` M · d : τ
(45.3b)

Rule (45.3a) requires that the module expression, M, be a value in accor-
dance with the following rules:

Γ, X : σ, X val ` X val
(45.4a)

Γ ` e val
Γ ` [c;e] val

(45.4b)

(It is not strictly necessary to insist that the dynamic part of a structure be
a value in order for the structure itself to be a value, but we impose this
requirement to be consistent with the general policy to employ eager eval-
uation, and to obtain laziness through types, as described in Chapter 37.)

Rule (45.3a) specifies that only structure values have well-defined static
parts, and hence precludes reference to the static part of a sealed structure,
which is not a value. This ensures representation independence for abstract
types, as discussed in Section 45.1. For if M · s were admissible when M is
a sealed module, it would be a type whose identity depends on the un-
derlying implementation, in violation of the abstraction principle. Module
variables are, on the other hand, values, so that if X : [t :: T;τ] is a module
variable, then X · s is a well-formed type. What this means in practice is
that sealed modules must be bound to variables before they can be used. It
is for this reason that we include definitions among module expressions.
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Rule (45.3b) requires that the signature of the module, M, be non-dependent,
so that the result type, τ, does not depend on the static part of the module.
This may not always be the case. For example, if M is a sealed module,
say N � [t :: T;t] for some module N, then projection M · d is ill-formed.
For if it were to be well-formed, its type would be M · s, which would vio-
late representation independence for abstract types. But if M is a module
value, then it is always possible to derive a non-dependent signature for it,
provided that we include the following rule of self-recognition:

Γ ` M : [u :: κ;τ] Γ ` M val

Γ ` M : [u :: S(M · s :: κ);τ]
(45.5)

This rule propagates the identity of the static part of a module value into
its signature. The dependency of the type of the dynamic part on the static
part is then eliminable by sharing propagation.

The following rule of constructor equivalence states that a type projec-
tion from a module value is eliminable:

Γ ` [c;e] : [t :: κ;τ] Γ ` [c;e] val

Γ ` [c;e] · s ≡ c :: κ
(45.6)

The requirement that the expression, e, be a value, which is implicit in the
second premise of the rule, is not strictly necessary, but does no harm. A
consequence of this rule is that apparent dependencies of closed construc-
tors (or kinds) on modules may always be eliminated. In particular the
identity of the constructor [c;e] · s is independent of e, as would be ex-
pected if representation independence is to be assured.

The dynamics of modules is entirely straightforward:

e 7→ e′

[c;e] 7→ [c;e′]
(45.7a)

e val
[c;e] · d 7→ e (45.7b)

There is no need to evaluate constructors at run-time, because the dynam-
ics of expressions does not depend on their types. It is straightforward to
prove type safety for this dynamics relative to the foregoing statics.

45.4 First- and Second-Class

It is common to draw a distinction between first-class and second-class mod-
ules in programming languages. The purported distinction has little force,
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because it is not precisely defined, but the terminology is chosen to suggest
that the former is somehow superior to the latter. As is often the case with
such informal concepts, careful analysis reveals that the situation is exactly
opposite to what is suggested. To make this precise, we must first give a
definition of what is meant by the terms. Simply put, a module system is
first-class if signatures are forms of type, and is otherwise not. Here we
are using “type” in a precise technical sense as a classifier of expressions,
rather than in a loose sense as any form of classifier. If signatures are types
in the narrow sense, then modules may be bound to (substituted for) vari-
ables, and hence may be passed as arguments to functions and returned as
results from them. Moreover, they may be stored in mutable cells, if there
are such, and in general may be handled like any other value, precisely be-
cause they are classified by types. If, on the other hand, signatures are not
types in the narrow sense, then there are limitations to how they may be
used that would seem to limit their expressive power, rendering them less
useful than they would otherwise be.

However, this superficial impression is misleading, for two related rea-
sons. First, the apparent restriction to second-class modules allows for
more precise distinctions to be drawn than are possible in the purely first-
class case. If a module is a value of a certain type, then a module expression
may be an arbitrary computation that, in full generality, depends on run-
time state as well as the form of the expression itself. For example, we
may form a module expression that conditionally branches on the phase of
the moon at the time of evaluation, yielding modules with different static
components in each case. Because of such a possibility, it is not sensible to
track the identity of the static component of a module in the type system,
because it quite literally does not have a single static component to track.
Consequently, first-class module systems are incompatible with extensions
that rely on tracking the identity of the static part of a module. (One exam-
ple is the concept of an applicative functor discussed in Chapter 46.)

Moreover, a second-class module system is compatible with extensions
that permit modules to be handled as first-class values, without requiring
that all modules be first-class values. In this important sense it is the second-
class modules that are the more expressive, because they allow considera-
tion of first-class modules, while retaining the advantages of second-class
modules.2 Specifically, we may account for first-class modules within the

2The situation is analogous to that between static and dynamic type systems discussed in
Chapter 18. At first glance it sounds as though dynamic typing would be more expressive,
but on careful analysis the situation is revealed to be the other way around.
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language considered in the preceding section by taking the following steps.
First, we admit existential types, described in Chapter 21, as types. A “first-
class module” is nothing other than a package of existential type, which
may be handled just like any other value of any other type. Observe that a
module value, M, of signature [t :: κ;τ] may be turned into a value of type
∃ t :: κ.τ by simply forming the package pack M · s with M · d as ∃(t.τ) con-
sisting of the static and dynamic parts of M. Second, to allow packages
to be treated as modules, we introduce the module open e that “opens” a
package as a module according to the following rule:

Γ ` e : ∃ t :: κ.τ
Γ ` open e : [t :: κ;τ]

(45.8)

Such a module cannot be considered to be a value, because e is an arbi-
trary computation, and hence must generally be bound to a module vari-
able before it is used. This mimics exactly the elimination form for exis-
tential types, which similarly binds the components of a package to vari-
ables before they are used. In this manner we may support both first- and
second-class modules in a single framework, without having to make a pri-
ori commitments to one or the other.

45.5 Notes

The use of dependent types to express modularity was first proposed by
MacQueen (1986). Subsequent studies extended this proposal to model the
phase distinction between compile- and run-time (Harper et al., 1990), and to
account for type abstraction as well as type classes (Harper and Lillibridge,
1994; Leroy, 1994). The avoidance problem was first isolated by Castagna
and Pierce (1994) and by Harper and Lillibridge (1994). It has come to play
a central role in subsequent work on modules, such as Lillibridge (1997)
and Dreyer (2005). The self-recognition rule was introduced by Harper and
Lillibridge (1994) and by Leroy (1994). It was subsequently identified as a
manifestation of higher-order singletons (Stone and Harper, 2006). A con-
solidation of these ideas was used as the foundation for a mechanization of
the metatheory of modules (Lee et al., 2007). A thorough summary of the
main issues in module system design is given in Dreyer (2005).

The presentation given here focuses attention on the type structure re-
quired to support modularity. An alternative formulation is based on elab-
oration, a translation of modularity constructs into more primitive notions
such as polymorphism and higher-order functions. The Definition of Stan-
dard ML (Milner et al., 1997) pioneered the elaboration approach. Building
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on earlier work of Russo, a more rigorous type-theoretic formulation was
given by Rossberg et al. (2010). The advantage of the elaboration-based ap-
proach is that it can make do with a simpler type theory as the target lan-
guage, but at the expense of making the explanation of modularity more
complex. It seems clear that some form of elaboration is required (to han-
dle identifier scope resolution and type inference, for example), but it is as
yet unclear where best to draw the line.
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Chapter 46

Hierarchy and
Parameterization

To be adequately expressive it is essential that a module system support
the construction of module hierarchies. Hierarchical structure arises natu-
rally in programming, both as an organizational device for partitioning of
a large program into manageable pieces, and as a localization device that
allows one type abstraction or type class to be layered on top of another. In
such a scenario the lower layer plays an auxiliary role relative to the upper
layer, and we may think of the upper layer as being parameterized by the
lower in the sense that any implementation of the lower layer induces an
instance of the upper layer corresponding to that instance. The pattern of
dependency of one abstraction on another may be captured by an abstrac-
tion, or parameterization, mechanism that allows the implementation of one
abstraction to be considered a function of the implementation of another.
Hierarchies and parameterization work in tandem to provide an expressive
language for organizing programs.

46.1 Hierarchy

It is common in modular programming to layer a type class or a type ab-
straction on top of a type class. For example, the class of equality types,
which are those that admit a boolean equivalence test, is described by the
signature σeq defined as follows:

[t :: T;〈eq ↪→ (t× t)→ bool〉].
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Instances of this class consist of a type together with a binary equality op-
eration defined on it. Such instances are modules with a subsignature of
σeq, for example σnateq given by

[t :: S(nat);〈eq ↪→ (t× t)→ bool〉].

A module value of this signature has the form

[nat;〈eq ↪→ . . .〉],

where the elided expression implements an equivalence relation on the nat-
ural numbers. All other instance values of the class σeq have a similar form,
differing in the choice of type, and/or the choice of comparison operation.

The class of ordered types may be considered to be an extension of the
class of equality types with an additional binary operation for the (strict)
comparison of two elements of that type. One way to formulate this is as
the signature

[t :: T;〈eq ↪→ (t× t)→ bool,lt ↪→ (t× t)→ bool〉],

which is a subsignature of σeq according to the rules of subtyping given
in Chapter 23. This relationship amounts to the requirement that every
ordered type is a fortiori an equality type.

This is well and good, but it would be even better if there were a way
to incrementally extend the equality type class to the ordered type class
without having to rewrite the signature as we have done in the foregoing
example. Instead, we would like to layer the comparison aspect on top of an
equality type class to obtain the ordered type class. This is achieved using
a hierarchical signature, σeqord, of the form

∑ X:σeq . σX
ord.

In this signature we write σX
ord for the signature

[t :: S(X · s);〈lt ↪→ (t× t)→ bool〉],

which refers to the static part of X, namely the type on which the equality
relation is defined. The notation σX

ord emphasizes that this signature has a
free module variable, X, occurring within it, and hence is only meaningful
in a context in which X has been declared.

A value of the signature σeqord is a pair of modules, 〈Meq ; Mord〉, in
which Meq comprises a type equipped with an equality relation on it, and
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the second comprises a type equipped with an ordering relation on it. Cru-
cially, the second type is constrained by the singleton kind in σX

ord to be the
same as the first type. Such a constraint is called a sharing specification.
The process of drawing out of the consequences of a sharing specification
is called sharing propagation.

Sharing propagation is achieved by a combination of subkinding (as
described in Chapter 24) and subtyping for signatures. For example, a par-
ticular ordering, Mnatord, of the natural numbers is a module with signature

∑ X:σnateq . σX
ord.

By covariance of the hierarchical signature, this signature is a subsignature
of σeqord, so that by subsumption we may regard Mnatord as a module of the
latter signature. The static part of the subsignature is a singleton, so we
may apply the rules of sharing propagation given in Chapter 24 to show
that the subsignature is equivalent to the signature

∑ X:σnateq . σnatord,

where σnatord is the closed signature

[t :: S(nat);〈lt ↪→ (t× t)→ bool〉].

Notice that sharing propagation has replaced the type X · s in the signature
with nat, eliminating the dependency on the module variable X. After
another round of sharing propagation, this signature may be shown to be
equivalent to the signature ρnatord given by

[ :: S(nat);〈lt ↪→ (nat× nat)→ bool〉].

Here we have replaced both occurrences of t in the type of the comparison
operation with nat as a consequence of the kind of t. The net effect is to
propagate the identity of the static part of Mnatord to the signature of the
second component of Mnatord.

Although its value is a pair, which seems symmetric, a module of sig-
nature σeqord is asymmetric in that the signature of the second component is
dependent on the first component itself. This dependence is made manifest
by the occurrence of the module variable, X, in the signature σord. Thus,
for 〈Meq ; Mord〉 to be a well-formed module of signature σeqord, the first
component, Meq, must have signature σeq, which is meaningful indepen-
dently of the other component of the pair. On the other hand, the second
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component, Mord, must have signature σX
eq, with the understanding that X

stands for the module Meq. In general this signature is not meaningful in-
dependently of Meq itself, and hence it may not be possible to handle Mord

independently of Meq.
Turning this the other way around, if M is any module of signature

σeqord, then it is always sensible to project it onto its first coordinate to ob-
tain a module, M · 1, of signature σeq. But it is not always sensible to project
it onto its second coordinate, because it may not be possible to give a signa-
ture to M · 2 in the case that the dependency on the first component cannot
be resolved statically. This can happen if, for example, the M · 1 is a sealed
module, whose static part cannot be formed in order to ensure representa-
tion independence. In such a situation the dependence of the signature σX

ord

on the module variable, X, cannot be eliminated, and so no signature may
be given to the second projection. For this reason the first component of a
module hierarchy is called a submodule of the hierarchy, whereas the sec-
ond component may or may not be a submodule of it. Put in other terms,
the second component of a hierarchy is “projectible” exactly when the de-
pendence of its signature on the first component is eliminable by sharing
propagation. That is, we may know enough about the first component stat-
ically to ensure that an independent type for the second component may
be given. In that case the second component may be considered to be a
submodule of the pair; otherwise, the second is inseparable from the first,
and therefore cannot be projected from the pair.

Consider, for example, a module Mnatord of signature σnatord, which, we
noted earlier, is a subsignature of σeqord. The first projection Mnatord · 1 is
a well-formed module of closed signature σeq and hence is a submodule
of Mnatord. The situation is less clear for the second projection, Mnatord · 2,
because its signature, σX

ord, depends on the first component via the variable
X. However, we noted above that the signature σnatord is equivalent to the
signature

∑ :σnateq . ρnatord

in which the dependency on X has been eliminated by sharing propagation.
This, too, is a valid signature for Mnatord, and hence the second projection,
Mnatord · 2 is a well-formed module of closed signature ρnatord. If, on the
other hand, the only signature available for Mnatord were σeqord, then the
second projection would be ill-formed—the second component would not
be separable from the first, and hence could not be considered a submodule
of the pair.

The hierarchical dependency of the signature of the second component
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of a pair on the first component gives rise to a useful alternative interpre-
tation of a hierarchical module signature as describing a family of modules
given by the second component thought of as being indexed by the first
component. In the case at hand, the totality of modules of the signature
σeqord gives rise to a family of modules of signature σX

ord, where X ranges
over σeq. That is, to each choice, Meq, of signature σeq, we associate the col-
lection of choices, Mord, coherent with the first choice in accordance with
the sharing constraint in σX

ord, taking X to be Mord. This collection is called
the fibre over Meq, and the totality of modules of signature σeqord is said to
be fibred over σeq (by the first projection).

The preceding example illustrates the layering of one type class on top
of another. It is also useful to layer a type abstraction over a type class. A
good example is provided by a dictionary abstraction in which the type of
keys is required to be of the class of ordered types, but is otherwise unspec-
ified. The signature, σkeydict, of such a dictionary is given as follows:

∑ X:σeqord . σX
dict,

where σeqord is the signature of ordered equality types (in either of the two
forms discussed above), and σX

dict is the signature of dictionaries of some
type τ given as follows:

[t :: T;〈emp ↪→ t, ins ↪→ X · s× τ × t→ t, fnd ↪→ X · s× t→ τ opt〉].

The ins and fnd operations make use of the type X · s of keys given by the
submodule of the dictionary module. We may think of σkeydict as specifying
a family of dictionary modules, one for each choice of the ordered type of
keys. Regardless of the interpretation, an implementation of the signature
σkeydict consists of a two-level hierarchy of the form 〈M1 ; M2〉, where M1
specifies the key type and its ordering, and M2 implements the dictionary
for keys of this type in terms of this ordering.

46.2 Parameterizaton

The signature σkeydict may be understood as describing a family of dictio-
nary modules indexed by a module of ordered keys. The totality of such
modules evaluate to pairs consisting of the ordered type of keys together
with the dictionary per se, specialized to that choice of keys. Although it is
possible that the code of the dictionary operations differs for each choice of
keys, it is more often the case that the same implementation may be used for
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all choices of keys, the only difference being that references to, say, X · lt
refers to a different function for each choice of key module, X.

Such a uniform implementation of dictionaries is provided by the con-
cept of a parameterized module, or functor. A functor is a module expressed
as a function of an unknown module of specified signature. The uniform
dictionary module would be expressed as a functor parameterized over the
module implemeting keys, which is to say as a λ-abstraction of the form

λ Z:σeqord . Mkeydict.

Here Mkeydict is the generic implementation of dictionaries in terms of an
unspecified module, Z, of signature σeqord. The signature of Z expresses the
requirement that the dictionary implementation relies on the keys being an
ordered type, but makes no other requirement on it.

A functor is a form of module, and hence has a signature as well, called
(oddly enough) a functor signature. The signature, σdictfun, of the functor
Mkeydict has the form

∏ Z:σeqord . ρZ
keydict,

which specifies that its domain is the signature, σeqord, of ordered types, and
whose range is a signature, ρZ

keydict, depends on the module Z.
The range, ρZ

keydict, of the dictionary functor is defined to be a subsigna-
ture of σkeydict in which the key type of the result is constrained to be the
same as the key type given as argument. This constraint may be expressed
by defining ρZ

keydict to be the hierarchical signature

∑ X:ρZ
eqord

. σX
dict,

where ρZ
eqord is a subsignature of σeqord imposing the desired sharing con-

straint. This is itself a hierarchical signature of the form

∑ X:ρZ
eq

. σX
ord,

where ρZ
eq is the subsignature of σeq given by

[t :: S(Z · 1 · s);〈eq ↪→ (t× t)→ bool〉].

