
Data and Mutable Store

Massimo Merro

14 November 2017

Massimo Merro Data and Mutable Store 1 / 24

So far we have only looked at very simple basic data types: int, bool,
unit, and functions over them.

Let us explore now more structured data, maintaining them in the
simplest form as possible, and revisit the semantics of mutable store.

We start with two basic structured data: product and sum type.

The product type T1 ∗ T2 allows us you to tuple together values of
type T1 and T2. In C this is done with structs; while in Java one can
use a class.

The sum type T1 + T2 lets you form a disjoint union, with a value of
the sum type either being a value of type T1 or a value of type T2. In
C this is done using unions, while in Java a class can implement more
interfaces (although it can extends only one class).

In most languages these features appear in richer forms: labelled
records rather than simple products, or labelled variants, or ML
datatypes with named constructors, rather than simple sums.

Massimo Merro Data and Mutable Store 2 / 24

Products

Let us extend the grammars for expressions and types:

e ::= . . .
∣∣ (e1, e2)

∣∣ #1 e
∣∣ #2 e

T ::= . . .
∣∣ T1 ∗ T2

Design choices (simplifications):

pairs, not arbitrary tuples: we have both int ∗ (bool ∗ unit) and
(int ∗ bool) ∗ unit, but we don’t have int ∗ bool ∗ unit;

we have projections #1 and #2, not pattern matching;

we don’t have #e e ′ (cannot be typed).

Massimo Merro Data and Mutable Store 3 / 24

Products - typing

(pair)
Γ ` e1 : T1 Γ ` e2 : T2

Γ ` (e1, e2) : T1 ∗ T2

(proj1)
Γ ` e : T1 ∗ T2

Γ ` #1 e : T1

(proj2)
Γ ` e : T1 ∗ T2

Γ ` #2 e : T2

Massimo Merro Data and Mutable Store 4 / 24

Products - operational semantics

Let us extend the possible values as follows:

v ::= . . .
∣∣ (v1, v2)

(pair1)
〈e1, s〉_ 〈e ′1, s ′〉

〈(e1, e2), s〉_ 〈(e ′1, e2), s ′〉

(pair2)
〈e2, s〉_ 〈e ′2, s ′〉

〈(v , e2), s〉_ 〈(v , e ′2), s ′〉

(proj1)
−

〈#1 (v1, v2) , s〉_ 〈v1, s〉
(proj2)

−
〈#2 (v1, v2) , s〉_ 〈v2, s〉

(proj3)
〈e, s〉_ 〈e ′, s ′〉

〈#1 e , s〉_ 〈#1 e ′ , s ′〉 (proj4)
〈e, s〉_ 〈e ′, s ′〉

〈#2 e , s〉_ 〈#2 e ′ , s ′〉

We have chosen left-to-right evaluation order for consistency.

Massimo Merro Data and Mutable Store 5 / 24

Sums (or Variants, or tagged Unions)

Let us extend the grammars for expressions and types:

e ::= . . .
∣∣ inl e : T

∣∣ inr e : T
∣∣

case e of inl (x1 : T1)⇒ e1 | inr (x2 : T2)⇒ e2

T ::= . . .
∣∣ T1 + T2

Note that x1 and x2 are bound in e1 and e2, respectively.

Massimo Merro Data and Mutable Store 6 / 24

Sums - typing

(inl)
Γ ` e : T1

Γ ` (inl e:T1 + T2) : T1 + T2

(inr)
Γ ` e : T2

Γ ` (inr e:T1 + T2) : T1 + T2

(case)
Γ ` e : T1 + T2 Γ, x1 : T1 ` e1 : T Γ, x2 : T2 ` e2 : T

Γ ` (case e of inl(x1 : T1)⇒ e1 | inr(x2 : T2)⇒ e2) : T

Massimo Merro Data and Mutable Store 7 / 24

Sums - type annotations

Why do we have in the syntax type annotations for sums?

To maintain the Uniqueness typing property, i.e. each expression e, if
typable, must have a unique type T in an environment Γ such that
Γ ` e : T .

