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Abstract Gossip protocols have been proposed as a robust and efficient
method for disseminating information throughout large-scale networks.
In this paper, we propose a compositional analysis technique to study
formal probabilistic models of gossip protocols in the context of wire-
less sensor networks. We introduce a simple probabilistic timed process
calculus for modelling wireless sensor networks. A simulation theory is
developed to compare probabilistic protocols that have similar behaviour
up to a certain probability. This theory is used to prove a number of
algebraic laws which revealed to be very effective to evaluate the perfor-
mances of gossip networks with and without communication collisions.

1 Introduction

Wireless sensor networks (WSNs) are (possibly large-scale) networks of sensor
nodes deployed in strategic areas to gather data. Sensor nodes collaborate using
wireless communications with an asymmetric many-to-one data transfer model.
Typically, they send their sensed data to a sink node which collects the rel-
evant information. WSNs are primarily designed for monitoring environments
that humans cannot easily reach (e.g., motion, target tracking, fire detection,
chemicals, temperature); they are used as embedded systems (e.g., biomedical
sensor engineering, smart homes) or mobile applications (e.g., when attached
to robots, soldiers, or vehicles). In wireless sensor networks, sensor nodes are
usually battery-powered, and the energy expenditure of sensors has to be wisely
managed by their architectures and protocols to prolong the overall network
lifetime. Energy conservation is thus one of the major issues in sensor networks.

Flooding is a traditional robust algorithm that delivers data packets in a
network from a source to a destination. In WSNs, each node that receives a
message propagates it to all its neighbours by broadcast. This causes unnecessary
retransmissions increasing the number of collisions, together depriving sensors
of valuable battery power. Therefore, flooding algorithms may not be suitable
in the context of dense networks like wireless sensor networks.

Gossipping [9] addresses some critical problems of flooding overhead. The
goal of gossip protocols is to reduce the number of retransmissions by making
some of the nodes discard the message instead of forwarding it. Gossip proto-
cols exhibit both nondeterministic and probabilistic behaviour. Nondeterminism
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arises as they deal with distributed networks in which the activities of individual
nodes occur nondeterministically. As to the probabilistic behaviour, nodes are
required to forward packets with a pre-specified gossip probability pgsp. When a
node receives a message, rather than immediately retransmitting it as in flood-
ing, it relies on the probability pgsp to determine whether or not to retransmit.
The main benefit is that when pgsp is sufficiently large, the entire network re-
ceives the broadcast message with very high probability, even though only a
nondeterministic subset of nodes has forwarded the message.

Most of the analyses of protocols for large-scale WSNs are usually based on
discrete-event simulators (e.g., ns-2, Opnet and Glomosim). However, different
simulators often support different models of the MAC physical-layer yielding
different results, even for simple systems. In principle, as noticed in [2], owing
to their often relatively simple structure, gossip protocols lend themselves very
well to formal analysis, in order to predict their behaviour with high confidence.
Formal analysis techniques are supported by (semi-)automated tools. For in-
stance, probabilistic model checking [6,10] provides both an exhaustive search
of all possible behaviours of the system, and exact, rather than approximate,
quantitative results. Of course, model checking suffers from the so-called state
explosion problem whereas simulation-based approaches are scalable to much
larger systems, at the expense of exhaustiveness and numerical accuracy.

Contribution. In this paper, we propose a compositional analysis technique to
study probabilistic models of gossip protocols in the context of WSNs. We intro-
duce a simple probabilistic timed process calculus, called pTCWS, for modelling
wireless sensor networks. We then develop a compositional simulation theory,
denoted vp, to compare probabilistic protocols that have similar behaviour up
to a certain probability p. Intuitively, we write M vp N if M is simulated by N
with a probability (at least) p. Compositionality is crucial when reasoning about
large-scale protocols where all nodes run the same probabilistic (simple) code as
in gossip protocols. For instance, it allows us to join and sometime merge the
behaviour of different components of a network. In particular, for a gossip net-
work GSPpgsp , which transmits with gossip probability pgsp, we can estimate the
probability pok to simulate a non-probabilistic network GSP OK whose target
nodes successfully receive the message:

GSP OK vpok GSPpgsp .

For this purpose, we prove and apply a number of algebraic laws, whose appli-
cation can be mechanised, to evaluate the performances of gossip networks.

The paper uses the gossip protocol described above as baseline. That de-
scription, however, is incomplete. It does not specify, for instance, what happens
in case of a collision, i.e. when a node receives two messages at the same time.
We start our analysis by assuming no collision. Then, we study gossip proto-
cols in the presence of communication collision, to determine its effect on the
performance results.