The singleton kind in ρZ
eq expresses the required sharing constraint between

the key type in the result of the functor and the key type given as its argu-
ment.

It is evidently rather tedious to write out ρZ
eqord separately from σeqord,

because it requires repetition of so much that is already present in the latter
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signature. To lighten the notation it is preferable to express more directly
the close relationship between the two signatures using signature modifica-
tion to impose a type sharing constraint on a given signature. In the present
case we may define ρZ

eqord to be the modification of σeqord given by

Y : σeqord / Y · 1 · s= Z · 1 · s.

The modification states that the signature σeqord is to be altered by impos-
ing the constraint that the static part of its equality part is to share with the
static part of the equality part of Z, which, recall, also has signature σeqord.
We may similarly define the range signature, ρZ

keydict, of the dictionary func-
tor using signature modification as follows:

Y : σkeydict / Y · 1 · 1 · s= Z · 1 · s.

The left-hand side of the sharing constraint refers to the type of keys in the
submodule of the dictionary, and the right-hand side refers to the type of
keys given as argument to the functor.

The dictionary functor, Mdictfun, defines a generic implementation of
dictionaries in terms of an ordered type of keys. An instance of the dic-
tionary for a specific choice of keys is obtained by applying, or instantiat-
ing, it with a module of its domain signature, σeqord. For example, because
Mnatord, the type of natural numbers ordered in the usual way, is such a
module, we may form the instance Mkeydict (Mnatord) to obtain a dictionary
with numeric keys. By choosing other modules of signature σeqord we may
obtain corresponding instances of the dictionary functor. More generally, if
M is any module of signature σdictfun, then it is a functor that we may apply
it to any module, Mkey, of signature σeqord to obtain the instance M (Mkey).

But what is the signature of such an instance, and how may it be de-
duced? Recall that the result signature of σdictfun is dependent on the argu-
ment itself, and not just its signature. It is therefore not immediately clear
what signature to assign to the instance; the dependency on the argument
must be resolved in order to obtain a signature that makes sense indepen-
dently of the argument. The situation is broadly similar to the problem of
computing the signature of the second component of a hiearchical mod-
ule, and similar methods are used to resolve the dependencies, namely to
exploit subtyping for signatures to obtain a specialization of the result sig-
nature appropriate to the argument.

This is best illustrated by example. First, we note that by contravariance
of subtyping for functor signatures, we may weaken a functor signature by
strengthening its domain signature. In the case of the signature σdictfun of the
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dictionary functor, we may obtain a supersignature σnatdictfun by strengthen-
ing its domain to require that the key type be the type of natural numbers:

∏ Z:σnatord . ρZ
keydict.

Fixing Z to be a module variable of the specialized signature σnatord, the
range signature, ρZ

keydict, is given by the modification

Y : σkeydict / Y · 1 · 1 · s= Z · 1 · s.

By sharing propagation this is equivalent to the closed signature, ρnatdict,
given by

Y : σkeydict / Y · 1 · 1 · s= nat,

because we may derive the equivalence of Z · 1 · s and nat once the signa-
ture of Z is specialized to σnatord.

Now by subsumption if M is a module of signature σdictfun, then M is
also a module of the supersignature

∏ Z:σnatord . ρZ
keydict.

We have just shown that the latter signature is equivalent to the non-dependent
functor signature

∏ :σnatord . ρnatdict.

The range is now given independently of the argument, so we may deduce
that if Mnatkey has signature σnatord, then the application M (Mnatkey) has
the signature ρnatdict.

The crucial point is that the dependence of the range signature on the
domain signature is eliminated by propagating knowledge about the type
components of the argument itself. Absent this knowledge, the functor ap-
plication cannot be regarded as well-formed, much as the second projection
from a hierarchy cannot be admitted if the dependency of its signature on
the first component cannot be eliminated. If the argument to the functor is
a value, then it is always possible to find a signature for it that maximizes
the propagation of type sharing information so that the dependency of the
range on the argument can always be eliminated.

46.3 Extending Modules with Hierarchies and Param-
eterization

In this section we sketch the extension of the module language introduced
in Chapter 45 to account for module hierarchies and module parameteriza-
tion.
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The syntax of L{mod} is enriched with the following clauses:

Sig σ ::= hier(σ1;X.σ2) ∑ X:σ1 . σ2 hierarchy
fun(σ1;X.σ2) ∏ X:σ1 . σ2 functor

Mod M ::= hier(M1;M2) 〈M1 ; M2〉 hierarchy
fst(M) M · 1 first component
snd(M) M · 2 second component
fun[σ](X.M) λ X:σ . M functor
app(M1;M2) M1 (M2) instance

The syntax of signatures is extended to include hierarchies and functors,
and the syntax of modules is correspondingly extended with introduction
and elimination forms for these signatures.

The judgment M projectible states that the module, M, is projectible in
the sense that its constituent types may be referenced by compositions of
projections, including the static part of a structure. This judgment is induc-
tively defined by the following rules:

Γ, X : σ ` x projectible
(46.1a)

Γ ` M1 projectible Γ ` M2 projectible

Γ ` 〈M1 ; M2〉 projectible
(46.1b)

Γ ` M projectible

Γ ` M · 1 projectible
(46.1c)

Γ ` M projectible

Γ ` M · 2 projectible
(46.1d)

All module variables are deemed projectible, even though this condition
is only relevant for hierarchies of basic structures. Because the purpose of
sealing is to hide the representation of an abstract type, no sealed mod-
ule is deemed projectible. Furthermore, no functor is projectible, because
there is no concept of projection for a functor. More importantly, no func-
tor instance is projectible either. This ensures that any two instances of the
same functor define distinct abstract types; functors are therefore said to be
generative. (See Section 46.4 for a discussion of an alternative treatment of
functors.)

The signature formation judgment is extended to include these rules:

Γ ` σ1 sig Γ, X : σ1 ` σ2 sig

Γ ` ∑ X:σ1 . σ2 sig
(46.2a)
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Γ ` σ1 sig Γ, X : σ1 ` σ2 sig

Γ ` ∏ X:σ1 . σ2 sig
(46.2b)

Signature equivalence is defined to be compatible with the two new
forms of signature:

Γ ` σ1 ≡ σ′1 Γ, X : σ1 ` σ2 ≡ σ′2
Γ ` ∑ X:σ1 . σ2 ≡ ∑ X:σ′1 . σ′2

(46.3a)

Γ ` σ1 ≡ σ′1 Γ, X : σ1 ` σ2 ≡ σ′2
Γ ` ∏ X:σ1 . σ2 ≡ ∏ X:σ′1 . σ′2

(46.3b)

The subsignature judgment is augmented with the following rules:

Γ ` σ1 <: σ′1 Γ, X : σ1 ` σ2 <: σ′2
Γ ` ∑ X:σ1 . σ2 <: ∑ X:σ′1 . σ′2

(46.4a)

Γ ` σ′1 <: σ1 Γ, X : σ′1 ` σ2 <: σ′2
Γ ` ∏ X:σ1 . σ2 <: ∏ X:σ′1 . σ′2

(46.4b)

Rule (46.4a) specifies that the hierarchical signature is covariant in both
positions, whereas Rule (46.4b) specifies that the functor signature is con-
travariant in its domain and covariant in its range.

The statics of module expressions is extended by the following rules:

Γ ` M1 : σ1 Γ ` M2 : σ2

Γ ` 〈M1 ; M2〉 : ∑ :σ1 . σ2
(46.5a)

Γ ` M : ∑ X:σ1 . σ2

Γ ` M · 1 : σ1
(46.5b)

Γ ` M : ∑ :σ1 . σ2

Γ ` M · 2 : σ2
(46.5c)

Γ, X : σ1 ` M2 : σ2

Γ ` λ X:σ1 . M2 : ∏ X:σ1 . σ2
(46.5d)

Γ ` M1 : ∏ :σ2 . σ Γ ` M2 : σ2

Γ ` M1 (M2) : σ
(46.5e)

Rule (46.5a) states that an explicit module hierarchy is given a signature
in which there is no dependency of the signature of the second compo-
nent on the first component (indicated here by the underscore in place of
the module variable). A dependent signature may be given to a hierarchy
by sealing, which makes it into a non-value, even if the components are
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values. Rule (46.5b) states that the first projection is defined for general hi-
erarchical signatures. On the other hand, Rule (46.5c) restricts the second
projection to non-dependent hierarchies, as discussed in the preceding sec-
tion. Similarly, Rule (46.5e) restricts instantiation to functors whose types
are non-dependent, forcing any dependencies to be resolved using the sub-
signature relation and sharing propagation prior to application.

The self-recognition rules given in Chapter 45 are extended to account
for the formation of hierarchical module value by the following rules:

Γ ` M projectible Γ ` M : ∑ X:σ1 . σ2 Γ ` M · 1 : σ′1
Γ ` M : ∑ X:σ′1 . σ2

(46.6a)

Γ ` M projectible Γ ` M : ∑ :σ1 . σ2 Γ ` M · 2 : σ′2
Γ ` M : ∑ :σ1 . σ′2

(46.6b)

Rules (46.6a) and (46.6b) permit the specialization of the signature of a hier-
archical module value to express that its constructor components are equiv-
alent to their projections from the module itself.

46.4 Applicative Functors

In the module language just described functors are regarded as generative
in the sense that any two instances, even with arguments, are considered
to “generate” distinct abstract types. This is ensured by treating a functor
application, M (M1), to be non-projectible, so that if it defines an abstract
type in the result, that type cannot be referenced without first binding the
application to a variable. Any two such bindings are necessarily to distinct
variables, X and Y, and so the abstract types X · s and Y · s are distinct,
regardless of their bindings.

The justification for this design decision merits careful consideration.
By treating functors as generative, we are ensuring that a client of the func-
tor cannot in any way rely on the implementation of that functor. That is,
we are extending the principle of representation independence for abstract
types to functors in a natural way. One consequence of this policy is that
the module language is compatible with extensions such as a conditional
module that branches on an arbitrary dynamic condition that might even
depend on external conditions such as the phase of the moon! A functor
with such an implementation must be considered generative, because the
abstract types arising from any instance cannot be regarded as well-defined
until the moment when the application is evaluated, which amounts to the
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point at which it is bound to a variable. By regarding all functors as gen-
erative we are, in effect, maximizing opportunities to exploit changes of
representation without disrupting the behavior of clients of the functor, a
bedrock principle of modular decomposition.

But because the module language considered in the preceding section
does not include anything so powerful as a conditional module, we might
consider that the restriction to generative functors is too severe, and may
be usefully relaxed. One such alternative is the concept of an applicative
functor. An applicative functor is one for which instances by values are
regarded as projectible:1

M projectible M1 val

M (M1) projectible
(46.7)

It is important to bear in mind that because of this rule applicative func-
tors are not compatible with conditional modules. Thus, a module language
based on applicative functors is inherently restricted as compared to one
based on generative functors.

The benefit of regarding a functor instance as projectible is that we may
form types such as (M (M1)) · s, which projects the static part of the in-
stance. But this raises the question of when two such type expressions
are to be deemed equivalent? The difficulty is that the answer to this
question depends on the functor argument. For suppose that F is an ap-
plicative functor variable, under what conditions should (F (M1)) · s and
(F (M2)) · s be regarded as the same type? In the case of generative func-
tors we did not have face this question, because the instances are not pro-
jectible, but for applicative functors the question cannot be dodged, but
must be addressed. We will return to this point in a moment, after consid-
ering one further complication that raises a similar issue.

The difficulty is that the body of an applicative functor cannot be sealed
to impose abstraction, and, according to the rules given in the preceding
section, no sealed module is projectible. Because sealing is the only means
of imposing abstraction, we must relax this condition and allow sealed pro-
jectible modules to be projectible:

M projectible

M � σ projectible
(46.8)

1We may, in addition, regard functor abstractions as projectible, but because all variables
are projectible, there is no harm in omitting this and instead insisting that functors be bound
to variables before being used.
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Thus, we may form type expressions of the form (M � σ) · s, which project
the static part of a sealed module. And once again we are faced with the
issue that the equivalence of two such types must involve the equivalence
of the sealed modules themselves, in apparent violation of representation
independence.

Summarizing, if we are to deem functors to be applicative, then some
compromise of the principle of representation independence for abstract
types is required. We must define equivalence for the static parts of sealed
modules, and doing so requires at least checking whether the underlying
modules are identical. This has two consequences. Because the underlying
modules have both static and dynamic parts, this means comparing their
executable code for equivalence during type checking. More significantly,
because the formation of a client may depend on the equivalence of two
modules, we cannot change the representation of a sealed module without
fear of disrupting the typing or behavior of the client. This undermines the
very purpose of having a module system in the first place!

46.5 Notes

Module hierarchies and functors in the form discussed here were intro-
duced by Milner et al. (1997), which also employed the reading of a mod-
ule hierarchy as an indexed family of modules. The theory of hierarchies
and functors was first studied by Harper and Lillibridge (1994) and Leroy
(1994), building on earlier work by Mitchell and Plotkin (1988) on existen-
tial types. The concept of an applicative functor was introduced by Leroy
(1995) and is central to the module system of O’Caml (OCaml).
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Part XVIII

Equational Reasoning





Chapter 47

Equational Reasoning for T

The beauty of functional programming is that equality of expressions in a
functional language corresponds very closely to familiar patterns of math-
ematical reasoning. For example, in the language L{nat→} of Chapter 9
in which we can express addition as the function plus, the expressions

λ (x:nat)λ (y:nat) plus(x)(y)

and
λ (x:nat)λ (y:nat) plus(y)(x)

are equal. In other words, the addition function as programmed inL{nat→}
is commutative.

This may seem to be obviously true, but why, precisely, is it so? More
importantly, what do we even mean for two expressions to be equal in this
sense? It is intuitively obvious that these two expressions are not definition-
ally equivalent, because they cannot be shown equivalent by symbolic exe-
cution. We may say that these two expressions are definitionally inequiva-
lent because they describe different algorithms: one proceeds by recursion
on x, the other by recursion on y. On the other hand, the two expressions
are interchangeable in any complete computation of a natural number, be-
cause the only use we can make of them is to apply them to arguments and
compute the result. Two functions are logically equivalent if they give equal
results for equal arguments—in particular, they agree on all possible argu-
ments. Because their behavior on arguments is all that matters for calculat-
ing observable results, we may expect that logically equivalent functions
are equal in the sense of being interchangeable in all complete programs.
Thinking of the programs in which these functions occur as observations of
their behavior, these functions are said to be observationally equivalent. The
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main result of this chapter is that observational and logical equivalence
coincide for a variant of L{nat→} in which the successor is evaluated ea-
gerly, so that a value of type nat is a numeral.

47.1 Observational Equivalence

When are two expressions equal? Whenever we cannot tell them apart!
This may seem tautological, but it is not, because it depends on what we
consider to be a means of telling expressions apart. What “experiment”
are we permitted to perform on expressions in order to distinguish them?
What counts as an observation that, if different for two expressions, is a
sure sign that they are different?

If we permit ourselves to consider the syntactic details of the expres-
sions, then very few expressions could be considered equal. For example,
if it is deemed significant that an expression contains, say, more than one
function application, or that it has an occurrence of λ-abstraction, then very
few expressions would come out as equivalent. But such considerations
seem silly, because they conflict with the intuition that the significance of
an expression lies in its contribution to the outcome of a computation, and
not to the process of obtaining that outcome. In short, if two expressions
make the same contribution to the outcome of a complete program, then
they ought to be regarded as equal.

We must fix what we mean by a complete program. Two considerations
inform the definition. First, the dynamics of L{nat→} is given only for
expressions without free variables, so a complete program should clearly
be a closed expression. Second, the outcome of a computation should be
observable, so that it is evident whether the outcome of two computations
differs or not. We define a complete program to be a closed expression of type
nat, and define the observable behavior of the program to be the numeral to
which it evaluates.

An experiment on, or observation about, an expression is any means of
using that expression within a complete program. We define an expression
context to be an expression with a “hole” in it serving as a placeholder for
another expression. The hole is permitted to occur anywhere, including
within the scope of a binder. The bound variables within whose scope the
hole lies are said to be exposed to capture by the expression context. These
variables may be assumed, without loss of generality, to be distinct from
one another. A program context is a closed expression context of type nat—
that is, it is a complete program with a hole in it. The meta-variable C
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stands for any expression context.
Replacement is the process of filling a hole in an expression context, C,

with an expression, e, which is written C{e}. Importantly, the free vari-
ables of e that are exposed by C are captured by replacement (which is why
replacement is not a form of substitution, which is defined so as to avoid
capture). If C is a program context, then C{e} is a complete program iff
all free variables of e are captured by the replacement. For example, if
C = λ (x:nat) ◦, and e = x + x, then

C{e} = λ (x:nat) x + x.

The free occurrences of x in e are captured by the λ-abstraction as a result
of the replacement of the hole in C by e.

We sometimes write C{◦} to emphasize the occurrence of the hole in
C. Expression contexts are closed under composition in that if C1 and C2 are
expression contexts, then so is

C{◦} , C1{C2{◦}},

and we have C{e} = C1{C2{e}}. The trivial, or identity, expression context
is the “bare hole”, written ◦, for which ◦{e} = e.

