DATA DEPENDENCIES AND PROGRAM SLICING:

FROM SYNTAX TO ABSTRACT SEMANTICS

Isabella Mastroeni and Damiano Zanardini

PEPM 2008

Data Dependencies and Program Slicing — p.1/1

SECING.: .

extracts from programs the statements which
are relevant for a given behaviour.

=

-

SLICING VS DEPENDENCIES

SLICING: ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY. ...defines what relevant means.

-_E—\.

SLICING VS DEPENDENCIES

SLICING: ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY. ...defines what relevant means.

x:=y+2z
X depends ony and on z

SYNTACTIC DEF-REF: {

S

SLICING VS DEPENDENCI ES--

SLICING: ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY. ...defines what relevant means.

.

Xa=1y+27Z

X depends on y and on z
SYNTACTIC DEF-REF: <
X =z+yYy—Yy

. X depends onyandon z

i

SLICING VS DEPENDENCIES

SLICING: ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY. ...defines what relevant means.

=). = |
X depends on z but it does NOT depend on y

SEMANTIC : {

S

SLICING VS DEPENDENCI ES--

SLICING: ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY. ...defines what relevant means.

7

2 e =Y. =1

X depends on z but it does NOT depend on y
SEMANTIC : (¢
X o]

| X dependsony

-_E—\.

SLICING VS DEPENDENCIES

SLICING: ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY. ...defines what relevant means.

AE==G /AT
x does NOT depend on y

ABSTRACT SEMANTIC (PARITY) : {

i

SLICING VS DEPENDENCIES

SLICING: ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY. ...defines what relevant means.

2

R,

x does NOT depend on y
ABSTRACT SEMANTIC (PARITY) : ¢
x:=2y+z

| X depends on z

RELATED WORKS

Slicing by means of a calculus for independencies
[Amtoft & Banerjee '07];

¥ Syntactic dependencies
¥ Forward slicing

i

RELATED WORKS

Slicing by means of a calculus for independencies
[Amtoft & Banerjee '07];

¥ Syntactic dependencies
¥ Forward slicing

Abstract dependencies [Rival '05];
¥ Mathematical, set theoretic definition of dependencies;
v Applied to Alarm diagnosis;

—
-
-

RELATED WORKS

Slicing by means of a calculus for independencies
[Amtoft & Banerjee '07];

¥ Syntactic dependencies
¥ Forward slicing

Abstract dependencies [Rival '05];
¥ Mathematical, set theoretic definition of dependencies;
v Applied to Alarm diagnosis;

Abstract Slicing [Hong et al. '05]
“ Only for predicate abstractions;
¥ Considers a subset of possible executions

ABSTRACT INTERPRETATION

Consider the complete lattice < C, <, A\,V, L, T >, A; € uco(C)

Lattice of Abstract Domains = Lattice uco
A= p(C)
<-UCO(C), E T 1l s Aoeain e

ABSTRACT INTERPRETATION

Consider the complete lattice < C, <, A\,V, L, T >, A; € uco(C)

Lattice of Abstract Domains = Lattice uco
A= p(C)
<-UCO(C), E T 1l s Aoeain e

AT EA S TR

Consider the complete lattice < C, <, A\,V, L, T >, A; € uco(C)

Lattice of Abstract Domains = Lattice uco
A=p(C)
<-UCO(C), E T 1l s Aoeain e

AT EA S TR

MiAL = M(UiA4)

Consider the complete lattice < C, <, A\,V, L, T >, A; € uco(C)

Lattice of Abstract Domains = Lattice uco
A=p(C)
<-UCO(C), E T 1l s Aoeain e

AT EA S TR
MA; = M(UjA4)

Il A=A

Consider the complete lattice < C, <, A\,V, L, T >, A; € uco(C)

Lattice of Abstract Domains = Lattice uco
A=p(C)
<-UCO(C), E T 1l s Aoeain e

AT IEA & T pr G
MiAL = M(UiA4)
A=l A

=
=

-

ABSTRACT INTERPRETATION

Consider the complete lattice < C, <, A\,V, L, T >, A; € uco(C)