In this paper proofs are sketched or omitted; full proofs can be found in [12].
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Table 1 Syntax
Networks:
M, N ::= 0 empty network˛̨

M1 | M2 parallel composition˛̨
n[P ]ν node

Processes:
P, Q ::= nil stuck˛̨

!〈u〉.C broadcast˛̨
b?(x).CcD receiver with timeout˛̨
bτ.CcD internal with timeout˛̨
σ.C sleep˛̨
X process variable˛̨
fix X.P recursion

Probabilistic Choice:
C, D ::=

L
i∈I pi:Pi

2 A probabilistic timed process calculus

In Table 1, we define the syntax of pTCWS in a two-level structure, a lower one
for processes and an upper one for networks. We use letters m,n, . . . for logical
names, x, y, z for variables, u for values, and v and w for closed values, i.e. values
that do not contain variables.

A network in pTCWS is a (possibly empty) collection of nodes (which represent
devices) running in parallel and using a unique common radio channel to com-
municate with each other. All nodes are assumed to have the same transmission
range (this is a quite common assumption in models for ad hoc networks).The
communication paradigm is local broadcast ; only nodes located in the range of
the transmitter may receive data. We write n[P ]ν for a node named n (the device
network address) executing the sequential process P . The tag ν contains (the
names of) the neighbours of n. Said in other words, ν contains all nodes laying
in the transmission cell of n (except n). In this manner, we model the network
topology.3 Our wireless networks have a fixed topology as node mobility is not
relevant to sensor networks. Moreover, nodes cannot be created or destroyed.

Processes are sequential and live within the nodes. The symbol nil denotes the
stuck process. The sender process !〈v〉.C broadcasts the value v, the continuation
being C. The process b?(x).CcD denotes a receiver with timeout. Intuitively, this
process either receives a value v, in the current time interval, and then continues
as C where the variable x is instantiated with v, or it idles for one time unit, and
then continues as D. Similarly, the process bτ.CcD either performs an internal
action, in the current time interval, or it idles for one time unit and then continues

3 We could have represented the topology in terms of a restriction operator à la CCS
on node names; we preferred our notation to keep at hand the neighbours of a node.
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as D. The process σ.C models sleeping for one time unit. In sub-terms of the form
σ.D, bτ.CcD and b?(x).CcD the occurrence of D is said to be time-guarded. The
process fix X.P denotes time-guarded recursion, as all occurrences of the process
variable X may only occur time-guarded in P .

Remark 1. In the remainder of the paper, with an abuse of notation, we will write
?(x).C to denote a persistent listener, defined as fix X.b?(x).CcX. Similarly, we
will write τ.C as an abbreviation for fix X.bτ.CcX.

The construct
⊕

i∈I pi:Pi denotes probabilistic choice, where I is an indexing
finite set and pi ∈ (0, 1] denotes the probability to execute the process Pi, with∑

i∈I pi = 1. In process b?(x).CcD the variable x is bound in C. Similarly, in
process fix X.P the process variable X is bound in P . This gives rise to the
standard notions of free (process) variables and bound (process) variables and
α-conversion. We identify processes and networks up to α-conversion. A term is
said to be closed if it does not contain free (process) variables. We always work
with closed networks: The absence of free variables is trivially maintained at
run-time. We write {v/x}T for the substitution of the variable x with the value
v in the term T . Similarly, we write {P/X}T for the substitution of the process
variable X with the process P in T .

We report some notational conventions.
∏

i∈I Mi denotes the parallel com-
position of all Mi, for i ∈ I. We identify

∏
i∈I Mi = 0 if I = ∅. We write P1⊕p P2

to denote the probabilistic process p:P1⊕(1−p):P2. We identify the probabilistic
process 1:P with P . We write !〈v〉 as an abbreviation for !〈v〉.1:nil. For k > 0 we
write σk.P as an abbreviation for σ.σ. . . . σ.P , where prefix σ appears k times.

Here are some definitions that will be useful in the remainder of the paper.
Given a network M , nds(M) returns the names of M . If m ∈ nds(M), the
function ngh(m,M) returns the set of the neighbours of m in M . Thus, for
M = M1 | m[P ]ν | M2 it holds that ngh(m,M) = ν. We write ngh(M) for⋃

m∈nds(M) ngh(m,M).

Definition 1. Structural congruence over pTCWS, written ≡, is defined as the
smallest equivalence relation, preserved by parallel composition, which is a com-
mutative monoid with respect to parallel composition and for which n[fix X.P ]ν ≡
n[P{fix X.P/X}]ν .

The syntax presented in Table 1 allows to derive networks which are some-
how ill-formed. With the following definition we rule out networks containing
two nodes with the same name. Moreover, as all nodes have the same transmis-
sion range, the neighbouring relation must be symmetric. Finally, in order to
guarantee clock synchronisation, we impose network connectivity.

Definition 2 (Well-formedness). M is said to be well-formed if

– whenever M ≡ M1 | m1[P1]
ν1 | m2[P2]

ν2 it holds that m1 6= m2;
– whenever M ≡ N | m1[P1]

ν1 | m2[P2]
ν2 with m1 ∈ ν2 it holds that m2 ∈ ν1;

– for all m,n ∈ nds(M) there are m1, . . . ,mk ∈ nds(M), such that m=m1,
n=mk, νj = ngh(mj ,M), for 1≤j≤k, and mi ∈ νi+1, for 1≤i≤k−1.