The statics of expressions of L{nat→} is extended to expression con-
texts by defining the typing judgment

C : (Γ . τ) (Γ′ . τ′)

so that if Γ ` e : τ, then Γ′ ` C{e} : τ′. This judgment may be inductively
defined by a collection of rules derived from the statics of L{nat→} (see
Rules (9.1)). Some representative rules are as follows:

◦ : (Γ . τ) (Γ . τ) (47.1a)

C : (Γ . τ) (Γ′ . nat)
s(C) : (Γ . τ) (Γ′ . nat)

(47.1b)

C : (Γ . τ) (Γ′ . nat) Γ′ ` e0 : τ′ Γ′, x : nat, y : τ′ ` e1 : τ′

rec C {z⇒ e0 | s(x) with y⇒ e1} : (Γ . τ) (Γ′ . τ′)
(47.1c)

Γ′ ` e : nat C0 : (Γ . τ) (Γ′ . τ′) Γ′, x : nat, y : τ′ ` e1 : τ′

rec e {z⇒C0 | s(x) with y⇒ e1} : (Γ . τ) (Γ′ . τ′)
(47.1d)

Γ′ ` e : nat Γ′ ` e0 : τ′ C1 : (Γ . τ) (Γ′, x : nat, y : τ′ . τ′)

rec e {z⇒ e0 | s(x) with y⇒C1} : (Γ . τ) (Γ′ . τ′)
(47.1e)

REVISED 05.15.2012 VERSION 1.32



500 47.1 Observational Equivalence

C2 : (Γ . τ) (Γ′, x : τ1 . τ2)

λ (x:τ1) C2 : (Γ . τ) (Γ′ . τ1 → τ2)
(47.1f)

C1 : (Γ . τ) (Γ′ . τ2 → τ′) Γ′ ` e2 : τ2

C1(e2) : (Γ . τ) (Γ′ . τ′)
(47.1g)

Γ′ ` e1 : τ2 → τ′ C2 : (Γ . τ) (Γ′ . τ2)

e1(C2) : (Γ . τ) (Γ′ . τ′)
(47.1h)

Lemma 47.1. If C : (Γ . τ) (Γ′ . τ′), then Γ′ ⊆ Γ, and if Γ ` e : τ, then
Γ′ ` C{e} : τ′.

Contexts are closed under composition, with the trivial context acting
as an identity for it.

Lemma 47.2. If C : (Γ . τ) (Γ′ . τ′), and C ′ : (Γ′ . τ′) (Γ′′ . τ′′), then
C ′{C{◦}} : (Γ . τ) (Γ′′ . τ′′).

Lemma 47.3. If C : (Γ . τ) (Γ′ . τ′) and x /∈ dom(Γ), then C : (Γ, x : ρ . τ) (Γ′, x : ρ . τ′).

Proof. By induction on Rules (47.1).

A complete program is a closed expression of type nat.

Definition 47.4. Two complete programs, e and e′, are Kleene equal, written
e ' e′, iff there exists n ≥ 0 such that e 7→∗ n and e′ 7→∗ n.

Kleene equality is evidently reflexive and symmetric; transitivity fol-
lows from determinacy of evaluation. Closure under converse evaluation
also follows directly from determinacy. It is immediate from the definition
that 0 6' 1.

Definition 47.5. Suppose that Γ ` e : τ and Γ ` e′ : τ are two expressions of the
same type. Two such expressions are observationally equivalent, written Γ `
e ∼= e′ : τ, iff C{e} ' C{e′} for every program context C : (Γ . τ) (∅ . nat).

In other words, for all possible experiments, the outcome of an experiment
on e is the same as the outcome on e′. This is obviously an equivalence
relation. For the sake of brevity, we often write e ∼=τ e′ for ∅ ` e ∼= e′ : τ.

A family of equivalence relations Γ ` e1 E e2 : τ is a congruence iff it is
preserved by all contexts. That is,

if Γ ` e E e′ : τ, then Γ′ ` C{e} E C{e′} : τ′

for every expression context C : (Γ . τ) (Γ′ . τ′). Such a family of rela-
tions is consistent iff ∅ ` e E e′ : nat implies e ' e′.
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Theorem 47.6. Observational equivalence is the coarsest consistent congruence
on expressions.

Proof. Consistency follows directly from the definition by noting that the
trivial context is a program context. Observational equivalence is obviously
an equivalence relation. To show that it is a congruence, we need only ob-
serve that type-correct composition of a program context with an arbitrary
expression context is again a program context. Finally, it is the coarsest such
equivalence relation, for if Γ ` e E e′ : τ for some consistent congruence E ,
and if C : (Γ . τ) (∅ . nat), then by congruence ∅ ` C{e} E C{e′} : nat,
and hence by consistency C{e} ' C{e′}.

A closing substitution, γ, for the typing context Γ = x1 : τ1, . . . , xn : τn is
a finite function assigning closed expressions e1 : τ1, . . . , en : τn to x1, . . . , xn,
respectively. We write γ̂(e) for the substitution [e1, . . . , en/x1, . . . , xn]e, and
write γ : Γ to mean that if x : τ occurs in Γ, then there exists a closed
expression, e, such that γ(x) = e and e : τ. We write γ ∼=Γ γ′, where γ : Γ
and γ′ : Γ, to express that γ(x) ∼=Γ(x) γ′(x) for each x declared in Γ.

Lemma 47.7. If Γ ` e ∼= e′ : τ and γ : Γ, then γ̂(e) ∼=τ γ̂(e′). Moreover, if
γ ∼=Γ γ′, then γ̂(e) ∼=τ γ̂′(e) and γ̂(e′) ∼=τ γ̂′(e′).

Proof. Let C : (∅ . τ) (∅ . nat) be a program context; we are to show
that C{γ̂(e)} ' C{γ̂(e′)}. Because C has no free variables, this is equivalent
to showing that γ̂(C{e}) ' γ̂(C{e′}). Let D be the context

λ (x1:τ1) . . . λ (xn:τn) C{◦}(e1) . . .(en),

where Γ = x1 : τ1, . . . , xn : τn and γ(x1) = e1, . . . , γ(xn) = en. By Lemma 47.3
we have C : (Γ . τ) (Γ . nat), from which it follows directly that D :
(Γ . τ) (∅ . nat). Because Γ ` e ∼= e′ : τ, we have D{e} ' D{e′}. But
by construction D{e} ' γ̂(C{e}), and D{e′} ' γ̂(C{e′}), so γ̂(C{e}) '
γ̂(C{e′}). Because C is arbitrary, it follows that γ̂(e) ∼=τ γ̂(e′).

Defining D′ similarly to D, but based on γ′, rather than γ, we may also
show that D′{e} ' D′{e′}, and hence γ̂′(e) ∼=τ γ̂′(e′). Now if γ ∼=Γ γ′,
then by congruence we have D{e} ∼=nat D′{e}, and D{e′} ∼=nat D′{e′}.
It follows that D{e} ∼=nat D′{e′}, and so, by consistency of observational
equivalence, we have D{e} ' D′{e′}, which is to say that γ̂(e) ∼=τ γ̂′(e′).

Theorem 47.6 licenses the principle of proof by coinduction: to show that
Γ ` e ∼= e′ : τ, it is enough to exhibit a consistent congruence, E , such that
Γ ` e E e′ : τ. It can be difficult to construct such a relation. In the next
section we will provide a general method for doing so that exploits types.
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47.2 Logical Equivalence

The key to simplifying reasoning about observational equivalence is to ex-
ploit types. Informally, we may classify the uses of expressions of a type
into two broad categories, the passive and the active uses. The passive uses
are those that merely manipulate expressions without actually inspecting
them. For example, we may pass an expression of type τ to a function that
merely returns it. The active uses are those that operate on the expression
itself; these are the elimination forms associated with the type of that ex-
pression. For the purposes of distinguishing two expressions, it is only the
active uses that matter; the passive uses merely manipulate expressions at
arm’s length, affording no opportunities to distinguish one from another.

This leads to the definition of logical equivalence alluded to in the in-
troduction.

Definition 47.8. Logical equivalence is a family of relations e ∼τ e′ between
closed expressions of type τ. It is defined by induction on τ as follows:

e ∼nat e′ iff e ' e′

e ∼τ1→τ2 e′ iff if e1 ∼τ1 e′1, then e(e1) ∼τ2 e′(e′1)

The definition of logical equivalence at type nat licenses the following
principle of proof by nat-induction. To show that E (e, e′) whenever e ∼nat
e′, it is enough to show that

1. E (0, 0), and

2. if E (n, n), then E (n + 1, n + 1).

This is, of course, justified by mathematical induction on n ≥ 0, where
e 7→∗ n and e′ 7→∗ n by the definition of Kleene equivalence.

Lemma 47.9. Logical equivalence is symmetric and transitive: if e ∼τ e′, then
e′ ∼τ e, and if e ∼τ e′ and e′ ∼τ e′′, then e ∼τ e′′.

Proof. Simultaneously, by induction on the structure of τ. If τ = nat, the
result is immediate. If τ = τ1 → τ2, then we may assume that logical equiv-
alence is symmetric and transitive at types τ1 and τ2. For symmetry, assume
that e ∼τ e′; we wish to show e′ ∼τ e. Assume that e′1 ∼τ1 e1; it suffices to
show that e′(e′1) ∼τ2 e(e1). By induction we have that e1 ∼τ1 e′1. Therefore
by assumption e(e1) ∼τ2 e′(e′1), and hence by induction e′(e′1) ∼τ2 e(e1).
For transitivity, assume that e ∼τ e′ and e′ ∼τ e′′; we are to show e ∼τ e′′.
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Suppose that e1 ∼τ1 e′′1 ; it is enough to show that e(e1) ∼τ e′′(e′′1). By sym-
metry and transitivity we have e1 ∼τ1 e1, so by assumption e(e1) ∼τ2 e′(e1).
We also have by assumption e′(e1) ∼τ2 e′′(e′′1). By transitivity we have
e′(e1) ∼τ2 e′′(e′′1), which suffices for the result.

Logical equivalence is extended to open terms by substitution of related
closed terms to obtain related results. If γ and γ′ are two substitutions for
Γ, we define γ ∼Γ γ′ to hold iff γ(x) ∼Γ(x) γ′(x) for every variable, x, such
that Γ ` x : τ. Open logical equivalence, written Γ ` e ∼ e′ : τ, is defined to
mean that γ̂(e) ∼τ γ̂′(e′) whenever γ ∼Γ γ′.

Lemma 47.10. Open logical equivalence is symmetric and transitive.

Proof. Follows immediately from Lemma 47.9 and the definition of open
logical equivalence.

At this point we are “two thirds of the way” to justifying the use of
the name “open logical equivalence.” The remaining third, reflexivity, is
established in the next section.

47.3 Logical and Observational Equivalence Coincide

In this section we prove the coincidence of observational and logical equiv-
alence.

Lemma 47.11 (Converse Evaluation). Suppose that e ∼τ e′. If d 7→ e, then
d ∼τ e′, and if d′ 7→ e′, then e ∼τ d′.

Proof. By induction on the structure of τ. If τ = nat, then the result follows
from the closure of Kleene equivalence under converse evaluation. If τ =
τ1 → τ2, then suppose that e ∼τ e′, and d 7→ e. To show that d ∼τ e′, we
assume e1 ∼τ1 e′1 and show d(e1) ∼τ2 e′(e′1). It follows from the assumption
that e(e1) ∼τ2 e′(e′1). Noting that d(e1) 7→ e(e1), the result follows by
induction.

Lemma 47.12 (Consistency). If e ∼nat e′, then e ' e′.

Proof. Immediate, from Definition 47.8.

Theorem 47.13 (Reflexivity). If Γ ` e : τ, then Γ ` e ∼ e : τ.

REVISED 05.15.2012 VERSION 1.32



504 47.3 Logical and Observational Equivalence Coincide

Proof. We are to show that if Γ ` e : τ and γ ∼Γ γ′, then γ̂(e) ∼τ γ̂′(e).
The proof proceeds by induction on typing derivations; we consider two
representative cases.

Consider the case of Rule (8.4a), in which τ = τ1 → τ2 and e = λ (x:τ1) e2.
We are to show that

λ (x:τ1) γ̂(e2) ∼τ1→τ2 λ (x:τ1) γ̂′(e2).

Assume that e1 ∼τ1 e′1; by Lemma 47.11, it is enough to show that [e1/x]γ̂(e2) ∼τ2

[e′1/x]γ̂′(e2). Let γ2 = γ⊗ x ↪→ e1 and γ′2 = γ′ ⊗ x ↪→ e′1, and observe that
γ2 ∼Γ,x:τ1 γ′2. Therefore, by induction we have γ̂2(e2) ∼τ2 γ̂′2(e2), from
which the result follows directly.

Now consider the case of Rule (9.1d), for which we are to show that

rec(γ̂(e); γ̂(e0); x.y.γ̂(e1)) ∼τ rec(γ̂′(e); γ̂′(e0); x.y.γ̂′(e1)).

By the induction hypothesis applied to the first premise of Rule (9.1d), we
have

γ̂(e) ∼nat γ̂′(e).

We proceed by nat-induction. It suffices to show that

rec(z; γ̂(e0); x.y.γ̂(e1)) ∼τ rec(z; γ̂′(e0); x.y.γ̂′(e1)), (47.2)

and that

rec(s(n); γ̂(e0); x.y.γ̂(e1)) ∼τ rec(s(n); γ̂′(e0); x.y.γ̂′(e1)), (47.3)

assuming

rec(n; γ̂(e0); x.y.γ̂(e1)) ∼τ rec(n; γ̂′(e0); x.y.γ̂′(e1)). (47.4)

To show (47.2), by Lemma 47.11 it is enough to show that γ̂(e0) ∼τ

γ̂′(e0). This is assured by the outer inductive hypothesis applied to the
second premise of Rule (9.1d).

To show (47.3), define

δ = γ⊗ x ↪→ n⊗ y ↪→ rec(n; γ̂(e0); x.y.γ̂(e1))

and
δ′ = γ′ ⊗ x ↪→ n⊗ y ↪→ rec(n; γ̂′(e0); x.y.γ̂′(e1)).

By (47.4) we have δ ∼Γ,x:nat,y:τ δ′. Consequently, by the outer inductive
hypothesis applied to the third premise of Rule (9.1d), and Lemma 47.11,
the required follows.
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Corollary 47.14 (Equivalence). Open logical equivalence is an equivalence rela-
tion.

Corollary 47.15 (Termination). If e : nat, then e 7→∗ e′ for some e′ val.

Lemma 47.16 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and Γ ` e ∼ e′ : τ,
then Γ0 ` C0{e} ∼ C0{e′} : τ0.

Proof. By induction on the derivation of the typing of C0. We consider a rep-
resentative case in which C0 = λ (x:τ1) C2 so that C0 : (Γ . τ) (Γ0 . τ1 → τ2)
and C2 : (Γ . τ) (Γ0, x : τ1 . τ2). Assuming Γ ` e ∼ e′ : τ, we are to show
that

Γ0 ` C0{e} ∼ C0{e′} : τ1 → τ2,

which is to say

Γ0 ` λ (x:τ1) C2{e} ∼ λ (x:τ1) C2{e′} : τ1 → τ2.

We know, by induction, that

Γ0, x : τ1 ` C2{e} ∼ C2{e′} : τ2.

Suppose that γ0 ∼Γ0 γ′0, and that e1 ∼τ1 e′1. Let γ1 = γ0 ⊗ x ↪→ e1, γ′1 =
γ′0 ⊗ x ↪→ e′1, and observe that γ1 ∼Γ0,x:τ1 γ′1. By Definition 47.8 it is enough
to show that

γ̂1(C2{e}) ∼τ2 γ̂′1(C2{e′}),
which follows immediately from the inductive hypothesis.

Theorem 47.17. If Γ ` e ∼ e′ : τ, then Γ ` e ∼= e′ : τ.

Proof. By Lemmas 47.12 and 47.16, and Theorem 47.6.

Corollary 47.18. If e : nat, then e ∼=nat n, for some n ≥ 0.

Proof. By Theorem 47.13 we have e ∼nat e. Hence for some n ≥ 0, we have
e ∼nat n, and so by Theorem 47.17, e ∼=nat n.

Lemma 47.19. For closed expressions e : τ and e′ : τ, if e ∼=τ e′, then e ∼τ e′.

Proof. We proceed by induction on the structure of τ. If τ = nat, consider
the empty context to obtain e ' e′, and hence e ∼nat e′. If τ = τ1 → τ2,
then we are to show that whenever e1 ∼τ1 e′1, we have e(e1) ∼τ2 e′(e′1).
By Theorem 47.17 we have e1

∼=τ1 e′1, and hence by congruence of obser-
vational equivalence it follows that e(e1) ∼=τ2 e′(e′1), from which the result
follows by induction.
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Theorem 47.20. If Γ ` e ∼= e′ : τ, then Γ ` e ∼ e′ : τ.

Proof. Assume that Γ ` e ∼= e′ : τ, and that γ ∼Γ γ′. By Theorem 47.17 we
have γ ∼=Γ γ′, so by Lemma 47.7 γ̂(e) ∼=τ γ̂′(e′). Therefore, by Lemma 47.19,
γ̂(e) ∼τ γ̂(e′).

Corollary 47.21. Γ ` e ∼= e′ : τ iff Γ ` e ∼ e′ : τ.

The principle of symbolic evaluation states that definitional equivalence
is sufficient for observational equivalence:

Theorem 47.22. If Γ ` e ≡ e′ : τ, then Γ ` e ∼ e′ : τ, and hence Γ ` e ∼= e′ : τ.

