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Abstract

We propose a process calculus for mobile ad hoc networks which relies on an
abstract behaviour-based multilevel trust model . The operational semantics of the
calculus is given in terms of a labelled transition system, where actions are executed
at a certain security level. We define a labelled bisimilarity over networks param-
eterised on security levels. Our bisimilarity is a congruence and an efficient proof
method for an appropriate variant of barbed congruence, a standard contextually-
defined program equivalence. Communications in the calculus are safe with respect
to the security levels of the involved parties. In particular, we ensure safety de-
spite compromise: compromised nodes cannot affect the rest of the network. A
non-interference result is also proved in terms of information flow. Finally, we
illustrate the practical utility of our calculus by providing a formal description of
trust-based versions of a routing protocol and a leader election protocol for ad hoc
networks.

1 Introduction

Wireless communication has become very popular in industry, business, commerce and
in everyday life. Wireless technology spans from user applications such as personal area
networks, ambient intelligence, and wireless local area networks, to real-time applica-
tions, such as cellular and ad hoc networks.

The emerging mobile ad hoc and sensor networking paradigms usher in a new type
of network: devices form multihop topologies in a self-organizing manner, relaying
packets from other devices across multiple wireless links (hops), and essentially become
the network. Several applications are enabled already by these developments or are
expected in the near future. Wireless sensor networks are deployed for environmental
and building monitoring. Mobile ad hoc networks are used in disaster relief operations,
with rolled-in base stations and portable radios, as well as in tactical operations with
a multitude of vehicle-, aircraft-, or personnel-borne wireless devices. Static ad hoc
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or mesh networks are being formed by home computers with roof-top antennas. Low-
mobility ad hoc networks will enable (often delay-tolerant) communication in urban
environments; examples include networks of hand-held devices, wearable devices, and
radio frequency identifiers (RFID).

In this paper we focus on mobile ad hoc networks. A Mobile ad Hoc NETwork
(MANET) is a self-configuring network of mobile devices (also called nodes) commu-
nicating with each other via radio transceivers. Basically, wireless devices use radio
frequency channels to broadcast messages to the other devices. Ad hoc networks may
operate in a standalone fashion, or may be connected to the larger Internet. They can
be used wherever a wired backbone is infeasible and/or economically inconvenient.

In MANETs, due to the limited transmission range of communications, each node
seeks the assistance of its neighbouring nodes in forwarding packets. In order to es-
tablish routes between nodes which are further than a single hop, specially configured
routing protocols are engaged. The unique feature of these protocols is their ability to
trace routes in spite of a dynamic topology. Routing protocols for MANETs, such as
AODV, DSR and TORA [47, 32, 46], require persistent cooperative behaviour from the
intermediate nodes that primarily contribute to the route development. These proto-
cols have been developed for networks where all nodes can faithfully execute them in a
munificent manner. However, in real life, such an altruistic stance is difficult to achieve
and, so, these protocols are more often executed by nodes that divert from the basic
requirements of participation.

MANETs are generally established in open and physically insecure environments
where nodes are exposed to various threats, of which the most interesting and important
is node subversion. In this kind of attack, a node may be reverse-engineered, and
replaced by a malicious node. A bad (or compromised) node can communicate with
any other node, good or bad. Bad nodes may have access to the keys of all other bad
nodes, whom they can impersonate if they wish. They do not execute the authorised
software and thus do not necessarily follow protocols to identify misbehaviour, isolate
other bad nodes, vote honestly or delete keys shared with compromised nodes.

Lack of a fixed infrastructure, shared wireless medium, cooperative behaviour, and
physical vulnerability are some of the features that make particularly challenging the
design of a trust-based scheme for mobile ad hoc networks. In a trust-based scheme,
all nodes in the network independently execute a trust model and maintain their own
assessment concerning other nodes in the network. Each node, based upon its personal
experiences, rewards collaborating nodes for their benevolent behaviour and penalises
malicious nodes for their malevolent conduct. Most of the events that are experienced
by a node occur within the vicinity of its immediate neighbours. This helps to establish
trust relationships between the neighbours. In contrast, very few events are directly
experienced between nodes that are more than one hop away.

MANETs do not support stable hierarchies of trust relations because trust evidence
may be uncertain and incomplete, and only sporadically collected and exchanged. In
fact, when moving around, wireless devices break links with old neighbours and es-
tablish fresh links with new devices. This makes security even more challenging as the

2



compromise of a legitimate node or the insertion of a malicious node may go unnoticed.

Contribution In this paper, we propose a process calculus for mobile ad hoc networks
which relies on an abstract behaviour-based trust model. Our trust model supports
both direct trust, to describe monitoring of neighbour nodes, and indirect trust, when
collecting recommendations and spreading reputations. We model our networks as
multilevel systems [5] where each device is associated with a security level depending
on its behaviour.

In our calculus, each node is equipped with a local trust store containing a set of
assertions. These assertions supply trust information about the other nodes, according
to a local security policy. The calculus is not directly concerned with cryptographic
underpinnings. However, we assume the presence of a hierarchical key generation and
a distribution protocol [30, 56]. Thus, messages are transmitted at a certain security
level by relying on an appropriate set of cryptographic keys.

We provide an operational semantics in terms of a labelled transition system. Tran-
sitions take the form

M
λ−−→ρ N

to indicate that the network M can perform the action λ, at security level ρ, evolving
into the network N .

In our setting, communications are safe up to certain a security level. Thus, a node
m transmitting at security level ρ may only synchronise with nodes at security level
ρ or above, according to the local knowledge of both sender and receivers. We also
ensure safety despite compromise, as bad nodes, once detected, may not interact with
good ones. In this manner, bad nodes (recognised as such) are isolated from the rest
of the network.

A central concern in process calculi is to establish when two terms have the same
observable behaviour. Behavioural equivalences are fundamental for justifying pro-
gram transformations. Our program equivalence is a security variant of (weak) barbed
congruence, a branching-time contextually-defined program equivalence. Barbed equiv-
alences [43] are simple and intuitive but difficult to use due to the quantification on
all contexts. Simpler proof techniques are based on labelled bisimilarities [41], which
are co-inductive relations that characterise the behaviour of processes using a labelled
transition system. Along the lines of [14], we propose a labelled bisimilarity, called δ-
bisimilarity, parameterised on security levels. Intuitively, two networks are δ-bisimilar
if they cannot be distinguished by any observer that can only perform actions at secu-
rity level at most δ. We prove that δ-bisimilarity represents an efficient proof method
for our barbed congruence.

We use our notion of δ-bisimilarity to prove a non-interference result [26]. Formally,
high-level behaviours can be arbitrarily changed without affecting low-level equiva-
lences, that is equivalence parameterised on low security levels. Thus, a network is
interference free if its low security level behaviour is not affected by any activity at
high security level.
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Finally, we show that our calculus represents a suitable formal language to describe
trust-based routing protocols for MANETs [49, 50, 63]. Initial work on routing in ad hoc
networks has considered only the problem of providing efficient mechanisms for finding
paths, without considering security issues. Trust-based routing represents an emerging
effective approach to improve the security of mobile ad hoc networks as opposed to
secure routing protocols, such as SRP [45], Ariadne [29], endairA [2], SAODV [62], and
ARAN [55], where paths are established by means of cryptographic communications
among nodes. Trust-based schemes can be successfully used for a variety of other
protocols. As as example, we provide a trust-based version of a leader election protocol
for MANETs, proposed in [60].

Outline In Section 2, we introduce the concepts of trust and reputation, we de-
scribe the trust management systems in general and the trust management systems for
MANETs. In Section 3, we describe our behaviour-based trust model. In Section 4,
we provide both syntax and operational semantics of our calculus. In Section 5, we
present our mobility model. In Section 6, we prove our safety properties. In Section
7, we propose a notion of observational equivalence along the lines of Milner and San-
giorgi’s barbed congruence. In Section 8, we propose a labelled bisimilarity as a proof
method for our observations equivalence. More precisely, we prove that our bisimilarity
is a congruence and it implies our observational equivalence. In Section 9, we use our
bisimilarity to prove a non-interference result. In Section 10, we use our calculus to
formalise a trust-based version of the AODV routing protocol; we also provide a trust-
based version of the leader election protocols for MANETs [60]. Finally, Section 11 is
devoted to conclusions and related work.

2 Background on trust models

In this section, we discuss the notions of trust and reputation in information systems
according to the literature. We then discuss the main key issues when designing trust
management systems for mobile ad hoc networks. Finally, we present a number of
existing trust-based schemes for MANETs.

2.1 Trust and reputation

The concepts of trust and reputation are firmly routed in sociology and psychology and
they are widely used in computer science.

Trust enables a trustor to reduce uncertainty in its future interactions with a trustee,
whose actions may affect the state of the trustor. Trust is usually represented as
a binary relationship between trustor and trustee. Trust formalisation has been the
subject of several academic works. For instance, in [20] trust is defined as the “belief
or subjective possibility by which an individual A expects that another individual B
performs a given action on which the welfare of A depends”. The author has introduced
the dependency of trust from the context, meaning that it applies to a specific purpose
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or domain of actions. In these terms, trust may be viewed as a quantitative value, that
is a quantifiable relation between two entities. According to [27], trust is “the quantified
belief by a trustor with respect to the competence, honesty, security and dependability
of a trustee, within a specified context”. In [33] the authors have distinguished between
functional and referral trust, and between direct and indirect trust. Functional trust
is the belief in an entity’s ability and willingness to carry out or support a specific
function on which the relying party depends. Referall trust is the belief in an entity’s
ability to recommend another entity with respect to functional trust.

Reputation is defined as the opinion held by the trustor towards the trustee, based
both on its past experience and recommendations of other trustees. A recommenda-
tion is simply an attempt at communicating a party’s reputation from one community
context to another. Reputation is an important concept for the trust evaluation, but
it is often confused with trust. Trust represents an active and decisive concept: if
one entity trusts another entity then the latter is allowed to perform certain actions.
Reputation may serve as a source of trust; however, it does not directly define allowed
actions. Reputation usually comes from the context and it does not reflect personal
experience of the interested party. As for trust, there are several possible definitions
of reputation. For instance, in [1] reputation is defined as “the expectation about an
individual’s behaviour based on observations of its past behaviour”. In [34] reputation
is proposed as a meaning of building trust; one can trust another based on its good
reputation.

2.2 Designing trust management systems for MANETs

Decentralised Trust Management Systems [7] define languages for expressing authorisa-
tions and access control policies, and provide trust management engines for determining
when a particular request is authorised. Traditional access control mechanisms [54] are
centralised and operate under a closed world assumption in which all of the parties are
known. Trust management systems generalise access control mechanisms by operating
in distributed systems and eliminating the closed world assumption.

Some of the features of MANETs, such as lack of a fixed infrastructure, node mobil-
ity, shared wireless medium, cooperative behaviour, and physical vulnerability, make
particularly challenging the design of a trust management mechanism for them. In
MANETs, node connectivity cannot be assured, and thus stable hierarchies of trust re-
lations cannot be supported. More specifically, trust management systems for MANETs
should:

• be decentralised and not based on online trusted parties; instead, they should
support distributed, cooperative evaluation, based on uncertain evidence;

• support and exploit the diversity in the roles and the capabilities of the nodes in
the deployments by allowing for flexibility in the trust establishment process;

• support trust revocation in a controlled manner;
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• scale to large deployments, be flexible to membership changes and entail accept-
able resource consumption.

Trust management systems can be classified into credential-based and behaviour-
based systems. Credential-based trust management systems for MANETs aim at defin-
ing mechanisms for predeployment of knowledge on the trust relationships within the
network, usually represented by certificates, to be spread, maintained and managed
either independently or cooperatively by the nodes. Trust decisions are mainly based
on the provision of a valid certificate which proves that the target node is considered
trusted either by a certification authority or by other nodes that the issuer trusts. It is
generally outside the scope of certificate-based frameworks to evaluate the behaviour
of nodes taking trust decisions on that evaluation.

Behaviour-based systems are often called experience-based as in these models an
entity A trusts another entity B based on its experience on B’s past behaviour. In
behaviour-based trust management systems for MANETs, each node comes together
with an extra component called trust manager . A trust manager consists of two main
components: the monitoring module and the reputation handling module. The first
module monitors the behaviour of neighbours, while the second one collects/spreads
recommendations and evaluates trust information about other nodes using a local se-
curity policy. The continuous work of the trust manager results in a local trust store
T containing the up-to-date trust relations. Although a mechanism that determines
the identities of the other nodes is usually assumed to exist, it is generally outside the
scope of behaviour-based trust establishment models to authenticate other nodes and
to determine whether they are legitimate members of the network. The main objec-
tive of behaviour-based models is to isolate those nodes that either act maliciously or
selfishly.

2.3 Some trust-based schemes for MANETS

Comprehensive surveys of trust management systems for ad hoc networks can be found
in [3, 52, 4]. Here, we provide a brief overview of some of these systems.

2.3.1 Watchdog and Pathrater

The Watchdog and Pathrater mechanism [37] has been specifically designed to optimise
the forwarding mechanism in the DSR Routing protocol for MANETs [32]. The mecha-
nism basically consists of two components: Watchdog and Pathrater. The Watchdog is
responsible for detecting selfish nodes that do not forward packets. To do so, each node
in the network buffers every transmitted packet for some time. During this interval,
the node places its wireless interface into the promiscuous mode in order to overhear
whether the next node has forwarded the packet or not. The Pathrater assigns different
rating to the nodes based upon the feedback that it receives from the Watchdog. These
ratings are then used to select routes consisting of nodes with the highest forwarding
rate.
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2.3.2 CONFIDANT

CONFIDANT (Cooperation Of Nodes, Fairness In Dynamic ad hoc NeTworks) [10]
adds a trust manager and a reputation system to the Watchdog and Pathrater scheme.
The trust manager evaluates the events reported by the Watchdog (monitor in this
case) and issues alarms to warn other nodes regarding malicious nodes. The alarm
recipients are maintained in a friends-list, which is configured through a user-to-user
authentication mechanism [59]. To verify the source of alarms, a mechanism similar to
Pretty Good Privacy [21] is employed. The reputation system maintains a black-list of
nodes at each node and shares them with nodes in the friends-list. The CONFIDANT
protocol implements a punishment-based scheme by not forwarding packets of nodes
whose trust level drops below a certain threshold.

