
DATA DEPENDENCIES AND PROGRAM SLICING:

FROM SYNTAX TO ABSTRACT SEMANTICS

Isabella Mastroeni and Damiano Zanardini

PEPM 2008

Data Dependencies and Program Slicing – p.1/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

Data Dependencies and Program Slicing – p.2/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY: ...defines what relevant means.

Data Dependencies and Program Slicing – p.2/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY: ...defines what relevant means.

SYNTACTIC DEF-REF :

{
x := y + 2z

x depends on y and on z

Data Dependencies and Program Slicing – p.2/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY: ...defines what relevant means.

SYNTACTIC DEF-REF :






x := y + 2z

x depends on y and on z

x := z + y − y

x depends on y and on z

Data Dependencies and Program Slicing – p.2/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY: ...defines what relevant means.

SEMANTIC :

{
x := z + y − y

x depends on z but it does NOT depend on y

Data Dependencies and Program Slicing – p.2/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY: ...defines what relevant means.

SEMANTIC :






x := z + y − y

x depends on z but it does NOT depend on y

x := 2y

x depends on y

Data Dependencies and Program Slicing – p.2/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY: ...defines what relevant means.

ABSTRACT SEMANTIC (PARITY) :

{
x := 2y

x does NOT depend on y

Data Dependencies and Program Slicing – p.2/15

SLICING VS DEPENDENCIES

SLICING : ...extracts from programs the statements which
are relevant for a given behaviour.

DEPENDENCY: ...defines what relevant means.

ABSTRACT SEMANTIC (PARITY) :






x := 2y

x does NOT depend on y

x := 2y + z

x depends on z

Data Dependencies and Program Slicing – p.2/15

RELATED WORKS

Slicing by means of a calculus for independencies
[Amtoft & Banerjee ’07];�

Syntactic dependencies�

Forward slicing

Data Dependencies and Program Slicing – p.3/15

RELATED WORKS

Slicing by means of a calculus for independencies
[Amtoft & Banerjee ’07];�

Syntactic dependencies�

Forward slicing

Abstract dependencies [Rival ’05];�

Mathematical, set theoretic definition of dependencies;�

Applied to Alarm diagnosis;

Data Dependencies and Program Slicing – p.3/15

RELATED WORKS

Slicing by means of a calculus for independencies
[Amtoft & Banerjee ’07];�

Syntactic dependencies�

Forward slicing

Abstract dependencies [Rival ’05];�

Mathematical, set theoretic definition of dependencies;	

Applied to Alarm diagnosis;

Abstract Slicing [Hong et al. ’05]

Only for predicate abstractions;�

Considers a subset of possible executions

Data Dependencies and Program Slicing – p.3/15

ABSTRACT INTERPRETATION

Consider the complete lattice < C,≤, ∧, ∨,⊥,⊤ >, Ai ∈ UCO(C)

Lattice of Abstract Domains ≡ Lattice UCO
A ≡ ρ(C)

< UCO(C),⊑,⊓,⊔, λx. ⊤, λx. x >

Data Dependencies and Program Slicing – p.4/15

ABSTRACT INTERPRETATION

Consider the complete lattice < C,≤, ∧, ∨,⊥,⊤ >, Ai ∈ UCO(C)

Lattice of Abstract Domains ≡ Lattice UCO
A ≡ ρ(C)

< UCO(C),⊑,⊓,⊔, λx. ⊤, λx. x >

A1 ⊑ A2 ⇔ A2 ⊆ A1

Data Dependencies and Program Slicing – p.4/15

ABSTRACT INTERPRETATION

Consider the complete lattice < C,≤, ∧, ∨,⊥,⊤ >, Ai ∈ UCO(C)

Lattice of Abstract Domains ≡ Lattice UCO
A ≡ ρ(C)

< UCO(C),⊑,⊓,⊔, λx. ⊤, λx. x >

A1 ⊑ A2 ⇔ A2 ⊆ A1

⊓iAi = M(∪iAi)

Data Dependencies and Program Slicing – p.4/15

ABSTRACT INTERPRETATION

Consider the complete lattice < C,≤, ∧, ∨,⊥,⊤ >, Ai ∈ UCO(C)

Lattice of Abstract Domains ≡ Lattice UCO
A ≡ ρ(C)

< UCO(C),⊑,⊓,⊔, λx. ⊤, λx. x >

A1 ⊑ A2 ⇔ A2 ⊆ A1

⊓iAi = M(∪iAi)

