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Most programming languages have some notion of function, method , or
procedure

... to abstract a piece of code on formal parameters so that you can use
that code multiple times with different parameters.

fun succ x = x +1

public int succ(int x) {
x+1

}

<script type="text/vbscript">
function succ(x)
succ = x+1
end function
</script>
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Functions - Examples

Thus, we will extend our language with expressions of this form:

fn x : int ⇒ x + 1

(fn x : int ⇒ x + 1)8

fn y : int ⇒ (fn x : int ⇒ x + y)

(fn y : int ⇒ (fn x : int ⇒ x + y))9

fn x : int → int ⇒ (fn y : int ⇒ x(xy))(
fn x : int → int ⇒ (fn y : int ⇒ x(xy))

)
(fn x : int ⇒ x + 1)((

fn x : int → int ⇒ (fn y : int ⇒ x(xy))
)
(fn x : int ⇒ x + 1)

)
7

For simplicity,

our functions are anonymous: they don’t have a name

they take always a single argument and return a single result

they are always typed.
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Functions - Extended Syntax

Variables x ∈ X, for X = {x, y, z, . . .}

Expressions e ::= . . .
∣∣ fn x : T ⇒ e

∣∣ e e
∣∣ x

Types
T ::= int

∣∣ bool
∣∣ unit

∣∣ T → T

Tloc ::= intref

Conventions:

Function application associates to the left: e1e2e3 = (e1e2)e3

Function type associates to the right:

T1 → T2 → T3 = T1 → (T2 → T3)

fn extends to the right as far as possible, thus fn x : unit ⇒ x; x
corresponds to fn x : unit ⇒ (x; x)

and fn x : unit ⇒ fn y : int ⇒ x; y has type unit → int → int
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Note that:

Variables are not locations (X ∩ L = ∅) so, x := 3 is not allowed!

you cannot abstract on locations: fn l : intref ⇒ !l + 5 is not in the
syntax!

the (non-meta) variables x, y, z are not the same as metavariables
x , y , z , . . .

The type grammar and the expression syntax suggest the language
includes higher-order functions: you can abstract on a variable of any
type

If you wanted only first-order functions you should change the type
grammar. How?
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Variable shadowing

In a language with nested function definitions it is desirable to define a
function without being aware of what are the variables in the surrouding
space.
For instance,

fn x : int ⇒ (fn x : int ⇒ x + 1))

Variable shadowing is not allowed in Java!

class F {
void m() {
int y;
{int y; .....} \\static error!!!
....

}
}
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Alpha conversion

In expressions of the form fn x : T ⇒ e the variable x is a bound in e.

x is the formal parameter of the function: any occurrence of x in e,
which does not occur inside a nested function definition, means the
same thing

outside the term “fn x : t ⇒ e” the variable x does not mean
anything!

As a consequence, it does not matter which variable has been chosen
as formal parameter: fn x : int ⇒ x + 2 and fn y : int ⇒ y + 2
denotes exactly the same function!

Massimo Merro Functional language 7 / 1



Free and bound variables

We will say that an occurrence of a variable x inside an expression e is free
if x is not inside any term of the form fn x : T ⇒ . . .. For example,
variable x is free in the following expressions:

21

x + y
fn z : T ⇒ x + z

Notice that, in the last example the variable x if free but the variable z is
bound by the closest enclosing function definition fn z : T ⇒ ....

Notice also that in the expression

fn x : T ′ ⇒ fn z : T ⇒ x + z

variable x is not free anymore but it is bound by the closest enclosing
fn x : T ′ ⇒ ....
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Alpha conversion - The convention

Convention: we will allow ourselves to any time, in any expression

. . . (fn x : T ⇒ e) . . .

to replace the binding x and all occurrences of x in e that are bound to
that binder, by any other fresh variable that does not occur elsewhere:

fn x : T ⇒ x + z = fn y : T ⇒ y + z
fn x : T ⇒ x + y 6= fn y : T ⇒ y + y

This is called “working up to alpha conversion”.
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Free variables, formally

The intuition is that free variables are not (yet) bound to some expression.