2.3.3 CORE

CORE (COllaborative REputation) [40] is similar to CONFIDANT, however, it em-
ploys a complicated reputation exchange mechanism. CORE divides the reputation
of a node into three distinct components: Subjective Reputation, which is observed
through own observations, Indirect Reputation, which is a positive report by another
node, and Functional Reputation, which is based upon behaviour monitored during a
specific task. These reputations are weighted for a combined reputation value. This
combined reputation value is used to make decisions regarding the inclusion or isolation
of another node. CORE makes use of two types of entities, a requestor and one or more
providers, to support a collaborative reputation mechanism. The requestor asks the
providers for reputation values and validates the obtained results with the expected re-
sults that have been derived using the Watchdog. Positive trust ratings are exchanged,
while the negative ratings are locally derived using the Watchdog.

2.3.4 Terminodes

The TermiNodes project [11] makes use of a virtual currency called nuglets, which
serves as a payment per forwarded packet. The nuglets are maintained by each node
in a tamper-resistant security module. The project uses a cryptographic infrastructure
to ensure accuracy in transactions and avoid misuse of nuglets. The number of nuglets
held by a node increase with every forwarded packet and decrease with each originated
packet. The project endeavours to encourage forwarding by introducing two charging
models: Packet trade model (Recipient to pay) and Packet purse model (Sender to
pay). In the first model, each intermediate node has to purchase the packet from the
sender of the packet. This increases the overall price of a packet, which has to be paid
by the destination. The advantage of this model is that the originator of a packet does
not need to know in advance the exact amount of nuglets required to reach a particular
destination and can, so, send the packet for free. The obvious disadvantage here is that
it does not stop malicious nodes from superfluous flooding. In the Packet Purse Model,
the sending node has to load each packet with sufficient nuglets so that it reaches the
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Table 1 Trust Framework
m,n ∈ Nodes node name

〈S, <〉 complete lattice
S = {bad, trust, low, high} security level

A ∈ Assertions = Nodes ×Nodes × S assertion
T ⊆ ℘(Assertions) trust store

P : ℘(Assertions) → ℘(Assertions) policy function

destination. During transit of the packet, each intermediate node supposedly takes
one nuglet out of the packet as its forwarding fee. The advantage of this model is
that it is resilient to flooding as the number of nuglets is limited in each packet. The
disadvantage of this scheme is that the sender has to know precisely the number of
nuglets that are required to be loaded into each transmitted packet and to ensure that
the intermediate nodes do not overcharge during the forwarding mechanism.

3 An abstract trust model for MANETs

In this section, we propose an abstract trust model for MANETs where trust infor-
mation may change over time due to mobility, temporary disconnections, recommen-
dations, etc. We support node revocation and spreading of reputations. Repudiable
evidence allows bad nodes to falsely accuse good nodes. Thus, recommendations are
always evaluated using a local security policy implementing some appropriate metric.

The basic components of our model are nodes (or principals), security levels, as-
sertions, policies and trust stores. We use k, l,m, n, . . . to range over the set Nodes of
node names. We assume a complete lattice 〈S, <〉 of security levels: bad< trust< low<high.
The bad security level is associated with a compromised behaviour. The lowest secu-
rity level associated with a trusted behaviour is trust; the low level is associated with
more trusted behaviour, i.e. for handling more sensible data; high stands for the highest
trusted behaviour. The metavariable ρ ranges over security levels in S.

Assertions are represented by triples contained in Nodes×Nodes×S. An assertion
(m,n, ρ) says that a node m trusts a node n at security level ρ. A local trust store
T contains a set of assertions, formally T ⊆ ℘(Assertions). When a node m (the
trustor) wants to know the security level of a node n (the trustee), it simply has to
check its own trust store T . For convenience, we often use T as a partial function of
type Nodes → Nodes → S, writing T (m,n) = ρ when m considers n as a node of
security level ρ. If ρ = bad then m considers n to be a compromised node, and stops
any interaction with it. A node can receive new assertions from its neighbours. These
assertions will be opportunely stored in the local trust store by the trust manager,
according to a local security policy P. A security policy P is a function that evaluates
the current information collected by a node and returns a set of assertions consistent
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Table 2 The Syntax
Values

u ::= v closed value∣∣ x variable
Networks:
M,N ::= 0 empty network∣∣ M | N parallel composition∣∣ n[P ]T node

Processes:
P,Q ::= nil termination∣∣ σ!〈ũ〉.P broadcast sender∣∣ σ!〈ũ〉u.P unicast sender∣∣ σ?(x̃).P receiver∣∣ P + Q nondeterministic choice∣∣ [ũ op ũ′]P,Q matching∣∣ H〈ũ〉 recursion

with the local policy. Formally, P : ℘(Assertions) → ℘(Assertions). For simplicity, we
assume that all nodes have the same security policy P. Notice that the outcome of the
policy function could differ from one node to another as the computation depends on
the local knowledge of nodes.

Messages exchanged among nodes are assumed to be encrypted using a hierarchical
key generation and distribution protocol [30, 56]. The trust manager may determine a
key redistribution when a security level is compromised. More generally, re-keying [15]
allows to refresh a subset of keys when one or more nodes join or leave the network;
in this manner nodes are enable to decrypt past traffic, while evicted nodes are unable
to decrypt future traffic. As showed in [56] re-keying may be relatively inexpensive if
based on “low-cost” hashing operators.

4 The calculus

In Table 2, we define the syntax of our calculus in a two-level structure, a lower one
for processes and an upper one for networks. We use letters k, l,m, n, . . . for node
names. The symbol σ ranges over the security levels low and high, the only ones which
are directly used by programmers. We use letters x, y, z for variables, u for values, and
v and w for closed values, i.e. values that do not contain free variables. We write ũ to
denote a tuple u1, . . . , uk of values. For convenience, we sometime use angled brackets
to delimit tuples, by writing 〈u1, . . . , uk〉 instead of u1, . . . , uk.

Networks are collections of nodes (which represent devices) running in parallel and
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Table 3 Structural Congruence

m[P + Q]T ≡ m[Q + P ]T (Struct Sum Comm)
m[P + (Q + Q′)]T ≡ m[(P + Q) + Q′]T (Struct Sum Assoc)
m[P + nil]T ≡ m[P ]T (Struct Sum Zero)
M | N ≡ N | M (Struct Par Comm)
(M | N) | M ′ ≡ M | (N | M ′) (Struct Par Assoc)
M | 0 ≡ M (Struct Par Zero)
M ≡ M (Struct Refl)
M ≡ N implies N ≡ M (Struct Symm)
M ≡ N ∧ N ≡ O implies M ≡ O (Struct Trans)
M ≡ N implies M | M ′ ≡ N | M ′, for all M ′ (Struct Cxt Par)

using channels at different security levels to communicate with each other. We use the
symbol 0 to denote the empty network. We write n[P ]T for a node named n (denoting
its network address) executing the sequential process P , with a local trust store T . We
write M | N for the parallel composition of two sub-networks M and N .

Processes are sequential and live within the nodes. We write nil to denote the
skip process. The multicast sender process σ!〈ṽ〉.P transmits the message ṽ to all
neighbours at security level σ, and then continues as P . The unicast sender process
σ!〈ṽ〉n.P transmits the message ṽ to node n at security level σ, and then continues as
P . The receiver process σ?(x̃).P listens for incoming communications at security level
σ. Upon reception, the receiver processes evolves into P , where the variables of x̃ are
replaced with the message ṽ. We write {ṽ/̃x}P for the substitution of variables x̃ with
values ṽ in P , with | x̃ |=| ṽ |. In process [ṽ op w̃]P,Q the metavariable op denotes
a binary operator, returning a boolean, such as =, <, >, ≤, ≥, ∈, ⊆. The process
[ṽ op w̃]P,Q denotes the “if then else” construct: it behaves as P if ṽ op w̃ = true,
and as Q otherwise. Process P + Q denotes standard nondeterministic choice. In
processes σ?(x̃).P , σ!〈ṽ〉.P and σ!〈ṽ〉n.P the occurrence of process P is said to be
guarded . We write H〈ṽ〉 to denote a process defined via a definition H(x̃) def= P , with
| x̃ |=| ṽ |, where x̃ contains all variables that appear free in P . Defining equations
provide guarded recursion, since P may contain only guarded occurrences of process
identifiers. In process σ?(x̃).P variables x̃ are bound in P . This gives rise to the
standard notion of α-conversion and free and bound variables. We assume there are
no free variables in our networks. The absence of free variables in networks is trivially
maintained as the network evolves. Given a network M , nds(M) returns the set of
nodes which constitute the network M . Notice that, as networks addresses are unique,
we assume that there cannot be two nodes with the same name in the same network.
We write

∏
i Mi to denote the parallel composition of all sub-networks Mi. We write

σ!〈ṽ〉 and σ!〈ṽ〉n to mean σ!〈ṽ〉.nil and σ!〈ṽ〉n.nil, respectively. As usual in process
calculi, in Table 3 we define structural congruence, written ≡, to identify processes up
to reordering of parallel and nondeterministic processes.
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Table 4 LTS - Synchronisation

(MCast)
D := {n : T (m,n) ≥ σ} D 6= ∅
m[σ!〈ṽ〉.P ]T

m!ṽ.D−−−−−−→σ m[P ]T
(UCast)

T (m,n) ≥ σ

m[σ!〈ṽ〉n.P ]T
m!ṽ.n−−−−−→σ m[P ]T

(Rcv)
T (n, m) ≥ σ | x̃ |=| ṽ | m 6= n

n[σ?(x̃).P ]T
m?ṽ.n−−−−−−→σ n[{ṽ/̃x}P ]T

(RcvEnb)
m /∈ nds(M) ρ ≥ trust

M
m?ṽ.∅−−−−−−→ρ M

(RcvPar)
M

m?ṽ.D−−−−−−→ρ M ′ N
m?ṽ.D′
−−−−−−−→ρ N ′

M | N m?ṽ.D∪D′
−−−−−−−−−→ρ M ′ | N ′

(Sync)
M

m!ṽ.D−−−−−−→ρ M ′ N
m?ṽ.D′
−−−−−−−→ρ N ′ D′ ⊆ D

M | N m!ṽ.D−−−−−−→ρ M ′ | N ′

4.1 The operational semantics

We give the operational semantics of our calculus in terms of a labelled transition
system (LTS). We have divided our LTS in two sets of rules. Table 4 contains the rules
to model synchronisations between sender and receivers. Table 5 contains the rules to
model trust management.

Our transitions take the form

M
λ−−→ρ N

to indicate that network M performs action λ, at security level ρ, evolving into network
N . By construction, in any transition of this form ρ will be always different from bad.
More precisely, ρ will be equal to low for low-level security transmissions, and equal to
high for high-level security transmissions. If ρ = trust then the transition models some
aspect of trust management, and involves only trusted nodes. The metavariable λ
ranges over the labels m!ṽ.D, m?ṽ.D, and τ , where D is a set of nodes. We sometimes
write m!ṽ.n and m?ṽ.n as an abbreviation for m!ṽ.{n} and m?ṽ.{n}, respectively.
The label m!ṽ.D models the transmission of message ṽ, originating from node m, and
addressed to the set of nodes contained in D. The label m?ṽ.D represents the reception
of a message ṽ, sent by m, and received by the nodes contained in D. The label τ models
internal actions, which cannot be observed.

Remark 4.1 Messages exchanged among nodes are assumed to be encrypted using a
hierarchical key generation and distribution protocol [30, 56]. Thus, a message trans-
mitted at security level ρ can be decrypted only by nodes at security level ρ or greater,
according to the trust store of both sender and receiver. Moreover, we assume that
messages are always signed by transmitters.
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Let us comment on the rules of Table 4. Rule (MCast) models a node m sending a
message ṽ at security level σ; the set D contains the destination nodes with security
level at least σ, according to the trust store of m.1 Rule (UCast) models a unicast
transmission of message ṽ from node m to node n, at security level σ. Rule (Rcv)
models a node n receiving a message ṽ, sent by node m, at security level σ. In this
rule, n receives a message from m only if it trusts m at security level σ. Rule (RcvPar)
serves to put together parallel nodes receiving from the same sender. Rule (RcvEnb) says
that every node can synchronise with an external transmitter m. This rule, together
with rule (RcvPar), serves to model message loss. If sender and receiver(s) trust each
other then they may synchronise by applying rule (Sync). In this rule, the condition
D′ ⊆ D ensures that only authorised recipients receive the transmitted value. Rule
(Sync) has its symmetric counterpart.

Let us explain the rules in Table 4 with an example.

Example 4.2 Let us consider the network:

M
def= k[σ?(x̃).Pk]Tk

∣∣ l[σ?(x̃).Pl]Tl

∣∣ m[σ!〈ṽ〉.Pm]Tm

∣∣ n[σ?(x̃).Pn]Tn

where Tk(k, m) ≥ σ, Tl(l, m) < σ, Tm(m,n) = Tm(m, l) ≥ σ, Tm(m, k) < σ and
Tn(n, m) ≥ σ. In this configuration, node m transmit message ṽ at security level σ,
being n and l the nodes allowed to receive that message at that security level. However,
since l does not trust m, at security level σ, node n is the only node that may receive
the message. Thus, by an applying rules (MCast), (Rcv), (RcvEnb), and (Sync) we have:

M
m!ṽ.{l,n}
−−−−−−−−→σ k[σ?(x̃).Pk]Tk

∣∣ l[σ?(x̃).Pl]Tl

∣∣ m[Pm]Tm

∣∣ n[{ṽ/̃x}Pn]Tn
.

Now, let us comment on the rules of Table 5. We recall that each node comes
with a trust manager component which is not specified in the syntax. Thus, Table 5
provide the transition rules to model the semantics of these components. The trans-
missions described in this table are addressed to all trusted nodes i.e. all nodes at
security level trust. Rule (DTrust) models direct trust . This happens when the moni-
toring module of a node m, while monitoring the activity of a trusted node n, detects
a misbehaviour of n. In this case, node m executes two operations: (i) it implements
node revocation updating its trust store, according to its local policy; (ii) it broadcasts
the corresponding information to inform all trusted nodes about the misbehaviour of n.
Rule (SndRcm) describes indirect trust and models the sending of a recommendation.
This may happen, for example, when a node moves and asks for recommendations on
new neighbours. Again, recommendations are addressed to all trusted nodes, according
to the trust knowledge of the recommender. Rule (RcvRcm) models the reception of
a recommendation from a trusted node: a new trust table T ′ is calculated, applying
the local policy to T ∪ (m, ṽ). Rule (Lose) models loss of trust information. This may
happen, for instance, when a node moves, changing its neighbourhood. In this case,

1Rule (MCast) may recall the Directed Diffusion approach of [31].
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Table 5 LTS - Trust Management

(DTrust)

T (m,n) ≥ trust ṽ := n, bad

T ′ := P(T ∪ (m, ṽ)) D := {k : T (m, k) ≥ trust}

m[P ]T
m!ṽ.D−−−−−−→trust m[P ]T ′

(SndRcm)
T (m,n) = ρ ṽ := n, ρ D := {n : T (m,n) ≥ trust}

m[P ]T
m!ṽ.D−−−−−−→trust m[P ]T

(RcvRcm)
T (n, m) ≥ trust ṽ := l, ρ T ′ := P(T ∪ (m, ṽ))

n[P ]T
m?ṽ.n−−−−−−→trust n[P ]T ′

(Lose)
T ′ ⊆ T T ′′ := P(T ′)
n[P ]T

τ−−→trust n[P ]T ′′

trust information concerning old neighbours should be removed as it cannot be verified
any longer.