Proof. By an argument similar to that used in the proof of Theorem 47.13
and Lemma 47.16, then appealing to Theorem 47.17.

Corollary 47.23. If e ≡ e′ : nat, then there exists n ≥ 0 such that e 7→∗ n and
e′ 7→∗ n.

Proof. By Theorem 47.22 we have e ∼nat e′ and hence e ' e′.

47.4 Some Laws of Equality

In this section we summarize some useful principles of observational equiv-
alence for L{nat→}. For the most part these may be proved as laws of
logical equivalence, and then transferred to observational equivalence by
appeal to Corollary 47.21. The laws are presented as inference rules with
the meaning that if all of the premises are true judgments about observa-
tional equivalence, then so are the conclusions. In other words each rule is
admissible as a principle of observational equivalence.

47.4.1 General Laws

Logical equivalence is indeed an equivalence relation: it is reflexive, sym-
metric, and transitive.

Γ ` e ∼= e : τ (47.5a)

Γ ` e′ ∼= e : τ
Γ ` e ∼= e′ : τ

(47.5b)

Γ ` e ∼= e′ : τ Γ ` e′ ∼= e′′ : τ
Γ ` e ∼= e′′ : τ

(47.5c)

VERSION 1.32 REVISED 05.15.2012



47.4 Some Laws of Equality 507

Reflexivity is an instance of a more general principle, that all defini-
tional equivalences are observational equivalences.

Γ ` e ≡ e′ : τ
Γ ` e ∼= e′ : τ

(47.6a)

This is called the principle of symbolic evaluation.
Observational equivalence is a congruence: we may replace equals by

equals anywhere in an expression.

Γ ` e ∼= e′ : τ C : (Γ . τ) (Γ′ . τ′)

Γ′ ` C{e} ∼= C{e′} : τ′
(47.7a)

Equivalence is stable under substitution for free variables, and substi-
tuting equivalent expressions in an expression gives equivalent results.

Γ ` e : τ Γ, x : τ ` e2 ∼= e′2 : τ′

Γ ` [e/x]e2 ∼= [e/x]e′2 : τ′
(47.8a)

Γ ` e1
∼= e′1 : τ Γ, x : τ ` e2 ∼= e′2 : τ′

Γ ` [e1/x]e2 ∼= [e′1/x]e′2 : τ′
(47.8b)

47.4.2 Equality Laws

Two functions are equal if they are equal on all arguments.

Γ, x : τ1 ` e(x) ∼= e′(x) : τ2

Γ ` e ∼= e′ : τ1 → τ2
(47.9)

Consequently, every expression of function type is equal to a λ-abstraction:

Γ ` e ∼= λ (x:τ1) e(x) : τ1 → τ2 (47.10)

47.4.3 Induction Law

An equation involving a free variable, x, of type nat can be proved by in-
duction on x.

Γ ` [n/x]e ∼= [n/x]e′ : τ (for every n ∈N)

Γ, x : nat ` e ∼= e′ : τ
(47.11a)

To apply the induction rule, we proceed by mathematical induction on
n ∈N, which reduces to showing:

1. Γ ` [z/x]e ∼= [z/x]e′ : τ, and

2. Γ ` [s(n)/x]e ∼= [s(n)/x]e′ : τ, if Γ ` [n/x]e ∼= [n/x]e′ : τ.
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47.5 Notes

The technique of logical relations interprets types as relations (here, equiv-
alence relations) by associating with each type constructor a relational ac-
tion that transforms the relation interpreting its arguments to the relation
interpreting the constructed type. Logical relations (Statman, 1985) are a
fundamental tool in proof theory and provide the foundation for the se-
mantics of the NuPRL type theory (Constable, 1986; Allen, 1987; Harper,
1992). The use of logical relations to characterize observational equivalence
is essentially an adaptation of the NuPRL semantics to the simpler setting
of Gödel’s System T.
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Chapter 48

Equational Reasoning for PCF

In this Chapter we develop the theory of observational equivalence for
L{nat⇀}, with an eager interpretation of the type of natural numbers.
The development proceeds along lines similar to those in Chapter 47, but
is complicated by the presence of general recursion. The proof depends on
the concept of an admissible relation, one that admits the principle of proof by
fixed point induction.

48.1 Observational Equivalence

The definition of observational equivalence, along with the auxiliary notion
of Kleene equivalence, are defined similarly to Chapter 47, but modified to
account for the possibility of non-termination.

The collection of well-formed L{nat⇀} contexts is inductively defined
in a manner directly analogous to that in Chapter 47. Specifically, we define
the judgment C : (Γ . τ) (Γ′ . τ′) by rules similar to Rules (47.1), mod-
ified for L{nat⇀}. (We leave the precise definition as an exercise for the
reader.) When Γ and Γ′ are empty, we write just C : τ  τ′.

A complete program is a closed expression of type nat.

Definition 48.1. We say that two complete programs, e and e′, are Kleene equal,
written e ' e′, iff for every n ≥ 0, e 7→∗ n iff e′ 7→∗ n.

Kleene equality is easily seen to be an equivalence relation and to be
closed under converse evaluation. Moreover, 0 6' 1, and, if e and e′ are
both divergent, then e ' e′.

Observational equivalence is defined just as it is in Chapter 47.
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Definition 48.2. We say that Γ ` e : τ and Γ ` e′ : τ are observationally, or
contextually, equivalent iff for every program context C : (Γ . τ) (∅ . nat),
C{e} ' C{e′}.

Theorem 48.3. Observational equivalence is the coarsest consistent congruence.

Proof. See the proof of Theorem 47.6.

Lemma 48.4 (Substitution and Functionality). If Γ ` e ∼= e′ : τ and γ : Γ, then
γ̂(e) ∼=τ γ̂(e′). Moreover, if γ ∼=Γ γ′, then γ̂(e) ∼=τ γ̂′(e) and γ̂(e′) ∼=τ γ̂′(e′).

Proof. See Lemma 47.7.

48.2 Logical Equivalence

Definition 48.5. Logical equivalence, e ∼τ e′, between closed expressions of
type τ is defined by induction on τ as follows:

e ∼nat e′ iff e ' e′

e ∼τ1→τ2 e′ iff e1 ∼τ1 e′1 implies e(e1) ∼τ2 e′(e′1)

Formally, logical equivalence is defined as in Chapter 47, except that the
definition of Kleene equivalence is altered to account for non-termination.
Logical equivalence is extended to open terms by substitution. Specifically,
we define Γ ` e ∼ e′ : τ to mean that γ̂(e) ∼τ γ̂′(e′) whenever γ ∼Γ γ′.

By the same argument as given in the proof of Lemma 47.9 logical
equivalence is symmetric and transitive, as is its open extension.

Lemma 48.6 (Strictness). If e : τ and e′ : τ are both divergent, then e ∼τ e′.

Proof. By induction on the structure of τ. If τ = nat, then the result follows
immediately from the definition of Kleene equivalence. If τ = τ1 → τ2,
then e(e1) and e′(e′1) diverge, so by induction e(e1) ∼τ2 e′(e′1), as required.

Lemma 48.7 (Converse Evaluation). Suppose that e ∼τ e′. If d 7→ e, then
d ∼τ e′, and if d′ 7→ e′, then e ∼τ d′.
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48.3 Logical and Observational Equivalence Coincide

The proof of coincidence of logical and observational equivalence relies on
the concept of bounded recursion, which we define by induction on m ≥ 0 as
follows:

fix0 x:τ is e , fix x:τ is x

fixm+1 x:τ is e , [fixm x:τ is e/x]e

When m = 0, bounded recursion is defined to be a divergent expression
of type τ. When m > 0, bounded recursion is defined by unrolling the re-
cursion m times by iterated substitution. Intuitively, the bounded recursive
expression fixm x:τ is e is as good as fix x:τ is e for up to m unrollings,
after which it is divergent.

It is easy to check that the follow rule is derivable for each m ≥ 0:

Γ, x : τ ` e : τ

Γ ` fixm[τ](x.e) : τ
. (48.1a)

The proof is by induction on m ≥ 0, and amounts to an iteration of the
substitution lemma for the statics of L{nat⇀}.

The key property of bounded recursion is the principle of fixed point
induction, which permits reasoning about a recursive computation by in-
duction on the number of unrollings required to reach a value. The proof
relies on compactness, which will be stated and proved in Section 48.4 below.

Theorem 48.8 (Fixed Point Induction). Suppose that x : τ ` e : τ. If

(∀m ≥ 0) fixm x:τ is e ∼τ fixm x:τ is e′,

then fix x:τ is e ∼τ fix x:τ is e′.

Proof. Define an applicative context, A, to be either a hole, ◦, or an appli-
cation of the form A(e), where A is an applicative context. (The typ-
ing judgment A : ρ τ is a special case of the general typing judgment
for contexts.) Define logical equivalence of applicative contexts, written
A ∼ A′ : ρ τ, by induction on the structure of A as follows:

1. ◦ ∼ ◦ : ρ ρ;

2. if A ∼ A′ : ρ τ2 → τ and e2 ∼τ2 e′2, then A(e2) ∼ A′(e′2) : ρ τ.
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We prove by induction on the structure of τ, if A ∼ A′ : ρ τ and

for every m ≥ 0, A{fixm x:ρ is e} ∼τ A′{fixm x:ρ is e′}, (48.2)

then
A{fix x:ρ is e} ∼τ A′{fix x:ρ is e′}. (48.3)

Choosing A = A′ = ◦ (so that ρ = τ) completes the proof.
If τ = nat, then assume that A ∼ A′ : ρ nat and (48.2). By Defini-

tion 48.5, we are to show

A{fix x:ρ is e} ' A′{fix x:ρ is e′}.

By Corollary 48.17 there exists m ≥ 0 such that

A{fix x:ρ is e} ' A{fixm x:ρ is e}.

By (48.2) we have

A{fixm x:ρ is e} ' A′{fixm x:ρ is e′}.

By Corollary 48.17

A′{fixm x:ρ is e′} ' A′{fix x:ρ is e′}.

The result follows by transitivity of Kleene equivalence.
If τ = τ1 ⇀ τ2, then by Definition 48.5, it is enough to show

A{fix x:ρ is e}(e1) ∼τ2 A′{fix x:ρ is e′}(e′1)

whenever e1 ∼τ1 e′1. LetA2 = A(e1) andA′2 = A′(e′1). It follows from (48.2)
that for every m ≥ 0

A2{fixm x:ρ is e} ∼τ2 A′2{fixm x:ρ is e′}.

Noting that A2 ∼ A′2 : ρ τ2, we have by induction

A2{fix x:ρ is e} ∼τ2 A′2{fix x:ρ is e′},

as required.

Lemma 48.9 (Reflexivity). If Γ ` e : τ, then Γ ` e ∼ e : τ.
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Proof. The proof proceeds along the same lines as the proof of Theorem 47.13.
The main difference is the treatment of general recursion, which is proved
by fixed point induction. Consider Rule (10.1g). Assuming γ ∼Γ γ′, we are
to show that

fix x:τ is γ̂(e) ∼τ fix x:τ is γ̂′(e).

By Theorem 48.8 it is enough to show that, for every m ≥ 0,

fixm x:τ is γ̂(e) ∼τ fixm x:τ is γ̂′(e).

We proceed by an inner induction on m. When m = 0 the result is im-
mediate, because both sides of the desired equivalence diverge. Assum-
ing the result for m, and applying Lemma 48.7, it is enough to show that
γ̂(e1) ∼τ γ̂′(e1), where

e1 = [fixm x:τ is γ̂(e)/x]γ̂(e), and (48.4)

e′1 = [fixm x:τ is γ̂′(e)/x]γ̂′(e). (48.5)

But this follows directly from the inner and outer inductive hypotheses.
For by the outer inductive hypothesis, if

fixm x:τ is γ̂(e) ∼τ fixm x:τ is γ̂′(e),

then
[fixm x:τ is γ̂(e)/x]γ̂(e) ∼τ [fixm x:τ is γ̂′(e)/x]γ̂′(e).

But the hypothesis holds by the inner inductive hypothesis, from which the
result follows.

Symmetry and transitivity of eager logical equivalence are easily estab-
lished by induction on types, noting that Kleene equivalence is symmetric
and transitive. Eager logical equivalence is therefore an equivalence rela-
tion.

Lemma 48.10 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and Γ ` e ∼ e′ : τ,
then Γ0 ` C0{e} ∼ C0{e′} : τ0.

Proof. By induction on the derivation of the typing of C0, following along
similar lines to the proof of Lemma 48.9.

Logical equivalence is consistent, by definition. Consequently, it is con-
tained in observational equivalence.

Theorem 48.11. If Γ ` e ∼ e′ : τ, then Γ ` e ∼= e′ : τ.
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Proof. By consistency and congruence of logical equivalence.

Lemma 48.12. If e ∼=τ e′, then e ∼τ e′.

Proof. By induction on the structure of τ. If τ = nat, then the result is
immediate, because the empty expression context is a program context. If
τ = τ1 → τ2, then suppose that e1 ∼τ1 e′1. We are to show that e(e1) ∼τ2

e′(e′1). By Theorem 48.11 e1
∼=τ1 e′1, and hence by Lemma 48.4 e(e1) ∼=τ2

e′(e′1), from which the result follows by induction.

Theorem 48.13. If Γ ` e ∼= e′ : τ, then Γ ` e ∼ e′ : τ.

Proof. Assume that Γ ` e ∼= e′ : τ. Suppose that γ ∼Γ γ′. By Theorem 48.11
we have γ ∼=Γ γ′, and so by Lemma 48.4 we have

γ̂(e) ∼=τ γ̂′(e′).

Therefore by Lemma 48.12 we have

γ̂(e) ∼τ γ̂′(e′).

Corollary 48.14. Γ ` e ∼= e′ : τ iff Γ ` e ∼ e′ : τ.

48.4 Compactness

The principle of fixed point induction is derived from a critical property of
L{nat⇀}, called compactness. This property states that only finitely many
unwindings of a fixed point expression are needed in a complete evaluation
of a program. Although intuitively obvious (one cannot complete infinitely
many recursive calls in a finite computation), it is rather tricky to state and
prove rigorously.

The proof of compactness (Theorem 48.16) makes use of the stack ma-
chine for L{nat⇀} defined in Chapter 27, augmented with the following
transitions for bounded recursive expressions:

k . fix0 x:τ is e 7→ k . fix0 x:τ is e (48.6a)

k . fixm+1 x:τ is e 7→ k . [fixm x:τ is e/x]e (48.6b)

It is straightforward to extend the proof of correctness of the stack machine
(Corollary 27.4) to account for bounded recursion.
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To get a feel for what is involved in the compactness proof, consider
first the factorial function, f , in L{nat⇀}:

fix f:nat⇀ nat isλ (x:nat) ifz x {z⇒ s(z) | s(x′)⇒ x ∗ f(x′)}.

Obviously evaluation of f(n) requires n recursive calls to the function it-
self. This means that, for a given input, n, we may place a bound, m, on the
recursion that is sufficient to ensure termination of the computation. This
can be expressed formally using the m-bounded form of general recursion,

fixm f:nat⇀ nat isλ (x:nat) ifz x {z⇒ s(z) | s(x′)⇒ x ∗ f(x′)}.

Call this expression f (m). It follows from the definition of f that if f(n) 7→∗
p, then f (m)(n) 7→∗ p for some m ≥ 0 (in fact, m = n suffices).

When considering expressions of higher type, we cannot expect to get
the same result from the bounded recursion as from the unbounded. For
example, consider the addition function, a, of type τ = nat⇀ (nat⇀ nat),
given by the expression

fix p:τ isλ (x:nat) ifz x {z⇒ id | s(x′)⇒ s ◦ (p(x′))},

where id = λ (y:nat) y is the identity, e′ ◦ e = λ (x:τ) e′(e(x)) is compo-
sition, and s = λ (x:nat) s(x) is the successor function. The application
a(n) terminates after three transitions, regardless of the value of n, result-
ing in a λ-abstraction. When n is positive, the result contains a residual copy
of a itself, which is applied to n− 1 as a recursive call. The m-bounded ver-
sion of a, written a(m), is also such that a(m)(n) terminates in three steps,
provided that m > 0. But the result is not the same, because the residuals
of a appear as a(m−1), rather than as a itself.

Turning now to the proof of compactness, it is helpful to introduce some
notation. Suppose that x : τ ` ex : τ for some arbitrary abstractor x.ex. Let
f (ω) = fix x:τ is ex, and let f (m) = fixm x:τ is ex. Observe that f (ω) : τ
and f (m) : τ for any m ≥ 0.

The following technical lemma governing the stack machine permits
the bound on occurrences of a recursive expression to be raised without
affecting the outcome of evaluation.

Lemma 48.15. For every m ≥ 0, if [ f (m)/y]k . [ f (m)/y]e 7→∗ ε / n, then
[ f (m+1)/y]k . [ f (m+1)/y]e 7→∗ ε / n.

Proof. By induction on m ≥ 0, and then induction on transition.
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Theorem 48.16 (Compactness). Suppose that y : τ ` e : nat where y /∈ f (ω).
If [ f (ω)/y]e 7→∗ n, then there exists m ≥ 0 such that [ f (m)/y]e 7→∗ n.