Let us define the following function by induction:

fv( ) : Exp → 2X

fv(x)
def
= {x}

fv(fn x : T ⇒ e)
def
= fv(e) \ {x}

fv(e1e2) = fv(e1; e2)
def
= fv(e1) ∪ fv(e2)

fv(n) = fv(b) = fv(!l) = fv(skip)
def
= ∅

fv(e1 op e2) = fv(while e1 do e2)
def
= fv(e1) ∪ fv(e2)

fv(l := e) = fv(e)

fv(if e1 then e2 else e3) = fv(e1) ∪ fv(e2) ∪ fv(e3)

An expression e is said to be closed if fv(e) = ∅.
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Substitution - Examples

The semantics for functions will involve substituting actual paramenter for
formal parameters.

Write e2{e1/x} for the result of substituting e1 for all free occurences of x
in e2. For example,

(x ≥ x){3/x} = (3 ≥ 3)(
(fn x : int ⇒ x + y)x

)
{3/x} =

(
(fn x : int ⇒ x + y)3

)
(fn y : int ⇒ x + y){y+2/x} = fn z : int ⇒ (y + 2) + z

Note that in the last substitution we “work up to alpha conversion” to
avoid name capture!
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Substitution - Definition

ê{e/x}: substitute expression e for each free occurrence of x in ê.

n{e/x}
def
= n

b{e/x}
def
= b

skip{e/x}
def
= skip

x{e/x}
def
= e

y{e/x}
def
= y

(fn x : T ⇒ e1){e/z}
def
= (fn x : T ⇒ e1{e/z}) if x 6∈ fv(e)

(fn x : T ⇒ e1){e/z}
def
= (fn y : T ⇒ (e1{y/x}){e/z}) if x∈ fv(e) ∧ y fresh1

(fn x : T ⇒ e1){e/x}
def
= (fn x : T ⇒ e1)

(e1e2){e/x}
def
= (e1{e/x}e2{e/x})

... on the other expressions substitution is an homomorphism.
1Here we do alpha conversion.
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Simultaneous substitutions

Substitutions can be easily generalised to replace more variables
simultaneously

More generally, a simultaneous substitution σ is a partial function
σ : X ⇀ Exp

Given an expression e, we write eσ to denote the expression resulting
by the simultaneous substitution of each x ∈ dom(σ) by the
corresponding expression σ(x)

Notation: write σ as {e1/x1, . . . , ek/xk} instead of
{x1 7→ e1, . . . , xk 7→ ek}.
We will write eσ to denote the expression e which has been affected
by the substitution σ.
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The λ-calculus: the core of sequential programming
languages

Our functions fn x :T ⇒ e could be written in λ-calculus as λx :T .e

In the mid 1960s, Peter Landin observed that a complex programming
language (such as ALGOL 60) can be understood by focussing on a
tiny core calculus capturing the language’s essential mechanisms ....

... together with a collection of convenient derived constructs whose
behaviour is understood by translating them into the core calculus.

The core language used by Landin was the λ-calculus, a formal
system invented by Alonzo Church in the 1930’s as a universal
language of computable functions.

In 1960, John McCarthy published the design of the programming
language Lisp based on the λ-calculus.
Since then, the λ-calculus has seen a widespread use in

the specification of programming language features
in language design and implementation
in the study of type systems.
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Expressiveness of the λ-calculus

The λ-calculus can be viewed as a very simple programming language
in which computations can be described as mathematical objects.

It is a formal language in which

every term denotes a function
any term (function) can be applied to any other term, so functions are
inherently higher-order

Despite its simplicitiy, it is a Turing-complete language: it can express
computations on natural number as does any other known
programming language.

Church’s Thesis: any conceivable notion of computable function on
natural numbers is equivalent to the λ-calculus.