Table 6 contains the standard rules for matching and recursion. It also contains the
rule (TauPar) to propagate τ -actions over parallel components and the standard rule
Rule (Sum) for nondeterministic choice. Rules (TauPar) and (Sum) have their symmetric
counterparts.

Let us show how direct and indirect trust are modelled in our setting with an
example.

Example 4.3 Let us consider the network:

M
def= k[Pk]Tk

∣∣ l[Pl]Tl

∣∣ m[Pm]Tm

∣∣ n[Pn]Tn

where Tk(k, m) ≥ trust, Tl(l,m) = bad, Tm(m, k) = Tm(m, l) = Tm(m,n) ≥ trust, and
Tn(n, m) ≥ trust. Now, if node m observes that node k is misbehaving, then (i) it adds
an assertion (m, k, bad) to its local knowledge; (ii) it broadcasts the information to its
neighbours. Thus, by an application of rules (DTrust), (RcvRcm), (RcvEnb), and (Sync)
we have

M
m!〈k,bad〉.{k,l,n}
−−−−−−−−−−−−−→trust k[Pk]T ′

k

∣∣ l[Pl]Tl

∣∣ m[Pm]T ′
m

∣∣ n[Pn]T ′
n

.

Notice that since l does not trust m, only node n and the bad node k receives m’s
recommendation. Moreover the local knowledge of m and n will change, according to
their local policy. This is a case of direct trust for m, and indirect trust for n.

13



Table 6 LTS - Matching, recursion, parallel composition and summation.

(Then)
n[P ]T

λ−−→ρ n[P ′]T ′ ṽ1 op ṽ2 = true

n[[ṽ1 op ṽ2]P,Q]T
λ−−→ρ n[P ′]T ′

(Else)
n[Q]T

λ−−→ρ n[Q′]T ′ ṽ1 op ṽ2 = false

n[[ṽ1 op ṽ2]P,Q]T
λ−−→ρ n[Q′]T ′

(Rec)
n[{ṽ/̃x}P ]T

λ−−→ρ n[P ′]T ′ H(x̃) def= P

n[H〈ṽ〉]T
λ−−→ρ n[P ′]T ′

(TauPar)
M

τ−−→ρ M ′

M | N τ−−→ρ M ′ | N
(Sum)

m[P ]T
λ−−→σ m[P ′]T

m[P + Q]T
λ−−→σ m[P ′]T

5 Node mobility

In wireless networks, node mobility is associated with the ability of a node to access
telecommunication services at different locations from different nodes. Unlike wired
networks, where the main security requirements are addressed by installing firewalls,
in mobile ad hoc networks node mobility introduces new issues related to user cre-
dential management, indirect trust establishment and mutual authentication between
previously unknown and hence untrusted nodes.

For these reasons, node mobility in ad hoc networks has turned to be a challenge
for automated verification and analysis techniques. After the first work on model
checking of (stationary) ad hoc networks [6], Nanz and Hankin [44] have proposed
a process calculus where topology changes are abstracted into a fixed representation.
This representation, called network topology, is essentially a set of connectivity graphs
denoting the possible connectivities within the nodes of the network. Thus, in [44] the
topology is not part of the syntax, but it is a parameter of the operational semantics. A
similar approach has been proposed in [23], although the labelled transition systems and
the equivalence relations proposed in the two papers are completely different. In [44] a
transition to the next state is examined for all possible valid graphs (those contained
in the network topology fixed a priori) whereas in [23] a transition is examined for all
graphs containing the connections used in a communication. These connections are
called restrictions.

As the reader may have noticed, our calculus does not directly model the network
topology neither in the syntax nor in the semantics. However, it is very easy to modify
our labelled transition system to add topology changes at semantics level. In Table 7
we rewrite the rules of Table 4 in the style of [23]. Rules take the form

M
λ−−→ρ,C M ′

14



Table 7 LTS - Synchronisation with network restrictions

(MCastR)
D:={n : T (m,n) ≥ σ} D 6= ∅
m[σ!〈ṽ〉.P ]T

m!ṽ.D−−−−−−→σ,∅ m[P ]T

(UCastR)
T (m,n) ≥ σ

m[σ!〈ṽ〉n.P ]T
m!ṽ.n−−−−−→σ,∅ m[P ]T

(RcvR)
T (n, m) ≥ σ | x̃ |=| ṽ | m 6= n

n[σ?(x̃).P ]T
m?ṽ.n−−−−−−→σ,(n,m) n[{ṽ/̃x}P ]T

(RcvEnbR)
m /∈ nds(M)

M
m?ṽ.∅−−−−−−→ρ,∅ M

(RcvParR)
M

m?ṽ.D−−−−−−→ρ,C1 M ′ N
m?ṽ.D′
−−−−−−−→ρ,C2 N ′

M | N m?ṽ.D∪D′
−−−−−−−−−→ρ,C1∪C2 M ′ | N ′

(SyncR)
M

m!ṽ.D−−−−−−→ρ,C1 M ′ N
m?ṽ.D′
−−−−−−−→ρ,C2 N ′ D′ ⊆ D

M | N m!ṽ.D−−−−−−→ρ,C1∪C2 M ′ | N ′

indicating that network M performs the action λ, at security level ρ, under the network
restriction C, evolving into network M ′. Thus, a network restriction C keeps track of
the connections which are necessary for the transition to fire. The rules in Table 5 (as
well as those in Table 6) can be rewritten in a similar manner, except for rule (Lose) in
which the network restriction must be the empty set.

Example 5.1 Consider the network appearing in Example 4.2. Then, by applying
rules (MCastR), (RcvR), (RcvEnbR), and (SyncR) we have

M
m!ṽ.{l,n}
−−−−−−−−→σ,{(n,m)} k[σ?(x̃).Pk]Tk

∣∣ l[σ?(x̃).Pl]Tl

∣∣ m[Pm]Tm

∣∣ n[{ṽ/̃x}Pn]Tn
.

The transition is tagged with the network restriction {(n, m)}, as only node n has
synchronised with node m.

The reader may have noticed that the rules of Table 7 do not use network re-
strictions in the premises. As a consequence, there is a straightforward operational
correspondence between a transition

λ−−→ρ and one of the form
λ−−→ρ,C .

Proposition 5.2

1. M
λ−−→ρ M ′ with λ ∈ {m!ṽ.D,m?ṽ.D} iff there exists a restriction C such that

M
λ−−→ρ,C M ′ and C ⊆ {(m,n) for all n ∈ D}.
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2. M
τ−−→ρ M ′ iff M

τ−−→ρ,∅ M ′.
Proof By transition induction. �

6 Safety properties

Access control [54] is a well-established technique to provide safety properties ensuring
that only principals with appropriate access rights can access data. In distributed se-
curity systems, safety properties ensure that no forbidden interactions arise [19]. In our
setting, safety properties involve security levels, as communications are parameterised
on them. Thus, our safety properties aim at guaranteeing that only authorised nodes
receive sensible information.

We introduce the notion of safety up to a security level to describe when a commu-
nication is safe up to a certain security level. Intuitively, a communication is said to
be safe up to a security level ρ if a node transmitting at level ρ may only synchronise
with nodes at level ρ or above, according to the local knowledge of sender and receivers.
This means that all parties involved in a transmission safe up to security level ρ trust
each other at that security level.

The next theorem states that only safe communications are allowed in our calculus.

Theorem 6.1 (Safety preservation)

1. Let M
m?ṽ.D−−−−−−→ρ M ′ with M ≡

∏
i ni[Pi]Ti

and M ′ ≡
∏

i ni[P ′
i ]T ′

i
.

(a) If P ′
i 6= Pi, for some i, then ni ∈ D and Ti(ni,m) ≥ ρ.

(b) If T ′
i 6= Ti, for some i, then ni ∈ D and Ti(ni,m) ≥ ρ.

2. Let M
m!ṽ.D−−−−−−→ρ M ′ with M≡m[P ]T |

∏
i ni[Pi]Ti

and M ′≡m[P ′]T ′ |
∏

i ni[P ′
i ]T ′

i
.

(a) If P ′
i 6= Pi, for some i, then ni ∈ D, T (m,ni) ≥ ρ and Ti(ni,m) ≥ ρ.

(b) If T ′
i 6= Ti, for some i, then ni ∈ D, T (m,ni) ≥ ρ and Ti(ni,m) ≥ ρ.

Proof By transition induction. See the Appendix for details. �

A similar conformance criterion, called safety despite compromised principals (SDCP),
has been proposed in [19]. According to this criterion, an invalid authorisation decision
at an uncompromised node m may arise when some decision of m logically depends on
one or more compromised nodes. A node is said to be compromised (or bad) when its
privileges can be exercised by the attacker. A realistic threat model for a distributed
system, such as an ad hoc network, should include partial compromise, that is the
possibility that some of the nodes in the system are compromised. Partial compro-
mise covers deliberate insider attacks as well as external attackers taking ownership of
insiders’ assets.

In our setting, the SDCP property comes as a consequence of Theorem 6.1, for
which trusted nodes never synchronise with untrusted ones. In this manner, bad nodes
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(recognised as such) are isolated from the rest of the network and they cannot affect
communications.

Corollary 6.2 (Safety despite compromised nodes)

1. Let M
m?ṽ.D−−−−−−→ρ M ′ with M ≡

∏
i ni[Pi]Ti

and M ′ ≡
∏

i ni[P ′
i ]T ′

i
. If Ti(ni,m) =

bad, for some i, then P ′
i=Pi and T ′

i=Ti.

2. Let M
m!ṽ.D−−−−−−→ρ M ′ with M ≡ m[P ]T |

∏
i ni[Pi]Ti

and M ′ ≡ m[P ′]T ′ |
∏

i ni[P ′
i ]T ′

i
.

If T (m,ni) = bad or Ti(ni,m) = bad, for some i, then P ′
i=Pi and T ′

i=Ti.
Proof See the Appendix. �

7 Behavioural semantics

Our main behavioural equivalence between networks is a variant of Milner and San-
giorgi’s (weak) barbed congruence [43] parameterised overs security levels. Basically,
two terms are barbed congruent if they have the same observables (called barbs) in all
possible contexts, under all possible evolutions. For the definition of barbed congruence
we need two crucial concepts: a reduction semantics to describe how a system evolves,
and a notion of observable which says what the environment can observe in a system.

From the LTS given in Section 4.1 it is easy to see that a network may evolve either
because there is a transmission at a certain security level or because a node loses some
trust information. Thus, we define the reduction relation _ between networks using
the following inference rules:

(Red1) M
m!ṽ.D−−−−−−→ρ M ′

M _ M ′ (Red2) M
τ−−→trust M ′

M _ M ′

We write _∗ to denote the reflexive and transitive closure of _.
Let us focus on the definition of an appropriate notion of observable. In our calculus,

as in CCS [41] and in π-calculus [42], we have both transmission and reception of
messages, although only transmissions can be observed. In fact, in a broadcasting
calculus an observer cannot see whether a given process actually receives a broadcast
synchronisation. In particular, if the node m[σ!〈ṽ〉.P ]T evolves into m[P ]T we do not
know whether some potential recipient has synchronised with m. On the other hand,
if a node n[σ?(x̃).P ]T evolves into n[{ṽ/̃x}P ]T , then we can be sure that some trusted
node has transmitted a message ṽ to n at security level σ.

Following Milner and Sangiorgi [43] we use the term “barb” as synonymous of
observable.

Definition 7.1 (σ-Barb) We write M ↓σ
n if either M ≡ m[σ!〈ṽ〉.P ]T | N or M ≡

m[σ!〈ṽ〉n.P ]T | N , for some m,N, ṽ, P, T such that n /∈ nds(M), and T (m,n) ≥ σ. We
write M ⇓σ

n if M _∗ M ′ ↓σ
n for some network M ′.
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The barb M ⇓σ
n says that there is a potential transmission at security level σ, originating

from M , that may reach the node n of the environment.
In the sequel, we write R to denote binary relations over networks.

Definition 7.2 (σ-Barb preserving) A relation R is said to be σ-barb preserving if
whenever M R N it holds that M ↓σ

n implies N ⇓σ
n.

Definition 7.3 (Reduction closure) A relation R is said to be reduction closed if
M R N and M _ M ′ imply there is N ′ such that N _∗ N ′ and M ′ R N ′.

As we are interested in weak behavioural equivalences, our definition of reduction clo-
sure is given in terms of weak reductions.

Definition 7.4 (Contextuality) A relation R is said to be contextual if M R N
implies that M | O R N | O, for all networks O.

Finally, everything is in place to define our touchstone behavioural equivalence.

Definition 7.5 (σ-Reduction barbed congruence) The σ-reduction barbed con-
gruence, written ∼=σ, is the largest symmetric relation over networks which is σ-barb
preserving, reduction closed and contextual.

8 Bisimulation proof method

The definition of σ-reduction barbed congruence is simple and intuitive. However,
due to the universal quantification on parallel contexts, it may be quite difficult to
prove that two terms are equivalent. Simpler proof techniques are based on labelled
bisimilarities. In this section, we define an appropriate notion of bisimilarity. As a main
result, we prove that our labelled bisimilarity is a proof-technique for our σ-reduction
barbed congruence.