Lattice of Abstract Domains = Lattice uco
A=p(C)
<-UCO(C), E T 1l s Aoeain e

AT IEA & T pr G
MiAL = M(UiA4)
[l ==al I

Bottom:

i - 1} i -|'- |.I 1 ook I-I 1I.I-|.|. II|J|'III. |_l_ .lI B I:'.I III.' ¥ -'t. |4 { ! Fa¥ ‘...-.
y .'I'. w A N LAY L AU AR]‘-!"J"-"I "L‘.-'i J ey i "I‘- LR U b et

) DEPENDENCIES IN PDG
h Program Dependency Graphs (PDG) are a standard way for modelling

",' dependencies for slicing. They are defined by two kind of edges (s1, s>):
?; CONTROL FLOW EDGE: s represents a control predicate and s, represents a
F"? component of the program immediately nested within the predicate s1;

r
iy

FLow DEPENDENCEEDGE: sq defines a variable x which is used in s>
l.e., x edef(sq)nref(s,),
and x is not further defined between s; and s»;

I. .':I L '}1 i s I.I I"l.h ;‘Illr I! I"J it FH.‘-'.':IIE.':FII :I '.. 1 I'-.' ILI! ',I i M5 ""'l!l': e

DEPENDENCIES IN PDG-

:';3.;; Program Dependency Graphs (PDG) are a standard way for modelling
- dependencies for slicing. They are defined by two kind of edges (s1,s>):

CONTROL FLOW EDGE: sy represents a control predicate and s, represents a
component of the program immediately nested within the predicate s;

FLow DEPENDENCEEDGE: sq defines a variable x which is used in s>
i l.e., x edef(sq)nref(s,),
@; and x is not further defined between s; and s;;

* 2
Flow dependence edges = DIRECT FLOWS=DEF-REF dependencies
Control flow edges = INDIRECT FLOWS

L Y R N et P T T A O BB RV LR 2 A Y FILr 8 B I e

SLICING = Requires the same I/O behaviour, I.e., no semantic
dependencies

PDG = Models syntactic dependencies

SLICING = Requires the same I/O behaviour, I.e., no semantic
dependencies

PDG = Models syntactic dependencies

U

THERE IS A CLEAR GAP SEMANTICS VS SYNTAX

S

SLICING VS DEPENDENCI ES--

SLICING = Requires the same I/O behaviour, I.e., no semantic
dependencies

PDG = Models syntactic dependencies

U

THERE IS A CLEAR GAP SEMANTICS VS SYNTAX

PDG = Generate a slicing considering more dependencies (syntactic)

(SEMANTIC) SLICING < Needs a weaker notion of dependence.

SLICING PARAMENTRIC ON THE CHOSEN DEPENDENCE NOTION

A LOGIC FOR (IN)DEPENDENCIES

Formalization of notion of (in)dependence [x x y][Amtoft & Banerjee '04].

G {T5} x = e (T"]
ifViy xwleT? (x £y = [yxw]ETg)
(x=y = W¢&GA VzeFV(e). [zx W] € T}

Go F {T5Is1{T"} Go F {Th}s2{T"}

G F {T5}if e then s; else s,{T"}
ifGC Gy A (W¢g Gy = Vxe€FV(e) [x xwl €T§)

Go F {T")s{T"}

G F {T*while e do s{T%
ifGC Gy A (Wé Gy = VxeFV(e). [x xw] eTH

A LOGIC FOR (IN)DEPENDENCIES

Formalization of notion of (in)dependence [x x y][Amtoft & Banerjee '04].