The force of Church’s Thesis is that it postulates that all future
notions of computation will be equivalent in expressive power to the
λ-calculus.
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Encoding language features in λ-calculus

The λ-calculus can be enriched in a variety of ways.

It is often convenient to add special constructs for features like
numbers, booleans, tuples, records, etc.

However, all these features can be encoded in the λ-calculus, so they
represent only “syntactic sugar”.

Such extensions lead eventually to programming languages such as
Lisp (McCarthy, 1960), ML (Milner et al., 1990), Haskell (Hudak et
al., 1992), or Scheme (Sussman and Steele, 1975).

In the the previous slides, we have basically extended our language
with the λ-calculus primitives.
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The untyped λ-calculus

M ∈ Lambda ::= x
∣∣ λx .M

∣∣ M M

x is a variable, used to define formal parameters

λx .M: called λ-abstraction, define anonymous functions

this construct is a binder as the variable x is bound in the body
function M

M1M2: apply function M1 to argument M2

Thus, (λx .M)N evolves in M{N/x}, where the argument N replaces
each (free) occurrence of x in M

In (pure) λ-calculus functions are the only values

Integer, Boolean and other basic values can be easily codified: they
are not primitive in λ-calculus.
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Function application: intuition

To evaluate M1M2:

First evaluate M1 to a function λx .M

Then it depends on the evaluation strategy.

If Call-by-value:

evaluate M2 to a value v

evaluate M{v/x}.

If Call-by-name:

evaluate M{M2/x}
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Function application: formal semantics

(App)
M1 _ M ′

1

M1M2 _ M ′
1M2

Call-by-value:

(CBV.A)
M2 _ M ′

2

(λx .M)M2 _ (λx .M)M ′
2

(CBV.B)
−

(λx .M)v _ M{v/x}

where v ∈ Val ::= λx .N

Call-by-name

(CBN)
−

(λx .M)M2 _ M{M2/x}

where M2 is a closed term (i.e. a program).
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Self-application

Is it possible to express non-terminating programs in Lambda?

Yes, of course!

For example, the divergent combinator

Ω
def
= (λx .xx)(λx .xx)

contains just one redex, and reducing this redex yields exactly Ω again!

Ω _ Ω _ Ω _ . . . . . . Ω . . . . . .

Non-termination is built-in in Lambda!
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Call-by-name vs. call-by-value

Note that unlike the previous language, having function definitions among
the constructs may lead to different results!!!

They give different results:

(λx .0)(Ω) _cbn 0

(λx .0)(Ω) _cbv (λx .0)(Ω) _cbv . . . _cbv . . .

Even more surprisingly:

(λx .λy .x)(Id 0) _∗
cbn λy .(Id 0)

(λx .λy .x)(Id 0) _∗
cbv λy .0

For different evaluation strategies see Benjamin C. Pierce’s “Types and
Programming Languages” at pp. 56.
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Back to our language: function behaviour

Consider the expression:

e
def
=

(
fn x:unit ⇒ (l := 1); x

)
(l := 2)

then consider a run in a store where l is associated to 0:

〈e, {l 7→ 0}〉 _∗ 〈skip, {l 7→???}〉

What is the resulting store?
This is not a trivial questions as there are a number of different
possibilities for evaluating function calls!
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Evaluating function calls (1)

How to evaluate a function call e1e2?

Call-by-value (also called eager evaluation):

Evaluate e1 to a function fn x :T ⇒ e

Evaluate e2 to a value v

Substitute actual parameter v , for formal parameter x in the body
function e

Evaluate e{v/x}

Used in many languages such as C, Scheme, ML, OCaml, Java, etc (there
are several variants of call-by-value)
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Evaluation function calls (2)

There is at leat another way to evaluata e1e2:

Call-by-name (also called lazy evaluation):

Evaluate e1 to a function fn x :T ⇒ e

Substitute the argument e2, without evaluating it, for formal
parameter x in the body function

Evaluate e{e2/x}

Variants of call-by-name have been used in some well-known programming
languages, notably Algol-60 (Naur et al., 1963) and Haskell (Hudak et al.,
1992).