In general, a labelled bisimilarity describes how two terms (in our case networks)
can mimic each other’s actions. As we are interested in weak behavioural equivalences,
we have to distinguish between transmissions that can be observed and transmissions
that cannot be observed by the environment. We do that by introducing two extra
rules in the labelled transition system:

(Shh) M
m!ṽ.D−−−−−−→ρ M ′ D⊆ nds(M) ρ′≥trust

M
τ−−→ρ′ M ′

(Obs)
M

m!ṽ.D−−−−−−→ρ M ′ D′:=D\nds(M) 6= ∅

M
m!ṽID′
−−−−−−−→ρ M ′

Rule (Shh) models transmissions that cannot be observed because none of the potential
receivers is in the environment. Notice that security level of silent actions is not related
to the transmissions they originate from. Rule (Obs) models a transmission, at security
level ρ, of a message ṽ, from a sender m, that may be received, and hence observed,

18



by the nodes of the environment (i.e. those in D \ nds(M)). Notice that the rule (Obs)
can be applied in a derivation tree only at top-level.

In the sequel, we use the metavariable α to range over the following actions: τ ,
m?ṽ.D and m!ṽID. Since we are interested in weak behavioural equivalences, that
abstract over τ -actions, we introduce weak actions in a standard manner: we write
=⇒ρ to denote the reflexive and transitive closure of

τ−−→ρ; the weak transition α==⇒ρ is

an abbreviation for =⇒ρ
α−−→ρ =⇒ρ, while α̂==⇒ρ denotes =⇒ρ if α = τ and α==⇒ρ otherwise.

Definition 8.1 (δ-Bisimilarity) The δ-bisimilarity, written ≈δ, is the largest sym-
metric relation over networks such that whenever M ≈δ N and M

α−−→ρ M ′, with

ρ ≤ δ, there exists a network N ′ such that N
α̂==⇒ρ N ′ and M ′ ≈δ N ′.

This definition is inspired by that proposed in [14]. Intuitively, two networks are δ-
bisimilar if they cannot be distinguished by any observer that can perform actions at
security level at most δ.

Remark 8.2 Notice that we can redefine the δ-bisimilarity using a labelled transition
system with network restrictions as suggested in Section 5. However, in Proposition 5.2
we already proved the operational correspondence between the two labelled transition
systems. As a consequence, the resulting bisimilarity would not change.

It is worth noticing that bisimilar networks must have the same set of nodes.

Proposition 8.3 If M ≈δ N , for some δ, then nds(M) = nds(M).
Proof By contradiction. Suppose there is a node m such that m ∈ nds(M) and

m 6∈ nds(N). Then, by an application of rule (RcvEnb) we have N
m?ṽ.∅−−−−−−→ρ N , for all

ρ ≥ trust. Since M ≈δ N there must be M ′ such that M
m?ṽ.∅======⇒ρ M ′, with M ′ ≈ N ′.

However, since m ∈ nds(M), by inspection on the transition rules, there is no way to
deduce such a weak transition for M . �

In the next result we show that our bisimilarity is a congruence. This result allows
us to reason on networks in a modular fashion.

Theorem 8.4 (≈δ is contextual) Let M and N be two networks such that M ≈δ N .
Then M | O ≈δ N | O for all networks O.
Proof We prove that the relation

S def= {
(
M | O , N | O

)
for all O such that M ≈δ N}

is a δ-bisimulation. By case analysis on the transition M | O α−−→ρ M̂ , with ρ ≤ δ. See
the Appendix for details. �
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The previous result is fundamental to prove that the labelled bisimilarity is a sound
proof technique for the σ-reduction barbed congruence.

Theorem 8.5 (Soundness) Let M and N be two networks such that M ≈δ N . Then
M ∼=σ N , for σ ≤ δ.
Proof We have to prove that the δ-bisimilarity is σ-barb preserving, reduction-
closed, and contextual. The σ-barb preserving follows because bisimilar networks can
mimic each other transmissions. The reduction-closure follows by definition, while
contextuality follows by Theorem 8.4. For details see the Appendix. �

9 Non-interference

Information flow properties are a particular class of security properties for controlling
the information flow among different entities. The seminal idea of non-interference
proposed in [26] aims at assuring that “variety in secret inputs should not be conveyed
to public outputs”. In a multilevel system [5] this property says that information can
only flow from low levels to higher ones. The first taxonomy of non-interference-like
properties has been uniformly defined and compared in [16, 17] in the context of CCS-
like process calculus. In [16, 17], processes are divided into high-level and low-level
processes, according to the level of actions they can perform. To detect whether an
incorrect information flow (i.e. from high-level to low-level) occurs, a particular non-
interference-like property has been defined, the so-called Non Deducibility on Composi-
tion (NDC). This property basically says that a process is secure with respect to wrong
information flows if its low-level behaviour is independent of changes to its high-level
behaviour. Here, we prove a non-interference result using our notion of δ-bisimilarity.
In Definition 9.1 we formalise the concept of high-level behaviour introducing the no-
tion of high-level network. We recall that actions at security level trust do not depend
on the syntax but they only depend on the trust management component; thus, these
actions can fire at any moment of the computation.

Definition 9.1 (δ-high level network) A network H is a δ-high level network, writ-

ten H ∈ Hδ, if whenever H
λ−−→δ′ H ′ then either (i) δ′ = trust, or (ii) λ = m?ṽ.∅ and

H ′ = H, or (ii) δ′ > δ. Moreover, H ′ ∈ Hδ.

The non-interference result is stated below. Intuitively, if two δ-bisimilar networks
M and N run in parallel with two trust-bisimilar high-level networks H and K, then
the resulting networks M | H and N | K are δ-bisimilar as well.

Theorem 9.2 (Non-interference) Let M and N be two networks such that M ≈δ N .
Let H and K be two networks such that: (i) H,K ∈ Hδ and (ii) H ≈trust K. Then,
M | H ≈δ N | K.
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Proof We prove that the relation

S def= {
(
M | H , N | K

)
: H,K ∈ Hδ, M ≈δ N and H ≈trust K}

is a δ-bisimulation. By case analysis on the transition M | H α−−→ρ M̂ , with ρ ≤ δ. See
the Appendix for details. �

10 Case studies

In this section, we use our calculus to specify a trust-based version of the AODV routing
protocol [47], and a trust-based version of the leader election algorithm for MANETs
proposed in [60]. In these two encodings, both routing paths and leader election are
associated with at a security level σ of the nodes involved in the procedure. This is the
essence of trust-based distributed algorithms in a multilevel network, where information
at a given security level ρ may only travel along nodes with a security level greater or
equal than ρ.

A subnetwork of a network M is said to be a connected component of M if all
nodes are connected to each other via one or more hops. Since we are working in a
multilevel scenario we define a σ-connected component as a connected component where
neighbouring nodes trust each other at security level (at least) σ.

Definition 10.1 (σ-connected component) Let M be a network. We say that N
is a σ-connected component of M if

• M ≡ N | M ′, for some network M ′;

• for all m,n ∈ nds(N) there is a sequence of nodes m1, . . . ,mk ∈ nds(N), with
N ≡ m1[P1]T1

| . . . | mk[Pk]Tk
| N ′, such that m = m1, n = mk, Ti(mi,mi+1) ≥ σ

and Ti(mi+1,mi) ≥ σ, for 1 ≤ i ≤ k−1.

Our encodings are trust-based version of AODV and leader election as they both
succeed only within a σ-connected component.

10.1 A trust-based variant of the AODV routing protocol

Ad hoc networks rely on multi-hop wireless communications where nodes have essen-
tially two roles: (i) acting as end-systems, and (ii) performing routing functions. A
routing protocol is used to determine the appropriate paths on which data should be
transmitted in a network. Routing protocols for wireless systems can be classified into
topology-based and position-based. Topology-based protocols rely on traditional rout-
ing concepts, such as maintaining routing tables or distributing link-state information.
Position-based protocols use information about the physical locations of the nodes to
route data packets to their destinations. Topology-based protocols can be divided into
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Figure 1 The AODV routing protocol

s −→ ∗ : rreq, s,Rid , d,Sseq ,Dseq , 0
l −→ ∗ : rreq, s,Rid , d,Sseq ,Dseq , 1

m −→ ∗ : rreq, s,Rid , d,Sseq ,Dseq , 2
d −→ m : rrep, s, d,Dseq ′, 0

m −→ l : rrep, s, d,Dseq ′, 1
l −→ s : rrep, s, d,Dseq ′, 2

s l m d
rreq rreq rreq

rrep rrep rrep

proactive and reactive protocols. Proactive routing protocols try to maintain consis-
tent routing information within the system at any time. In reactive routing protocols, a
route is established between a source and a destination only when it is needed. For this
reason, reactive protocols are also called on-demand protocols. Examples of proactive
routing protocols for MANETs are OLSR [13] and DSDV [48], while DSR [32] and
AODV [47] are on-demand protocols.

In this section, we use our calculus to formalise a trust-based version of the AODV
routing protocol.

In the AODV protocol each node maintains a routing table (RT ) containing infor-
mations about the routes to be followed when sending messages to the other nodes of
the network. In particular, for each destination node n a routing table should provide
an entry containing the following information:

• the name of the destination node (i.e. n)

• the name of the neighbour node to send messages addressed to n

• the number of hops necessary to reach n

• the destination sequence number associated with n, to determine whether the
path is up-to-date

• the expiration time for that entry.

Each node maintains also a local history table (HT ) containing pairs of the form
(source-name, request-id) to discard request packets which have already been processed.

In Figure 1, we report a scheme of the AODV protocol with four nodes: a source
s, a destination d and two intermediate nodes l and m. We also provide a graphical
representation of the flow of messages: dashed arrows denote the broadcast of route
request packets (rreq), while continuous arrows denote the unicast sending of route
reply packets (rrep). More precisely, suppose the source node s wishes to send a
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message to the destination node d. In order to perform the sending, s will look up
an entry for d in its routing table. If there is no such an entry it will launch a route
discovery procedure to find a route to d. The protocol works as follows:

• The source s broadcasts a route request packet of the form

〈rreq, s,Rid , d,Sseq ,Dseq , hc〉 .

Here, the fields s and d denote the IP addresses of source and destination, respec-
tively. The field Rid denotes a request-id, that is a sequence number uniquely
identifying the request. The Sseq field contains the source sequence number , i.e.
the current sequence number to be used in routing table entries pointing towards
the source node s. The Dseq field is the destination sequence number containing
the latest sequence number received in the past by the source node s for any route
towards the destination d; this number is 0 if d is unknown to s. The hop-count
field hc keeps track of the number of hops from the source node to the node
handling the request. Initially, this field is set to 0.

• When the intermediate node l receives the route request, it acts as follows:

– It looks up the pair (s, Rid) in its local history table to verify whether
the request has already been processed. If this is the case, the request is
discarded and the processing stops. Otherwise, the pair is entered into the
local history table, so that future requests from s with the same Rid will be
discarded.

– Then, l looks up an entry for d in its routing table. If there is such an entry,
with destination sequence number greater than or equal to the Dseq , then a
route reply packet is sent back to the source saying to use l itself to get to
the destination d. Otherwise, it re-broadcasts the route request packet with
the hc field incremented by one.

– In any case, l compares the source sequence number Sseq contained in the
request with the one appearing in its routing table associated with node s.
If Sseq is more recent (i.e. greater) than the one in the table, l updates its
routing table entry associated with s.

• Node m will repeat the same steps executed by node l and re-broadcasts the route
request packet.

• Whenever the destination d receives the route request, it sends to m a unicast
reply packet of the form

〈rrep, s, d,Dseq ′, hc, lt〉 .
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Here, the source address and the destination address are copied from the incoming
request, while the destination sequence number is that associated with the route.
The hop-count field is set to 0. The lifetime field contains the time in milliseconds
for which nodes receiving the rrep consider the route to be valid.

• The reply packet then follows the reverse path towards node s increasing the hc
field at each hop. Each node receiving the reply packet will update the routing
table entry associated with d if one of the following conditions is met:

– No route to d is known;

– The sequence number for d in the route reply packet is greater than that
stored in the routing table;

– The sequence numbers are equal but the new route is shorter.

In this way, nodes on the reverse route learn the route to d.

Our encoding is a trust-based variant of the original protocol as paths are associated
with security levels, and they are composed only by trusted nodes. As consequence,
entries of routing tables and history tables also contains the security level of paths and
requests, respectively.

Trust-based routing schemes generally separate nodes into two possible states:
benevolent and malevolent nodes. In our model, there is no such discrete segregation
and all nodes in the network are considered potential routing candidates based upon
their current trust level. Thus, our scheme facilitates best-effort delivery even in the
presence of malicious and selfish nodes. According to our operational semantics, before
sending or receiving a message, a node verifies the security level of the participants. In
practise, a node also checks the security level of the next hop. This ensures that both
request messages and reply messages are forwarded on paths of trusted nodes, up to a
certain security level.

In our trust-based encoding of AODV, we adopt a few simplifications. More specif-
ically, we do not consider lifetime fields and route error messages. Lifetime would
require a notion of time, while error messages could be easily modelled. Moreover,
node disconnections are modelled using the choice operator of our calculus.

For convenience, we generalise the matching construct as follows:

[(ũ1 op ũ′1)lc. . .lc(ũk op ũ′k)]P,Q

where lc is a binary logical operator. Its operational semantics is straightforward.
We also assume the following two functions: Dseq(·, ·) and Hcnt(·, ·). These functions
take in input a routing table RT and a node identifier id. In particular, Dseq(RT , id)
returns the destination sequence number of the entry for id in RT , whereas Hcnt(RT , id)
returns the next hop node. In all cases, if there is no entry in RT associated with id,
both functions return the undefined value ⊥. In the sequel, we will use the routing
table RT and the history table HT as partial mappings from node identifiers to tuples
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of data. We sometimes write RT{id 7→ Dseq, hc, nh, ρ} to denote the routing table
RT in which the entry associated with the node id is updated with the information
contained in Dseq, hc, nh and ρ. Similarly, we will write HT{id 7→ Rid, ρ} to update
a history table.

In Figure 2 we provide an encoding of a trust-based variant of the AODV protocol
in our calculus. Let us explain it in some detail.

At the beginning, each node can be in one of these two states:

• Source(ids , idd ,Sseq ,Dseq ,Rid ,RTs), when a source node initiates the protocol;
in this state the node broadcasts a request message;

• Node(id ,RT ,HT ), when a node is ready to receive a request or a reply message.

While executing the protocol nodes may evolve into one of the following states:

• AwaitReply(ids , idd ,Sseq ,Dseq ,Rid ,RTs), the source node waits for the reply
message;

• RouteSuccess(ids , idd ,RT ), the source node has accepted the route;

• RRequest(req , ids , idd ,Sseq ,Dseq ,Rid , hc, idp , id ,RT ,HT ), an intermediate node
receives a request message;

• RReply(rep, ids , idd ,Dseq , hc,nh, idp , id ,RT ,HT ), an intermediate node receives
a reply message;

• SndReply(ids , idd ,Dseq , hc, idp , id ,RT ,HT ), a recipient node (a node that knows
a route to the destination) or the destination node sends the reply message.

