Warm up: A simple language for arithmetic expressions

Massimo Merro

3 October 2017

- N / A	accima	Morro
	abbinno	

Espressioni aritmetiche

1 / 15

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●

Logic and software engineering

- Logic is the mathematical basis for software engineering
- We can make the following statement:
 logic : sw engineering = calculus : mechanical/civil engineering
- Induction will be a foundational concept.
- For instance, inductively defined sets and relations or inductive proofs are the basis of software verification.

Anatomy of an inference system

$$(Axiom) \xrightarrow{-} (Axiom) \xrightarrow{-} (Conclusion)$$

$$(Rule) \xrightarrow{Hypothesis_1 \cdots Hypothesis_n} Conclusion (Rule) Conclusion$$

(4月) (4日) (4日)

A Language for Arithmetic Expression: Syntax

$$E ::= n \mid E + E \mid E \times E \mid \cdots$$

where

- n ranges over the domain of numerals Num: 0, 1, ···
- *E* ranges over the domain of arithmetic expressions *Exp*
- $\bullet\,$ numerals 0, 1, $\,\cdots\,$ are part of the syntax of our language
- they are piece of our syntax and they should not be confused with numbers $(0, 1, 2, \ldots \in \mathbb{N})$ which are mathematical objects
- instead of 0, 1, · · · we could have used in our language the terminals zero, uno, · · ·; it would have been exactly the same.
- +, \times , \cdots are symbols for operations.

We will always work with abstract syntax. We will assume that we already did the parsing of our programs. So, the grammars we will use to define our languages define syntactic trees: parentheses are only used for disambiguation - they are not part of the grammar.

Operational semantics for the language Exp

An operational semantics for Exp has the goal to *evaluate* an arithmetic expression of the language to get its associated numeral. This can be done in two different manners:

- via a small-step (or *structural*) semantics that provides a method to evaluate an expression, step by step
- via a big-step (or *natural*) semantics that ignores the intermediate steps and directly provides the final result.

In the following, we assume that there is an obvious correspondence between the numeral n and the number n. This is just to make things simple: In another language the numeral 3 might be associated to the number 42!

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくぐ

Big-Step semantics for Exp

Judgements:

 $\mathsf{E}\Downarrow \mathsf{n}$

Meaning:

The evaluation of expression E results in the numeral n.

イロト イポト イヨト イヨト

Axioms and Rules for Exp

$$(\mathsf{B-Num}) \quad \frac{-}{\mathsf{n} \Downarrow \mathsf{n}} \qquad (\mathsf{B-Add}) \quad \frac{\mathsf{E}_1 \Downarrow \mathsf{n}_1 \quad \mathsf{E}_2 \Downarrow \mathsf{n}_2}{\mathsf{E}_1 + \mathsf{E}_2 \Downarrow \mathsf{n}_3} \quad \mathsf{n}_3 = \mathsf{add}(\mathsf{n}_1, \mathsf{n}_2)$$

Similar rules for $\times, -, \cdots$

IMPORTANT: add(-, -) is a semantic operator on *numbers* NOT *numerals*.

	accima	Morro
1.01	assiniu	IVIEITU

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の < @

How to read axioms

The axioms

$$(B-Num) \quad - \\ n \Downarrow n$$

says that:

The evaluation of numeral n is n itself.

In the axiom (B-Num) the symbol n is a kind of *variable* which can be replaced with any numeral 0, 1, 2, \cdots . Those kinds of variables are called *meta-variables*.

How to read rules

The rule

$$(\mathsf{B}\operatorname{\mathsf{-Add}}) \ \underline{\begin{array}{c} \mathsf{E}_1 \Downarrow \mathsf{n}_1 & \mathsf{E}_2 \Downarrow \mathsf{n}_2 \\ \mathsf{E}_1 + \mathsf{E}_2 \Downarrow \mathsf{n}_3 \end{array}} \ \mathsf{n}_3 = \mathsf{add}(\mathsf{n}_1, \mathsf{n}_2)$$

should be read in the following manner:

- given two expressions E₁ and E₂
- if it is the case that $E_1 \Downarrow n_1$
- and it is the case that $E_2 \Downarrow n_2$
- then it follows that $E_1 + E_2 \Downarrow n_3$
- where n_3 is the numeral associated to the number n_3 , such that $n_3 = add(n_1, n_2)$
- recall that add(-,-) is an operation on *numbers* NOT *numerals*.

In the rule (B-Add), E_1 , E_2 , n_1 , n_2 , n_3 are meta-variables.