Henceforth we will always work with well-formed networks.
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2.1 Probabilistic labelled transition semantics

Along the lines of [5,11], we propose an operational semantics for pTCWS associat-
ing with each network a graph-like structure representing its possible reactions:
We use a generalisation of labelled transition system that includes probabilities.

Below, we report the mathematical machinery for doing that.

Definition 3 (Deng et al. [5]). A (discrete) probability sub-distribution over
a countable set S is a function ∆ : S → [0, 1] such that

∑
s∈S ∆(s) ∈ (0..1]. The

support of a probability sub-distribution ∆ is given by d∆e = {s ∈ S | ∆(s) >
0}. We write Dsub(S), ranged over ∆, Θ, Φ, for the set of all probability sub-
distributions over S with finite support. For any s ∈ S, the point distribution at
s, written s, assigns probability 1 to s and 0 to all others elements of S.

If pi ≥ 0 and ∆i is a sub-distribution for each i in some finite index set I, and∑
i∈I pi ∈ (0, 1], then the probability sub-distribution

∑
i∈I pi ·∆i is given by

(
∑
i∈I

pi ·∆i)(s)
def=

∑
i∈I

pi ·∆i(s) .

We write a sub-distribution as p1 · ∆1 + ... + pn · ∆n, when the index set I is
{1, . . . , n}. Sometimes, with an abuse of notation, in the previous decomposition,
the terms ∆i are not necessarily distinct (for instance 1 ·∆ may be rewritten as
p ·∆+(1−p) ·∆, for any p ∈ [0..1]). A probability sub-distribution ∆ ∈ Dsub(S)
is said to be a probability distribution if

∑
s∈S ∆(s) = 1. With D(S) we denote

the set of all probability distributions over S with finite support.
Definition 1 and Definition 2 generalise to sub-distributions in Dsub(pTCWS).

Given two probability sub-distributions ∆ and Θ, we write ∆ ≡ Θ whenever
∆([M ]≡) = Θ([M ]≡) for all equivalence classes [M ]≡ ⊆ pTCWS of ≡. Moreover,
a probability sub-distribution ∆ ∈ Dsub(pTCWS) is said to be well-formed if its
support contains only well-formed networks.

We now give the probabilistic generalisation of labelled transition system:

Definition 4 (Deng et al. [5]). A probabilistic labelled transition system4

(pLTS) is a triple 〈S,L,→〉 where i) S is a set of states; ii) L is a set of transition
labels; iii) → is a labelled transition relation contained in S × L×D(S).

The operational semantics of pTCWS is given by a particular pLTS 〈pTCWS,L,→〉,
where L = {m!v.µ, m?v, τ, σ} contains the labels denoting broadcasting, recep-
tion, internal actions and time passing, respectively. As regards the labelled
transition relation, we need to formalise the interpretation of nodes containing
probabilistic processes as probability distributions.

Definition 5. For any probabilistic choice
⊕

i∈I pi:Pi over a finite indexing set
I, Jn[

⊕
i∈I pi:Pi]

νK denotes the probability distribution defined as follows:

– if I 6=∅ then for any M∈pTCWS: Jn[
⊕

i∈I pi:Pi]
νK(M) def=

∑
i∈I ∧n[Pi]

ν=M pi

4 Essentially the same model has appeared in the literature under different names such
as, for instance, NP-systems [8] or simple probabilistic automata [15].
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Table 2 Probabilistic Labelled Transition System

(Snd)
−

m[!〈v〉.C]ν
m!vBν−−−−−−→ Jm[C]νK

(Rcv)
m ∈ ν

n[b?(x).CcD]ν
m?v−−−−→ Jn[{v/x}C]νK

(Rcv-0)
−

0
m?v−−−−→ 0

(RcvEnb)
¬(m ∈ ν ∧ rcv(P )) ∧ m 6= n

n[P ]ν
m?v−−−−→ n[P ]ν

(RcvPar)
M

m?v−−−−→ ∆ N
m?v−−−−→ Θ

M | N
m?v−−−−→ ∆ | Θ

(Bcast)
M

m!vBν−−−−−−→ ∆ N
m?v−−−−→ Θ µ:=ν\nds(N)

M | N
m!vBµ−−−−−−→ ∆ | Θ

(Tau)
−

m[bτ.CcD]ν
τ−−→ Jm[C]νK

(TauPar)
M

τ−−→ ∆

M | N
τ−−→ ∆ | N

(σ-0)
−

0
σ−−→ 0

(σ-nil)
−

n[nil]ν
σ−−→ n[nil]ν

(Timeout)
−

n[b. . .cD]ν
σ−−→ Jn[D]νK

(Sleep)
−

n[σ.C]ν
σ−−→ Jn[C]νK

(σ-Par)
M

σ−−→ ∆ N
σ−−→ Θ

M | N
σ−−→ ∆ | Θ

(Rec)
n[{fix X.P/X}P ]ν

λ−−→ ∆

n[fix X.P ]ν
λ−−→ ∆

– if I = ∅ then Jn[
⊕

i∈I pi:Pi]
νK def= n[nil]ν .