The source node s begins in state Source〈ids , idd ,Sseq ,Dseq ,Rid ,RTs〉 where ids

and idd are the node-ids of the source and the destination, respectively; Sseq and Dseq
are the source and destination sequence numbers, respectively, and RTs is the routing
table of s. In this state, the source node broadcasts a route request message of the form
〈rreq, ids, idd,Sseq+1, Dseq,Rid+1, 0, ids〉. For convenience, the message contains also
the node-id (the last element of the message) of the source in order to facilitate the
storing of a new entry in the reverse routing table. After this transmission, the node
evolves into the state AwaitReply〈ids , idd ,Sseq ,Dseq ,Rid ,RTs〉, waiting for a reply
message of the form 〈rep, ids , idd ,Dseq ′, hc,nh〉.

When the source receives a reply message for its request it checks whether the
destination sequence number of the reply packet is greater than the one stored in its
routing table (or the sequence numbers are equal and the hop counter is smaller). If
this is the case the source node accepts the route, evolving into the state

RouteSuccess〈ids , idd ,RTs{idd 7→ Dseq ′, hc,nh, σ}〉

meaning that the route from ids to idd has been accepted and the routing table is
updated accordingly. Otherwise, the reply is dropped and the node returns into the
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Figure 2 A trust-based encoding of the AODV protocol at security level σ

/∗Source node broadcasts a request message and evolves into the AwaitReply state waiting for replies.∗/

Source(ids , idd ,Sseq,Dseq,Rid ,RTs)
def
=

σ!〈rreq, ids, idd,Sseq+1, Dseq,Rid+1, 0, ids〉.AwaitReply〈ids , idd ,Sseq,Dseq,Rid ,RTs〉

/∗Source node waits for reply messages; if a reply is successfully received the node accepts the route, evolving
into the state RouteSuccess. Otherwise, it continues waiting. ∗/

AwaitReply(ids , idd ,Sseq,Dseq,Rid ,RTs)
def
=

σ?(rep, id′s, id′d, Dseq′, hc, nh).[(rep = rrep) ∧ (ids = id′s) ∧ (idd = id′d)]
[(Dseq′ > Dseq) ∨ (Dseq′=Dseq ∧ hc < Hcnt(RTs, idd))]

RouteSuccess〈ids, idd, RTs{idd 7→ Dseq′, hc, nh, σ}〉,
Source〈ids , idd ,Sseq+1 ,Dseq,Rid+1 ,RTs〉,

AwaitReply〈ids , idd ,Sseq,Dseq,Rid ,RTs〉
+ Source〈ids , idd ,Sseq+1 ,Dseq,Rid+1 ,RTs〉

/∗Intermediate nodes may receive either a request message or a reply message. ∗/

Node(id ,RT ,HT )
def
=

σ?(req, ids, idd,Sseq,Dseq,Rid , hc, idp).RRequest〈req, ids, idd,Sseq,Dseq,Rid , hc, idp, id, RT, HT 〉
+
σ?(rep, ids, idd, Dseq, hc, nh).RReply〈rep, ids , idd ,Dseq, hc,nh, idp , id ,RT ,HT 〉

/∗ An intermediate node receiving a request message check whether it can serve the request, by sending a
reply message, or it should re-broadcast the request. ∗/

RRequest(req, ids , idd ,Sseq,Dseq,Rid , hc, idp , id ,RT ,HT )
def
=

[(req = rreq) ∧ (HT (ids) 6= 〈Rid , σ〉))]
[(idd = id) ∨ (Dseq(RT, idd) ≥ Dseq)]

[(Sseq > Dseq(RT, ids)) ∨ (Dseq(RT, ids)=Sseq ∧ hc < Hcnt(RT, ids))]
SndReply〈ids , idd , Dseq(RT , idd ), Hcnt(RT , idd ), idp , id ,

RT{ids 7→ Dseq(RT , idd ), hc+1 , idp , σ},HT{ids 7→ Rid , σ}〉,
SndReply〈ids , idd , Dseq(RT , idd ), Hcnt(RT , idd ), idp , id ,RT ,HT{ids 7→ Rid , σ}〉,

σ!〈rreq, ids, idd,Sseq,Dseq,Rid , hc+1, id〉.
[(Sseq > Dseq(RT, ids)) ∨ (Dseq(RT, ids)=Sseq ∧ hc < Hcnt(RT, ids))]

Node〈id ,RT{ids 7→ Sseq, hc+1 , idp},HT{ids 7→ Rid , σ}〉,
Node〈id ,RT ,HT{ids 7→ Rid , σ}〉,

Node〈id ,RT ,HT 〉

/∗A intermediate node receiving a reply message checks whether it should propagate the reply towards the
source.∗/

RReply(rep, ids , idd ,Dseq, hc,nh, idp , id ,RT ,HT )
def
=

[rep = rrep]
[(Dseq > Dseq(RT, idd)) ∨ (Dseq(RT, idd)=Dseq ∧ hc < Hcnt(RT, idd))]

SndReply〈ids , idd ,Dseq, hc, idp , id ,RT{idd 7→ Dseq, hc,nh, σ},HT 〉,
Node〈id ,RT ,HT 〉,

Node〈id ,RT ,HT 〉

/∗After receiving a request, a node replies back along the reverse path to the source. ∗/

SndReply(ids , idd ,Dseq, hc, idp , id ,RT ,HT )
def
=

σ!〈rrep, ids , idd ,Dseq, hc+1, id〉idp .Node〈id ,RT ,HT 〉+ Node〈id ,RT ,HT 〉
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state Source〈ids, idd, Sseq +1, Dseq,Rid+1, RTs〉. In any case, the source node may
nondeterministically return into the state Source〈ids, idd, Sseq+1, Dseq,Rid+1, RTs〉,
starting again the protocol (in case the reply message gets lost).

The other nodes in the protocol may be either intermediate nodes or the destination
node. In both cases, they begin the protocol in the state Node〈id ,RT ,HT 〉, where id
is the identity of the node, RT is the routing table of node id, and HT is the history
table of the node. In this state, the node expects to receive either a route request
message or a route reply message.

When a node receives a route request message, it evolves into the state

RRequest〈req , ids , idd ,Sseq ,Dseq ,Rid , hc, idp , id ,RT ,HT 〉 .

In this state, it first checks its history table to verify whether the request is fresh.
Then, it checks whether it is the destination of the request or a potential recipient of
the request, because it knows a “better” route to the destination. In doing so, it also
profits to check the source sequence number of the request to possibly update its routing
table entry pointing to the source node. Then, the node moves into a state SndReply
to send a route reply packet. If the node is not the destination and it does not know a
“better” path to reach the destination, then it re-broadcasts the request message, after
adding 1 to the hc field. Then, the node moves into the state Node〈id ,RT ,HT 〉.

When a node in state Node〈id ,RT ,HT 〉 receives a route reply message it evolves
into the state RReply〈rep, ids , idd ,Dseq , hc,nh, idp , id ,RT ,HT 〉. Here, it carries out
checks similar to those appearing in state AwaitReply.

In state SndReply〈ids , idd ,Dseq , hc, idp , id ,RT ,HT 〉, the node sends the unicast
reply message 〈rrep, ids , idd ,Dseq , hc+1, id〉 to the previous node in the route path,
that is idp. The choice operator allows to avoid deadlocks in case the previous node
becomes suddenly disconnected.

Here, we report an example to explain how the protocol works.

Example 10.2 Let M be the following network:

M
def= l[Source〈l, n, Sseq,Dseq, Rid,RTl〉]Tl

|
m[Node〈m,RTm,HTm〉]Tm

|
n[Node〈n, RTn,HTn〉]Tn

with Tl(l,m) = Tl(l, n) = Tm(m, l) = Tm(m,n) = Tn(n, m) ≥ σ. For convenience we
define:

• v1 = 〈rreq, l ,n,Sseq+1 ,Dseq ,Rid+1 , 0 , l〉,

• v2 = 〈rreq, l ,n,Sseq+1 ,Dseq ,Rid+1 , 1 ,m〉,

• v3 = 〈rrep, l ,n,Dseq ′, 1 ,m〉,

• v4 = 〈rrep, l ,n,Dseq ′, 2 , l〉,
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where Dseq ′ = Dseq(RTn, n).
Here, we report the evolution of M while running the AODV protocol.

M
l!v1.{m,n}
−−−−−−−−−→σ l[AwaitReply〈l, n, Sseq,Dseq, Rid,RTl〉]Tl

|
m[RRequest〈rreq, l, n, Sseq+1, Dseq,Rid+1, 1, l,m,RTm,HTm〉]Tm

|
n[Node〈n, RTn,HTn〉]Tn

def= M1 .

Node l starts the protocol broadcasting the message v1 and evolving into the state
AwaitReply〈l, n, Sseq,Dseq, Rid,RTl〉, waiting for a reply. Only m receives the mes-
sage evolving into RRequest〈rreq, l, n, Sseq+1, Dseq,Rid+1, 1, l,m,RTm,HTm〉.

M1
m!v2.{l,n}
−−−−−−−−−→σ l[AwaitReply〈l, n, Sseq,Dseq, Rid,RTl〉]Tl

|
m[Node〈m,RTm,HTm{l 7→ Rid+1}〉]Tm

|
n[SndReply〈l ,n,Dseq(RTn ,n), 0 ,m,n,

RT{l 7→ Dseq(RTn ,n), 1 ,m, σ},HT{l 7→ Rid+1 , σ}〉]Tn

def= M2 .

We suppose that node m does not have a route entry for the destination n and its source
sequence number is up-to-date. Thus, m broadcasts the message v2 and evolves into the
state Node〈m,RTm,HTm{l 7→ Rid+1, σ}〉, waiting for a reply. Node l ignores the
message sent by m and remains in the state AwaitReply〈l ,n,Sseq , Dseq ,Rid ,RTl 〉.
Node n receives the request, it verifies to be the destination node and that its entry
pointing to the source node is not up-to-date. In this case, it evolves into the state
SndReply〈l, n,Dseq′, 0,m, n, RT{l 7→ Dseq ′, 1 ,m, σ},HT{l 7→ Rid+1 , σ}〉.

M2
n!v3.m−−−−−−→σ l[AwaitReply〈l, n, Sseq,Dseq, Rid,RTl〉]Tl

|
m[SndReply〈l, n,Dseq ′, 0,m, n, RT{l 7→ Dseq ′, 1,m, σ},

HT{l 7→ Rid+1 , σ}〉]Tm
|

n[Node〈n, RTn,HTn〉]Tn

def= M3 .

Node n sends the reply message v3 back to m. We assume that node m correctly receives
this message and it evolves into the state

SndReply〈l, n,Dseq(RTm, n), 0,m, n, RT{l 7→ Dseq(RTm, n), 1,m, σ},HT{l 7→ Rid+1 , σ}〉.
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M3
m!v4.l−−−−−−→σ l[RouteSuccess〈l, n,RTl{n 7→ Dseq′, 2,m, σ}〉]Tl

|
m[Node〈m,RTm,HTm{l 7→ Rid+1, σ}〉]Tm

|
n[Node〈n, RTn,HTn〉]Tn

.

Finally, node m sends the reply message v4 back to l. Node l receives the message and
verifies that the node-id of the source is the expected ones. Then it accepts the route
and evolves into the state RouteSuccess〈l, n,RTl{n 7→ Dseq′, 2,m, σ}〉.

The trust-based nature of our variant of the AODV protocol can be summarised in
the following statement.

Proposition 10.3 If a path p is established in a network M by applying the AODV
protocol at some security level σ, then the nodes of p constitute a σ-connected component
of M .
Proof It follows by Theorem 6.1. �

10.2 A trust-based leader election protocol

In [60] the authors propose a leader election protocol to elect as a leader a node of a
connected component of a MANET. The algorithm operates by first “growing” and then
“shrinking” a spanning tree rooted at the node that initiates the election algorithm.
We refer to this computation-initiating node as the source node. As we will see, after
the spanning tree shrinks completely, the source node will have adequate information to
determine the most-valued-node and will then broadcast its identity to the rest of the
nodes in the network. The algorithm uses three kinds of messages, viz. Election, Ack
and Leader. Election messages are used to grow the spanning tree. When election is
triggered at a source node s (for instance, upon departure of its current leader), the node
broadcasts an election message. Each node, i, other than the source s, designates the
neighbour from which it first receives an election message as its parent in the spanning
tree. Then, each node i broadcasts the received election message. After sending an
election message, a node awaits ack messages from its children in the spanning tree,
before sending an ack message to its parent. The ack messages sent to the parents
contains leader-election information based on the ack messages received from children.

Once the spanning tree has completely grown, it shrinks back toward the source.
Specifically, once all of i’s outgoing election messages have been acknowledged, i sends
its pending ack message to its parent node. Tree shrinkage begins at the leaves of
the spanning tree, which are parents to no other node. Eventually, each leaf receives
ack messages for all election messages it has sent. As a consequence, leaves send their
pending ack messages to their respective parents, who in turn send their pending ack
messages to their own parents, and so on, until the source node receives all of its
pending ack messages. In a ack message, a node announces to its parent the node-id
and the value of the most-valued-node among all its downstream nodes. Hence, the
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source node eventually has sufficient information to determine the most-valued-node
from among all nodes in the network. Once the source node for a computation has
received ack messages from all of its children, it then broadcasts a leader message to
all nodes announcing the node-id of the most-valued-node.

In Figure 3 we provide our trust-based encoding of the leader election protocol
for MANETs [60]. For simplicity, in sub-terms of the form σ?(x̃).P we write xi in
P to mean the i-th component of x̃, if this component is defined, and ⊥ (undefined)
otherwise. In the algorithm, nodes periodically use probe and reply messages to keep
track of their neighbours. We do not consider probe and reply messages in our encoding
as we can model the effect of disconnection between nodes using the choice operator.
Let us explain more in detail the encoding of Figure 3. At the beginning, each node
can be in one of these two states:

• Source(id , elec, lid), if the node initiates the protocol;

• Node(id , elec, lid), otherwise.

While the protocol is executed, nodes may evolve into one of the following states:

• AwaitAckInit(id , elec, lid), a starting node waits for ack messages;

• SendLeader(id , elec, lid), a node broadcasts a leader message;

• ElectionProcess(id , elec, lid , idp), a node rebroadcasts the election message
previously received by its parent;

• AwaitAck(id , elec, lid , idp), a node waits for ack messages;

• SendAck(id , elec, lid , idp), a node sends an ack message to its parent;

• LeaderProcess(id , elec, lid ,maxid), a node sets its leader parameter to the
value received.

