Worksheet: Structural induction – Some answers

(1) (a)

nodes(**leaf**) = 1 nodes(**Branch** (T_1, T_2)) = nodes (T_1) + nodes (T_2) + 1

(b)

height(**leaf**) = 0 height(**Branch** (T_1, T_2)) = max(height (T_1) , height (T_2)) + 1

Here max is a function which returns the maximum of two natural numbers.

(c) Let P(T) be the property: $nodes(T) \le 2^{height(T)+1} - 1$. We prove P(T) is true of every binary tree *T*, using structural induction on *T*.

There are two cases:

• **Base case:** Here we have to show P(leaf) is true; that is $\text{nodes}(\text{leaf}) \le 2^{\text{height}(\text{leaf})+1} - 1$.

This follows by calculation since by definition nodes(leaf) = 1 and height(leaf) = 0, and $1 \le 2^{0+1} - 1$.

• **Inductive case:** Here we assume $P(T_1)$ and $P(T_2)$ are true for some arbitrary trees T_1 , T_2 . This we call the *inductive hypothesis* IH, which means we are assuming

 $\begin{array}{lll} \mathsf{nodes}(T_1) & \leq & 2^{\mathsf{height}(T_1)+1}-1 \\ \mathsf{nodes}(T_2) & \leq & 2^{\mathsf{height}(T_2)+1}-1 \end{array}$

Under this assumption we have to show that $P(\mathbf{Branch}(T_1, T_2))$ follows. For clarity let us denote $\mathsf{nodes}(\mathbf{Branch}(T_1, T_2))$ by *N* and $\mathsf{height}(\mathbf{Branch}(T_1, T_2))$ by *H*. This means we have to deduce $N \le 2^{H+1} - 1$. See the sequence of deductions below:

$$N = \text{nodes}(T_1) + \text{nodes}(T_2) + 1 \qquad \text{by definition}$$

$$\leq 2^{\text{height}(T_1)+1} - 1 + 2^{\text{height}(T_1)+1} - 1 + 1 \qquad \text{by IH}$$

$$\leq 2^H - 1 + 2^H - 1 + 1 \qquad \text{since height}(T_i) + 1 \leq H$$

$$= 2^H + 2^H - 1$$

$$= 2^{H+1} - 1$$

(2) The function plusses is easy to define:

$$plusses(n) = 0$$

plusses((E₁ + E₂)) = plusses(E₁) + plusses(E₂) + 1.

As usual, in the case for the compound expression $(E_1 + E_2)$, we are allowed to make use of plusses (E_1) and plusses (E_2) , since E_1 and E_2 are sub-expressions of the expression we're interested in.

Some Answers

(3) The function nums is only a minor variation:

$$nums(n) = 1$$

$$nums((E_1 + E_2)) = nums(E_1) + nums(E_2).$$

Let P(E) be the property plusses(E) < nums(E). We will show by structural induction on E that P(E) is true for every expression E.

Base case: Here *E* is a numeral, say n, and we need only look up the definitions of the two functions:

$$plusses(n) = 0 < 1 = nums(n)$$

Inductive Step: Here *E* has the form $E_1 + E_2$ and we may assume that the statement *P* is true of E_1 and E_2 . So we may assume

 $plusses(E_1) < nums(E_1)$ $plusses(E_2) < nums(E_2)$

We refer to these assumptions as IH.

Now we look up the definition of the functions applied to *E* and P(E) follows by simple calculation:

$$plusses(E) = plusses(E_1) + plusses(E_2) + 1$$

$$(definition)$$

$$< nums(E_1) + nums(E_2) \qquad (IH)$$

Question: Can you justify the last step ?

By structural induction we may now conclude the P(E) is true for every expression *E*.

- (4) (a) To define a function $f : BinNum \to \mathbb{N}$ is it sufficient to
 - **Base case:** explain what it means to apply *f* to the binary numeral **0** and what it means to apply it to 1
 - Inductive case: Assuming we know what f(b) is, describe what it means to
 - apply f to b**0**
 - apply f to b1

So there are two base cases and two inductive cases.

The function number : $BinNum \to \mathbb{N}$ is defined by

number(0)	=	0	a base case
number(1)	=	1	the second base case
number(b0)	=	$2 \times \text{number}(b)$	an inductive case
number(b1)	=	$2 \times \text{number}(h)$ second inductive case	

Some Answers

Similarly the function sum : $BinNum \rightarrow \mathbb{N}$ is defined by:

sum(0)	=	0	a base case
sum(1)	=	1	the second base case
sum(<i>b</i> 0)	=	number(b)	an inductive case
sum(b1)	=	number(b) + the second inductive case	

(b) The structural induction principle for *BinNum* is as follows:

Let P(b) be a property of binary numerals. To show that P(b) holds for all binary numerals *b* it is sufficient to:

- (i) **A base case:** prove $P(\mathbf{0})$ is true
- (ii) A base case: prove P(1) is true
- (iii) **Inductive cases:** assuming the *inductive hypothesis* P(b) prove
 - P(b0) follows
 - P(b1) follows.

As an example of this principle let us show that the property

P(b) : sum(b) \leq number(b)

is true for every binary numeral b. To do so we have to establish four facts:

- (i) A base case: We have to show P(0) is true, that is $sum(0) \le number(0)$. This follows by definition of the two functions; sum(0) = 0 = number(0).
- (ii) Another base case: We have to show P(1) is true; this is similar to the first case.
- (iii) **The inductive cases:** here we assume P(b) holds, that is sum $(b) \le$ number(b); this is the inductive hypothesis, which we call (IH). From this we have to deduce two consequences:
 - *P*(*b***0**) follows. Some simple calculations suffice:

sum(b0)	=	sum(b)	by definition
	\leq	number(b)	(IH)
	\leq	$2 \times \text{number}(b)$	maths
		number(b0)	by definition

• *P*(*b*1) follows. Similar to the previous inductive case. Make sure you can write it out correctly.

Some Answers