The definition of the relations
λ−−→, for λ ∈ L, is given in Table 2. Some of

these rules use an obvious notation for distributing parallel composition over a
(sub-)distribution:

(∆ | Θ)(M) def=

{
∆(M1) ·Θ(M2) if M = M1 | M2

0 otherwise.

In rule (Snd) a sender m broadcasts a message v to its neighbours ν, and
then continues as C. In the label m!v.ν the set ν contains the neighbours of
m which may receive the message v. In rule (Rcv) a receiver gets a message
v from a neighbour node m, and then evolves as {v/x}C. If no message is re-
ceived in the current time interval the node n will continue with process D, as
specified in rule (Timeout). Rules (Rcv-0) and (RcvEnb) serve to model recep-
tion enabling for synchronisation purposes. For instance, rule (RcvEnb) regards
nodes which are not involved in transmissions originating from m. This may
happen either because the two nodes are out of range (i.e. m 6∈ ν) or because
n is not willing to receive (rcv(P ) is a boolean predicate that returns true if
n[P ]ν ≡ n[b?(x).CcD]ν , for some x, C, D). In both cases, node n is not affected
by the transmission. In rule (RcvPar) we model the composition of two networks
receiving the same message from the same transmitter. Rule (Bcast) models the
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propagation of messages on the broadcast channel. Note that we loose track of
those transmitter’s neighbours that are in N . Rule (Tau) models internal com-
putations in a single node. Rule (TauPar) propagates internal computations on
parallel components. Rules (σ-nil) and (σ-0) are straightforward as both terms
0 and n[nil]ν do not prevent time-passing. Rule (Sleep) models sleeping for one
time unit. Rule (σ-Par) models time synchronisation between parallel compo-
nents. Rule (Rec) is standard. Rules (Bcast) and (TauPar) have their symmetric
counterparts.

Below, we report a number of basic properties of our LTS.

Proposition 1. Let M , M1 and M2 be well-formed networks.

1. m 6∈ nds(M) if and only if M
m?v−−−−→ ∆, for some distribution ∆.

2. If M1 | M2
m?v−−−−→ ∆ if and only if there are ∆1 and ∆2 such that M1

m?v−−−−→
∆1, M2

m?v−−−−→ ∆2 with ∆ = ∆1 | ∆2.

3. If M
m!v.µ−−−−−−→ ∆ then M ≡ m[!〈v〉.C]ν | N , for some m, ν, C and N

such that m[!〈v〉.C]ν
m!v.ν−−−−−−→ Jm[C]νK, N

m?v−−−−→ Θ, ∆ ≡ Jm[C]νK | Θ and
µ = ν \ nds(N).

4. If M
τ−−→ ∆ then M ≡ m[bτ.CcD]ν | N , for some m, ν, C, D and N such

that m[bτ.CcD]ν
τ−−→ Jm[C]νK and ∆ ≡ Jm[C]νK | N .

5. M1 | M2
σ−−→ ∆ if and only if there are ∆1 and ∆2 such that M1

σ−−→ ∆1,
M2

σ−−→ ∆2 and ∆ = ∆1 | ∆2.

As the topology of our networks is static and nodes cannot be created or
destroyed, it is easy to prove the following result.

Proposition 2 (Well-formedness preservation). Let M be a well-formed

network. If M
λ−−→ Θ then Θ is a well-formed distribution.

2.2 Time properties

Our calculus enjoys a number of desirable time properties. Proposition 3 for-
malises the determinism nature of time passing: a network can reach at most
one new state by executing the action σ.

Proposition 3 (Time Determinism). Let M be a well-formed network. If
M

σ−−→ ∆ and M
σ−−→ Θ then ∆ and Θ are syntactically the same.

The maximal progress property says that sender nodes transmit immediately.
Said in other words, the passage of time cannot block transmissions.

Proposition 4 (Maximal Progress). Let M be a well-formed network. If
M ≡ m[!〈v〉.C]ν | N then M

σ−−→ ∆ for no distribution ∆.

Patience guarantees that a process will wait indefinitely until it can commu-
nicate [7]. In our setting, this means that if no transmissions can start then it
must be possible to execute a σ-action to let time pass.
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Proposition 5 (Patience). Let M =
∏

i∈I mi[Pi]
νi be a well-formed network,

such that for all i ∈ I it holds that Pi 6= !〈v〉.C, then there is a distribution ∆

such that M
σ−−→ ∆.

Finally, as recursion is time-guarded, our networks satisfy the well-timedness
(or finite variability) property [14]. Intuitively, only a finite number of instanta-
neous actions can fire between two contiguous σ-actions.

Proposition 6 (Well-Timedness). For any well-formed network M there is
an upper bound k ∈ N such that whenever M

α1−−−→ · · · αh−−−→ ∆, αj 6= σ for
1 ≤ j ≤ h, then h ≤ k.