The meaning of the parameters of the above states is the following: id is the name of
the node; elec indicates whether the node is part of the election process, thus, elec = 1
if the node is participating in the election process, elec = 0 otherwise; lid represents the
node’s knowledge of the leader; idp is the name of the parent node; maxid is maximum
node-id in the spanning tree rooted at id .

A node may send and/or receive election, ack or leader messages. These messages
are pairs of the following shape:

• elecMsg, id meaning an election message sent by node id ;

• ackMsg, lid meaning an ack message where lid is the current leader at that stage;

• ldrMsg, lid meaning a leader message where lid is the current node’s knowledge
of the leader.
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Figure 3 An trust-based encoding of the leader election protocol for MANETs at
security level σ.

/∗Starting node broadcasts election message and evolves into the AwaitAckInit state waiting for ack. ∗/

Source(id , elec, lid)
def
= σ!〈elecMsg, id〉.AwaitAckInit〈id , 1 , lid〉

/∗In the AwaitAckInit state the initiator node receives ack messages (other messages are ignored) and
store the maximum node-id received; eventually the process evolves into the SendLeader state. ∗/

AwaitAckInit(id , elec, lid)
def
= σ?(x̃).[x1 = ackMsg]

[x2 ≥ lid ]AwaitAckInit〈id , elec, snd(x̃)〉,
AwaitAckInit〈id , elec, lid〉,

AwaitAckInit〈id , elec, lid〉
+ SendLeader〈id , elec, lid〉

/∗In the SendLeader state the node broadcasts a leader message.∗/

SendLeader(id , elec, lid)
def
= σ!〈ldrMsg, lid〉.Node〈id , 0 , lid〉

/∗A node which did not initiate the protocol may receive either an election or a leader message, evolving
into an ElectionProcess or a LeaderProcess state, respectively.∗/

Node(id , elec, lid)
def
= σ?(x̃).[x1 = ldrMsg]

LeaderProcess〈id , elec, lid , snd(x̃)〉,
[x1 = elecMsg]ElectionProcess〈id , 1 , lid , x2 〉,Node〈id , elec, lid〉

/∗A node in the LeaderProcess state basically propagates leader messages containing the maximum between
its lid and the maxid received in the leader messages. The most interesting case in when maxid < lid. This
means that either the node was not part of the election process or the node did not report the ack to its
parent nodes, for example because it was disconnected. In both cases, it broadcasts its lid as the maximum
node-id.∗/

LeaderProcess(id , elec, lid ,maxid)
def
= [maxid = lid ]

[elec = 0]Node(id , 0 , lid), σ!〈ldrMsg, lid〉.Node〈id , 0 , lid〉,
[maxid > lid ]σ!〈ldrMsg, maxid〉.Node〈id , 0 ,maxid〉,
[maxid < lid ]σ!〈ldrMsg, lid〉.Node〈id , 0 , lid〉

/∗In the ElectionProcess state a node broadcasts the election message received by its parent and evolves
into an AwaitAck state, waiting for ack messages.∗/

ElectionProcess(id , elec, lid , idp)
def
= σ!〈elecMsg, id〉.AwaitAck〈id , elec, lid , idp〉

/∗In the AwaitAck state the node receives ack messages and update the maximum node-id as in the Await-
AckInit state; the only difference is that when no more ack arrives, the process evolves into the SendAck
state.∗/

AwaitAck(id , elec, lid , idp)
def
= σ?(x̃).[x1 = ackMsg]

[x2 ≥ lid ]AwaitAck〈id , elec, x2 , idp〉,
AwaitAck〈id , elec, lid , idp〉,

AwaitAck〈id , elec, lid〉
+ SendAck〈id , elec, lid , idp〉

/∗In a SendAck state a node may either send (unicast transmission) to its parent node an ack message, with
the current maximum node-id, or evolve into a SendLeader state if the node disconnects from its parent
node. In this case, it reports its current leader.∗/

SendAck(id , elec, lid , idp)
def
= σ!〈ackMsg, lid〉idp .Node〈id , elec, lid〉+ SendLeader〈id , elec, lid〉
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A starting node begins the protocol in the Source〈id , 0 , lid〉 state, with lid = id ,
and broadcasts the message 〈elecMsg, lid〉 moving into the AwaitAckInit〈id, 1, lid〉
state, waiting for the ack message. In this state the starting node may receive ack
messages of the form 〈ackMsg,maxid〉. When this happens, the node checks the maxid
variable contained in the ack message. If maxid ≥ lid then the node evolves into
the AwaitAckInit〈id , elec,maxid〉 state to record the maxid value, otherwise it re-
mains in AwaitAckInit〈id , elec, lid〉, waiting for other ack messages. In the state
AwaitAckInit〈id , elec, lid〉 the node may also nondeterministically evolves into the
SendLeader〈id, elec, lid〉 when it has received all ack messages from its neighbours. In
the SendLeader〈id, elec, lid〉 state a node broadcasts a leader message 〈ldrMsg, lid〉
and evolves into the Node〈id, 0, lid〉 state, waiting for other leader messages sent by
its neighbours.

All the other nodes in the network begin the protocol in the Node〈id, 0, lid〉 state.
In this state, they may receive an election message 〈elecMsg, idp〉 or a leader message
〈leaderMsg,maxid〉. In the first case, they evolve into ElectionProcess〈id, 1, lid, idp〉,
where idp records the id of their parent node, contained in the election message. In
the second case, they evolve into the LeaderProcess〈id, elec, lid,maxid〉 state, where
maxid is the leader id contained in the leader message. When a node arrives in the
ElectionProcess〈id, elec, lid, idp〉 state, it broadcasts an election message contain-
ing its node-id and then evolves into the state AwaitAck〈id, elec, lid, idp〉, waiting
for ack messages. A node in the AwaitAck〈id, elec, id, idp〉 state may either receive
ack messages of the form 〈ackMsg,maxid〉 or evolve into the SendAck〈id, elec, lid, idp〉
state to model that all ack messages have been received. When the node receives
an ack, it stores the maximum node-id received with the ack, checking if maxid ≥
lid . A node in the SendAck〈id, elec, lid, idp〉 state may send to its parent node
idp an ack message of the form 〈ackMsg, lid〉 with the current maximum node-id,
and goes into the Node〈id, elec, lid〉 state; otherwise the node may evolve into the
SendLeader〈id, elec, lid〉 state. This last state models the case when a node is dis-
connected from its parent node. In this case, the node reports its current leader.

A node in the LeaderProcess〈id, elec, lid,maxid〉 basically propagates the re-
ceived leader message by setting its lid parameter to the maxid values received in the
leader message. The most interesting case is when maxid < lid . In this case, either the
node was not part of the election process or it did not report the ack message to its
parent nodes, for example because it was disconnected. In both case it broadcasts its
lid as the maximum node-id sending a leader message 〈ldrMsg, lid〉 and evolves into
Node〈id, 0, lid〉.

Here, we report a running example of the protocol.

Example 10.4 Let M be the following network:

M
def= l[Source〈l, 0, l〉]Tl

| m[Node〈m, 0,m〉]Tm
| n[Node〈n, 0, n〉]Tn

with l > m > n and Tl(l,m)=Tm(m, l)=Tm(m,n)=Tn(n, m)≥σ. Here, we report the
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evolution M while running the protocol.

M
l!〈elecMsg,l〉.m
−−−−−−−−−−−−→σ l[AwaitAckInit〈l, 1, l〉]Tl

|
m[ElectionProcess〈m, 1,m, l〉]Tm

|
n[Node〈n, 0, n〉]Tn

def= M1 .

Node l starts the protocol broadcasting the election message 〈elecMsg, l〉, and evolving
into the state AwaitAckInit〈l, 1, l〉. Only node m receives the election message and
evolves into the state ElectionProcess〈m, 1,m, l〉. Node m has marked l as its parent
node.

M1
m!〈elecMsg,m〉.{l,n}
−−−−−−−−−−−−−−−−→σ l[AwaitAckInit〈l, 1, l〉]Tl

| m[AwaitAck〈m, 1,m, l〉]Tm
|

n[ElectionProcess〈n, 1, n,m〉]Tn

def= M2 .

Node m broadcasts the message 〈elecMsg,m〉, and evolves into AwaitAck〈m, 1,m, l〉,
waiting for ack messages. Node l ignores the message and remains in AwaitAckInit〈l, 1, l〉,
whereas n receives the message and evolves into ElectionProcess〈n, 1, n,m〉. Again
the last parameter m indicates the parent node of n.

M2
n!〈elecMsg,n〉.m
−−−−−−−−−−−−−→σ l[AwaitAckInit〈l, 1, l〉]Tl

| m[AwaitAck〈m, 1,m, l〉]Tm
|

n[AwaitAck〈n, 1, n,m〉]Tn

def= M3 .

Node n broadcasts the election message 〈elecMsg, n〉 and then it evolves into the state
AwaitAck〈n, 1, n,m〉, waiting for ack messages. Node m ignores the message and
remains in its state.

M3
n!〈ackMsg,n〉.m
−−−−−−−−−−−−→σ l[AwaitAckInit〈l, 1, l〉]Tl

| m[AwaitAck〈m, 1,m, l〉]Tm
|

n[Node〈n, 1, n〉]Tn

def= M4 .

As n has no children, it will not receive ack messages. Thus, it will eventually evolve
into the state SendAck〈n, 1, n,m〉 sending the ack message 〈ackMsg, n〉 to its parent
node m. This message contains the current leader of node n, that is n itself. After the
sending, n evolves into the state Node〈n, 1, n〉, waiting for leader messages.
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M4
m!〈ackMsg,m〉.l
−−−−−−−−−−−−→σ l[AwaitAckInit〈l, 1, l〉]Tl

| m[Node〈m, 1,m〉]Tm
|

n[Node〈n, 1, n〉]Tn

def= M5 .

When m receives the message 〈ackMsg, n〉, it checks whether n is greater than its current
leader m. As m > n, m sends the ack message 〈ackMsg,m〉 to its parent l and evolves
into the state Node〈m, 1,m〉. The message 〈ackMsg,m〉 contains the current leader of
m, that is m itself.

M5
l!〈ldrMsg,l〉.m
−−−−−−−−−−−→σ l[Node〈l, 0, l〉]Tl

| m[LeaderProcess〈m, 1,m, l〉]Tm
|

n[Node〈n, 1, n〉]Tn

def= M6 .

When l receives the message 〈ackMsg, n〉, it checks whether m is greater than its current
leader l. As l > m, node l broadcasts the leader message 〈ldrMsg, l〉 and evolves into
the state Node〈l, 0, l〉. Node m receives the leader message and evolves into the state
LeaderProcess〈m, 1,m, l〉.

M6
m!〈ldrMsg,l〉.{l,n}
−−−−−−−−−−−−−−→σ l[Node〈l, 0, l〉]Tl

| m[Node〈m, 0, l〉]Tm
|

n[LeaderProcess〈n, 1, n, l〉]Tn

def= M7 .

Node m checks whether l is greater than its current leader m. As l > m, then m
broadcasts the leader message 〈ldrMsg, l〉 with l as its current leader and evolves into
the state Node〈m, 0, l〉. When l receives this message, as it is in Node〈l, 0, l〉 state, it
has simply to check whether the received leader corresponds to its current leader. This
is the case, then it remains into Node〈l, 0, l〉 state. When n receives the leader message
〈ldrMsg, l〉, it evolves into the state LeaderProcess〈n, 1, n, l〉.

M7
n!〈ldrMsg,l〉.m
−−−−−−−−−−−−→σ l[Node〈l, 0, l〉]Tl

| m[Node〈m, 0, l〉]Tm
| n[Node〈n, 0, l〉]Tn

.

Finally, node n verifies that l is greater than its current leader n. Thus, l becomes the
current leader of n that broadcasts the leader message 〈ldrMsg, l〉 with current leader
l, evolving into the state Node〈n, 0, l〉. The leader message sent by n is received by m
that verifies that l is already its leader. So, it remains in the state Node〈m, 0, l〉.

The trust-based nature of our variant of the leader election protocol can be sum-
marised in the following statement.
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Proposition 10.5 If a node n is elected in a network M by applying the leader election
protocol at some security level σ, then the nodes which have partecipated to its election
constitute a σ-connected component of M .
Proof It follows by Theorem 6.1. �

11 Conclusions and related work

We have proposed a process calculus for mobile ad hoc networks which relies on an
abstract behaviour-based multilevel trust model. Our trust model supports both direct
trust, to describe monitoring of neighbour nodes, and indirect trust, when collecting
recommendations and spreading reputations. The operational semantics of the calculus
is given in terms of a labelled transition system, where actions are executed at a certain
security level. As to the behavioural semantics we focus on a trust-based variant of
Milner and Sangiorgi’s barbed congruence, a standard contextually-defined program
equivalence. We then define a labelled bisimilarity over networks parameterised over
security levels. We have proved that communications in our setting are safe, in a
precise sense, with respect to the security levels of the involved parties. In particular,
we guarantee safety despite compromised nodes, meaning that compromised nodes
cannot affect the rest of the network. A non-interference result is also proved in terms
of information flow. Finally, we have demonstrated the practical utility of our calculus
by providing a formal description of trust-based versions of a routing protocol and a
leader election protocol for ad hoc networks.

The problem of protecting information and resources in multilevel systems [5] has
been extensively studied using different approaches. For instance, Bodei et al. [8] have
applied flow analysis techniques, Reitman and Andrews [51] have used axiomatic logic,
while Smith and Volpano in [61], Boudol and Castellani [9] and Heintz and Riecke
in [28] have focused on type systems for prototypical programming languages.

Excellent surveys about information flow properties can be found in [18, 53].
In the context of multilevel systems, Crafa and Rossi [14] have introduced a notion

of controlled information release for a typed version of the π-calculus extended with
declassified actions. They have provided various characterisations of controlled release
property, based on typed behavioural equivalence, parameterised on security levels, to
model observers at a certain security level. Our notion of bisimilarity, parameterised
on security levels, is inspired by theirs. Hennessy has proposed a typed version of the
asynchronous π-calculus with I-O types associated with security levels. Typed versions
of may and must equivalences are then used to prove a non-interference results.