Proof. We prove simultaneously the stronger statements that if

[ f (ω)/y]k . [ f (ω)/y]e 7→∗ ε / n,

then for some m ≥ 0,

[ f (m)/y]k . [ f (m)/y]e 7→∗ ε / n,

and if
[ f (ω)/y]k / [ f (ω)/y]e 7→∗ ε / n

then for some m ≥ 0,

[ f (m)/y]k / [ f (m)/y]e 7→∗ ε / n.

(Note that if [ f (ω)/y]e val, then [ f (m)/y]e val for all m ≥ 0.) The result then
follows by the correctness of the stack machine (Corollary 27.4).

We proceed by induction on transition. Suppose that the initial state is

[ f (ω)/y]k . f (ω),

which arises when e = y, and the transition sequence is as follows:

[ f (ω)/y]k . f (ω) 7→ [ f (ω)/y]k . [ f (ω)/x]ex 7→∗ ε / n.

Noting that [ f (ω)/x]ex = [ f (ω)/y][y/x]ex, we have by induction that there
exists m ≥ 0 such that

[ f (m)/y]k . [ f (m)/x]ex 7→∗ ε / n.

By Lemma 48.15

[ f (m+1)/y]k . [ f (m)/x]ex 7→∗ ε / n

and we need only recall that

[ f (m+1)/y]k . f (m+1) = [ f (m+1)/y]k . [ f (m)/x]ex

to complete the proof. If, on the other hand, the initial step is an unrolling,
but e 6= y, then we have for some z /∈ f (ω) and z 6= y

[ f (ω)/y]k . fix z:τ is dω 7→ [ f (ω)/y]k . [fix z:τ is dω/z]dω 7→∗ ε / n.
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where dω = [ f (ω)/y]d. By induction there exists m ≥ 0 such that

[ f (m)/y]k . [fix z:τ is dm/z]dm 7→∗ ε / n,

where dm = [ f (m)/y]d. But then by Lemma 48.15 we have

[ f (m+1)/y]k . [fix z:τ is dm+1/z]dm+1 7→∗ ε / n,

where dm+1 = [ f (m+1)/y]d, from which the result follows directly.

Corollary 48.17. There exists m ≥ 0 such that [ f (ω)/y]e ' [ f (m)/y]e.

Proof. If [ f (ω)/y]e diverges, then taking m to be zero suffices. Otherwise,
apply Theorem 48.16 to obtain m, and note that the required Kleene equiv-
alence follows.

48.5 Co-Natural Numbers

If we change the dynamics of the successor operator in L{nat⇀} so that
s(e) is a value regardless of whether e is a value, then the type nat admits
an infinite “number” ω = fix x:nat is s(x). We may think of ω as an
infinite stack of successors, hence larger than any finite natural number.
Obviously the principle of mathematical induction is not valid for this type,
because we may prove by induction that every natural number is finite,
whereas ω is infinite. When the successor is evaluated lazily, it is preferable
to rename nat to conat, the type of co-natural numbers, which includes ω in
addition to all the finite natural numbers.

The definition of logical equivalence must be correspondingly altered
to account for the conatural numbers. Rather than being defined induc-
tively as the strongest relation closed under specified conditions, it is now
defined coinductively as the weakest relation consistent with two analogous
conditions. We may then show that two expressions are related using the
principle of proof by coinduction.

The definition of Kleene equivalence must be altered to account for the
lazily evaluated successor operation. To account for ω, two computations
are compared based solely on the outermost form of their values, if any. We
define e ' e′ to hold iff (a) if e 7→∗ z, then e′ 7→∗ z, and vice versa; and (b) if
e 7→∗ s(e1), then e′ 7→∗ s(e′1), and vice versa.

Corollary 48.17 can be proved for the co-natural numbers by essentially
the same argument as before.
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The definition of logical equivalence at type conat is defined to be the
weakest equivalence relation, E , between closed terms of type conat satis-
fying the following consistency conditions: if e E e′ : conat, then

1. If e 7→∗ z, then e′ 7→∗ z, and vice versa.

2. If e 7→∗ s(e1), then e′ 7→∗ s(e′1) with e1 E e′1 : conat, and vice versa.

It is immediate that if e ∼conat e′, then e ' e′, and so logical equivalence is
consistent. It is also strict in that if e and e′ are both divergent expressions
of type conat, then e ∼conat e′.

The principle of proof by coinduction states that to show e ∼conat e′, it
suffices to exhibit a relation, E , such that

1. e E e′ : conat, and

2. E satisfies the above consistency conditions.

If these requirements hold, then E is contained in logical equivalence at
type conat, and hence e ∼conat e′, as required.

As an application of coinduction, let us consider the proof of Theo-
rem 48.8. The overall argument remains as before, but the proof for the
type conat must be altered as follows. Suppose that A ∼ A′ : ρ conat,
and let a = A{fix x:ρ is e} and a′ = A′{fix x:ρ is e′}. Writing a(m) =

A{fixm x:ρ is e} and a′(m) = A′{fixm x:ρ is e′}, assume that

for every m ≥ 0, a(m) ∼conat a′(m).

We are to show that
a ∼conat a′.

Define the functions pn for n ≥ 0 on closed terms of type conat by the
following equations:

p0(d) = d

p(n+1)(d) =

{
d′ if pn(d) 7→∗ s(d′)
undefined otherwise

For n ≥ 0, let an = pn(a) and a′n = pn(a′). Correspondingly, let a(m)
n =

pn(a(m)) and a′n
(m) = pn(a′(m)). Define E to be the strongest relation such

that an E a′n : conat for all n ≥ 0. We will show that the relation E satisfies
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the consistency conditions, and so it is contained in logical equivalence.
Because a E a′ : conat (by construction), the result follows immediately.

To show that E is consistent, suppose that an E a′n : conat for some
n ≥ 0. We have by Corollary 48.17 an ' a(m)

n , for some m ≥ 0, and hence,
by the assumption, an ' a′n

(m), and so by Corollary 48.17 again, a′n
(m) ' a′n.

Now if an 7→∗ s(bn), then a(m)
n 7→∗ s(b(m)

n ) for some b(m)
n , and hence there

exists b′n
(m) such that a′n

(m) 7→∗ b′n
(m), and so there exists b′n such that a′n 7→∗

s(b′n). But bn = pn+1(a) and b′n = pn+1(a′), and we have bn E b′n : conat by
construction, as required.

48.6 Notes

The use of logical relations to characterize observational equivalence for
PCF is inspired by the treatment of partiality in type theory by Constable
and Smith (1987) and by the studies of observational equivalence by Pitts
(2000). Although the technical details differ, the proof of compactness here
is inspired by Pitts’s structurally inductive characterization of termination
using an abstract machine. It is critical to restrict attention to transition sys-
tems whose states are complete programs (closed expressions of observable
type). Structural operational semantics usually does not fulfill this require-
ment, thereby requiring a considerably more complex argument than given
here.
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Chapter 49

Parametricity

The motivation for introducing polymorphism was to enable more pro-
grams to be written — those that are “generic” in one or more types, such
as the composition function given in Chapter 20. Then if a program does
not depend on the choice of types, we can code it using polymorphism.
Moreover, if we wish to insist that a program can not depend on a choice
of types, we demand that it be polymorphic. Thus polymorphism can be
used both to expand the collection of programs we may write, and also to
limit the collection of programs that are permissible in a given context.

The restrictions imposed by polymorphic typing give rise to the expe-
rience that in a polymorphic functional language, if the types are correct,
then the program is correct. Roughly speaking, if a function has a poly-
morphic type, then the strictures of type genericity vastly cut down the set
of programs with that type. Thus if you have written a program with this
type, it is quite likely to be the one you intended!

The technical foundation for these remarks is called parametricity. The
goal of this chapter is to give an account of parametricity for L{→∀} under
a call-by-name interpretation.

49.1 Overview

We will begin with an informal discussion of parametricity based on a “seat
of the pants” understanding of the set of well-formed programs of a type.

Suppose that a function value f has the type ∀(t.t→ t). What function
could it be? When instantiated at a type τ it should evaluate to a function
g of type τ → τ that, when further applied to a value v of type τ returns a
value v′ of type τ. Because f is polymorphic, g cannot depend on v, so v′
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must be v. In other words, g must be the identity function at type τ, and f
must therefore be the polymorphic identity.

Suppose that f is a function of type ∀(t.t). What function could it be?
A moment’s thought reveals that it cannot exist at all. For it must, when
instantiated at a type τ, return a value of that type. But not every type has
a value (including this one), so this is an impossible assignment. The only
conclusion is that ∀(t.t) is an empty type.

Let N be the type of polymorphic Church numerals introduced in Chap-
ter 20, namely ∀(t.t→ (t→ t)→ t). What are the values of this type?
Given any type τ, and values z : τ and s : τ → τ, the expression

f[τ](z)(s)

must yield a value of type τ. Moreover, it must behave uniformly with
respect to the choice of τ. What values could it yield? The only way to
build a value of type τ is by using the element z and the function s passed
to it. A moment’s thought reveals that the application must amount to the
n-fold composition

s(s(. . . s(z) . . .)).

That is, the elements of N are in one-to-one correspondence with the natu-
ral numbers.

49.2 Observational Equivalence

The definition of observational equivalence given in Chapters 47 and 48 is
based on identifying a type of answers that are observable outcomes of com-
plete programs. Values of function type are not regarded as answers, but
are treated as “black boxes” with no internal structure, only input-output
behavior. In L{→∀}, however, there are no (closed) base types. Every type
is either a function type or a polymorphic type, and hence no types suitable
to serve as observable answers.

One way to manage this difficulty is to augment L{→∀} with a base
type of answers to serve as the observable outcomes of a computation. The
only requirement is that this type have two elements that can be immedi-
ately distinguished from each other by evaluation. We may achieve this
by enriching L{→∀} with a base type, 2, containing two constants, tt and
ff, that serve as possible answers for a complete computation. A complete
program is a closed expression of type 2.

Kleene equality is defined for complete programs by requiring that e '
e′ iff either (a) e 7→∗ tt and e′ 7→∗ tt; or (b) e 7→∗ ff and e′ 7→∗ ff. This is

VERSION 1.32 REVISED 05.15.2012



49.2 Observational Equivalence 523

obviously an equivalence relation, and it is immediate that tt 6' ff, because
these are two distinct constants. As before, we say that a type-indexed fam-
ily of equivalence relations between closed expressions of the same type is
consistent if it implies Kleene equality at the answer type, 2.

To define observational equivalence, we must first define the concept of
an expression context for L{→∀} as an expression with a “hole” in it. More
precisely, we may give an inductive definition of the judgment

C : (∆; Γ . τ) (∆′; Γ′ . τ′),

which states that C is an expression context that, when filled with an ex-
pression ∆; Γ ` e : τ yields an expression ∆′; Γ′ ` C{e} : τ′. (We leave the
precise definition of this judgment, and the verification of its properties, as
an exercise for the reader.)

Definition 49.1. Two expressions of the same type are observationally equiva-
lent, ∆; Γ ` e ∼= e′ : τ, iff C{e} ' C{e′} whenever C : (∆; Γ . τ) (∅; ∅ . 2).

Lemma 49.2. Observational equivalence is the coarsest consistent congruence.

Proof. Essentially the same as the the proof of Theorem 47.6.

Lemma 49.3.

1. If ∆, t; Γ ` e ∼= e′ : τ and ρ type, then ∆; [ρ/t]Γ ` [ρ/t]e ∼= [ρ/t]e′ :
[ρ/t]τ.

2. If ∅; Γ, x : ρ ` e ∼= e′ : τ and d : ρ, then ∅; Γ ` [d/x]e ∼= [d/x]e′ :
τ. Moreover, if d ∼=ρ d′, then ∅; Γ ` [d/x]e ∼= [d′/x]e : τ and ∅; Γ `
[d/x]e′ ∼= [d′/x]e′ : τ.

Proof. 1. Let C : (∆; [ρ/t]Γ . [ρ/t]τ) (∅ . 2) be a program context. We
are to show that

C{[ρ/t]e} ' C{[ρ/t]e′}.
Because C is closed, this is equivalent to

[ρ/t]C{e} ' [ρ/t]C{e′}.

Let C ′ be the context Λ(t.C{◦})[ρ], and observe that

C ′ : (∆, t; Γ . τ) (∅ . 2).

Therefore, from the assumption,

C ′{e} ' C ′{e′}.

But C ′{e} ' [ρ/t]C{e}, and C ′{e′} ' [ρ/t]C{e′}, from which the re-
sult follows.

REVISED 05.15.2012 VERSION 1.32



524 49.3 Logical Equivalence

2. By an argument essentially similar to that for Lemma 47.7.

49.3 Logical Equivalence

In this section we introduce a form of logical equivalence that captures the
informal concept of parametricity, and also provides a characterization of
observational equivalence. This will permit us to derive properties of ob-
servational equivalence of polymorphic programs of the kind suggested
earlier.

The definition of logical equivalence for L{→∀} is somewhat more
complex than for L{nat→}. The main idea is to define logical equiva-
lence for a polymorphic type, ∀(t.τ) to satisfy a very strong condition that
captures the essence of parametricity. As a first approximation, we might
say that two expressions, e and e′, of this type should be logically equiva-
lent if they are logically equivalent for “all possible” interpretations of the
type t. More precisely, we might require that e[ρ] be related to e′[ρ] at
type [ρ/t]τ, for any choice of type ρ. But this runs into two problems, one
technical, the other conceptual. The same device will be used to solve both
problems.

The technical problem stems from impredicativity. In Chapter 47 logi-
cal equivalence is defined by induction on the structure of types. But when
polymorphism is impredicative, the type [ρ/t]τ might well be larger than
∀(t.τ). At the very least we would have to justify the definition of logical
equivalence on some other grounds, but no criterion appears to be avail-
able. The conceptual problem is that, even if we could make sense of the
definition of logical equivalence, it would be too restrictive. For such a def-
inition amounts to saying that the unknown type t is to be interpreted as
logical equivalence at whatever type it turns out to be when instantiated.
To obtain useful parametricity results, we shall ask for much more than
this. What we shall do is to consider separately instances of e and e′ by types
ρ and ρ′, and treat the type variable t as standing for any relation (of some
form) between ρ and ρ′. We may suspect that this is asking too much: per-
haps logical equivalence is the empty relation. Surprisingly, this is not the
case, and indeed it is this very feature of the definition that we shall exploit
to derive parametricity results about the language.

To manage both of these problems we will consider a generalization of
logical equivalence that is parameterized by a relational interpretation of
the free type variables of its classifier. The parameters determine a sepa-
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rate binding for each free type variable in the classifier for each side of the
equation, with the discrepancy being mediated by a specified relation be-
tween them. Thus related expressions need not have the same type, with
the differences between them mediated by the given relation.

We will restrict attention to a certain collection of “admissible” binary
relations between closed expressions. The conditions are imposed to ensure
that logical equivalence and observational equivalence coincide.

Definition 49.4 (Admissibility). A relation R between expressions of types ρ
and ρ′ is admissible, written R : ρ↔ ρ′, iff it satisfies two requirements:

1. Respect for observational equivalence: if R(e, e′) and d ∼=ρ e and d′ ∼=ρ′ e′,
then R(d, d′).

2. Closure under converse evaluation: if R(e, e′), then if d 7→ e, then R(d, e′)
and if d′ 7→ e′, then R(e, d′).

Closure under converse evaluation will turn out to be a consequence of
respect for observational equivalence, but we are not yet in a position to
establish this fact.

The judgment δ : ∆ states that δ is a type substitution that assigns a closed
type to each type variable t ∈ ∆. A type substitution, δ, induces a substitu-
tion function, δ̂, on types given by the equation

δ̂(τ) = [δ(t1), . . . , δ(tn)/t1, . . . , tn]τ,

and similarly for expressions. Substitution is extended to contexts point-
wise by defining δ̂(Γ)(x) = δ̂(Γ(x)) for each x ∈ dom(Γ).

Let δ and δ′ be two type substitutions of closed types to the type vari-
ables in ∆. An admissible relation assignment, η, between δ and δ′ is an as-
signment of an admissible relation η(t) : δ(t)↔ δ′(t) to each t ∈ ∆. The
judgment η : δ↔ δ′ states that η is an admissible relation assignment be-
tween δ and δ′.

Logical equivalence is defined in terms of its generalization, called para-
metric logical equivalence, written e ∼τ e′ [η : δ↔ δ′], defined as follows.

Definition 49.5 (Parametric Logical Equivalence). The relation e ∼τ e′ [η :
δ↔ δ′] is defined by induction on the structure of τ by the following conditions:

e ∼t e′ [η : δ↔ δ′] iff η(t)(e, e′)
e ∼2 e′ [η : δ↔ δ′] iff e ' e′

e ∼τ1→τ2 e′ [η : δ↔ δ′] iff e1 ∼τ1 e′1 [η : δ↔ δ′] implies
e(e1) ∼τ2 e′(e′1) [η : δ↔ δ′]

e ∼∀(t.τ) e′ [η : δ↔ δ′] iff for every ρ, ρ′, and every admissible R : ρ↔ ρ′,
e[ρ] ∼τ e′[ρ′] [η ⊗ t ↪→ R : δ⊗ t ↪→ ρ↔ δ′ ⊗ t ↪→ ρ′]
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Logical equivalence is defined in terms of parametric logical equiva-
lence by considering all possible interpretations of its free type- and ex-
pression variables. An expression substitution, γ, for a context Γ, written
γ : Γ, is a substitution of a closed expression γ(x) : Γ(x) to each variable
x ∈ dom(Γ). An expression substitution, γ : Γ, induces a substitution func-
tion, γ̂, defined by the equation

γ̂(e) = [γ(x1), . . . , γ(xn)/x1, . . . , xn]e,

where the domain of Γ consists of the variables x1, . . . , xn. The relation
γ ∼Γ γ′ [η : δ↔ δ′] is defined to hold iff dom(γ) = dom(γ′) = dom(Γ),
and γ(x) ∼Γ(x) γ′(x) [η : δ↔ δ′] for every variable, x, in their common
domain.