⊔iAi = ∩iAi

Data Dependencies and Program Slicing – p.4/15

ABSTRACT INTERPRETATION

Consider the complete lattice < C,≤, ∧, ∨,⊥,⊤ >, Ai ∈ UCO(C)

Lattice of Abstract Domains ≡ Lattice UCO
A ≡ ρ(C)

< UCO(C),⊑,⊓,⊔, λx. ⊤, λx. x >

A1 ⊑ A2 ⇔ A2 ⊆ A1

⊓iAi = M(∪iAi)

⊔iAi = ∩iAi

x

C

Top:

A

Data Dependencies and Program Slicing – p.4/15

ABSTRACT INTERPRETATION

Consider the complete lattice < C,≤, ∧, ∨,⊥,⊤ >, Ai ∈ UCO(C)

Lattice of Abstract Domains ≡ Lattice UCO
A ≡ ρ(C)

< UCO(C),⊑,⊓,⊔, λx. ⊤, λx. x >

A1 ⊑ A2 ⇔ A2 ⊆ A1

⊓iAi = M(∪iAi)

⊔iAi = ∩iAi

x

C

Top:

x

C A

x

Bottom:

A

Data Dependencies and Program Slicing – p.4/15

DEPENDENCIES IN PDG

Program Dependency Graphs (PDG) are a standard way for modelling
dependencies for slicing. They are defined by two kind of edges (s1, s2):

CONTROL FLOW EDGE: s1 represents a control predicate and s2 represents a
component of the program immediately nested within the predicate s1;

FLOW DEPENDENCEEDGE: s1 defines a variable x which is used in s2

i.e., x ∈def(s1)∩ref(s2),
and x is not further defined between s1 and s2;

Data Dependencies and Program Slicing – p.5/15

DEPENDENCIES IN PDG

Program Dependency Graphs (PDG) are a standard way for modelling
dependencies for slicing. They are defined by two kind of edges (s1, s2):

CONTROL FLOW EDGE: s1 represents a control predicate and s2 represents a
component of the program immediately nested within the predicate s1;

FLOW DEPENDENCEEDGE: s1 defines a variable x which is used in s2

i.e., x ∈def(s1)∩ref(s2),
and x is not further defined between s1 and s2;

⇓
Flow dependence edges = DIRECT FLOWS=DEF-REF dependencies

Control flow edges = INDIRECT FLOWS

Data Dependencies and Program Slicing – p.5/15

SLICING VS DEPENDENCIES

SLICING ⇒ Requires the same I/O behaviour, i.e., no semantic
dependencies

PDG ⇒ Models syntactic dependencies

Data Dependencies and Program Slicing – p.6/15

SLICING VS DEPENDENCIES

SLICING ⇒ Requires the same I/O behaviour, i.e., no semantic
dependencies

PDG ⇒ Models syntactic dependencies

⇓
THERE IS A CLEAR GAP: SEMANTICS VS SYNTAX

Data Dependencies and Program Slicing – p.6/15

SLICING VS DEPENDENCIES

SLICING ⇒ Requires the same I/O behaviour, i.e., no semantic
dependencies

PDG ⇒ Models syntactic dependencies

⇓
THERE IS A CLEAR GAP: SEMANTICS VS SYNTAX

PDG ⇒ Generate a slicing considering more dependencies (syntactic)

(SEMANTIC) SLICING ⇐ Needs a weaker notion of dependence.

SLICING PARAMENTRIC ON THE CHOSEN DEPENDENCE NOTION!

Data Dependencies and Program Slicing – p.6/15

A LOGIC FOR (IN)DEPENDENCIES

Formalization of notion of (in)dependence [x ⋉ y][Amtoft & Banerjee ’04]:

G ⊢ {T #
0
} x := e {T #}

if ∀[y ⋉ w] ∈ T #. (x 6= y ⇒ [y ⋉ w] ∈ T #
0)

(x = y ⇒ (w /∈ G ∧ ∀z ∈ FV(e). [z ⋉ w] ∈ T #
0
)

G0 ⊢ {T #
0
}s1{T #} G0 ⊢ {T #

0
}s2{T #}

G ⊢ {T #
0}if e then s1 else s2{T #}

if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x ∈ FV(e). [x ⋉ w] ∈ T #
0
)

G0 ⊢ {T #}s{T #}

G ⊢ {T #}while e do s{T #}

if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x ∈ FV(e). [x ⋉ w] ∈ T #)