GH{T§} x:=e{T%
ifViyx wl e T (x 2y = [y xw] € TH)
(x=y = WEGA Vz~e [zxwleTd

Go F {T51s1{T"} Go F {T5}so{T"}

G - {T5lif e then s7 else s, {T")
fGC Gy AN WgGy = Vx~ e,

Go F {T")s{T"}

G + {T*}while e do s{T%}
fGC Gy AN WgGy = Vx~ e,

z:=w+Yy + 2%% —w

SYNTACTIC DEP. A variable is a free variable in the expression assigned to z?

:> z depends on {w, y, x}!

SEMANTIC (ABSTRACT) DEPENDENCIES

Z2:=w+y+2x>—w

SEMANTIC DEP. By varying the value of a variable does the expression change?

x~se & 307,02. Yy #x.01(y) =02(y) A [e](or) = [e](o2)

z depends on {y, x}!

SEMANTIC (ABSTRACT) DEPENDENCIES

z:=w+Yy 4+ 2%5 — W

ABSTRACT SEMANTIC DEP. By varying the property of a variable does the
property of the expression change?

X~y e < Joy,02. Yy #x.p(01(y)) = plo2(y)) A pl[e](o1)) = p([e](02))

If we consider Parity z depends on {y}!

SEMANTIC (ABSTRACT) DEPENDENCIES

z:=w+Yy 4+ 2%% — W

ABSTRACT SEMANTIC DEP. By varying the property of a variable does the
property of the expression change?

X~y e < Joy,02. Yy #x.p(01(y)) = plo2(y)) A pl[e](o1)) = p([e](02))

:> If we consider Sign z depends on {y, x}!

We have two kind of dependencies:

Data dependencies (Assignments);

Control dependencies (Control structures)

==
=

-

PRUNING DEPENDENCIES

We have two kind of dependencies:
Data dependencies (Assignments) = Direct flows;

Control dependencies (Control structures) = Indirect flows

=

PRUNING DEPENDENCIES

We have two kind of dependencies:

Data dependencies (Assignments) = Direct flows;

Control dependencies (Control structures) = Indirect flows

We propose a PRUNING of data dependencies!

\

STILL WE LOSE SOMETHING ABOUT CONTROL DEPENDENCIES

i

PRUNING DEPENDENCIES

We have two kind of dependencies:

Data dependencies (Assignments) = Direct flows;

Control dependencies (Control structures) = Indirect flows

if (y+2x mod2) ==0thenw:=0€esew:=0

— The guard DOES NOT DEPENDON x: OK

= The variable w DOES NOT DEPENDON y: NO!

r L] SACLE AL I 5y LR § SRS g L i | LT
IR ANy JI!IrJ el "L'i.l.'. 1 -I '.'."1.}.- !l‘ "'i‘-'u e RO RS TLEY |-""-r'..| Ay

DERIVING ABSTRACT DEPENDENCIES (1)

The definition of narrow deps contains quantifiers on variables and states
This means that, even abstracting states,
the number of comparisons between p ([e]o;) and p ([e]o>)
may be huge or infinite if the domain is non-trivial

e

f
|
i
- Yet, we observe that:
..l . . -
% Some states are not possible at a given program point
R o | . &
bt What is computed in a broader state can be valid in narrower states
M (monotonicity)
_-fl

p([el([T])) <U & p([e](leven])) < U A p([e]{lodd])) < U

VBRI T I L TR TR S

A systematic way to go through the (variables and states)-space:

¥ Iincrementally find the set X of variables which are enough to
determine the value of e

v X determines e if any change to other variables can be ignored
(needs to go into the state space)

LB T —-‘r‘rn;_'| e e N =¥ a1y, .'_"*.‘-': ik ;! -i_'_'_ll'l'-‘ ‘”.."!I'_.‘-'.'_”'_r'l"_'.' gy o L f.:l'.,' -I|'|.' P ‘-.'-.TI"' "_1!' "E'j‘,'-'"" ‘_'.' AT P
el s A TR A e LA S e e AR Ol [H sl pd

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:

iIncrementally find the set X of variables which are enough to
determine the value of e