Definition 49.6 (Logical Equivalence). The expressions ∆; Γ ` e : τ and
∆; Γ ` e′ : τ are logically equivalent, written ∆; Γ ` e ∼ e′ : τ iff, for every
assignment δ and δ′ of closed types to type variables in ∆, and every admissi-
ble relation assignment η : δ↔ δ′, if γ ∼Γ γ′ [η : δ↔ δ′], then γ̂(δ̂(e)) ∼τ

γ̂′(δ̂′(e′)) [η : δ↔ δ′].

When e, e′, and τ are closed, this definition states that e ∼τ e′ iff e ∼τ

e′ [∅ : ∅↔ ∅], so that logical equivalence is indeed a special case of its
generalization.

Lemma 49.7 (Closure under Converse Evaluation). Suppose that e ∼τ e′ [η :
δ↔ δ′]. If d 7→ e, then d ∼τ e′, and if d′ 7→ e′, then e ∼τ d′.

Proof. By induction on the structure of τ. When τ = t, the result holds by
the definition of admissibility. Otherwise the result follows by induction,
making use of the definition of the transition relation for applications and
type applications.

Lemma 49.8 (Respect for Observational Equivalence). Suppose that e ∼τ

e′ [η : δ↔ δ′]. If d ∼=δ̂(τ) e and d′ ∼=δ̂′(τ) e′, then d ∼τ d′ [η : δ↔ δ′].

Proof. By induction on the structure of τ, relying on the definition of ad-
missibility, and the congruence property of observational equivalence. For
example, if τ = ∀(t.τ2), then we are to show that for every admissible
R : ρ↔ ρ′,

d[ρ] ∼τ2 d′[ρ′] [η ⊗ t ↪→ R : δ⊗ t ↪→ ρ↔ δ′ ⊗ t ↪→ ρ′].
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Because observational equivalence is a congruence, we have d[ρ] ∼=[ρ/t]δ̂(τ2)

e[ρ], and d′[ρ′] ∼=[ρ′/t]δ̂′(τ2)
e′[ρ]. It follows that

e[ρ] ∼τ2 e′[ρ′] [η ⊗ t ↪→ R : δ⊗ t ↪→ ρ↔ δ′ ⊗ t ↪→ ρ′],

from which the result follows by induction.

Corollary 49.9. The relation e ∼τ e′ [η : δ↔ δ′] is an admissible relation be-
tween closed types δ̂(τ) and δ̂′(τ).

Proof. By Lemmas 49.7 and 49.8.

Corollary 49.10. If ∆; Γ ` e ∼ e′ : τ, and ∆; Γ ` d ∼= e : τ and ∆; Γ ` d′ ∼= e′ :
τ, then ∆; Γ ` d ∼ d′ : τ.

Proof. By Lemma 49.3 and Corollary 49.9.

Lemma 49.11 (Compositionality). Let R : δ̂(ρ)↔ δ̂′(ρ) be the relational inter-
pretation of some type ρ, which is to say R(d, d′) holds iff d ∼ρ d′ [η : δ↔ δ′].
Then e ∼[ρ/t]τ e′ [η : δ↔ δ′] if, and only if,

e ∼τ e′ [η ⊗ t ↪→ R : δ⊗ t ↪→ δ̂(ρ)↔ δ′ ⊗ t ↪→ δ̂′(ρ)].

Proof. By induction on the structure of τ. When τ = t, the result is im-
mediate from the choice of the relation R. When τ = t′ 6= t, the result
follows directly from Definition 49.5. When τ = τ1 → τ2, the result follows
by induction, using Definition 49.5. Similarly, when or τ = ∀(u.τ1), the
result follows by induction, noting that we may assume, without loss of
generality, that u 6= t and u /∈ ρ.

Despite the strong conditions on polymorphic types, logical equiva-
lence is not overly restrictive—every expression satisfies its constraints.
This result is sometimes called the parametricity theorem.

Theorem 49.12 (Parametricity). If ∆; Γ ` e : τ, then ∆; Γ ` e ∼ e : τ.

Proof. By rule induction on the statics of L{→∀} given by Rules (20.2).
We consider two representative cases here.

Rule (20.2d) Suppose δ : ∆, δ′ : ∆, η : δ↔ δ′, and γ ∼Γ γ′ [η : δ↔ δ′]. By
induction we have that for all ρ, ρ′, and admissible R : ρ↔ ρ′,

[ρ/t]γ̂(δ̂(e)) ∼τ [ρ′/t]γ̂′(δ̂′(e)) [η∗ : δ∗ ↔ δ′∗],
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where η∗ = η ⊗ t ↪→ R, δ∗ = δ⊗ t ↪→ ρ, and δ′∗ = δ′ ⊗ t ↪→ ρ′. Because

Λ(t.γ̂(δ̂(e)))[ρ] 7→∗ [ρ/t]γ̂(δ̂(e))

and
Λ(t.γ̂′(δ̂′(e)))[ρ′] 7→∗ [ρ′/t]γ̂′(δ̂′(e)),

the result follows by Lemma 49.7.

Rule (20.2e) Suppose δ : ∆, δ′ : ∆, η : δ↔ δ′, and γ ∼Γ γ′ [η : δ↔ δ′]. By
induction we have

γ̂(δ̂(e)) ∼∀(t.τ) γ̂′(δ̂′(e)) [η : δ↔ δ′]

Let ρ̂ = δ̂(ρ) and ρ̂′ = δ̂′(ρ). Define the relation R : ρ̂↔ ρ̂′ by R(d, d′)
iff d ∼ρ d′ [η : δ↔ δ′]. By Corollary 49.9, this relation is admissible.

By the definition of logical equivalence at polymorphic types, we ob-
tain

γ̂(δ̂(e))[ρ̂] ∼τ γ̂′(δ̂′(e))[ρ̂′] [η ⊗ t ↪→ R : δ⊗ t ↪→ ρ̂↔ δ′ ⊗ t ↪→ ρ̂′].

By Lemma 49.11

γ̂(δ̂(e))[ρ̂] ∼[ρ/t]τ γ̂′(δ̂′(e))[ρ̂′] [η : δ↔ δ′]

But

γ̂(δ̂(e))[ρ̂] = γ̂(δ̂(e))[δ̂(ρ)] (49.1)

= γ̂(δ̂(e[ρ])), (49.2)

and similarly

γ̂′(δ̂′(e))[ρ̂′] = γ̂′(δ̂′(e))[δ̂′(ρ)] (49.3)

= γ̂′(δ̂′(e[ρ])), (49.4)

from which the result follows.

Corollary 49.13. If ∆; Γ ` e ∼= e′ : τ, then ∆; Γ ` e ∼ e′ : τ.

Proof. By Theorem 49.12 ∆; Γ ` e ∼ e : τ, and hence by Corollary 49.10,
∆; Γ ` e ∼ e′ : τ.
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Lemma 49.14 (Congruence). If ∆; Γ ` e ∼ e′ : τ and C : (∆; Γ . τ) (∆′; Γ′ . τ′),
then ∆′; Γ′ ` C{e} ∼ C{e′} : τ′.

Proof. By induction on the structure of C, following along very similar lines
to the proof of Theorem 49.12.

Lemma 49.15 (Consistency). Logical equivalence is consistent.

Proof. Follows immediately from the definition of logical equivalence.

Corollary 49.16. If ∆; Γ ` e ∼ e′ : τ, then ∆; Γ ` e ∼= e′ : τ.

Proof. By Lemma 49.15 Logical equivalence is consistent, and by Lemma 49.14,
it is a congruence, and hence is contained in observational equivalence.

Corollary 49.17. Logical and observational equivalence coincide.

Proof. By Corollaries 49.13 and 49.16.

If d : τ and d 7→ e, then d ∼τ e, and hence by Corollary 49.16, d ∼=τ e.
Therefore if a relation respects observational equivalence, it must also be
closed under converse evaluation. This shows that the second condition on
admissibility is redundant, now that we have established the coincidence
of logical and observational equivalence.

Corollary 49.18 (Extensionality).

1. e ∼=τ1→τ2 e′ iff for all e1 : τ1, e(e1) ∼=τ2 e′(e1).

2. e ∼=∀(t.τ) e′ iff for all ρ, e[ρ] ∼=[ρ/t]τ e′[ρ].

Proof. The forward direction is immediate in both cases, because observa-
tional equivalence is a congruence, by definition. The backward direction
is proved similarly in both cases, by appeal to Theorem 49.12. In the first
case, by Corollary 49.17 it suffices to show that e ∼τ1→τ2 e′. To this end
suppose that e1 ∼τ1 e′1. We are to show that e(e1) ∼τ2 e′(e′1). By the as-
sumption we have e(e′1) ∼=τ2 e′(e′1). By parametricity we have e ∼τ1→τ2 e,
and hence e(e1) ∼τ2 e(e′1). The result then follows by Lemma 49.8. In the
second case, by Corollary 49.17 it is sufficient to show that e ∼∀(t.τ) e′.
Suppose that R : ρ↔ ρ′ for some closed types ρ and ρ′. It suffices to
show that e[ρ] ∼τ e′[ρ′] [η : δ↔ δ′], where η(t) = R, δ(t) = ρ, and
δ′(t) = ρ′. By the assumption we have e[ρ′] ∼=[ρ′/t]τ e′[ρ′]. By parametric-
ity e ∼∀(t.τ) e, and hence e[ρ] ∼τ e′[ρ′] [η : δ↔ δ′]. The result then
follows by Lemma 49.8.
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Lemma 49.19 (Identity Extension). Let η : δ↔ δ be such that η(t) is observa-
tional equivalence at type δ(t) for each t ∈ dom(δ). Then e ∼τ e′ [η : δ↔ δ] iff
e ∼=δ̂(τ) e′.

Proof. The backward direction follows immediately from Theorem 49.12
and respect for observational equivalence. The forward direction is proved
by induction on the structure of τ, appealing to Corollary 49.18 to establish
observational equivalence at function and polymorphic types.

49.4 Parametricity Properties

The parametricity theorem enables us to deduce properties of expressions
of L{→∀} that hold solely because of their type. The stringencies of para-
metricity ensure that a polymorphic type has very few inhabitants. For
example, we may prove that every expression of type ∀(t.t→ t) behaves
like the identity function.

Theorem 49.20. Let e : ∀(t.t→ t) be arbitrary, and let id be Λ(t.λ (x:t) x).
Then e ∼=∀(t.t→t) id.

Proof. By Corollary 49.17 it is sufficient to show that e ∼∀(t.t→t) id. Let ρ
and ρ′ be arbitrary closed types, let R : ρ↔ ρ′ be an admissible relation,
and suppose that e0 R e′0. We are to show

e[ρ](e0) R id[ρ](e′0),

which, given the definition of id and closure under converse evaluation, is
to say

e[ρ](e0) R e′0.

It suffices to show that e[ρ](e0) ∼=ρ e0, for then the result follows by the
admissibility of R and the assumption e0 R e′0.

By Theorem 49.12 we have e ∼∀(t.t→t) e. Let the relation S : ρ↔ ρ be
defined by d S d′ iff d ∼=ρ e0 and d′ ∼=ρ e0. This is clearly admissible, and we
have e0 S e0. It follows that

e[ρ](e0) S e[ρ](e0),

and so, by the definition of the relation S, e[ρ](e0) ∼=ρ e0.
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In Chapter 20 we showed that product, sum, and natural numbers types
are all definable in L{→∀}. The proof of definability in each case consisted
of showing that the type and its associated introduction and elimination
forms are encodable in L{→∀}. The encodings are correct in the (weak)
sense that the dynamics of these constructs as given in the earlier chapters
is derivable from the dynamics of L{→∀} via these definitions. By taking
advantage of parametricity we may extend these results to obtain a strong
correspondence between these types and their encodings.

As a first example, let us consider the representation of the unit type,
unit, in L{→∀}, as defined in Chapter 20 by the following equations:

unit = ∀(r.r → r)
〈〉 = Λ(r.λ (x:r) x)

It is easy to see that 〈〉 : unit according to these definitions. But this merely
says that the type unit is inhabited (has an element). What we would like
to know is that, up to observational equivalence, the expression 〈〉 is the
only element of that type. But this is precisely the content of Theorem 49.20.
We say that the type unit is strongly definable within L{→∀}.

Continuing in this vein, let us examine the definition of the binary prod-
uct type in L{→∀}, also given in Chapter 20:

τ1 × τ2 = ∀(r.(τ1 → τ2 → r)→ r)
〈e1, e2〉 = Λ(r.λ (x:τ1 → τ2 → r) x(e1)(e2))

e · l = e[τ1](λ (x:τ1)λ (y:τ2) x)
e · r = e[τ2](λ (x:τ1)λ (y:τ2) y)

It is easy to check that 〈e1, e2〉 · l ∼=τ1 e1 and 〈e1, e2〉 · r ∼=τ2 e2 by a direct
calculation.

We wish to show that the ordered pair, as defined above, is the unique
such expression, and hence that Cartesian products are strongly definable
in L{→∀}. We will make use of a lemma governing the behavior of the
elements of the product type whose proof relies on Theorem 49.12.

Lemma 49.21. If e : τ1 × τ2, then e ∼=τ1×τ2 〈e1, e2〉 for some e1 : τ1 and e2 : τ2.

Proof. Expanding the definitions of pairing and the product type, and ap-
plying Corollary 49.17, we let ρ and ρ′ be arbitrary closed types, and let
R : ρ↔ ρ′ be an admissible relation between them. Suppose further that

h ∼τ1→τ2→t h′ [η : δ↔ δ′],
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where η(t) = R, δ(t) = ρ, and δ′(t) = ρ′ (and each is undefined on t′ 6= t).
We are to show that for some e1 : τ1 and e2 : τ2,

e[ρ](h) ∼t h′(e1)(e2) [η : δ↔ δ′],

which is to say
e[ρ](h) R h′(e1)(e2).

Now by Theorem 49.12 we have e ∼τ1×τ2 e. Define the relation S : ρ↔ ρ′

by d S d′ iff the following conditions are satisfied:

1. d ∼=ρ h(d1)(d2) for some d1 : τ1 and d2 : τ2;

2. d′ ∼=ρ′ h′(d′1)(d′2) for some d′1 : τ1 and d′2 : τ2;

3. d R d′.

This is clearly an admissible relation. Noting that

h ∼τ1→τ2→t h′ [η′ : δ↔ δ′],

where η′(t) = S and η′(t′) is undefined for t′ 6= t, we conclude that
e[ρ](h) S e[ρ′](h′), and hence

e[ρ](h) R h′(d′1)(d′2),

as required.

Now suppose that e : τ1 × τ2 is such that e · l ∼=τ1 e1 and e · r ∼=τ2 e2.
We wish to show that e ∼=τ1×τ2 〈e1, e2〉. From Lemma 49.21 it follows that
e ∼=τ1×τ2 〈e · l, e · r〉 by congruence and direct calculation. Hence, by con-
gruence we have e ∼=τ1×τ2 〈e1, e2〉.

By a similar line of reasoning we may show that the Church encoding
of the natural numbers given in Chapter 20 strongly defines the natural
numbers in that the following properties hold:

1. iter z {z⇒ e0 | s(x)⇒ e1} ∼=ρ e0.

2. iter s(e) {z⇒ e0 | s(x)⇒ e1} ∼=ρ [iter e {z⇒ e0 | s(x)⇒ e1}/x]e1.

3. Suppose that x : nat ` r(x) : ρ. If

(a) r(z) ∼=ρ e0, and

(b) r(s(e)) ∼=ρ [r(e)/x]e1,
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then for every e : nat, r(e) ∼=ρ iter e {z⇒ e0 | s(x)⇒ e1}.

The first two equations, which constitute weak definability, are easily estab-
lished by calculation, using the definitions given in Chapter 20. The third
property, the unicity of the iterator, is proved using parametricity by show-
ing that every closed expression of type nat is observationally equivalent
to a numeral n. We then argue for unicity of the iterator by mathematical
induction on n ≥ 0.

Lemma 49.22. If e : nat, then either e ∼=nat z, or there exists e′ : nat such that
e ∼=nat s(e′). Consequently, there exists n ≥ 0 such that e ∼=nat n.

Proof. By Theorem 49.12 we have e ∼nat e. Define the relation R : nat↔ nat

to be the strongest relation such that d R d′ iff either d ∼=nat z and d′ ∼=nat
z, or d ∼=nat s(d1) and d′ ∼=nat s(d′1) and d1 R d′1. It is easy to see
that z R z, and if e R e′, then s(e) R s(e′). Letting zero = z and
succ = λ (x:nat) s(x), we have

e[nat](zero)(succ) R e[nat](zero)(succ).

The result follows by the induction principle arising from the definition of
R as the strongest relation satisfying its defining conditions.