Haskell actually uses an optimised version known as call-by-need
(Wadsworth, 1971) that, instead of re-evaluating an argument each time it
is used, overwrites all occurrences of the argument with its value the first
time it is evaluated.
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Function Behaviour: Call-by-value

Let us evaluate our previous example in a call-by-value strategy:

e = (fn x:unit ⇒ (l := 1); x) (l := 2)

then

〈e, {l 7→ 0}〉 _ 〈(fn x:unit ⇒ (l := 1); x)skip , {l 7→ 2}〉
_ 〈(l := 1; skip) , {l 7→ 2}〉
_ 〈skip; skip , {l 7→ 1}〉
_ 〈skip , {l 7→ 1}〉

At the end of the evaluation the location l is associated to 1.
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Function Behaviour: Call-by-name

Let us evaluate our previous example in a call-by-name strategy:

e = (fn x:unit ⇒ (l := 1); x) (l := 2)

then

〈e, {l 7→ 0}〉 _ 〈(l := 1); l := 2 , {l 7→ 0}〉
_ 〈(skip; l := 2) , {l 7→ 1}〉
_ 〈l := 2 , {l 7→ 1}〉
_ 〈skip , {l 7→ 2}〉

Which makes quite a difference with respect to a call-by-value strategy!
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Call-by-value: small-step semantics

Values v ::= b
∣∣ n

∣∣ skip
∣∣ fn x : T ⇒ e

(CBV-app1)
〈e1, s〉 _ 〈e ′1, s ′〉

〈e1e2 , s〉 _ 〈e ′1e2 , s ′〉

(CBV-app2)
〈e2, s〉 _ 〈e ′2, s ′〉

〈ve2 , s〉 _ 〈ve ′2 , s ′〉

(CBV-fn)
−

〈(fn x : T ⇒ e)v , s〉 _ 〈e{v/x} , s〉

Function evaluation does not touch the store: In a pure functional
language we would not need a store!

In e{v/x} the value v would be copied in e as many times as there are
free occurences of x in e. Real implementations don’t do that!
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Call-by-name: small-step semantics

(CBN-app)
〈e1, s〉 _ 〈e ′1, s ′〉

〈e1e2 , s〉 _ 〈e ′1e2 , s ′〉

(CBN-fn)
−

〈(fn x : T ⇒ e)e2 , s〉 _ 〈e{e2/x} , s〉

Here, we don’t evaluate the argument at all if it is not used in the function
body:

〈(fn x : unit ⇒ skip)(l := 2) , {l 7→ 0}〉

_ 〈skip{(l := 2/x)} , {l 7→ 0}〉

_ 〈skip , {l 7→ 0}〉

but if it is used the we end up evaluating it repeatedly.
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Call-by-value vs. call-by-name

loop
def
= while true do skip

fst
def
= fn x : int ⇒ fn y : unit ⇒ x

Then,

Call-by-name: 〈fst 0 loop , s〉 _∗ 〈0, s〉
Call-by-value: 〈fst 0 loop , s〉 _∗ . . . . . . diverges!

dup
def
= fn y : int ⇒ y × y

fact
def
= fn x : int ⇒ (l := 1; m := 1; while !l ≤ x do (m := !m ∗ !l; l := !l + 1); !m)

Then,

Call-by-name: in 〈dup(fact(40)) , s〉, fact(40) is evaluated twice

Call-by-value: in 〈dup(fact(40)) , s〉, fact(40) is evaluated once

Call-by-name: 〈fst(fact 0) , s〉 _∗ 〈fn y : unit ⇒ (fact 0) , s〉
Call-by-value: 〈fst(fact 0) , s〉 _∗ 〈fn y : unit ⇒ 1 , s〉
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A third semantics: Full beta

Here, the reduction relation includes the CBV and the CBN relations, and
also reduction inside function definitions.