ロト (日下) (日下) (日下) (日下) (日下) (日下)

We can apply axioms and rules to *derive* judgements. Such derivations take the form of trees:

$$(B-Add) \underbrace{\begin{array}{c} (B-Num) & - \\ \hline 3 \Downarrow 3 \\ \hline \end{array}}_{(B-Add)} \underbrace{\begin{array}{c} (B-Num) & - \\ \hline 2 \Downarrow 2 \\ \hline (B-Num) \\ \hline 1 \Downarrow 1 \\ \hline (2+1) \Downarrow 3 \\ \hline \end{array}}_{(2+1) \Downarrow 6 \\ \hline \end{array}}_{(2+1) \Downarrow 6}$$

For example, the derivation above allows us to derive the judgement:

 $3+(2+1)\Downarrow 6$

by applying three times the axiom (B-Num) and two times rule (B-Add).

1/1 -	COURS	\circ \mathbb{N}	OFFO
IV C	55111	U IV	

9 / 15

Small-step Semantics for Exp

Judgements:

$$\mathsf{E}_1 \twoheadrightarrow \mathsf{E}_2$$

Meaning:

After performing one-step of E_1 the expression E_2 remain to be evaluated.

Massimo Merro

Espressioni aritmetiche

< □ > < 同 > < 三 >

_≡ 10 / 15

- ∢ ⊒ →

A Left-to-right Small-step Semantics for Exp

Inference rules

(S-Left)
$$\frac{E_1 \rightarrow E'_1}{E_1 + E_2 \rightarrow E'_1 + E_2}$$

(S-N.Right)
$$\frac{E_2 \rightarrow E'_2}{n_1 + E_2 \rightarrow n_1 + E'_2}$$

S-Add)
$$\frac{-}{n_1 + n_2 \rightarrow n_3} \quad n_3 = \operatorname{add}(n_1, n_2)$$

We fix the evaluation order, from left to right. Something similar is not possible in a big-step semantics where expressions are evaluated in a single "big" step.

N/1 -	CCI MAG	MOrro
	ISSIIIU) wien u

11 / 15

A Choice Small-step Semantics for Exp

A different small-step semantics for Exp is the following:

Inference rules:

(S-Left)
$$\frac{\mathsf{E}_1 \to_{\mathsf{ch}} \mathsf{E}'_1}{\mathsf{E}_1 + \mathsf{E}_2 \twoheadrightarrow_{\mathsf{ch}} \mathsf{E}'_1 + \mathsf{E}_2}$$

$$(S-Right) \quad \frac{\mathsf{E}_2 \twoheadrightarrow_{\mathsf{ch}} \mathsf{E}'_2}{\mathsf{E}_1 + \mathsf{E}_2 \twoheadrightarrow_{\mathsf{ch}} \mathsf{E}_1 + \mathsf{E}'_2}$$

$$(S-Add) \quad - \frac{-}{n_1 + n_2 \twoheadrightarrow_{ch} n_3} \quad n_3 = \operatorname{add}(n_1, n_2)$$

Here, no precedence is established during the evaluation. Similar rules apply to the other operators \times , -,

Massimo Merro

Espressioni aritmetiche

12 / 15

Executing small-step semantics

```
The relation \rightarrow^k, for k \in \mathbb{N} (k may be 0)
```

We write $E \rightarrow^k E_k$ whenever:

$$E = E_0 \twoheadrightarrow E_1 \twoheadrightarrow E_2 \twoheadrightarrow \ldots \twoheadrightarrow E_k$$

The relation \rightarrow^*

We write $\mathsf{E} \to^* \mathsf{F}$ if $E \to^k F$ for some $k \in \mathbb{N}$.

The relation \rightarrow^* is called *reflexive and transitive closure* of \rightarrow . Reflexive because k may be 0.

The final answer

We say that n is the final answer of E if $E \rightarrow^* n$.

_			
N/1	accima		OFFC
	a 5 5 11 11 1	J IVI	entu

イロト イポト イヨト イヨト

Internal consistency of semantics

• Is it possible to derive

 $\mathsf{E}\Downarrow\mathsf{3}$ and $\mathsf{E}\Downarrow\mathsf{7}$

for some expression E?

• Is there some expression E which has no resulting value:

 $E \rightarrow^* n$ for no numeral n

Massimo Merro	
	Maccima Marka
	iviassimo ivieno

(日) (同) (日) (日) (日)

Consistency between the different semantics

What is the relationship between the different judgements:

- $\bullet ~ \mathsf{E} \Downarrow \mathtt{n}$
- E →* n
- E →_{ch} n

Usefulness

Can these techniques be applied to realistic programming languages?

Maccim	O Morre	
101055111		

イロト イポト イヨト イヨト