
Warm up: A simple language for arithmetic expressions

Massimo Merro

3 October 2017

Massimo Merro Espressioni aritmetiche 1 / 15



Logic and software engineering

Logic is the mathematical basis for software engineering

We can make the following statement:

logic : sw engineering = calculus : mechanical/civil engineering

Induction will be a foundational concept.

For instance, inductively defined sets and relations or inductive proofs
are the basis of software verification.

Anatomy of an inference system

(Axiom)
−

Conclusion

(Rule)
Hypothesis1 · · · Hypothesisn

Conclusion
condition

Massimo Merro Espressioni aritmetiche 2 / 15



A Language for Arithmetic Expression: Syntax

E ::= n
∣∣ E + E

∣∣ E × E
∣∣ · · ·

where

n ranges over the domain of numerals Num: 0, 1, · · ·
E ranges over the domain of arithmetic expressions Exp
numerals 0, 1, · · · are part of the syntax of our language
they are piece of our syntax and they should not be confused with
numbers (0, 1, 2, . . . ∈ N) which are mathematical objects
instead of 0, 1, · · · we could have used in our language the terminals
zero, uno, · · · ; it would have been exactly the same.
+, ×, · · · are symbols for operations.

We will always work with abstract syntax. We will assume that we already
did the parsing of our programs. So, the grammars we will use to define
our languages define syntactic trees: parentheses are only used for
disambiguation - they are not part of the grammar.

Massimo Merro Espressioni aritmetiche 3 / 15



Operational semantics for the language Exp

An operational semantics for Exp has the goal to evaluate an arithmetic
expression of the language to get its associated numeral.
This can be done in two different manners:

via a small-step (or structural) semantics that provides a method to
evaluate an expression, step by step

via a big-step (or natural) semantics that ignores the intermediate
steps and directly provides the final result.

In the following, we assume that there is an obvious correspondence
between the numeral n and the number n. This is just to make things
simple: In another language the numeral 3 might be associated to the
number 42!

Massimo Merro Espressioni aritmetiche 4 / 15



Big-Step semantics for Exp

Judgements:

E ⇓ n

Meaning:

The evaluation of expression E results in the numeral n.

Massimo Merro Espressioni aritmetiche 5 / 15



Big-Step Semantics for Exp

Axioms and Rules for Exp

(B-Num)
−

n ⇓ n
(B-Add)

E1 ⇓ n1 E2 ⇓ n2
E1 + E2 ⇓ n3

n3 = add(n1, n2)

Similar rules for ×, −, · · ·

IMPORTANT: add(−,−) is a semantic operator on numbers NOT
numerals.

Massimo Merro Espressioni aritmetiche 6 / 15



How to read axioms

The axioms

(B-Num)
−

n ⇓ n

says that:

The evaluation of numeral n is n itself.

In the axiom (B-Num) the symbol n is a kind of variable which can be
replaced with any numeral 0, 1, 2, · · ·. Those kinds of variables are called
meta-variables.

Massimo Merro Espressioni aritmetiche 7 / 15



How to read rules

The rule

(B-Add)
E1 ⇓ n1 E2 ⇓ n2

E1 + E2 ⇓ n3
n3 = add(n1, n2)

should be read in the following manner:

given two expressions E1 and E2

if it is the case that E1 ⇓ n1

and it is the case that E2 ⇓ n2

then it follows that E1 + E2 ⇓ n3

where n3 is the numeral associated to the number n3, such that
n3 = add(n1, n2)

recall that add(−,−) is an operation on numbers NOT numerals.

In the rule (B-Add), E1, E2, n1, n2, n3 are meta-variables.

Massimo Merro Espressioni aritmetiche 8 / 15



How to use axioms and rules

We can apply axioms and rules to derive judgements. Such derivations
take the form of trees:

(B-Add)
(B-Num)

−
3 ⇓ 3

(B-Add)
(B-Num)

−
2 ⇓ 2

(B-Num)
−

1 ⇓ 1
(2 + 1) ⇓ 3

3 + (2 + 1) ⇓ 6

For example, the derivation above allows us to derive the judgement:

3 + (2 + 1) ⇓ 6

by applying three times the axiom (B-Num) and two times rule (B-Add).

Massimo Merro Espressioni aritmetiche 9 / 15



Small-step Semantics for Exp

Judgements:

E1 _ E2

Meaning:

After performing one-step of E1 the expression E2 remain to be evaluated.

Massimo Merro Espressioni aritmetiche 10 / 15



A Left-to-right Small-step Semantics for Exp

Inference rules

(S-Left)
E1 _ E′

1

E1 + E2 _ E′
1 + E2

(S-N.Right)
E2 _ E′

2

n1 + E2 _ n1 + E′
2

(S-Add)
−

n1 + n2 _ n3
n3 = add(n1, n2)

We fix the evaluation order, from left to right. Something similar is not
possible in a big-step semantics where expressions are evaluated in a single
“big” step.

Massimo Merro Espressioni aritmetiche 11 / 15



A Choice Small-step Semantics for Exp

A different small-step semantics for Exp is the following:

Inference rules:

(S-Left)
E1 _ch E′

1

E1 + E2 _ch E′
1 + E2

(S-Right)
E2 _ch E′

2

E1 + E2 _ch E1 + E′
2

(S-Add)
−

n1 + n2 _ch n3
n3 = add(n1, n2)

Here, no precedence is established during the evaluation.
Similar rules apply to the other operators ×, −, · · · .

Massimo Merro Espressioni aritmetiche 12 / 15



Executing small-step semantics

The relation _k , for k ∈ N (k may be 0)

We write E _k Ek whenever:

E = E0 _ E1 _ E2 _ . . . _ Ek

The relation _∗

We write E _∗ F if E _k F for some k ∈ N.

The relation _∗ is called reflexive and transitive closure of _. Reflexive
because k may be 0.

The final answer

We say that n is the final answer of E if E _∗ n.

Massimo Merro Espressioni aritmetiche 13 / 15



Questions

Internal consistency of semantics

Is it possible to derive

E ⇓ 3 and E ⇓ 7

for some expression E?

Is there some expression E which has no resulting value:

E _∗ n for no numeral n

Massimo Merro Espressioni aritmetiche 14 / 15



Questions

Consistency between the different semantics

What is the relationship between the different judgements:

E ⇓ n

E _∗ n

E _∗
ch n

Usefulness

Can these techniques be applied to realistic programming languages?

Massimo Merro Espressioni aritmetiche 15 / 15