(BETA-app1)
〈e1, s〉 _ 〈e ′1, s ′〉

〈e1e2 , s〉 _ 〈e ′1e2 , s ′〉

(BETA-app2)
〈e2, s〉 _ 〈e ′2, s ′〉

〈e1e2 , s〉 _ 〈e1e
′
2 , s ′〉

(BETA-fn1)
−

〈(fn x : T ⇒ e)e2 , s〉 _ 〈e{e2/x} , s〉

(BETA-fn2)
〈e, s〉 _ 〈e ′, s ′〉

〈fn x : T ⇒ e , s〉 _ 〈fn x : T ⇒ e ′ , s ′〉

Full beta: 〈fst(fact 0) , s〉 _∗ 〈fn y : unit ⇒ 0 , s〉
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Typing functions (1)

Up to now a type environment Γ gives the type of store locations.
From now on, it must also provide assumptions on the type of variables
used in functions: e.g.

Γ = {l1 : intref, x : int, y : bool → int}

Thus, we extend the set TypeEnv of type environments as follows:

TypeEnv
def
= L ∪ X ⇀ Tloc ∪ T

such that:

∀l ∈ dom(Γ). Γ(l) ∈ Tloc

∀x ∈ dom(Γ). Γ(x) ∈ T
Notations: if x 6∈ dom(Γ), write Γ, x : T for the partial function which
maps x to T but otherwise is like Γ.
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Typing functions (2)

Notice that with the introduction of functions there are more stuck
configurations (e.g. 2 true, true fn x : T ⇒ e, etc).
Our type system will reject these configurations by means of the following
rules:

(var)
−

Γ ` x : T
if Γ(x) = T

(fn)
Γ, x : T ` e : T ′

Γ ` fn x : T ⇒ e : T → T ′

(app)
Γ ` e1 : T → T ′ Γ ` e2 : T

Γ ` e1e2 : T ′
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Typing functions - Examples

(app)
(fn)

(op +)
(var)

−
x : int ` x : int

(int)
−

x : int ` 2 : int

x : int ` x + 2 : int

∅ ` (fn x : int ⇒ x + 2) : int → int

`

∅ ` (fn x : int ⇒ x + 2)2 : int

where
`

is

(int)
−

∅ ` 2 : int

Note that sometimes you may need to work up to alpha conversion:

fn x : int ⇒ x + (fn x : bool ⇒ if x then 3 else 4)true

It is always a good idea to start typing with all binders different from each
other and from all free variables.
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Typing functions - Example

(app)
(fn)

(seq)
(ass)

(int)
−

l : intref , x : unit ` 1 : int

l : intref , x : unit ` (l := 1) : unit

`
1

l : intref , x : unit ` (l := 1); x : unit

l : intref ` (fn x : unit ⇒ (l := 1); x) : unit → unit

`
2

l : intref ` (fn x : unit ⇒ (l := 1); x)(l := 2) : unit

where
`

1 is

(var)
−

l : intref , x : unit ` x : unit

and
`

2 is

(ass)
(int)

−
l : intref ` 2 : int

l : intref ` (l := 2) : unit
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Properties of Typing

We only consider executions of closed programs, with no free variables.

Theorem 15 (Progress)

If e closed and Γ ` e : T and dom(Γ) ⊆ dom(s) then either e is a value or
there exist e ′, s ′ such that 〈e, s〉 _ 〈e ′, s ′〉.

Theorem 16 (Type preservation)

If e is closed and Γ ` e : T and dom(Γ) ⊆ dom(s) and 〈e, s〉 _ 〈e ′, s ′〉
then Γ ` e ′ : T and e ′ closed and dom(Γ) ⊆ dom(s ′).

This requires:

Substitution lemma

If Γ ` e : T and Γ, x : T ` e ′ : T ′ with x 6∈ dom(Γ) then Γ ` e ′{e/x} : T ′.
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Normalization

Theorem 18 (Normalization)

In the sublanguages without whileloops or store operations, if Γ ` e : T
and e closed then there is a value v such that, for any store s,

〈e, s〉 _∗ 〈v , s〉 .