Without type annotations we would have:

inl 3 of type int + int, but also

inl 3 of type int + bool

and, more generally:

inl 3 of type int + T , for any type T

Massimo Merro Data and Mutable Store 8 / 24

Sums - operational semantics (1)

Let us extend the grammar of values as follows:

v ::= . . .
∣∣ inl v : T

∣∣ inr v : T

Let us extend the operational semantics:

(inl)
〈e, s〉_ 〈e ′, s ′〉

〈inl e:T , s〉_ 〈inl e ′:T , s ′〉

(inr)
〈e, s〉_ 〈e ′, s ′〉

〈inr e:T , s〉_ 〈inr e ′:T , s ′〉

(case1)

〈e, s〉_ 〈e ′, s ′〉
〈case e of inl (x1:T1)⇒ e1 | inr (x2:T2)⇒ e2 , s〉

_ 〈case e ′ of inl (x1:T1)⇒ e1 | inr (x2:T2)⇒ e2 , s
′〉

Massimo Merro Data and Mutable Store 9 / 24

Sums - operational semantics (2)

(case2)

−
〈case inl v :T of inl (x1:T1)⇒ e1 | inr (x2:T2)⇒ e2 , s〉

_ 〈e1{v/x1} , s〉

(case3)

−
〈case inr v :T of inl (x1:T1)⇒ e1 | inr (x2:T2)⇒ e2 , s〉

_ 〈e2{v/x2} , s〉

Massimo Merro Data and Mutable Store 10 / 24

Records

A generalization of products.

Each field is associated with a label.

Labels lab ∈ LAB for a set LAB = {p, q, . . .}.
Again let us extend the syntax of expressions and types:

e ::= . . .
∣∣ {lab1 = e1, . . . , labk = ek}

∣∣ #lab e

T ::= . . .
∣∣ {lab1 : T1, . . . , labk : Tk}

where in each record (type or expressions) no lab occurs more than once.

Massimo Merro Data and Mutable Store 11 / 24

Records - typing

(record)
Γ ` e1 : T1 . . . Γ ` ek : Tk

Γ ` {lab1 = e1, . . . , labk = ek} : {lab1 : T1, . . . , labk : Tk}

(recordproj)
Γ ` e : {lab1 : T1, . . . , labk : Tk}

Γ ` #labi e : Ti

Here the field order matters so, for example, the expression(
fn x : {l1 : int, l2 : bool} ⇒ x

)
{l2 = true, l1 = 17}

is ill-typed.

The same label can be used in different records. In some languages (e.g.
OCaml) this is not allowed.

Massimo Merro Data and Mutable Store 12 / 24

Records - operational semantics

Let us extend the grammar of values as follows:

v ::= . . .
∣∣ {lab1 = v1, . . . , labk = vk}

And the operational semantics:

(record1)

〈ei , s〉_ 〈e ′i , s ′〉
〈{lab1 = v1, . . . , labi = ei , . . . labk = ek} , s〉

_ 〈{lab1 = v1, . . . , labi = e ′i , . . . labk = ek} , s ′〉

(record2)
−

〈#labi {lab1 = v1, . . . , labi = vi , . . . labk = vk} , s〉_ 〈vi , s〉

(record3)
〈e, s〉_ 〈e ′, s ′〉

〈#lab e , s〉_ 〈#lab e ′ , s ′〉

Massimo Merro Data and Mutable Store 13 / 24

Mutable Store

Most languages have some kind of mutable store. Two main choices:

1. What we have done in our language is the following:

e ::= . . .
∣∣ l := e

∣∣ !l
∣∣ x

locations store mutable values: we use the assignment construct to
change the value associated to a location

variables refer to a previously-calculated value: once we associate a
value to a variable we can not change it anymore

explicit dereferencing for locations only

fn x : int⇒ l := !l + x; . . .

Massimo Merro Data and Mutable Store 14 / 24

2. in other language like C and Java:

variables let you refer to a previously calculated value and you can
overwrite that value with another one

implicit dereferencing. The function of the previous slide becomes in
Java:

void foo(x : int){l := l + x; ...}

have some limited type machinery to limit mutability.

In our language we are staying with option 1.

Massimo Merro Data and Mutable Store 15 / 24

Extending the store

In the following we overcome some limitations on references of our
language. In particular, we recal that, at the moment:

We can only store integers value

We cannot create new locations (they are statically determined)

We cannot write functions that abstracts on locations, such as

fn l : intref ⇒ !l

Let us extend syntax and types to overcome these limitations:

e ::= . . .
∣∣ 6l :=e

∣∣ 6!l
∣∣ e1:=e2

∣∣ !e
∣∣ ref e

∣∣ l

T ::= . . .
∣∣ ref T

Tloc ::= 6intref
∣∣ ref T

Massimo Merro Data and Mutable Store 16 / 24

References - Typing

(ref)
Γ ` e : T

Γ ` ref e : ref T

(assign)
Γ ` e1 : ref T Γ ` e2 : T

Γ ` (e1 := e2) : unit

(deref)
Γ ` e : ref T

Γ ` !e : T

(loc)
−

Γ ` l : ref T
Γ(l) = ref T

Massimo Merro Data and Mutable Store 17 / 24

References - Operational semantics

A locations is a value:
v ::= . . .