3 Simulation up to probability

In this section, we use our pLTS to define an appropriate probabilistic timed
simulation theory for pTCWS. Our focus is on weak similarities which abstract
away non-observable actions. To this end, we extend the set of rules of Table 2
with the following two rules:

(Shh)
M

m!v.∅−−−−−→ ∆

M
τ−−→ ∆

(Obs)
M

m!v.ν−−−−−−→ ∆ ν 6= ∅
M

!v.ν−−−−→ ∆

Rule (Shh) models transmissions that cannot be observed because none of the
potential receivers is in the environment. Rule (Obs) models transmissions that
can be observed by those nodes of the environment contained in ν. Notice that
the name of the transmitter is removed from the label. This is motivated by the
fact that nodes may refuse to reveal their identities, e.g. for security reasons or
limited sensory capabilities in perceiving these identities. Notice also that in a
derivation tree the rule (Obs) can only be applied at top-level.

In the rest of the paper, the metavariable α ranges over the following actions:
!v.ν, m?v, τ , and σ.

Let us provide the definition of weak transition. In a probabilistic setting, this
definition is somewhat complicated by the fact that transitions go from processes
(in our case networks) to distributions; consequently if we use weak transitions

α==⇒, which abstract from sequences of internal actions, then we need to gener-
alise transitions, so that they go from (sub-)distributions to (sub-)distributions.

We write M
τ̂−−→ ∆ if either M

τ−−→ ∆ or ∆ = M , and M
α̂−−→ ∆ if M

α−−→ ∆,
for α 6= τ . Let ∆ =

∑
i∈I pi ·Mi be a sub-distribution; we write ∆

α̂−−→ Θ when-

ever Θ =
∑

j∈J pi · Θj , with J ⊆ I, and Mj
α̂−−→ Θj , for any j ∈ J . We define

the weak transition relation τ̂==⇒ as the transitive and reflexive closure of
τ̂−−→,

i.e. (
τ̂−−→)∗, while for α 6= τ we let α̂==⇒ to denote τ̂==⇒ α−−→ τ̂==⇒. Finally, indepen-

dently whether α is τ or not, we write α==⇒ to denote τ̂==⇒ α−−→ τ̂==⇒. Proposition 6
ensures that weak transitions always contain a bounded number of

τ−−→ actions.
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Since transitions go from networks to distributions we need to lift our re-
lations over networks to sub-distribution. Let R ⊆ pTCWS × pTCWS be a binary
relation over networks. We lift it to a relation R ⊆ Dsub(pTCWS)×Dsub(pTCWS)
by letting ∆ R Θ whenever:

– ∆ =
∑

i∈I pi ·Mi, where I is a finite index set
– for each i ∈ I there is a network Ni such that Mi R Ni and Θ =

∑
i∈I pi ·Ni.

Definition 6 (Simulation up to probability). Let p ∈ (0..1] be a probability.
A parameterised relation Rp ⊆ pTCWS × pTCWS is said to be a simulation up to
probability p if whenever (M,N) ∈ Rp and M

α−−→ ∆, there are a probability q,

with p
q ∈ (0..1], and a distribution Θ such that N

α̂==⇒ q · Θ and ∆ R p
q

Θ. We
write M vp N if (M,N) ∈ Rp for some simulation up to probability Rp. The
equivalence induced by vp is denoted 'p.

Intuitively, if M vp N then M is simulated by N up to a probability (at least)
p. Within the remaining probability 1 − p, the network N might still simulate
M . That is why the probability p is a lower-bound, i.e. vq ⊆ vp, for any q ≤ p.

Example 1. 1. n[P ]ν vp n[τ.(P ⊕p Q)]ν

2. n[P ]ν vq n[τ.(P ⊕p Q)]ν with 0 ≤ q ≤ p
3. n[Q]ν vp(1−q) n[τ.(τ.(P ⊕q Q)⊕p R)]ν

4. n[!〈v〉.!〈w〉]ν vpq n[τ.(!〈v〉.τ.(!〈w〉 ⊕q P )⊕p Q)]ν .

From these examples one can realise that when M vp N the network N may
contain a number of probabilistic choices which are resolved in M with a prob-
ability (at least) p. Unfortunately, this notion of similarity is not transitive, in
the sense that is it not true that vpvq =vpq.5 This would be a highly desirable
property to algebraically reason on our networks. However, as one may have no-
ticed from the first three algebraic laws of the previous example, the probability
p is often manifested when executing the first action. So, to recover transitivity
we add a root condition and replace weak transitions α̂==⇒ with α==⇒.

Definition 7 (Rooted simulation up to probability). Let p ∈ (0..1] be a
probability. A parameterised relation Rp ⊆ pTCWS× pTCWS is said to be a rooted
simulation up to probability p if whenever (M,N) ∈ Rp and M

α−−→ ∆ there
is a distribution θ such that N

α==⇒ p · Θ and ∆ R1 Θ. We write M v1
p N if

(M,N) ∈ Rp for some rooted simulation up to probability Rp. The equivalence
induced by v1

p is denoted '1
p.

Proposition 7. M v1
p N implies M vp N .