Said in other terms if we consider a pure functional language, like the
λ-calculus, its typed version is not turing-complete anymore!
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Local declarations

For readability, we want to be able to name expressions, and to restrict
their scope.

Duplicate evaluations:

(1 + 2) ≥ (1 + 2) + 4)

This is a very common feature of many programming languages.

New construct:

let y : int = 1 + 2 in y ≥ (y + 4)

Intuition:

First evaluate 1 + 2 to 3

Then evaluate y ≥ (y + 4) with y replaced by 3

Here, y is a binder, binding any free occurrence of y in y ≥ (y + 4).
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Local declarations: syntax and typing

Let us extend the syntax of our expressions:

e ::= . . .
∣∣ let x : T = e in e

Let us provide the typing rule of the new contruct:

(let)
Γ ` e1 : T Γ, x : T ` e2 : T ′

Γ ` let x : T = e1 in e2 : T ′

Note that, since x is a local variable, Γ does not contain an entry for
variable x . This means that, as for “fn”, typing a “let” construct may
require alpha-conversion.
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Local declarations: intuition

In a let construct variables are placeholders standing for unknown
quantities.

Problem 1: Many expressions are meaningless

let y : T = 2 + 3 in y + z
let z : T = 2 + x in z× z

Problem 2: Variables may be used in multiple roles

let z : T = 2 + z in z× y

Problem 3: Multiple declarations for the same value

let y : T = 1 in let y : T ′ = (1 + 2) in y × (y + 4)
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Local declarations: Free and bound variables

Intuition:

In let y : T = 2 + 3 in y + z
y is bound – stands for expression 2 + 3

z is free – does not stand for any expression

In let z : T = 2 + x in z× (z + y)

z is bound – stands for expression 2 + x
x and y are free – do not stand for any expression

In let z : T = 2 + z in z× (z + y)

z has bound occurrences (in blue) – stands for expression 2 + z
z has a free occurrence (in red) – does not stand for any expression.
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Local declarations: Alpha conversion

As the let construct is a binder for the local variable, we can use
alpha-conversion when necessary.

Convention: we will allow ourselves to any time, in any expression

. . . (let x : T = e1 in e2) . . .

to replace the binding x and all occurrences of x in e2 that are bound to
that binder, by any other fresh variable that does not occur elsewhere:

(let x : T = e1 in e2) =α (let y : T = e1 in e2{y/x})
where y is a fresh variable, i.e. it does not occur neither in e1 or in e2.
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Local declarations: free variables and substitution

The definition of free variables for the “let” construct is as expected:

fv(let x : T = e1 in e2)
def
= fv(e1) ∪ (fv(e2) \ {x})

As regards substitution we must be careful as we may need to work up to
alpha-conversion:

(let x:T = e1 in e2){e/z}
def
= (let x:T = e1{e/z} in e2{e/z})

if x 6∈ fv(e)

(let x:T = e1 in e2){e/z}
def
= (let y:T = e1{e/z} in (e2{y/x}){e/z})

if x ∈ fv(e) ∧ y fresh2

(let x:T = e1 in e2){e/x}
def
= (let x:T = e1{e/x} in e2)

Our definitions uses variables and not meta-variables: hence, x 6= z!

2Here, y fresh means y 6∈ fv(e1) ∪ fv(e2) ∪ {x, z}.
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Local declarations: small-step semantics

As for function application we can have at least a couple of different
semantics for the “let” construct.