∣∣ l

Up to now a store s was a finite partial map from L to Z. From now on,

s : L ⇀ V .

Let us see the rules of the semantics:

(ref1)
−

〈ref v , s〉_ 〈l , s[l 7→ v]
l 6∈ dom(s)

(ref2)
〈e, s〉_ 〈e ′, s ′〉

〈ref e, s〉_ 〈ref e ′, s ′〉

Rule (ref1) is for dynamic allocation of memory!

Massimo Merro Data and Mutable Store 18 / 24

(deref1)
−

〈!l , s〉_ 〈v , s〉 if l ∈ dom(s) and s(l) = v

(deref2)
〈e, s〉_ 〈e ′, s ′〉
〈!e, s〉_ 〈!e ′, s ′〉

(assign1)
−

〈l := v , s〉_ 〈skip, s[l 7→ v]〉 if l ∈ dom(s)

(assign2)
〈e, s〉_ 〈e ′, s ′〉

〈l := e, s〉_ 〈l := e ′, s ′〉

(assign2)
〈e1, s〉_ 〈e ′1, s ′〉

〈e1 := e2, s〉_ 〈e ′1 := e2, s
′〉

Massimo Merro Data and Mutable Store 19 / 24

How things change

An expression of the form ref v has to do something at runtime:
should return a new (fresh) location associated to the value v

Functions can abstract over locations: fn x : ref T ⇒ !x

When program starts they don’t have locations: they must create new
locations at runtime

Typing and operational semantics permits locations to contain
locations, e.g. ref(ref 3)

In this semantics the Determinacy property is lost, for a technical
reason: new locations are chosen arbitrarly . To recover Determinacy
we would need to work “up to alpha-conversion for locations”

Within our language you are not allowed to do arithmetic on
locations, only assignments (it can be done in C but not in Java) or
test whether one is bigger than another

Our store just grows during computation - in a real programming
language we would need a garbage collector.

Massimo Merro Data and Mutable Store 20 / 24

Type-checking the store

Before introducing references in our type properties we used the condition

dom(Γ) ⊆ dom(s)

to express that “all locations mentioned in Γ exist in the store s”.

Now, with the introduction of references, we need more:

for each l ∈ dom(s) we need that s(l) is typable.

Notice that s(l) may contain functions and even some other locations...

Massimo Merro Data and Mutable Store 21 / 24

Type-checking the store - Example 1

Consider

e = let x : ref bool = ref true in

while !x (do; x := (boolean expression))

if the while will exit we will have the following reduction sequence:

〈e, {}〉_∗

〈e1, {l1 7→ true}〉1_∗
〈e2, {l1 7→ false}〉
Thus, now, we can write on variables if they refer to locations!

1A new location l1 is created and each occurrence of x is replaced with l1.
Massimo Merro Data and Mutable Store 22 / 24

Type-checking the store - Example 2
Consider

e = let f : ref (int→ int) = ref (fn z : int⇒ z) in

f := (fn z : int⇒ if z ≥ 1 then z + !f (z +−1) else 0);

!f 3

that has the following reduction sequence:

〈e, {}〉_∗

〈e1, {l1 7→ (fn z : int⇒ z)}〉_∗

〈e2, {l1 7→ (fn z : int⇒ if z ≥ 1 then z + !l1(z +−1) else 0)}〉_∗

.
〈6, {l1 7→ (fn z : int⇒ if z ≥ 1 then z + !l1(z +−1) else 0)}〉
where:

e1 ≡ l1 := (fn z : int⇒ if z ≥ 1 then z + !l1(z +−1) else 0); (!l1 3)
e2 ≡ skip; (!l1 3)

We have made a recursive function without using the fix.e operator!
Massimo Merro Data and Mutable Store 23 / 24

Typing properties

Well-typed store

We write Γ ` s if

1 dom(Γ) = dom(s), and

2 for all l ∈ dom(s), if Γ(l) = ref T then Γ ` s(l) : T .

Progress (reformulated)

If e is closed and Γ ` e : T and Γ ` s then

either e is a value, or

there exist e ′, s ′ such that 〈e, s〉_ 〈e ′, s ′〉.

Type Preservation (reformulated)

If e is closed and Γ ` e : T and Γ ` s and 〈e, s〉_ 〈e ′, s ′〉 then e ′ is closed
and for some Γ′ with disjoint domain to Γ we have Γ, Γ′ ` e ′ : T and
Γ, Γ′ ` s ′.

Massimo Merro Data and Mutable Store 24 / 24