Proposition 8. If M v1
p N and N v1

q O then M v1
pq O.

Here comes a crucial result on the compositionality of our simulation theory.

5 For details the reader is deferred to [12].
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Theorem 1. Let M , N and O be well-formed networks such that both M | O
and N | O are well-formed as well. Then,

1. M v1
p N implies M | O v1

p N | O
2. M vp N implies M | O vp N | O.

Below, we report a number of algebraic laws that will be useful in the next
section when analysing gossip protocols.

Theorem 2 (Some algebraic laws).

1. n[σ.nil]ν '1
1 n[nil]ν

2.
∏

i∈I mi[Pi]
νmi '1

1

∏
j∈J nj[Qj]

νnj iff
∏

i∈I mi[σ.Pi]
νmi '1

1

∏
j∈J nj[σ.Qj]

νnj

3. n[b?(x).P cQ]ν '1
1 n[σ.Q]ν if no nodes in ν send in the current time interval.

4. n[?(x).P ]ν '1
1 n[nil]ν if no nodes in ν contain sender processes

5. n[?(x).P ]ν '1
1 n[σ.?(x).P ]ν if no nodes in ν send in the current time unit.

6. m[τ.(!〈v〉 ⊕p nil)]ν |
∏

i∈I ni[Pi]
νi w1

1 m[nil]ν |
∏

i∈I ni[Pi]
νi if ν =

⋃
i∈I ni,

and for all i ∈ I either Pi = nil or Pi = σ.Qi, for some Qi.

4 Gossipping without collisions

The baseline model for our study is gossipping without collisions where all nodes
are perfectly synchronised. For the sake of clarity, communication proceeds in
synchronous rounds: A node can transmit or receive one message per round. In
our implementation rounds are separated by σ-actions.

The processes involved in the protocol are the following:

snd〈u〉pg

def= τ.(!〈u〉⊕pg nil) resnd〈u〉pg

def= σ.snd〈u〉pg fwdpg

def= ?(x).resnd〈x〉pg .

Here, a sender broadcasts a value u with gossip probability pg∈(0..1], and a for-
warder gossips the received value, in the next round, with the same probability.

Now, we can apply our simulation theory to prove algebraic laws on message
propagation. For instance, consider a fragment of a network with a sender m
and two forwarder neighbours n1 and n2. Then, the following holds:

m[snd〈v〉p]ν | n1[fwdq]
ν1 | n2[fwdr]

ν2 w1
p m[nil]ν | n1[resnd〈v〉q]ν1 | n2[resnd〈v〉r]ν2

whenever ν = {n1, n2} and the nodes in ν1 ∪ ν2 \ {m} cannot transmit in the
current instant of time. A complementary law is

m1[snd〈v〉p1 ]
n | m2[snd〈v〉p2 ]

n | n[fwdq]
ν w1

p m1[nil]n | m2[nil]n | n[resnd〈v〉q]ν

with p = 1−(1−p1)(1−p2), whenever the nodes in ν\{m1,m2} cannot transmit
in the current instant of time. More generally, the following result holds.

Theorem 3 (Message propagation). Let K, I and J be pairwise disjoint
subsets of N. Let M be a well-formed network defined as

M ≡
∏
k∈K

mk[nil]νmk
∣∣ ∏

i∈I

mi[snd〈v〉pi ]
νmi

∣∣ ∏
j∈J

nj[fwdqj ]
νnj
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such that for all i ∈ I it holds that
⋃

j∈J nj ⊆ νmi ⊆
⋃

j∈J nj ∪
⋃

k∈K∪I mk.
Then,

M w1
r

∏
h∈K∪I

mh[nil]νmh
∣∣ ∏

j∈J

nj[resnd〈v〉qj ]
νnj

with r = 1−
∏

i∈I(1− pi).

The previous theorem is a powerful tool to reason on gossip networks. However,
it requires that all senders transmit to all subsequent forwarders. This may
represent a limitation. Consider, for example, a simple gossip network GSP1,
with gossip probability p, composed by two source nodes s1 and s2, a destination
node d and three intermediate nodes n1, n2 and n3:

GSP1
def=

2∏
i=1

si[snd〈v〉p]νsi
∣∣ 3∏

i=1

ni[fwdp]
νni

∣∣ d[fwd1]
νd

with νs1={n1}, νs2={n1, n2}, νn1={s1, n3}, νn2={s1, s2, n3}, νn3={n1, n2, d}.
The reader should notice that we cannot directly apply Theorem 3 to GSP1.

This is because node s1, unlike s2, can transmit to n1 but not to n2. Theorem 3
becomes much more effective when used together with Theorem 4 which allows us
to compose estimates concerning partial networks. Roughly speaking, Theorem 4
allows us to consider in our calculation the probability that a sender transmits
as well as the probability that the same sender does not transmit.

Theorem 4 (Composing networks).