Call-by-value semantics

(CBV-let1)
〈e1, s〉 _ 〈e ′1, s ′〉

〈let x :T = e1 in e2 , s〉 _ 〈let x :T = e ′1 in e2 , s ′〉

(CBV-let2)
−

〈let x :T = v in e2 , s〉 _ 〈e2{v/x} , s〉

Call-by-name semantics

(CBN-let)
−

〈let x :T = e1 in e2 , s〉 _ 〈e2{e1/x} , s〉
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Sequential composition vs. Local declarations vs. Function
application

As said before, the λ-calculus is very expressive and it can encode most of
the constructs of sequential languages.

Here we show how the constructs for local declarations and sequential
composition can be encoded in terms of function application.

The ’let’ construct is syntactic sugar for:

let x :T = e1 in e2  (fn x : T ⇒ e2)e1

Similarly, in a call-by-value semantics3:

e1; e2  let x :unit = e1 in e2  (fn x : unit ⇒ e2)e1

if x does not occur free in e2.

3Does it work also in a CBN semantics?
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Recursion

How do we model recursive functions?

Are there in our language for free?

Due to the Normalization theorem we know that without while or
store we cannot express infinite computations, and hence recursion as
well

Using “if”, “while” and store we can implement recursion, but it
would become a bit heavy to use

Actually, we already did it. Did you notice it?

Let us define a new operator to define recursive functions

Once again, let’us take inspiration from the λ-calculus.
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Fixpoints

In Mathematics, a fixpoint p (also known as an invariant point) of a
function f is a point that is mapped to itself, i.e. f (p) = p.

Fixpoints represent the core of what is known as recursion theory.

Kleene’s recursion theorems are a pair of fundamental results about
the application of computable functions to their own descriptions.

The two recursion theorems can be applied to construct fixed points
of certain operations on computable functions, to generate quines 4,
and to construct functions defined via recursive definitions.

Kleene’s recursion theorems is used to prove a fundamental result in
computability theory: the Rice’s Theorem!

Rice’s Theorem: “For any non-trivial property of partial functions,
there is no general and effective method to decide whether an
algorithm computes a partial function with that property”.

4A quine is a computer program which produces a copy of its own source code as its
only output.
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Fixpoints via Turing’s combinator (1)

So, it is very important to prove that the λ-calculus can express fixpoints.

Let us use Turing’s combinator to derive fixpoints:

A
def
= λx .λy .y(xxy)

fix
def
= AA

fix is a recursive function that given a term M returns a fixpoint of M,
denoted with fix M.

In fact, for any term M, using a call-by-name evaluation, we have:

fix M _ (λy .y(AAy))M

_ M(fix M) .
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Fixpoints via Turing’s combinator (2)

Now, if you choose M of the form λf .λx .B, for some body B, then, in a
call-by-name semantics we have:

fix (λf .λx .B) _∗ (λf .λx .B)(fix (λf .λx .B))

_ λx .B{fix (λf .λx .B)/f }

Recursive definitions:

Thus, if we define

rec f .B as an abbreviation for fix (λf .λx .B)

then we can rewrite the previous reduction as:

rec f .B _∗ λx .B{rec f .B/f }
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Example: the factorial in call-by-name semantics

Fact
def
= λf .λz .if z = 0 then 1 else z × f (z − 1)

= λf .λz .F

fact
def
= fix Fact

= fix(λf .λz .F )

= rec f .F

Then,

fact 3 _∗ (λz .if z = 0 then 1 else z × fact(z − 1)) 3

_∗ 3 × fact 2

_∗ 3 × (λz .if z = 0 then 1 else z × fact(z − 1)) 2

_∗ 3 × 2 × fact 1

_∗ 3 × 2 × 1 × fact 0

_∗ 3 × 2 × 1 × 1

_∗ 6
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Fixpoints in the call-by-value semantics (1)

So, we found a way to express recursive functions in λ-calculus, according
to the call-by-name semantics.

Does this mechanism work also in call-by-value semantics? Let us try:

rec f .B
def
= fix (λf .λx .B)

_∗ (λf .λx .B)(fix (λf .λx .B))

_∗ (λf .λx .B)(λf .λx .B)(fix (λf .λx .B))

_∗ (λf .λx .B)(λf .λx .B)(λf .λx .B)(fix (λf .λx .B))

_∗ . . . . . . forever!