X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 x2 x3 x4

' .'l". s | ..Illﬂ":lrﬂ.ﬁl 14 F, |l|.'.ll:'|'t[' 'i.l--r.' A ' 5 '.'.-.i.'l 19 vidw ..'-; o r] |Ill:'li.:l'.-r'. 'F.q;.rql'lll'l-h."‘.""k'l:l‘l :.I.I“-"

O e A R N B T e O 0 2 I I R T e

=

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:

iIncrementally find the set X of variables which are enough to
determine the value of e

X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 x2 x3 x4

l"-'lr *."I $ (i S ' .|:I -. i 'J'I I-'l.'lylrlHl=;'. 'lllilq'l.r.'.. lll"l'l."'.."I‘I|‘|-'EIHI|'.I":|I|FI ; r L | Tll.‘l !]Fm;':r;ﬁflt:'el I‘ R A

NG I A A Y LT R e By 0 O T e (S

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:

iIncrementally find the set X of variables which are enough to
determine the value of e

X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 x2 x3 x4

TR T e O R A S T O U R R N O R A R LA G YT R e

SRR B b P (O L 2 G

A DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:

iIncrementally find the set X of variables which are enough to
determine the value of e

X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 X2 x3 x4
No need to compute

R R A S T T T O L RO PR R A LAy b e

AU gl

VN BN T J O O e VI A O

> 3
3 DERIVING ABSTRACT DEPENDENCIES (2) §
I L
A A systematic way to go through the (variables and states)-space:

iIncrementally find the set X of variables which are enough to

determine the value of e

X determines e if any change to other variables can be ignored

(needs to go into the state space)

3 x1 X2 x3 x4
o A S e O T A R N R S Y T LR g e b

S IR AN I N T e O e VI e B R
r} REMOVING ABSTRACT DEPENDENCIES

Another application: simplifying a domain in order to remove dependencies on
a set of variables

Basically, systematically removing from p the abstract values which are
responsible for the distinguishability of two states

x1 x2 x3 x4

d ‘l‘ a. .r e :1‘”"':- ‘Illlll"l-.h.'..l :rllrl‘li' hﬁl‘ 1 *"IL""-' - I'.jl.. tl:i.:':-l: Il‘...'.' | I' 1

[Glacobazzi & Mastroeni '04]

Secret H

Public L

>

\ 5 Secret H
--------------- >

Public L

Rk

[Glacobazzi & Mastroeni '04]

Secret H

Public L

>

Observer:

\ 5 Secret H

Public L

Rk

P

[Glacobazzi & Mastroeni '04]

Secret H Public L

Observable: ¢

/ =
gS.e.f.';.e.t : EI.) -(ﬁ)

Public L

Rk

CERTIFYING PROGRAMS FOR AN|.:-:

We certify the security degree of programs relatively to an output
observation [Giacobazzi & Mastroeni].

We can derive the certification inductively on the syntax of programs
[Glacobazzi & Mastroeni '04].

PROBLEM: This system of rules has a semantic rule!

CERTIFYING PROGRAMS FOR AN|--

We certify the security degree of programs relatively to an output
observation [Giacobazzi & Mastroeni].

We can derive the certification inductively on the syntax of programs
[Glacobazzi & Mastroeni '04].

PROBLEM: This system of rules has a semantic rule!

We can avoid the semantic rule by computing
ABSTRACT DEPENDENCIESfor assignment!

S

CONCLUSIONS |

We provide an insight on the strong relation between slicing and
dependency;

A new point of view: Slicing parametric on a notion of dependency;
Still we are not able to get the most precise semantic slicing;

Still there is a lot of work to do towards a real implementation.

	Slicing vs dependencies
	Related works
	Abstract Interpretation
	Dependencies in PDG
	Slicing vs dependencies
	A logic for (in)Dependencies
	Semantic (Abstract)
dependencies
	Pruning dependencies
	Deriving abstract dependencies (1)
	Deriving abstract dependencies (2)
	Removing abstract dependencies
	Abstract Non-Interference
	Certifying programs for ANI
	Conclusions