49.5 Representation Independence, Revisited

In Section 21.4 we discussed the property of representation independence for
abstract types. This property states that if two implementations of an ab-
stract type are “similar”, then the client behavior is not affected by replac-
ing one for the other. The crux of the matter is the definition of similarity of
two implementations. Informally, two implementations of an abstract type
are similar if there is a relation, R, between their representation types that
is preserved by the operations of the type. The relation R may be thought of
as expressing the “equivalence” of the two representations; checking that
each operation preserves R amounts to checking that the result of perform-
ing that operation on equivalent representations yields equivalent results.

As an example, we argued informally in Section 21.4 that two imple-
mentations of a queue abstraction are similar. The two representations of
queues are related by a relation, R, such that q R (b, f ) iff q is b followed by
the reversal of f . When then argued that the operations preserve this re-
lationship, and then claimed, without proof, that the behavior of the client
would not be disrupted by changing one implementation to the other.
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The proof of this claim relies on parametricity, as may be seen by consid-
ering the definability of existential types in L{→∀} given in Section 21.3.
According to that definition, the client, e, of an abstract type ∃(t.τ) is a
polymorphic function of type ∀(t.τ → τ2), where τ2, the result type of the
computation, does not involve the type variable t. Being polymorphic, the
client enjoys the parametricity property given by Theorem 49.12. Specifi-
cally, suppose that ρ1 and ρ2 are two closed representation types and that
R : ρ1 ↔ ρ2 is an admissible relation between them. For example, in the
case of the queue abstraction, ρ1 is the type of lists of elements of the queue,
ρ2 is the type of a pair of lists of elements, and R is the relation given above.
Suppose further that e1 : [ρ1/t]τ and e2 : [ρ2/t]τ are two implementations
of the operations such that

e1 ∼τ e2 [η : δ1 ↔ δ2], (49.5)

where η(t) = R, δ1(t) = ρ1, and δ2(t) = ρ2. In the case of the queues exam-
ple the expression e1 is the implementation of the queue operations in terms
of lists, and the e2 is the implementation in terms of pairs of lists described
earlier. Condition (49.5) states that the two implementations are similar
in that they preserve the relation R between the representation types. By
Theorem 49.12 it follows that the client, e, satisfies

e ∼τ2 e [η : δ1 ↔ δ2].

But because τ2 is a closed type (in particular, does not involve t), this is
equivalent to

e ∼τ2 e [∅ : ∅↔ ∅].

But then by Lemma 49.19 we have

e[ρ1](e1) ∼=τ2 e[ρ2](e2).

That is, the client behavior is not affected by the change of representation.

49.6 Notes

The concept of parametricity is latent in the proof of normalization for Sys-
tem F (Girard, 1972). Reynolds (1983), though technically flawed due to
its reliance on a (non-existent) set-theoretic model of polymorphism, em-
phasizes the centrality of logical equivalence for characterizing equality of
polymorphic programs. The application of parametricity to representation
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independence was suggested by Reynolds, and developed for existential
types by Mitchell (1986) and Pitts (1998). The extension of System F with a
positive (in the sense of Chapter 38) observable type appears to be needed
to even define observational equivalence, but this point seems not to have
been made elsewhere in the literature.
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Chapter 50

Process Equivalence

As the name implies a process is an ongoing computation that may interact
with other processes by sending and receiving messages. From this point of
view a concurrent computation has no definite “final outcome” but rather
affords an opportunity for interaction that may well continue indefinitely.
The notion of equivalence of processes must therefore be based on their po-
tential for interaction, rather than on the “answer” that they may compute.
Let P and Q be such that `Σ P proc and `Σ Q proc. We say that P and Q are
equivalent, written P ≈Σ Q, iff there is a bisimulation, R, such that PRΣ Q.
A family of relations R = {RΣ }Σ is a bisimulation iff whenever P may
evolve to P′ taking the action α, then Q may also evolve to some process
Q′ taking the same action such that P′ RΣ Q′, and, conversely, if Q may
evolve to Q′ taking action α, then P may evolve to P′ taking the same ac-
tion, and P′ RΣ Q′. This captures the idea that the two processes afford the
same opportunities for interaction in that they each simulate each other’s
behavior with respect to their ability to interact with their environment.

50.1 Process Calculus

We will consider a process calculus that consolidates the main ideas ex-
plored in Chapters 41 and 42. We assume as given an ambient language
of expressions that includes the type clsfd of classified values (see Chap-
ter 34). Channels are treated as dynamically generated classes with which
to build messages, as described in Chapter 42.



538 50.1 Process Calculus

The syntax of the process calculus is given by the following grammar:

Proc P ::= stop 1 inert
par(P1; P2) P1 ‖ P2 composition
await(E) $ E synchronize
new[τ](a.P) ν a∼τ.P allocation
emit(e) ! e broadcast

Evt E ::= null 0 null
or(E1; E2) E1 + E2 choice
acc(x.P) ? (x.P) acceptance

The statics is given by the judgments Γ `Σ P proc and Γ `Σ E event
defined by the following rules. We assume as given a judgment Γ `Σ e : τ
for τ a type including the type clsfd of classified values.

Γ `Σ 1 proc
(50.1a)

Γ `Σ P1 proc Γ `Σ P2 proc

Γ `Σ P1 ‖ P2 proc
(50.1b)

Γ `Σ E event

Γ `Σ $ E proc
(50.1c)

Γ `Σ,a∼τ P proc

Γ `Σ ν a∼τ.P proc
(50.1d)

Γ `Σ e : clsfd
Γ `Σ ! e proc

(50.1e)

Γ `Σ 0 event
(50.1f)

Γ `Σ E1 event Γ `Σ E2 event

Γ `Σ E1 + E2 event
(50.1g)

Γ, x : clsfd `Σ P proc

Γ `Σ ? (x.P) event
(50.1h)

The dynamics is given by the judgments P α7−→
Σ

P′ and E α
=⇒
Σ

P, defined as

in Chapter 41. We assume as given the judgments e 7−→
Σ

e′ and e valΣ for ex-

pressions. Processes and events are identified up to structural congruence,
as described in Chapter 41.

P1
α7−→
Σ

P′1

P1 ‖ P2
α7−→
Σ

P′1 ‖ P2

(50.2a)
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P1
α7−→
Σ

P′1 P2
α7−→
Σ

P′2

P1 ‖ P2
ε7−→
Σ

P′1 ‖ P′2
(50.2b)

E α
=⇒
Σ

P

$ E α7−→
Σ

P
(50.2c)

P α7−−−→
Σ,a∼τ

P′ `Σ α action

ν a∼τ.P α7−→
Σ

ν a∼τ.P′
(50.2d)

e valΣ `Σ e : clsfd

! e e !7−→
Σ

1 (50.2e)

E1
α
=⇒
Σ

P

E1 + E2
α
=⇒
Σ

P
(50.2f)

e valΣ

? (x.P) e ?
=⇒
Σ

[e/x]P (50.2g)

Assuming that substitution is valid for expressions, it is also valid for
processes and events.

Lemma 50.1.

1. If Γ, x : τ `Σ P proc and Γ `Σ e : τ, then Γ `Σ [e/x]P proc.

2. If Γ, x : τ `Σ E event and Γ `Σ e : τ, then Γ `Σ [e/x]E event.

Transitions preserve well-formedness of processes and events.

Lemma 50.2.

1. If `Σ P proc and P α7−→
Σ

P′, then `Σ P′ proc.

2. If `Σ E event and E α
=⇒
Σ

P, then `Σ P proc.
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50.2 Strong Equivalence

Bisimilarity makes precise the informal idea that two processes are equiv-
alent if they each can take the same actions and, in doing so, evolve into
equivalent processes. A process relation, P , is a family { PΣ } of binary re-
lations between processes P and Q such that `Σ P proc and `Σ Q proc,
and an event relation, E , is a family { EΣ } of binary relations between events
E and F such that `Σ E event and `Σ F event. A (strong) bisimulation is
a pair (P , E) consisting of a process relation, P , and an event relation, E ,
satisfying the following conditions:

1. If P PΣ Q, then

(a) if P α7−→
Σ

P′, then there exists Q′ such that Q α7−→
Σ

Q′ with P′ PΣ Q′,

and

(b) if Q α7−→
Σ

Q′, then there exists P′ such that P α7−→
Σ

P′ with P′ PΣ Q′.

2. If E EΣ F, then

(a) if E α
=⇒
Σ

P, then there exists Q such that F α
=⇒
Σ

Q with P PΣ Q, and

(b) if F α
=⇒
Σ

Q, then there exists P such that E α
=⇒
Σ

P with P PΣ Q.

The qualifier “strong” refers to the fact that the action, α, in the conditions
on being a bisimulation include the silent action, ε. (In Section 50.3 we dis-
cuss another notion of bisimulation in which the silent actions are treated
specially.)

(Strong) equivalence is the pair (≈,≈) of process and event relations such
that P ≈Σ Q and E ≈Σ F iff there exists a strong bisimulation (P , E) such
that P PΣ Q, and E EΣ F.

Lemma 50.3. Strong equivalence is a strong bisimulation.

Proof. Follows immediately from the definition.

The definition of strong equivalence gives rise to the principle of proof
by coinduction. To show that P ≈Σ Q, it is enough to give a bisimulation
(P , E) such that P PΣ Q (and similarly for events). An instance of coinduc-
tion that arises fairly frequently is to choose (P , E) to be (≈ ∪ P0,≈ ∪ E0)
for some P0 and E0 such that P P0 Q, and show that this expansion is a
bisimulation. Because strong equivalence is itself a bisimulation, this re-
duces to show that if P′ P0 Q′ and P′ α7−→

Σ
P′′, then Q′ α7−→

Σ
Q′′ for some Q′′
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such that either P′′ ≈Σ Q′′ or P′′ P0 Q′′ (and analogously for transitions
from Q′, and similarly for event transitions). This proof method amounts
to assuming what we are trying to prove and showing that this assumption is
tenable. The proof that the expanded relation is a bisimulation may make
use of the assumptions P0 and E0; in this sense “circular reasoning” is a
perfectly valid method of proof.

Lemma 50.4. Strong equivalence is an equivalence relation.

Proof. For reflexivity and symmetry, it suffices to note that the identity re-
lation is a bisimulation, as is the converse of a bisimulation. For transitivity
we need that the composition of two bisimulations is again a bisimulation,
which follows directly from the definition.

It remains to verify that strong equivalence is a congruence, which means
that each of the process- and event-forming constructs respects strong equiv-
alence. To show this we require the open extension of strong equivalence to
processes and events with free variables. The relation Γ `Σ P ≈ Q is de-
fined for processes P and Q such that Γ `Σ P proc and Γ `Σ Q proc to mean
that γ̂(P) ≈Σ γ̂(Q) for every substitution, γ, of closed values of appropri-
ate type for the variables Γ.

Lemma 50.5. If Γ, x : clsfd `Σ P ≈ Q, then Γ `Σ ? (x.P) ≈ ? (x.Q).

Proof. Fix a closing substitution, γ, for Γ, and let P̂ = γ̂(P) and Q̂ = γ̂(Q).
By assumption we have x : clsfd `Σ P̂ ≈ Q̂. We are to show that
? (x.P̂) ≈Σ ? (x.Q̂). The proof is by coinduction, taking P = ≈ and
E = ≈∪ E0, where

E0 = { (? (x.P′), ? (x.Q′)) | x : clsfd `Σ P′ ≈ Q′ }.

Clearly ? (x.P̂) E0 ? (x.Q̂). Suppose that ? (x.P′) E0 ? (x.Q′). By in-
spection of Rules (50.2), if ? (x.P′) α

=⇒
Σ

P′′, then α = v ? and P′′ = [v/x]P′

for some v valΣ such that `Σ v : clsfd. But ? (x.Q′) v ?
=⇒

Σ
[v/x]Q′, and we

have that [v/x]P′ ≈Σ [v/x]Q′ by the definition of E0, and hence [v/x]P′ E0
[v/x]Q′, as required. The symmetric case follows symmetrically, complet-
ing the proof.

Lemma 50.6. If Γ `Σ,a∼τ P ≈ Q, then Γ `Σ ν a∼τ.P ≈ ν a∼τ.Q.
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Proof. Fix a closing value substitution, γ, for Γ, and let P̂ = γ̂(P) and
Q̂ = γ̂(Q). Assuming that P̂ ≈Σ,a∼τ Q̂, we are to show that ν a∼τ.P̂ ≈Σ
ν a∼τ.Q̂. The proof is by coinduction, taking P = ≈ ∪ P0 and E = ≈,
where

P0 = { (ν a∼τ.P′, ν a∼τ.Q′) | P′ ≈Σ,a∼τ Q′ }.

Clearly ν a∼τ.P̂ P0 ν a∼τ.Q̂. Suppose that ν a∼τ.P′ P0 ν a∼τ.Q′, and
that ν a∼τ.P′ α7−→

Σ
P′′. By inspection of Rules (50.2), we see that `Σ α action

and that P′′ = ν a∼τ.P′′′ for some P′′′ such that P′ α7−−−→
Σ,a∼τ

P′′′. But by

definition of P0 we have P′ ≈Σ,a∼τ Q′, and hence Q′ α7−−−→
Σ,a∼τ

Q′′′ with

P′′′ ≈Σ,a∼τ Q′′′. Letting Q′′ = ν a∼τ.Q′, we have that ν a∼τ.Q′ α7−−−→
Σ,a∼τ

Q′′

and by definition of P0 we have P′′ P0 Q′′, as required. The symmetric case
is proved symmetrically, completing the proof.

Lemmas 50.5 and 50.6 capture two different cases of binding, the former
of variables, and the latter of classes. The hypothesis of Lemma 50.5 relates
all substitutions for the variable x in the recipient processes, whereas the
hypothesis of Lemma 50.6 relates the constituent processes schematically in
the class name, a. This makes all the difference, for if we were to consider all
substitution instances of a class name by another class name, then a class
would no longer be “new” within its scope, because we could identify it
with an “old” class by substitution. On the other hand we must consider
substitution instances for variables, because the meaning of a variable is
given in such terms. This shows that classes and variables must be distinct
concepts. (See Chapter 34 for an example of what goes wrong when the
two concepts are confused.)

Lemma 50.7. If Γ `Σ P1 ≈ Q1 and Γ `Σ P2 ≈ Q2, then Γ `Σ P1 ‖ P2 ≈
Q1 ‖Q2.

Proof. Let γ be a closing value substitution for Γ, and let P̂i = γ̂(Pi) and
Q̂i = γ̂(Qi) for i = 1, 2. The proof is by coinduction, considering the rela-
tion P = ≈∪P0 and E = ≈, where

P0 = { (P′1 ‖ P′2, Q′1 ‖Q′2) | P′1 ≈Σ Q′1 and P′2 ≈Σ Q′2 }.

Suppose that P′1 ‖ P′2 P0 Q′1 ‖Q′2, and that P′1 ‖ P′2
α7−→
Σ

P′′. There are two

cases to consider, the interesting one being Rule (50.2b). In this case we

have P′′ = P′′1 ‖ P′′2 with P′1
α7−→
Σ

P′′1 and P′2
α7−→
Σ

P′′2 . By definition of P0 we
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have that Q′1
α7−→
Σ

Q′′1 and Q′2
α7−→
Σ

Q′′2 with P′′1 ≈Σ Q′′1 and P′′2 ≈Σ Q′′2 . Letting

Q′′ = Q′′1 ‖ Q′′2 , we have that P′′ P0 Q′′, as required. The symmetric case is
handled symmetrically, and Rule (50.2a) is handled similarly.

Lemma 50.8. If Γ `Σ E1 ≈ F1 and Γ `Σ E2 ≈ F2, then Γ `Σ E1 + E2 ≈ F1 + F2.

Proof. Follows immediately from Rules (50.2) and the definition of bisimu-
lation.

Lemma 50.9. If Γ `Σ E ≈ F, then Γ `Σ $ E ≈ $ F.

Proof. Follows immediately from Rules (50.2) and the definition of bisimu-
lation.

Lemma 50.10. If Γ `Σ d ∼= e : clsfd, then Γ `Σ ! d ≈ ! e.

Proof. The process calculus introduces no new observations on expressions,
so that d and e remain indistinguishable as actions.

Theorem 50.11. Strong equivalence is a congruence.

Proof. Follows immediately from the preceding lemmas, which cover each
case separately.

50.3 Weak Equivalence

Strong equivalence expresses the idea that two processes are equivalent if
they simulate each other step-by-step. Every action taken by one process is
matched by a corresponding action taken by the other. This seems natural
for the non-trivial actions e ! and e ?, but is arguably overly restrictive for the
silent action, ε. Silent actions correspond to the actual steps of computation,
whereas the send and receive actions express the potential to interact with
another process. Silent steps are therefore of a very different flavor than the
other forms of action, and therefore might usefully be treated differently
from them. Weak equivalence seeks to do just that.

Silent actions arise within the process calculus itself (when two pro-
cesses communicate), but they play an even more important role when the
dynamics of expressions is considered explicitly (as in Chapter 42). For
then each step e 7−→

Σ
e′ of evaluation of an expression corresponds to a

silent transition for any process in which it is embedded. In particular,
! e ε7−→

Σ
! e′ whenever e 7−→

Σ
e′. We may also consider atomic processes of
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the form proc(m) consisting of a command to be executed in accordance
with the rules of some underlying dynamics. Here again we would expect
that each step of command execution induces a silent transition from one
atomic process to another.

