Data and Mutable Store

Massimo Merro

14 November 2017



@ So far we have only looked at very simple basic data types: int, bool,
unit, and functions over them.

@ Let us explore now more structured data, maintaining them in the
simplest form as possible, and revisit the semantics of mutable store.

@ We start with two basic structured data: product and sum type.

@ The product type T7 * T» allows us you to tuple together values of
type T1 and T». In C this is done with structs; while in Java one can
use a class.

@ The sum type T7 + T> lets you form a disjoint union, with a value of
the sum type either being a value of type T; or a value of type T5. In
C this is done using unions, while in Java a class can implement more
interfaces (although it can extends only one class).

@ In most languages these features appear in richer forms: labelled
records rather than simple products, or labelled variants, or ML
datatypes with named constructors, rather than simple sums.



Products

Let us extend the grammars for expressions and types:
e = ... | (e, e) | #le | #2e
T == ... ‘ T1 % To

Design choices (simplifications):

@ pairs, not arbitrary tuples: we have both int * (bool * unit) and
(int * bool) * unit, but we don't have int * bool * unit;

@ we have projections #1 and #2, not pattern matching;

@ we don't have #e €’ (cannot be typed).



|
Products - typing

( ) Fl—elle r|—622T2
P T (e, e2) : To* T2

1 Fl—e:Tl*Tz
(roil) —Frgie: 7y
(proj2) FlFe:TixTo
Pro) T 2e: T,



Products - operational semantics

Let us extend the possible values as follows:
¥V = ... ‘ (vi, )

<el75> < 15
<(e17e2)7 > <( 1762) >
)

_ (e2,5) — (€&}, 5
) ) o) = ()9

(pairl)

(proil) (#1 (vi,v2), s) = (v1,5) (proj2) (#2 (v1,v2), s) = (w2, 5)

(e,s) — (€,s) (e,s) — (€, s')

(proj3) (proj4)

(#le,s) — (#1€',5) (#2e,s) — (#2€',5)

We have chosen left-to-right evaluation order for consistency.



Sums (or Variants, or tagged Unions)

Let us extend the grammars for expressions and types:
e = ... ‘ inle: T } inre: T !
case eof inl (x1: T1) = e | inr(x: T2) = e
T == ... ’ T1+ T,

Note that x; and x» are bound in e; and ey, respectively.



-
Sums - typing

('l) I'I—e:Tl
" T TE(nleTi+ ) : 1+ T

, Fe:T»
() et 7o) it T

FlFe:Ti+To Ixx:Tikter: T [xo:Tobke: T
- (case eof inl(xy: T1) = e |inr(xx: To) = e) : T

(case)



Sums - type annotations

Why do we have in the syntax type annotations for sums?

To maintain the Uniqueness typing property, i.e. each expression e, if

typable, must have a unique type T in an environment [ such that
lFe:T.

Without type annotations we would have:
inl 3 of type int + int, but also

inl 3 of type int + bool

and, more generally:

inl 3 of type int+ T, for any type T



Sums - operational semantics (1)

Let us extend the grammar of values as follows:
v o= ... ‘ inl v: T inrv: T
Let us extend the operational semantics:

" (e,s) — (€,s)
(inf) (inl e:T,s) — (inl €:T, s

. (elsieslehs)
(inr) (inr exT, s) — (inr €T, s)

(e,s) — (€, s')
(casel)  (case e of inl (x1:T1) = e | inr(x2:T2) = e, s)
— (case € of inl (x1:T1) = e | inr (x2:T) = e, §')




Sums - operational semantics (2)

(case2) (case inl v:T of inl (x1:T1) = €1 | inr (x2:T2) = €2, s)

= (e{a}, s)

(case3) (case inr v:T of inl (x1:T1) = €1 | inr (x2:T2) = €2, 5)

— (&{")}, )



Records

A generalization of products.

Each field is associated with a label.

Labels lab € LAB for a set LAB = {p,q,...}.

Again let us extend the syntax of expressions and types:
e = ... ’ {laby = e1, ..., laby = ey} ’ #lab e
T = ’ {/abl: Tl,...,/abk: Tk}

where in each record (type or expressions) no lab occurs more than once.



|
Records - typing

( d) r|—612T1 Fl—ek:Tk
) T {laby = ey, ..., labx = ex} : {laby : Tu,...,labx: Tx}
(recordproj) Fe: {/ab1 : Tl, 000y labk 5 Tk}

I+ +#labje : T;
Here the field order matters so, for example, the expression
(fnx: {h :int, b : bool} = x){h = true, h = 17}

is ill-typed.

The same label can be used in different records. In some languages (e.g.
OCaml) this is not allowed.



Records - operational semantics

Let us extend the grammar of values as follows:

v o— ‘ {/ablzvl,...,labk:‘/k}

And the operational semantics:

(ej,s) — (e},s')
({laby = v1,...,lab; = e;,...labx = e}, s)
— ({laby = v1,...,lab; = €l,... laby = e}, s')

(recordl)

,/ab,- = \i555¢ /abk = Vk}, S> —> <V,',S>

(record2) (#lab; {laby = v1, ...