M
∣∣ m[snd〈v〉p]νm

∣∣ ∏
j∈J

nj[b?(xj).PjcQj]
νnj w1

ps1+(1−p)s2
N

whenever

– M | m[nil]νm |
∏

j∈J nj[{v/xj
}Pj]

νnj w1
s1

N

– M | m[nil]νm |
∏

j∈J nj[b?(xj).PjcQj]
νnj w1

s2
N

–
⋃

j∈J nj ⊆ νm ⊆
⋃

j∈J nj ∪ nds(M)
– nodes in νm ∩ nds(M) cannot receive in the current instant of time.6

Let us compute an estimate of success for the network GSP1 previously
defined. For verification reasons we assume that the environment contains a
fresh node test , close to the destination, i.e. νd = {n3, test}, to test successful
gossipping. For simplicity, we assume that the test node can receive messages
but it cannot transmit.

We start proving the following chain of similarities by applying, in sequence,
Theorem 2(6), Theorem 2(5), Theorem 3 together with Theorem 2(2), with

6 We could generalise the result to take into account more senders at the same time.
This would not add expressivity, it would just speed up the reduction process.
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q = 1−(1−p)2, Theorem 2(5) together with Theorem 2(1), again Theorem 3
together with Theorem 2(2), and Theorem 2(1):

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3

∣∣ d[fwd1]
νd

w1
1

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3

∣∣ d[fwd1]
νd

w1
1

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[σ.snd〈v〉p]νni

∣∣ n3[σ.fwdp]
νn3

∣∣ d[σ.fwd1]
νd

w1
q

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[σ.nil]νni

∣∣ n3[σ.resnd〈v〉p]νn3
∣∣ d[σ.fwd1]

νd

w1
1

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[nil]νni

∣∣ n3[σ2.snd〈v〉p]νn3
∣∣ d[σ2.fwd1]

νd

w1
p

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[nil]νni

∣∣ n3[σ2.nil]νn3
∣∣ d[σ2.resnd〈v〉1]νd

w1
1

∏2
i=1 si[nil]νsi

∣∣ ∏3
i=1 ni[nil]νni

∣∣ d[σ3.snd〈v〉1]νd .

By Proposition 8 it follows that

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3

∣∣ d[fwd1]
νd

w1
p2(2−p)

∏2
i=1 si[nil]νsi

∣∣ ∏3
i=1 ni[nil]νni

∣∣ d[σ3.snd〈v〉1]νd .

Similarly, by applying in sequence, Theorem 3, Theorem 2(5), Theorem 3 to-
gether with Theorem 2(2), Theorem 2(5) together Theorem 2(1), again The-
orem 3 together with Theorem 2(2), and finally Theorem 2(6) together with
Theorem 2(1) we get:

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏3
i=1 ni[fwdp]

νni
∣∣ d[fwd1]

νd

w1
p

∏2
i=1 si[nil]νsi

∣∣ n1[resnd〈v〉p]νn1
∣∣ ∏3

i=2 ni[fwdp]
νni

∣∣ d[fwd1]
νd

w1
1

∏2
i=1 si[nil]νsi

∣∣ n1[σ.snd〈v〉p]νn1
∣∣ ∏3

i=2 ni[σ.fwdp]
νni

∣∣ d[σ.fwd1]
νd

w1
p

∏2
i=1 si[nil]νsi

∣∣ n1[σ.nil]νn1
∣∣ n2[σ.fwdp]

νn2
∣∣ n3[σ.resnd〈v〉p]νn3

∣∣ d[σ.fwd1]
νd

w1
1

∏2
i=1 si[nil]νsi

∣∣ n1[nil]νn1
∣∣ n2[σ2.fwdp]

νn2
∣∣ n3[σ2.snd〈v〉p]νn3

∣∣ d[σ2.fwd1]
νd

w1
p

∏2
i=1 si[nil]νsi

∣∣ n1[nil]νn1
∣∣ n2[σ3.snd〈v〉p]νn2

∣∣ n3[σ2.nil]νn3
∣∣ d[σ2.resnd〈v〉1]νd

w1
1

∏2
i=1 si[nil]νsi

∣∣ ∏3
i=1 ni[nil]νni

∣∣ d[σ3.snd〈v〉1]νd .

By Proposition 8 it follows that

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏3
i=1 ni[fwdp]

νni
∣∣ d[fwd1]

νd w1
p3∏2

i=1 si[nil]νsi
∣∣ ∏3

i=1 ni[nil]νni
∣∣ d[σ3.snd〈v〉1]νd .

Finally, we can apply Theorem 4 and Proposition 7 to derive:

GSP1 wp3(3−2p)

2∏
i=1

si[nil]νsi
∣∣ 3∏

i=1

ni[nil]νni
∣∣ d[σ3.snd〈v〉1]νd .