Let us examine now the most relevant related work on process calculi for wireless
systems. Nanz and Hankin [44] have introduced a calculus for Mobile Wireless Net-
works (CBS]), relying on graph representation of node localities. The main goal of the
paper is to present a framework for specification and security analysis of communication
protocols for mobile wireless networks. Merro [38] has proposed a process calculus for
Mobile Ad Hoc Networks with a labelled characterisation of reduction barbed congru-
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ence. Godskesen [24] has proposed a calculus for mobile ad hoc networks (CMAN). The
paper proves a characterisation of reduction barbed congruence in terms of a contextual
bisimulation. It also contains a formalisation of an attack on the cryptographic routing
protocol ARAN. Singh, Ramakrishnan, and Smolka [57] have proposed the ω-calculus,
a conservative extension of the π-calculus. A key feature of the ω-calculus is the sep-
aration of a node’s communication and computational behaviour from the description
of its physical transmission range. The authors provide a labelled transition semantics
and a bisimulation in “open” style. The ω-calculus is then used for modelling both the
AODV routing protocol and the leader election protocol of [60], in an untrusted set-
ting. Ghassemi et al. [22] have proposed a process algebra for mobile ad hoc networks
(RBPT) where, topology changes are implicitly modelled in the (operational) semantics
rather than in the syntax. The authors propose a notion of bisimulation for networks
parameterised on a set of topology invariants that must be respected by equivalent
networks. This work in then refined in [23] where the authors propose an equational
theory for an extension of RBPT. Godskesen and Nanz [25] have proposed a simple
timed calculus for wireless systems to express a wide range of mobility models. All the
previous calculi abstract from the presence of interferences. Lanese and Sangiorgi [36]
have instead proposed the CWS calculus, a lower level untimed calculus to describe in-
terferences in wireless systems. More recently, Song and Godskesen [58], have proposed
a probabilistic calculus for wireless systems modelling unreliable connection. They have
characterised a notion of weak bisimilarity by a variant of PCTL.

None of the calculi mentioned above deal with trust. Carbone et al. [12] have
introduced ctm, a process calculus which embodies the notion of trust for ubiquitous
systems. In ctm each principal is equipped with a policy, which determines its legal
behaviour, formalised using a Datalog-like logic, and with a protocol, in the process
algebra style, which allows interactions between principals and the flow of information
from principals to policies.

References

[1] Alfarez Abdul-Rahman and Stephen Hailes. Supporting Trust in Virtual Commu-
nities. In HICSS, volume 6, pages 6007–6016. IEEE Computer Society, 2000.
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A Proofs

Proof of Theorem 6.1

1. Let us prove the first part of the statement.

(a) The proof is by induction on why M
m?ṽ.D−−−−−−→σ M ′. The base cases are

when the transition M
m?ṽ.D−−−−−−→σ M ′ is obtained by an application of one

of the following rule: (Rcv), (RcvEnb). The most interesting case is the first
one. Thus, M = n[σ?(x̃).P ]T , M ′ = n[{ṽ/̃x}P ]T ,D = n and T (n, m) ≥ σ, as
required.

As to the inductive case, let us suppose the transition M
m?ṽ.D−−−−−−→σ M ′ id

derived by an application of one of the following rules: (Sum), (RcvPar). We

show details only for (RcvPar); the other case is similar. Let be M
m?ṽ.D−−−−−−→σ

M ′ by an application of rule (RcvPar) with M = M1 | M2 and M ′ = M ′
1 | M ′

2,

for some M1,M2,M
′
1 and M ′

2, because M1
m?ṽ.D′
−−−−−−−→σ M ′

1 and M2
m?ṽ.D′′
−−−−−−−→σ

M ′
2, where D := D′ ∪ D′′. More precisely, let

M ≡
∏

i

ni[Pi]Ti
=

∏
k

nk[Pk]Tk
|
∏
j

nj[Pj]Tj

and
M ′ ≡

∏
i

ni[P ′
i ]T ′

i
=

∏
k

nk[P ′
k]Tk

|
∏
j

nj[P ′
j]Tj

for appropriate processes and tags, where

M1 =
∏

k nk[Pk]Tk
M ′

1 =
∏

k nk[P ′
k]Tk

M2 =
∏

j nj[Pj]Tj
M ′

2 =
∏

j nj[P ′
j]Tj

.

If P ′
k 6= Pk, for some k or if P ′

j 6= Pj , for some j, the result follows by
inductive hypothesis.
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(b) This case applies only for transitions at level trust. It is proved by induction

on M
m?ṽ.D−−−−−−→trust M ′. The proof is similar to the previous case.

2. Let us prove the second part of the statement.

(a) The proof is by induction on the transition M
m!ṽ.D−−−−−−→σ M ′. The base

cases are when M
m!ṽ.D−−−−−−→σ M ′ is obtained by an application of one of the

following rules: rules (MCast), (UCast), (DTrust), or (SndRcm). These cases
are immediate.
As to the inductive case, let us suppose that M

m!ṽ.D−−−−−−→σ M ′ is derived by
the application of one of the following rules: (Sum), (Sync). We show details

only for rule (Sync); the other case is similar. Thus, let M
m!ṽ.D−−−−−−→σ M ′ by an

application of rule (Sync), with M = M1 | M2 and M ′ = M ′
1 | M ′

2, for some

M1,M2,M
′
1 and M ′

2, because M1
m!ṽ.D−−−−−−→σ M ′

1 and M2
m?ṽ.D′
−−−−−−−→σ M ′

2 (the
converse is similar), with D := {n : T (m,n) ≥ σ},D′ ⊆ D. More precisely,
let

M ≡ m[P ]T |
∏

i

ni[Pi]Ti
= m[P ]T |

∏
k

nk[Pk]Tk
|
∏
j

nj[Pj]Tj

and

M ′ ≡ m[P ′]T ′ |
∏

i

ni[P ′
i ]T ′

i
= m[P ′]T ′ |

∏
k

nk[P ′
k]T ′

k
|
∏
j

nj[P ′
j]T ′

j

for appropriate processes and tags, where

M1 = m[P ]T |
∏

k nk[Pk]Tk
M ′

1 = m[P ′]T ′ |
∏

k nk[P ′
k]T ′

k

M2 =
∏

j nj[Pj]Tj
M ′

2 =
∏

j nj[P ′
j]T ′

j
.

By inductive hypothesis, if P ′
k 6= Pk, for some k, then T (m,nk) ≥ σ and

Tk(nk,m) ≥ σ. Similarly, by inductive hypothesis, if T ′
k 6= Tk, for some k,

then T (m,nk) ≥ σ and Tk(nk,m) ≥ σ. By applying the first part of this
theorem, if P ′

j 6= Pj , for some j, then Tj(nj ,m) ≥ σ. It remains to prove that
T (m,nj) ≥ σ. Again, by applying the first part of this theorem, we have
nj ∈ D′. As D′ ⊆ D and D := {n : T (m,n) ≥ σ} it holds that T (m,nj) ≥ σ,
as required.

(b) This case applies only for transitions at level trust. The proof is by induction

on the transition M
m!ṽ.D−−−−−−→trust M ′. The proof is similar to the previous

case.
�
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Proof of Corollary 6.2
Let us prove the second part of the statement. The first part is simpler. We proceed
by contradiction. We prove that if P ′

i 6= Pi or T ′
i 6= Ti, for some i, then T (m,ni) 6= bad

and Ti(ni,m) 6= bad. Indeed, by Theorem 6.1(2a) if P ′
i 6= Pi it holds that T (m,ni) ≥ ρ

and Ti(ni,m)≥ρ and by Theorem 6.1(2b) if T ′
i 6= Ti it holds that T (m,ni) ≥ ρ and

Ti(ni,m) ≥ ρ. By construction we know that ρ 6= bad. This contradicts the hypotheses.
�

Proof of Theorem 8.4
We prove that the relation

S def= {
(
M | O , N | O

)
for all O such that M ≈δ N}

is a δ-bisimulation. We proceed by case analysis on why M | O α−−→ρ M̂ , with ρ ≤ δ.

• Let M | O
m!ṽID−−−−−−→ρ M̂ by an application of the transition rule (Obs), because

M | O
m!ṽ. bD−−−−−−→ρ M̂ , with D = D̂ \ nds(M | O) 6= ∅. There are the following

sub-cases.

– Let M | O m!ṽ. bD−−−−−−→ρ M̂ by an application of rule (Sync) because M
m!ṽ. bD−−−−−−→ρ

M ′ and O
m?ṽ.D′′
−−−−−−−→ρ O′, with M̂ = M ′ | O′, D′′ ⊆ D̂ and D′′ ⊆ nds(O). Let

D′ = D̂ \ nds(M). As D = D̂ \ nds(M | O) 6= ∅ it follows that D′ 6= ∅. By an

application of rule (Obs) we can derive M
m!ṽID′
−−−−−−−→ρ M ′. As M ≈δ N there

is N ′ such that N
m!ṽID′

=======⇒ρ N ′ with M ′ ≈δ N ′. Since the action m!ṽID′

can be generated only by an application of rule (Obs) this implies that there
are N1 and N2 such that

N =⇒ρ N1
m!ṽ.cD′
−−−−−−→ρ N2 =⇒ρ N ′

with D′ = D̂′ \ nds(N) 6= ∅. We recall that D′′ ⊆ D̂ and D′′ ⊆ nds(O). By
node-uniqueness, nds(M) ∩ nds(O) = ∅. As a consequence,

D′′ = D′′ \ nds(M)
⊆ D̂ \ nds(M)
= D′

= D̂′ \ nds(N)
⊆ D̂′ .

Thus, by several applications of rule (TauPar) and one application of rule
(Sync) we have

N | O =⇒ρ N1 | O
m!ṽ.cD′
−−−−−−→ρ N2 | O′ =⇒ρ N ′ | O′.
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It holds that

D̂′ \ nds(N | O) = D̂′ \ nds(N) \ nds(O)
= D′ \ nds(O)
= D̂ \ nds(M) \ nds(O)
= D̂ \ nds(M | O)
6= ∅ .

Thus, by one application of rule (Obs) we have N | O
m!ṽID======⇒ρ N ′ | O′,

with (M ′ | O′, N ′ | O′) ∈ S, as required.

– Let M | O m!ṽ. bD−−−−−−→ρ M̂ by an application of rule (Sync) because M
m?ṽ.D′′
−−−−−−−→ρ

M ′ and O
m!ṽ. bD−−−−−−→ρ O′, with M̂ = M ′ | O′, D′′ ⊆ D̂ and D′′ ⊆ nds(M). As

M ≈δ N then there is N ′ such that N
m?ṽ.D′′

=======⇒ρ N ′ with M ′ ≈δ N ′. This
implies that there are N1 and N2 such that

N =⇒ρ N1
m?ṽ.D′′
−−−−−−−→ρ N2 =⇒ρ N ′.

Then by several applications of (TauPar) and one application of rule (Sync),
as D′′ ⊆ D̂, we have

N | O =⇒ρ N1 | O
m!ṽ. bD−−−−−−→ρ N2 | O′ =⇒ρ N ′ | O′.

Since M ≈δ N , by Proposition 8.3 it follows that nds(M) = nds(N). As a
consequence,

D̂ \ nds(N | O) = D̂ \ nds(N) \ nds(O)
= D̂ \ nds(M) \ nds(O)
= D̂ \ nds(M | O)
6= ∅ .

Thus, by one application of rule (Obs) we have N | O
m!ṽID======⇒ρ N ′ | O′,

with (M ′ | O′, N ′ | O′) ∈ S, as required.

• Let M | O τ−−→ρ M̂ by an application of rule (Shh), because M | O m!ṽ.D−−−−−−→ρ′ M̂ ,
with D ⊆ nds(M | O) and trust < ρ′ ≤ δ. There are two sub-cases.

– Let M | O m!ṽ.D−−−−−−→ρ′ M̂ by an application of rule (Sync) because M
m!ṽ.D−−−−−−→ρ′

M ′ and O
m?ṽ.D′′
−−−−−−−→ρ′ O′, with M̂ = M ′ | O′, D′′ ⊆ D, D′′ ⊆ nds(O) and

D ⊆ nds(M | O). There are two sub-cases.

∗ Let D ⊆ nds(M). Then by an application of rule (Shh) we have M
τ−−→ρ

M ′. As M ≈δ N , there is N ′ such that N =⇒ρ N ′, with M ′ ≈δ N ′. By
several applications of rule (TauPar) we have N | O =⇒ρ N ′ | O′, with
(M ′ | O′, N ′ | O′) ∈ S, as required.
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∗ Let D * nds(M). By an application of rule (Obs) we have M
m!ṽI bD−−−−−−→ρ′

M ′, with D̂ = D \ nds(M) 6= ∅. As M ≈δ N , there is N ′ such that

N
m!ṽI bD======⇒ρ′ N ′, with M ′ ≈δ N ′. Since the action m!ṽID̂ can be

generated only by an application of rule (Obs) this implies that there
are N1 and N2 such that

N =⇒ρ′ N1
m!ṽ.D′
−−−−−−→ρ′ N2 =⇒ρ′ N ′

with D̂ = D′ \ nds(N) 6= ∅. We recall that D′′ ⊆ D and D′′ ⊆ nds(O).
By node-uniqueness, nds(M) ∩ nds(O) = ∅. As a consequence,

D′′ = D′′ \ nds(M)
⊆ D \ nds(M)
= D̂
= D′ \ nds(N)
⊆ D′ .

Thus, by several applications of rule (TauPar) and by one application of
rule (Sync) we have:

N | O =⇒ρ′ N1 | O
m!ṽ.D′
−−−−−−→ρ′ N2 | O′ =⇒ρ′ N ′ | O′.

Notice that

D′ \ nds(N | O) = D′ \ nds(N) \ nds(O)
= D̂ \ nds(O)
= D \ nds(M) \ nds(O)
= D \ nds(M | O)
= ∅ .

Since D′ ⊆ nds(N | O), by one application of rule (Shh) we have N |
O =⇒ρ N ′ | O′, with (M ′ | O′, N ′ | O′) ∈ S, as required.

– Let M | O m!ṽ.D−−−−−−→ρ′ M̂ by an application of rule (Sync) because M
m?ṽ.D′′
−−−−−−−→ρ′

M ′ and O
m!ṽ.D−−−−−−→ρ′ O′, with M̂ = M ′ | O′ and D′′ ⊆ D. As M ≈δ N there

is N ′ such that N
m?ṽ.D′′

=======⇒ρ′ N ′ with M ′ ≈δ N ′. This implies that there
are N1 and N2 such that

N =⇒ρ′ N1
m?ṽ.D′′
−−−−−−−→ρ′ N2 =⇒ρ′ N ′.