(e,s) = (€, s')
(record3) (#labe, s) — (#labe', §')

13 /24



Mutable Store

Most languages have some kind of mutable store. Two main choices:

1. What we have done in our language is the following:

e = ... ‘ | =e ‘ 1/ ’ X

@ locations store mutable values: we use the assignment construct to
change the value associated to a location

@ variables refer to a previously-calculated value: once we associate a
value to a variable we can not change it anymore

@ explicit dereferencing for locations only

fnx:int=1:=1+x;...



2. in other language like C and Java:

@ variables let you refer to a previously calculated value and you can
overwrite that value with another one

@ implicit dereferencing. The function of the previous slide becomes in
Java:

void foo(x : int){1 :=1+x;...}
@ have some limited type machinery to limit mutability.

In our language we are staying with option 1.



|
Extending the store

In the following we overcome some limitations on references of our
language. In particular, we recal that, at the moment:

@ We can only store integers value
@ We cannot create new locations (they are statically determined)

@ We cannot write functions that abstracts on locations, such as
fnl:intref = 11

Let us extend syntax and types to overcome these limitations:

e = ... ‘ I:#e ‘ I/ ‘ er:=ep ‘ le | ref e ‘ /
T = ... ‘ ref T
Tioe = intref ’ ref T



-
References - Typing

(ref) l~e: T

re refe:ref T

(assign) e :ref T The:T

assien I (e1:= e2) : unit
FT~e:ref T

(deref) —F7er7

(lOC) W r(/) = ref T



References - Operational semantics
A locations is a value:
v o= ... ‘ /
Up to now a store s was a finite partial map from IL to Z. From now on,
s:L—~V .

Let us see the rules of the semantics:

(refl)

ety s o sl ] | % dom(s)

eg) > {g.g)
(ref2) (refe,s) — (ref €', s')

Rule (refl) is for dynamic allocation of memory!



(deref1) sy = oS if | € dom(s) and s(/) = v
(deref2) <§:3 = Ei'52>

(assign1) T=ve = <_skip,s[l i if | € dom(s)
(assign2) — ;:<:: 3 = é/e,;’i', )

(assign2) (e1,5) = (€}, s")

(e1 1= e,s) — (€] := e, )



|
How things change

@ An expression of the form ref v has to do something at runtime:
should return a new (fresh) location associated to the value v

@ Functions can abstract over locations: fn x : ref T = Ix

@ When program starts they don't have locations: they must create new
locations at runtime

@ Typing and operational semantics permits locations to contain
locations, e.g. ref(ref 3)

@ In this semantics the Determinacy property is lost, for a technical
reason: new locations are chosen arbitrarly. To recover Determinacy
we would need to work “up to alpha-conversion for locations”

@ Within our language you are not allowed to do arithmetic on
locations, only assignments (it can be done in C but not in Java) or
test whether one is bigger than another

@ Our store just grows during computation - in a real programming
language we would need a garbage collector.



N
Type-checking the store

Before introducing references in our type properties we used the condition
dom(I") € dom(s)
to express that “all locations mentioned in [ exist in the store s”.
Now, with the introduction of references, we need more:
for each | € dom(s) we need that s(/) is typable.

Notice that s(/) may contain functions and even some other locations...



|
Type-checking the store - Example 1

Consider

e = let x:ref bool = ref true in

while !x (do ....;x := (boolean expression))

if the while will exit we will have the following reduction sequence:

(e, {}) =~
(6'1, {11 — true}>1—>*
(e2, {11 > false})

Thus, now, we can write on variables if they refer to locations!

LA new location 1; is created and each occurrence of x is replaced with 1



|
Type-checking the store - Example 2

Consider
e = let f:ref (int —int) = ref (fn z:int = z) in
f:=(fnz:int=ifz>1then z+ !f(z+ —1) else 0);
If 3

that has the following reduction sequence:

(e, {}) =~

(e1,{li = (fn z : int = z)}) —*

(e2,{li—= (fnz:int = if z> 1 then z + !l;(z + —1) else 0)}) —*
(6,{ly — (fn z : int = if z > 1 then z+ '1;(z + —1) else 0)})

where:

eg = li:=(fnz:int=if z>1then z+ 1;(z + —1) else 0); (!1; 3)
e = skip; ('3 3)

We have made a recursive function without using the fix.e operator!



|
Typing properties
Well-typed store
We write [ s if
@ dom(l') = dom(s), and
@ for all | € dom(s), if (/) =ref T then - s(/): T.

Progress (reformulated)
If eisclosed and TFe: T and I - s then
@ either e is a value, or

@ there exist €, s’ such that (e, s) — (¢/,s').

Type Preservation (reformulated)

If eisclosed and T'e: T and 't s and (e, s) — (€, s’) then €’ is closed
and for some " with disjoint domain to I we have I', T’ ¢’ : T and
ks




