
Tutorial 10: Laziness and Rule Induction

December 10, 2010

1. Consider a simple let language:

A ::= x | n | A1 + A2 | let x = A1 in A2

We can give the following big-step semantics for this language:

n ⇓s n

A1 ⇓s n1 A2 ⇓s n2
n = n1 + n2

A1 + A2 ⇓s n

A1 ⇓s n1 A2(
n1/x) ⇓s n2

let x = A1 in A2 ⇓s n2

We have annotated the downwards arrow to indicate that this semantics is strict: this means that in let

expressions we first evaluate A1 before substituting it for x. We can also give a lazy semantics:

n ⇓` n

A1 ⇓` n1 A2 ⇓` n2
n = n1 + n2

A1 + A2 ⇓` n

A2(
A1/x) ⇓` n

let x = A1 in A2 ⇓` n

For this language, the only difference between the two semantics is “efficiency”: some expressions eval-
uate in fewer steps with the strict semantics than with the lazy semantics, and some expressions evaluate
in fewer steps with the lazy semantics with the strict semantics. Give an example of both.

2. Prove that the strict semantics implies the lazy semantics. We will need dan auxiliary lemma about the
lazy semantics:

Lemma 1 For all A1, A2, n, if A1 ⇓` n1 and A2(
n1/x) ⇓` n2 then A2(

A1/x) ⇓` n2.

This lemma is a little tricky to prove (good exercise though!) so for now you can just assume it given.

With this lemma you should be able to prove:

Lemma 2 For all A, n, if A ⇓s n then A ⇓` n.

3. To prove that the strict semantics implies the lazy semantics, we will need two auxiliary lemmas.

(a) The first is very similar (but opposite) to the auxiliary lemma we needed above:

Lemma 3 For all A1, A2, n, if A1 ⇓s n1 and A2(
A1/x) ⇓s n2 then A2(

n1/x) ⇓s n2.

Prove this lemma.
(b) We will also need this lemma:

Lemma 4 For all A there exist an n such that A ⇓s n.

Prove this lemma.
(c) You should now be able to prove:

Lemma 5 For all A, n, if A ⇓` n then A ⇓s n.

1