Then, by several applications of rule (TauPar) and one application of rule
(Sync), as D′′ ⊆ D, we have

N | O =⇒ρ′ N1 | O
m!ṽ.D−−−−−−→ρ′ N2 | O′ =⇒ρ′ N ′ | O′.
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Since M ≈δ N , by Proposition 8.3 it follows that nds(M) = nds(N). As a
consequence,

D \ nds(N | O) = D \ nds(M | O) = ∅ .

Thus, by one application of rule (Shh) we have N | O =⇒ρ N ′ | O′ and
(M ′ | O′, N ′ | O′) ∈ S, as required.

• Let M | O τ−−→ρ M̂ by an application of rule (TauPar). This case is easy.

• Let M | O m?ṽ.D−−−−−−→ρ M̂ by an application of the transition rule (RcvPar) because

M
m?ṽ.D′
−−−−−−−→ρ M ′ and O

m?ṽ.D′′
−−−−−−−→trust O′, with D := D′ ∪D′′, M̂ = M ′ | O′. This

case is easy.
�

In order to prove Theorem 8.5 we use the following auxiliary lemmas.

Lemma A.1

1. If M
m!ṽ.D−−−−−−→σ M ′, where D contains more than one node, then there are N,P, T

such that M ≡ m[σ!〈ṽ〉.P ]T | N and D = {n : T (m,n) ≥ ρ}.

2. If M
m!ṽ.D−−−−−−→σ M ′, with D = n, for some n, then there are N,P, T such that

M ≡ m[σ!〈ṽ〉.P ]T | N or M ≡ m[σ!〈ṽ〉n.P ]T | N with T (m,n) ≥ ρ.
Proof

1. By induction on why M
m!ṽ.D−−−−−−→σ M ′. The base case is when M

m!ṽ.D−−−−−−→σ M ′

is obtained by an application of one of the following rules: (MCast), (DTrust),
(SndRcm). We show the details only for rule (MCast); the other cases are similar.
In this case, M = m[σ!〈ṽ〉.P ]T ≡ m[σ!〈ṽ〉.P ]T | 0, for some P and T , with D =

{n : T (m,n) ≥ ρ}. As to the inductive case, let us suppose that M
m!ṽ.D−−−−−−→σ M ′

is obtained by an application of one of the following rules: (Sum), (Sync). We only

consider the case for rule (Sync); the other case is similar. Let M
m!ṽ.D−−−−−−→σ M ′ by

an application of rule (Sync), because M1
m!ṽ.D−−−−−−→σ M ′

1 and M2
m?ṽ.D′
−−−−−−−→σ M ′

2,
and M = M1 | M2 and M ′ = M ′

1 | M ′
2 for some M1,M

′
1,M2,M

′
2 and D′. By

inductive hypothesis it holds that M1 ≡ m[σ!〈ṽ〉.P ]T | N , for some N,P, T with
D = {n : T (m,n) ≥ ρ}. Thus, M ≡ m[σ!〈ṽ〉.P ]T | N | M2, as required.

2. By induction on why M
m!ṽ.n−−−−−→σ M ′. This case is similar to the previous one.

�
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Lemma A.2

1. If M
m!ṽID−−−−−−→σ M ′ then M ↓σ

n, for all n ∈ D.

2. If M ↓σ
n then there is a value ṽ and a set of nodes D, with n ∈ D, such that

M
m!ṽID−−−−−−→σ M ′,

Proof By Lemma A.1 and by Definition 7.1. �

Proof of Theorem 8.5
The preservation of σ-barbs follows by Lemma A.2; the reduction-closure follows by
definition, while contextuality follows by Theorem 8.4. �

Proof of Theorem 9.2
We prove that the relation

S def= {
(
M | H , N | K

)
: H,K ∈ Hδ, M ≈δ N and H ≈trust K}

is a δ-bisimulation. By case analysis on the transition M | H α−−→ρ M̂ , with ρ ≤ δ.

• Let M | H
m!ṽID−−−−−−→ρ M̂ by an application of rule (Obs), with ρ > trust, because

M | H
m!ṽ. bD−−−−−−→ρ M̂ . Since H ∈ Hδ, the transition M | H

m!ṽ. bD−−−−−−→ρ M̂ can

be derived only by an application of rule (Sync) because M
m!ṽ. bD−−−−−−→ρ M ′ and

H
m?ṽ.∅−−−−−−→ρ H, with D = D̂ \ nds(M | H) 6= ∅ and M̂ = M ′ | H. Let D′ =

D̂ \ nds(M). As D 6= ∅ it follows that D′ 6= ∅. Thus, we can apply rule (Obs) to

derive M
m!ṽID′
−−−−−−−→ M ′. As M ≈δ N there is N ′ such that N

m!ṽID′
=======⇒ρ N ′ with

M ′ ≈δ N ′. Since the action m!ṽID′ can be generated only by an application of
rule (Obs) there are N1 and N2 such that

N =⇒ρ N1
m!ṽ.cD′
−−−−−−→ρ N2 =⇒ρ N ′

with D′ = D̂′ \nds(N) 6= ∅. By node uniqueness, since m ∈ nds(N) it follows that

m /∈ nds(K). Thus, K
m?ṽ.∅−−−−−−→ K. By several applications of rule (TauPar) and

one application of rule (Sync) we have:

N | K =⇒ρ N1 | K
m!ṽ.cD′
−−−−−−→ρ N2 | K =⇒ρ N ′ | K.

Since H ≈trust K, by Proposition 8.3 it follows that nds(H) = nds(K). Hence,

D := D̂ \ nds(M | H)
= D̂ \ nds(M) \ nds(H)
= D′ \ nds(H)
= D̂′ \ nds(N) \ nds(K)
= D̂′ \ nds(N | K) .
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As D 6= ∅, by one application of rule (Obs) we have N | K m!ṽID======⇒ρ N ′ | K, with(
M ′ | H , N ′ | K

)
∈ S, as required.

• Let M | H m!ṽID−−−−−−→trust M̂ by an application of the transition rule (Obs) because

M | H
m!ṽ. bD−−−−−−→trust M̂ , with D = D̂ \ nds(M | H) 6= ∅. We have the following

possibilities:

– Let M | H
m!ṽ. bD−−−−−−→trust M̂ by an application of the transition rule (Sync)

because M
m!ṽ. bD−−−−−−→trust M ′ and H

m?ṽ.D′′
−−−−−−−→trust H ′, with M̂ = M ′ | H ′,

D′′ ⊆ D̂, D′′ ⊆ nds(H) and H ′ ∈ Hδ. Let D′ = D̂ \ nds(M). As D =
D̂ \ nds(M | H) 6= ∅ it follows that D′ 6= ∅. As a consequence, we can apply

rule (Obs) to derive M
m!ṽID′
−−−−−−−→trust M ′. As M ≈δ N , there is N ′ such

that N
m!ṽID′

=======⇒trust N ′ with M ′ ≈δ N ′. Since the action m!ṽID′ can be
generated only by an application of rule (Obs) there are N1 and N2 such that

N =⇒trust N1
m!ṽ.cD′
−−−−−−→trust N2 =⇒trust N ′

with D′ = D̂′ \ nds(N) 6= ∅. As H ≈trust K and H
m?ṽ.D′′
−−−−−−−→ H ′, there is K ′

such that K
m?ṽ.D′′

=======⇒trust K ′ with H ′ ≈trust K ′ and K ′ ∈ Hδ. This means
there are K1 and K2 such that

K =⇒trust K1
m?ṽ.D′′
−−−−−−−→trust K2 =⇒trust K ′ .

We recall that D′′ ⊆ D̂ and D′′ ⊆ nds(H). By node-uniqueness, nds(M) ∩
nds(H) = ∅. As a consequence,

D′′ = D′′ \ nds(M)
⊆ D̂ \ nds(M)
= D′

= D̂′ \ nds(N)
⊆ D̂′ .

Thus, by several applications of rule (TauPar) and one application of rule
(Sync) we have

N | K =⇒trust N1 | K1
m!ṽ.cD′
−−−−−−→trust N2 | K2 =⇒trust N ′ | K ′.

Since H ≈trust K, by Proposition 8.3 it follows that nds(K) = nds(H). As a
consequence,

D = D̂ \ nds(M | H)
= D̂ \ nds(M) \ nds(H)
= D′ \ nds(H)
= D̂′ \ nds(N) \ nds(K)
= D̂′ \ nds(N | K) .
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As D 6= ∅, by an application of rule (Obs) we can derive N | K
m!ṽID======⇒ρ

N ′ | K ′, with (M ′ | H ′, N ′ | K ′) ∈ S, as required.

– Let M | H
m!ṽ. bD−−−−−−→trust M̂ by an application of the transition rule (Sync)

because M
m?ṽ.D′′
−−−−−−−→trust M ′ and H

m!ṽ. bD−−−−−−→trust H ′, with M̂ = M ′ | H ′,
D′′ ⊆ D̂, D′′ ⊆ nds(M) and H ′ ∈ Hδ. As M ≈δ N then there is N ′ such that

N
m?ṽ.D′′

=======⇒trust N ′ with M ′ ≈δ N ′. This implies that there are N1 and N2

such that
N =⇒trust N1

m?ṽ.D′′
−−−−−−−→trust N2 =⇒trust N ′.

Let D′ = D̂ \ nds(H). As D = D̂ \ nds(M | H) 6= ∅ it follows that D′ 6= ∅.
By an application for rule (Obs) we have H

m!ṽID′
−−−−−−−→trust H ′, with D′ =

D̂ \ nds(H) 6= ∅. As H ≈trust K there is K ′ such that K
m!ṽID′

=======⇒trust K ′,
with H ′ ≈trust K ′ and K ′ ∈ Hδ. This implies that there are K1 and K2 such
that

K =⇒trust K1
m!ṽ.cD′
−−−−−−→trust K2 =⇒trust K ′

with D′ = D̂′ \ nds(K). We recall that D′′ ⊆ D̂ and D′′ ⊆ nds(M). By
node-uniqueness, nds(M) ∩ nds(H) = ∅. As a consequence,

D′′ = D′′ \ nds(H)
⊆ D̂ \ nds(H)
= D′

= D̂′ \ nds(K)
⊆ D̂′ .

Thus, by several applications of rule (TauPar) and one application of rule
(Sync), as D′′ ⊆ D̂, we have

N | K =⇒trust N1 | K1
m!ṽ.cD′
−−−−−−→trust N2 | K2 =⇒trust N ′ | K ′.

Since M ≈ρ K, by Proposition 8.3 it follows that nds(M) = nds(N). As a
consequence,

D = D̂ \ nds(M | H)
= D̂ \ nds(M) \ nds(H)
= D̂ \ nds(H) \ nds(M)
= D′ \ nds(M)
= D′ \ nds(N)
= D̂′ \ nds(K) \ nds(N)
= D̂′ \ nds(N | K) .

As D 6= ∅, by one application of rule (Obs) we have N | K m!ṽID======⇒ρ N ′ | K ′,
with (M ′ | H ′, N ′ | K ′) ∈ S, as required.
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• M | H
τ−−→ρ M̂ by an application of rule (Shh), because M | H

m!ṽ.D−−−−−−→ρ′ M̂ ,
with D ⊆ nds(M | H). Let us suppose ρ′ > trust. Since H ∈ Hρ, the only

possibility is that M | H
m!ṽ.D−−−−−−→ρ′ M̂ by an application of rule (Sync) because

M
m!ṽ.D−−−−−−→ρ′ M and H

m?ṽ.∅−−−−−−→ H, with M̂ = M ′ | H and m /∈ nds(H). There
are two sub-cases.

– Let D ⊆ nds(M). Then by an application of rule (Shh) we have M
τ−−→ρ M ′.

As M ≈δ N , there is N ′ such that N =⇒ρ N ′, with M ′ ≈δ N ′. By several
applications of rule (TauPar) we have N | K =⇒ρ N ′ | K, with (M ′ | H,N ′ |
K) ∈ S, as required.

– Let D * nds(M). Then by an application of rule (Obs) we have M
m!ṽI bD−−−−−−→ρ′

M ′, with D̂ = D \ nds(M) 6= ∅. As M ≈δ N , there is N ′ such that

N
m!ṽI bD======⇒ρ′ N ′, with M ′ ≈δ N ′. Since the action m!ṽID̂ can be generated

only by an application of rule (Obs) this implies that there are N1 and N2

such that
N =⇒ρ′ N1

m!ṽ.D′
−−−−−−→ρ′ N2 =⇒ρ′ N ′

with D̂ = D′ \ nds(N) 6= ∅. By node-uniqueness m 6∈ nds(K). By definition

of rule (RcvEnb) it follows that K
m?ṽ.∅−−−−−−→ K. By several applications of

rule (TauPar) and by one application of rule (Sync) we have:

N | K =⇒ρ′ N1 | K
m!ṽ.D′
−−−−−−→ρ′ N2 | K =⇒ρ′ N ′ | K.

Since H ≈trust K, by Proposition 8.3 it follows that nds(K) = nds(H). As a
consequence,

D′ \ nds(N | K) = D′ \ nds(N) \ nds(K)
= D̂ \ nds(K)
= D̂ \ nds(H)
= D \ nds(M) \ nds(H)
= D \ nds(M | H)
= ∅ .

Thus, by one application of rule (Shh) we have N | K =⇒ρ N ′ | K, with
(M ′ | H,N ′ | K) ∈ S, as required.

• M | H
τ−−→ρ M̂ by an application of rule (Shh), because M | H

m!ṽ.D−−−−−−→trust M̂ ,
with D ⊆ nds(M | H). This case is similar to the previous one.

• Let M | O τ−−→ρ M̂ by an application of rule (TauPar). This case is easy.
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• Let M | H
m?ṽ.D−−−−−−→ρ M̂ with ρ > trust. Since H ∈ Hρ, the only possibility

is that M | H
m?ṽ.D−−−−−−→ρ M ′ | H by an application of rule (RcvPar) because

M
m?ṽ.D−−−−−−→ρ M ′ and H

m?ṽ.∅−−−−−−→ρ H (by an application of rule (RcvEnb)) with
M̂ = M ′ | H. This case is easy.

• Let M | H
m?ṽ.D−−−−−−→trust M̂ by an application of the transition rule (RcvPar)

because M
m?ṽ.D′
−−−−−−−→trust M ′ and H

m?ṽ.D′′
−−−−−−−→trust H ′, with D := D′ ∪ D′′, M̂ =

M ′ | H ′ and H ′ ∈ Hδ. This case is easy.
�
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