This result essentially says that the gossip network GSP1 succeeds in trans-
mitting the message v to the destination d, after three rounds, with probability
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(at least) p3(3−2p). Thus, for a gossip probability p = 0.8 the destination will
receive the message with probability 0.72, with a margin of 10%. For p = 0.85
the probability at the destination increases to 0.8, with a margin of 6%; while
for p = 0.9 the probability at destination rises to 0.88, with a difference of only
2%. So, p = 0.9 can be considered the threshold of our small network.7

5 Gossipping with collisions

An important characteristic of the wireless domain is that transmissions are
prone to collisions due to the well-known hidden-terminal problem. In the previ-
ous section we have reasoned assuming no collisions. In this section, we formally
demonstrate that, as expected, the presence of communication collisions deteri-
orates the performances of gossip protocols.

A receiver node faces a collision if it is exposed to more than one transmission
in the same round and as a result drops some of these transmissions. We can
model this behaviour in pTCWS as follows:

resndc〈u〉pg

def= b?(x).nilcsnd〈u〉pg fwdcpg

def= ?(x).resndc〈x〉pg .

Here, the forwarder process waits for a message in the current instant of time.
If it receives a second message in the same round then it is doomed to fail.
Otherwise, it moves to the next round and broadcasts the received message with
gossip probability pg. Thus, for example, the first law of the previous section
becomes:

m1[snd〈v〉p1 ]
n | m2[snd〈v〉p2 ]

n | n[fwdcq]
ν w1

p m1[nil]n | m2[nil]n | n[resndc〈v〉q]ν

with p = p1(1−p2)+p2(1−p1) which is definitely smaller than 1−(1−p1)(1−p2),
the lower bound seen in the previous section without collisions.

More generally, if collisions are taken into account Theorem 3 needs to be
slightly changed as follows.

Theorem 5 (Message propagation with collision). The same as Theo-
rem 3 except for processes fwdqj

and resnd〈v〉qj
which are replaced by fwdcqj

and
resndc〈v〉qj , respectively; furthermore the probability r is

∑
i∈I pi

∏
j∈I\{i}(1 −

pj).

Here, the probability changes with respect to Theorem 3 because a forwarder
successfully receives the value v only if exactly one sender transmits.

Let us apply our theorems to compute the probability of successful gossipping
in the presence of collisions. Let us define:

GSP2
def=

2∏
i=1

si[snd〈v〉p]νsi
∣∣ 3∏

i=1

ni[fwdcp]
νni

∣∣ d[fwdc1]
νd

7 Had we considered a larger network, with more senders, we would have obtained a
more significant threshold.
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with the same network topology as GSP1.
By applying Theorem 5 and Theorem 2 to compute estimates, Theorem 4 to

compose such estimates, and Proposition 7, we obtain:

GSP2 wq

2∏
i=1

si[nil]νsi
∣∣ 3∏

i=1

ni[nil]νni
∣∣ d[σ3.snd〈v〉1]νd

with q = p(2p2(1− p)2 + p3) + (1− p)p3 = p3(3− 4p + 2p2). This probability is
definitely smaller than that computed for GSP1, demonstrating that collisions
degrade the performances of gossip protocols. Thus, for instance, for a gossip
probability p = 0.8 the destination in GSP2 will receive the message with prob-
ability 0.55 while in GSP1 this probability is 0.72; similarly for p = 0.9 the
probability of success in GSP2 is about 0.74 while in GSP1 it is 0.88.

6 Conclusions, Future and Related Work

We have proposed a probabilistic simulation theory to compare the performances
of gossip protocols for wireless sensor networks. This theory is used to prove a
number of algebraic laws which revealed to be very effective to evaluate the per-
formances of gossip networks with and without communication collisions. Our
simulation theory provides lower-bound probabilities. However, due to the in-
herent structure of gossip networks, the probabilities of our algebraic laws are
actually precise (see [12] for details). As future work, we will study gossip net-
works with random delays and lossy channels. Moreover, we intend to mechanise
the application of our laws to deal with large-scale gossip networks.

A nice survey of formal verification techniques for the analysis of gossip pro-
tocols is presented in [2]. Probabilistic model-checking has been used in [6] to
study the influence of different modelling choices on message propagation in
flooding and gossip protocols. It has been used also in [10] to investigate the ex-
pected rounds of gossipping required to form a connected network. However, the
analysis of gossip protocols in large-scale networks remains beyond the capabil-
ities of current probabilistic model-checking tools. For this reason, the paper [3]
suggests to apply mean-field analysis for a formal evaluation of gossip protocols.

Several process calculi for wireless systems have been proposed in the last
five years. Our calculus is a probabilistic variant of [4] which takes inspiration
from [5,11]. The paper [17] contains the first probabilistic untimed calculus for
wireless systems, where connections are established with a given probability.

Our notion of simulation up to probability may remind one of the idea of
simulation with a fixed precision. A first version of probabilistic bisimulation
with ε precision appeared in [1] to relax security constrains. Indeed their simu-
lation is able to tolerate local fluctuations by allowing small differences in the
probability of occurrence of weak actions. In [13] a theory of approximate equiv-
alence for task-structured Probabilistic I/O Automata is proposed. In this case,
the distance between probabilities is based on trace distributions. Afterwards,
in order to study simulations in cryptographic protocols [16] proposed a notion
of simulation where distances may grow by a negligible value at each step.
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