Solution: We need to stop the indefinite unfolding of fix (λf .λx .B).
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Fixpoints in the call-by-value semantics (2)

Question: What is the difference between

M and λz .Mz

where z not free in M?

Answer: Not much!

And what about:

fix (λf .λx .B) vs λz .
(
fix (λf .λx .B)

)
z

The second one is a value (a function) the first one is not!
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Fixpoints in the call-by-value semantics (3)

Let us redefine the fixpoint combinators!

Call-by-name combinator

A
def
= λx .λy .y(xxy) fix

def
= AA fix M _∗ M(fix M)

Call-by-value combinator

Av
def
= λx .λy .y(λz .(xxy)z) fixv

def
= AvAv fixv M _∗ M(λz .(fixv M)z)

Call-by-value recursive functions

Let recv f .B be an abbreviation for fixv (λf .λx .B), then

recv f .B _∗ λx .B{λz.(recv f .B)z/f }.

It does not diverge anymore!
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Some fun: Klop’s fixpoint combinator

Jan Klop came up with this ridiculous one: if we define

L
def
= λabcdefghijklmnopqstuvwxyzr .r(thisisafixedpointcombinator)

where

λabcdef . . . means λa.λb.λc .λd .λe.λf . . . .

thisisafixe... means ((((((((((th)i)s)i)s)a)f )i)x)e)....

then
LLLLLLLLLLLLLLLLLLLLLLLLLL (26 times)

is indeed a fixpoint combinator.

Exercise

Check that Klop’s combinator works. Hint: the phrase ”this is a fixed
point combinator” contains 27 letters.
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Back again to our language

Do we adopt one of the previous fixpoint combinators?

No, none of the previous combinators is well-typed. Remember the
Normalization theorem...

Syntax

e ::= . . .
∣∣ fix.e

Typing

(T-Fix)
Γ ` e : (T1 → T2) → (T1 → T2)

Γ ` fix.e : T1 → T2

Semantics:

(Fix-cbn)
−

fix.e _ e(fix.e)
(Fix-cbv)

e ≡ fn f :T1 → T2 ⇒ e2

fix.e _ e(fn x :T1 ⇒ (fix.e) x)
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Factorial in a CBN semantics

For simplicity, we omit types:

Fact
def
= fn f .fn z .if z = 0 then 1 else z × f (z − 1)

fact
def
= fix.Fact

fact = fix.Fact _ Fact(fix.Fact) _∗ fn z .if z=0 then 1 else z × fact(z−1)

fact 3 _∗ (fn z .if z = 0 then 1 else z × fact(z − 1)) 3

_∗ 3 × fact 2

_∗ 3 × (fn z .if z = 0 then 1 else z × fact(z − 1)) 2

_∗ 3 × 2 × fact 1

_∗ 3 × 2 × 1 × fact 0

_∗ 3 × 2 × 1 × 1

_∗ 6
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Rule (Fix-cnb) does not work in call-by-value semantics

If we use rule (Fix-cbn) in a call-by-value semantics we have:

fact 1 _ Fact(fact) 1

_ Fact(Fact(fact)) 1

_ . . . . . .

_ Fact(Fact(Fact(. . . fact))) 1

Call-by-value recursion needs a mechanism for stopping evaluation of
next iteration

That’s why we defined a different rule, (Fix-cbv), to be used in
call-by-value semantics.

Exercise. Prove that, in a CBV semantics, using rule (Fix-cbv), we
have fix.Fact 3 _∗ 6.
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Encoding while

Having recursion as a primitive we can remove the while construct if we
wish so!

Let

W
def
= fn w :unit → unit. fn y :unit. if e1 then (e2; (w skip)) else skip

for w and y not in fv(e1) ∪ fv(e2).

Then,
while e1 do e2  fix.W skip

and also the while operator would not be primitive anymore.
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