From the point of view of equivalence, it therefore seems sensible to al-
low that a silent action by one process may be mimicked by one or more
silent actions by another. For example, there appears to be little to be
gained by distinguishing, say, proc(ret 3+4) from proc(ret (1+2)+(2+2))

merely because the latter takes more steps to compute the same value than
the former! The purpose of weak equivalence is precisely to disregard such
trivial distinctions by allowing a transition to be matched by a matching
transition, possibly preceded by any number of silent transitions.

A weak bisimulation is a pair (P , E) consisting of a process relation, P ,
and an event relation, E , satisfying the following conditions:

1. If P PΣ Q, then

(a) if P α7−→
Σ

P′, where α 6= ε, then there exists Q′′ and Q′ such that

Q ε7−→
Σ

∗
Q′′ α7−→

Σ
Q′ with P′ PΣ Q′, and if P ε7−→

Σ
P′, then Q ε7−→

Σ

∗
Q′

with P′ PΣ Q′;
(b) if Q α7−→

Σ
Q′, where α 6= ε, then there exists P′′ and P′ such that

P ε7−→
Σ

∗
P′′ α7−→

Σ
P′ with P′ PΣ Q′, and if Q ε7−→

Σ
Q′, then P ε7−→

Σ

∗
P′

with P′ PΣ Q′;

2. If E EΣ F, then

(a) if E α
=⇒
Σ

P, then there exists Q such that F α
=⇒
Σ

Q with P PΣ Q, and

(b) if F α
=⇒
Σ

Q, then there exists P such that E α
=⇒
Σ

P with P PΣ Q.

(The conditions on the event relation are the same as for strong bisimilarity
because there are, in this calculus, no silent actions on events.)

Weak equivalence is the pair (∼,∼) of process and event relations defined
by P ∼Σ Q and E ∼Σ F iff there exists a weak bisimulation (P , E) such that
P PΣ Q, and E EΣ F. The open extension of weak equivalence, written
Γ `Σ P ∼ Q and Γ `Σ E ∼ F, is defined exactly as is the open extension of
strong equivalence.

Theorem 50.12. Weak equivalence is an equivalence relation and a congruence.

Proof. The proof proceeds along similar lines to that of Theorem 50.11.
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50.4 Notes

The literature on process equivalence is extensive. Numerous variations
have been considered for an equally numerous array of formalisms. Mil-
ner recounts the history and development of the concept of bisimilarity in
his monograph on the π-calculus (Milner, 1999), crediting David Park with
its original conception (Park, 1981). The development in this chapter is in-
spired by Milner, and by a proof of congruence of strong bisimilarity given
by Bernardo Toninho for the process calculus considered in Chapter 41.
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Appendices





Appendix A

Finite Sets and Finite Functions

We make frequent use of the concepts of a finite set of discrete objects and of
finite functions between them. A set X is discrete iff equality of its elements
is decidable: for every x, y ∈ X, either x = y ∈ X or x 6= y ∈ X. This
condition is to be understood constructively as stating that we may effec-
tively determine whether any two elements of the set X are equal or not.
Perhaps the most basic example of a discrete set is the set, ω, of natural
numbers. A set X is countable iff there is a bijection, f : X ∼= ω, between
X and the set of natural numbers, and it is finite iff there is a bijection,
f : X ∼= { 0, . . . , n− 1 }, where n ∈ ω, between it and some inital segment
of the natural numbers. This condition is again to be understood construc-
tively in terms of computable mappings, so that countable and finite sets
are computably enumerable and, in the finite case, have a computable size.

Given countable sets, U and V, a finite function is a computable partial
function φ : U → V between them. The domain, dom(φ), of φ is the set
{ u ∈ U | φ(u) ↓ }, of objects u ∈ U such that φ(u) = v for some v ∈ V.
Two finite functions, φ and ψ, between U and V are disjoint iff dom(φ) ∩
dom(ψ) = ∅. The empty finite function, ∅, between U and V is the totally
undefined partial function between them. If u ∈ U and v ∈ V, the finite
function, u ↪→ v, between U and V sends u to v, and is undefined otherwise;
its domain is therefore the singleton set { u }. In some situations we write
u∼ v for the finite function u ↪→ v.

If φ and ψ are two disjoint finite functions from U to V, then φ ⊗ ψ is
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the finite function from U to V defined by the equation

(φ⊗ ψ)(u) =


φ(u) if u ∈ dom(φ)

ψ(v) if v ∈ dom(ψ)

undefined otherwise

If u1, . . . , un ∈ U are pairwise distinct, and v1, . . . , vn ∈ V, then we some-
times write u1 ↪→ v1, . . . , un ↪→ vn, or u1∼ v1, . . . , un∼ vn, for the finite func-
tion

u1 ↪→ v1 ⊗ . . .⊗ un ↪→ vn.
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disjunction, 302
hypothesis, 301
implication, 302
negation, 302
truth, 301
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refutability, 301
conjunction, 301
disjunction, 302
falsehood, 301
hypothesis, 301
implication, 302
negation, 302

refutation, 302
conjunction, 304
disjunction, 304
falsehood, 304
implication, 304
negation, 304
variable, 303

safety, 307
classified type, 331

confidentiality, 336
dynamics, 333
integrity, 336
safety, 334
statics, 332

coinductive types
dynamics, 134
statics, 134
streams, 131

command types, see Modernized Al-
gol

compactness, see equality
Concurrent Algol, 435

broadcast communication, 438
dynamics, 439
safety, 439
statics, 439

definability of free assignables,
444

dynamics, 436
selective communication, 441

dynamics, 443
statics, 441, 442

statics, 436

constructive logic, 289
conservation of proof, 295
Gentzen’s Principle, 295
judgment forms, 291
proof, 293

conjunction, 294
disjunction, 295
falsehood, 294
implication, 294
truth, 294

proofs-as-programs, 296
propositions-as-types, 296
provability, 292

conjunction, 292
disjunction, 293
falsehood, 293
implication, 293
negation, 293
truth, 292

reversability of proof, 295
semantics, 290

constructors, 201, 202
canonical, 202, 203
canonization, 209
canonizing substitution, 206
formation rules, 203
general, 209
neutral, 202, 203

contexts
seeequality, 499

continuation types, 277
coroutines, 281
dynamics, 280
safety, 280
statics, 279
syntax, 279

contravariance, see subtyping
covariance, see subtyping

definitional equality, see equality

REVISED 05.15.2012 VERSION 1.32



562 INDEX

Distributed Algol, 447
dynamics, 450
safety, 451
situated types, 452

mobility, 455
statics, 452, 454

statics, 448
dynamc types

destructors, 164
dynamic binding, see fluids
dynamic classification, see classified

type
dynamic dispatch, 241, 242

class-based, 243, 244
class vector, 244
instance, 245
message send, 244
object type, 244
self-reference, 248

dispatch matrix, 242
method-based, 243

message send, 246
method vector, 245, 246
object type, 246
self-reference, 248

self-reference, 247
dynamic types, 159

as static types, 171
class dispatch, 165
cons, 164
critique, 166
dynamics, 160
nil, 164
numeric classes, 163
predicates, 164
safety, 162
statics, 160

dynamic typing
vs static typing, 175

dynamics, 39, 45

checked errors, 58
contextual rules, 49
cost rules, 65
definitional equality, 52
determinacy, 48
equational rules, 51
equivalence theorem, 51
evaluation context, 49
evaluation rules, 61

equivalence to transition rules,
63

induction on transition, 46
inversion principle, 49
structural rules, 47
transition system, 45
unchecked errors, 58

enumeration types, 106
equality, 497

admissible relation, 525
coinduction, 501, 517
compactness, 511, 514, 515
congruence, 500
contexts, 499
definitional, 52, 80, 89, 150, 183,

228, 497
equational laws, 506
equivalence candidate, see admis-

sible relation
fixed point induction, 511
function extensionality, 529
Kleene equality, 509, 522
Kleene equivalence, 500
logical equivalence, 497, 502, 503,

510, 524
closed, 502, 503, 525
compositionality, 527
open, 526

observation, 498
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observational equivalence, 497,
498, 500, 503, 509, 522, 523

parametricity, 521, 527, 530, 533
symbolic evaluation, 53

equivalence, see equality
event types, see Concurrent Algol
exceptions, 267, 269

dynamics, 270
encapsulation, 272
failures, 267

dynamics, 268
safety, 269
statics, 267

statics, 269
syntax, 269
value type, 269, 271

dynamic classification, 272
static classification, 272

existential types, 192
definability from universals, 196
dynamics, 193
modeling data abstraction, 194
representation independence, 533
representation independence, 197
safety, 194
statics, 192

failures, see exceptions
finite function

combination, 549
empty, 549

finite function, 549
domain, 549
singleton, 549

finite set, 549
fixed point induction, see equality
fluid binding, see fluids
fluid types, 328

dynamics, 329
statics, 329

fluids, 323
dynamics, 324
safety, 325
statics, 324
subtleties, 326

freshness condition on binders, 10
function types

definitions, 70
dynamic binding, 75
first order, 70

dynamics, 71
safety, 71
statics, 70

higher order, 71
dynamics, 72
safety, 72
statics, 72

static binding, 74
functors, see signatures
future types, 403

parallel dynamics, 406
sequential dynamics, 404
sparks, 409
statics, 404

futures types
pipelining, 408

Gödel’s T, 78
definability, 80
definitional equality, 80
dynamics, 79
equality, see equality
safety, 80
statics, 78
undefinability, 82

general judgment, 27, 33
generic derivability, 33

proliferation, 33
structurality, 33
substitution, 33
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parametric derivability, 34
general recursion, 87
generic inductive definition, 34

formal generic judgment, 35
rule, 34

implicit form, 34
rule induction, 35
structurality, 35

hybrid types, 169
as recursive types, 171
dynamics, 170
optimization of dynamic types,

172
safety, 170
statics, 170

hypothetical inductive definition, 31
formal derivability, 32
rule, 31

uniform, 32
rule induction, 32

hypothetical judgment, 27
admissibility, 29

reflexivity, 30
structurality, 31
transitivity, 30
weakening, 30

derivability, 27
reflexivity, 29
stability, 28
structurality, 29
transitivity, 29
weakening, 29

inductive definition, 15, 16
backward chaining, 18
derivation, 17
forward chaining, 18
function, 22
iterated, 21

rule, 16
admissible, 29
axiom, 16
conclusion, 16
derivable, 28
premise, 16

rule induction, 17, 19
rule scheme, 17

instance, 17
simultaneous, 21

inductive types
dynamics, 134
natural numbers, 129
statics, 134

inheritance, 251
class extension, 252
class-based, 253
method extension, 252
method-based, 254
subclass, 251
submethod, 251
superclass, 251
supermethod, 251

interface, see separate compilation
iteration, 78

judgment, 15
mode, 24

judgment form, 15
predicate, 15
subject, 15

kinds, 201, 202
dependent, see singleton kinds,

Σ kinds, Π kinds
function kinds, 202
higher kinds, 204
product kinds, 202
type kind, 202

Kleene equality, see equality
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laziness, 367
data structures, 374
dynamics, 368
recursion, 371
safety, 372
suspension types

dynamics, 376
statics, 376

suspensions, 375
linking, see separate compilation
logical equivalence, see equality

methods, see dynamic dispatch
mobile types, 349

mobility condition, 349
rules, 349

Modernized Algol, 341
assignables, 341, 355
block structure, 345
command types, 349
commands, 341, 348
expressions, 341
free assignables, 357
free dynamics, 358
idioms

conditionals, 347
iteration, 347
procedures, 347
sequential composition, 346

mobile types, see mobile types
scoped dynamics, 343
scoped safety, 345
stack discipline, 345
statics, 342, 349

modules, see signatures
mutual recursion, 99

nested parallelism, see parallelism
null, see option types

objects, see dynamic dispatch

observational equivalence, see equal-
ity

option types, 106

parallelism, 389
binary fork-join, 390
Brent’s Theorem, 399
cost dynamics, 393
cost dynamics vs. transition dy-

namics, 395
cost graphs, 393
implicit parallelism theorem, 392
multiple fork-join, 396
parallel complexity, 394
parallelizability, 400
provably efficient implementation,

398
sequence types, 397

cost dynamics, 398
statics, 397

sequential and parallel dynam-
ics, 390

sequential complexity, 394
task dynamics, 400
work vs. depth, 394

parameterized modules, see signatures
parametricity, see equality
patterns, 110

constraints, 114
dual, 114
entailment, 116
satisfaction, 115

dynamics, 112
exhaustiveness, 114, 116
redundancy, 114, 116
statics, 110

PCF, 87
bounded recursion, 511
definability, 91
definitional equality, 89
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dynamics, 88
equivalence, see equality
safety, 89
statics, 87

phase distinction, 39, 201, see also sig-
natures

Π kinds, 229, 232, 233
elimination rules, 234
equivalence, 234
formation rules, 234
introduction rules, 234
subkinding, 235

polarization, 379
dynamics, 384
focusing, 381
negative types, 380
positive types, 380
safety, 385
statics, 382

polymorphism, see universal types
primitive recursion, 78
process calculus, 415, 537

actions, 415
asynchronous communication, 427
bisimilarity, 537
channel types, 427

dynamics, 430
statics, 430

channels, 421, 425
coinduction, see strong and weak

bisimilarity
concurrent composition, 417
dynamics, 418, 423, 426, 538
equivalence, see bisimilarity
events, 415
replication, 419
statics, 422, 425, 538
strong bisimilarity, 540

strong bisumulation, 540
structural congruence, 416, 417

synchronization, 418
synchronous communication, 424
syntax, 537
universality, 430
weak bisimilarity, 543

coinduction, 544
weak bisimulation, 544

process equivalence, see process cal-
culus

product types, 96
dynamics, 96
finite, 97
safety, 97
statics, 96

recursive types, 138
data structures, 139
dynamics, 139
self-reference, 141
statics, 138

reference types, 353
aliasing, 356
free dynamics, 358
safety, 356, 360
scoped dynamics, 355
statics, 355

references
backpatching, 363
benign effects, 362

representation independence, see ex-
istential types

representation indepndence, see also
parametricity

safety, 55
canonical forms, 56
checked errors, 59
evaluation rules, 64
preservation, 56
progress, 57
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scoped assignables, see Modernized
Algol

self types, 141
as recursive types, 142
deriving general recursion, 143
self-reference, 141
unrolling, 141

separate compilation, 459
initialization, 461
interface, 460
linking, 460
units, 460

Σ kinds, 229, 232, 233
elimination rules, 233
equivalence, 233
formation rules, 233
introduction rules, 233
subkinding, 234

signatures, 465
applicative functor, 492
ascription, see sealing
avoidance problem, 474
dynamic part, 467
dynamics, 476
first- vs second-class, 476
functors, 486, 487
generative functor, 489
hierarchies, 481, 482
instances, 468
modification, 486
opacity, 466
parameterization, 485
parameterized modules, see func-

tors
principal signature, 470
revelation, 466
sealing, 467
self-recognition, 476, 491
sharing propagation, 483
sharing specification, 483

static part, 467
statics, 472, 489
structures, 467
submodule, 484
subsignature, 468, 470, 471
syntax, 472, 488
translucency, 466
transparency, 466
type abstractions, 465, 467
type classes, 466, 468
views, 468

singleton kinds, 228, 229
as type definitions, 231
constructor equivalence, 229
higher singletons, 229, 235
kind equivalence, 229
kind formation, 229
subkinding, 229

situated types, see Distributed Algol
speculation types, 405

parallel dynamics, 406
sequential dynamics, 405
statics, 405

stack machine, 259
correctness, 262

completeness, 264
soundness, 264
unraveling, 264

dynamics, 260
frame, 260
safety, 261
stack, 260
state, 259

state, 144, see also Modernized Algol,reference
types

from recursion, 144
from streams, 145
RS latch, 144

statics, 39
canonical forms, 43
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decomposition, 43
induction on typing, 41
introduction and elimination, 43
structurality, 42
substitution, 42
type system, 40
unicity, 41
weakening, 42

subkinding, 228
Π kinds, 235
Σ kinds, 234
singleton kinds, 229

submodules, see signatures
subtyping, 216

function types, 219
numeric types, 216
product types, 217, 219
quantified types, 220
recursive types, 221
safety, 223
subsumption, 216
sum types, 218, 219
variance, 218

sum types, 101
dynamics, 102
finite, 103
statics, 102

suspension types, see laziness
symbol types, 319

dynamics, 320
safety, 320
statics, 319

symbolic reference, see symbol types
symbols, 315

mobility, 317
safety, 317, 318
scope-free dynamics, 318
scoped dynamics, 317
statics, 316

syntax, 3

abstract, 3
binding, 3
chart, 39
concrete, 3
structural, 3
surface, 3

System F, see universal types
definitional equality, 183

type abstractions, see also existential
types,signatures

type classes, see signatures
type constructors, see constructors
type operator, 122

generic extension, 122
polynomial, 122
positive, 124

unit
dynamics, 96
statics, 96

unit type, 96
vs void type, 104

units, see separate compilation
unityped λ-calculus, 155

as untyped, 155
universal types, 180

definability, 183
natural numbers, 184
products, 183
sums, 184

dynamics, 182
parametricity, 185, see equality
predicative fragment, 186
prenex fragment, 187
rank-restricted fragments, 189
safety, 182
statics, 180

untyped λ-calculus, 149
Y combinator, 153
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as unityped, 155
Church numerals, 151
definability, 150
definitional equality, 150
dynamics, 150
Scott’s Theorem, 153
statics, 149

variance, see subtyping
void type, 101

vs unit type, 104
dynamics, 102
statics, 102
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