Data Dependencies and Program Slicing – p.7/15

A LOGIC FOR (IN)DEPENDENCIES

Formalization of notion of (in)dependence [x ⋉ y][Amtoft & Banerjee ’04]:

G ⊢ {T #
0
} x := e {T #}

if ∀[y ⋉ w] ∈ T #. (x 6= y ⇒ [y ⋉ w] ∈ T #
0)

(x = y ⇒ (w /∈ G ∧ ∀z e. [z ⋉ w] ∈ T #
0
)

G0 ⊢ {T #
0
}s1{T #} G0 ⊢ {T #

0
}s2{T #}

G ⊢ {T #
0}if e then s1 else s2{T #}

if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x e. [x ⋉ w] ∈ T #
0
)

G0 ⊢ {T #}s{T #}

G ⊢ {T #}while e do s{T #}

if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x e. [x ⋉ w] ∈ T #)

Data Dependencies and Program Slicing – p.7/15

SEMANTIC (ABSTRACT) DEPENDENCIES

z := w + y + 2x2 − w

SYNTACTIC DEP. A variable is a free variable in the expression assigned to z?

⇒ z depends on {w, y, x}!

Data Dependencies and Program Slicing – p.8/15

SEMANTIC (ABSTRACT) DEPENDENCIES

z := w + y + 2x2 − w

SEMANTIC DEP. By varying the value of a variable does the expression change?

x Se ⇔ ∃σ1, σ2. ∀y 6= x.σ1(y) = σ2(y) ∧ JeK(σ1) = JeK(σ2)

⇒ z depends on {y, x}!

Data Dependencies and Program Slicing – p.8/15

SEMANTIC (ABSTRACT) DEPENDENCIES

z := w + y + 2x2 − w

ABSTRACT SEMANTIC DEP. By varying the property of a variable does the
property of the expression change?

x N e ⇔ ∃σ1, σ2. ∀y 6= x.ρ(σ1(y)) = ρ(σ2(y)) ∧ ρ(JeK(σ1)) = ρ(JeK(σ2))

⇒ If we consider Parity z depends on {y}!

Data Dependencies and Program Slicing – p.8/15

SEMANTIC (ABSTRACT) DEPENDENCIES

z := w + y + 2x2 − w

ABSTRACT SEMANTIC DEP. By varying the property of a variable does the
property of the expression change?

x N e ⇔ ∃σ1, σ2. ∀y 6= x.ρ(σ1(y)) = ρ(σ2(y)) ∧ ρ(JeK(σ1)) = ρ(JeK(σ2))

⇒ If we consider Sign z depends on {y, x}!

Data Dependencies and Program Slicing – p.8/15

PRUNING DEPENDENCIES

We have two kind of dependencies:

Data dependencies (Assignments);

Control dependencies (Control structures)

Data Dependencies and Program Slicing – p.9/15

PRUNING DEPENDENCIES

We have two kind of dependencies:

Data dependencies (Assignments) ⇒ Direct flows;

Control dependencies (Control structures) ⇒ Indirect flows

Data Dependencies and Program Slicing – p.9/15

PRUNING DEPENDENCIES

We have two kind of dependencies:

Data dependencies (Assignments) ⇒ Direct flows;

Control dependencies (Control structures) ⇒ Indirect flows

We propose a PRUNING of data dependencies!

⇓
STILL WE LOSE SOMETHING ABOUT CONTROL DEPENDENCIES!

Data Dependencies and Program Slicing – p.9/15

PRUNING DEPENDENCIES

We have two kind of dependencies:

Data dependencies (Assignments) ⇒ Direct flows;

Control dependencies (Control structures) ⇒ Indirect flows

if (y + 2x mod2) == 0 then w := 0 else w := 0

⇒ The guard DOES NOT DEPENDon x: OK

⇒ The variable w DOES NOT DEPENDon y: NO!

Data Dependencies and Program Slicing – p.9/15

DERIVING ABSTRACT DEPENDENCIES (1)

The definition of narrow deps contains quantifiers on variables and states
This means that, even abstracting states,

the number of comparisons between ρ (JeKσ1) and ρ (JeKσ2)

may be huge or infinite if the domain is non-trivial

Yet, we observe that:

Some states are not possible at a given program point

What is computed in a broader state can be valid in narrower states
(monotonicity)

ρ(JeK〈[⊤]〉) ≤ U ⇔ ρ(JeK〈[even]〉) ≤ U ∧ ρ(JeK〈[odd]〉) ≤ U

Data Dependencies and Program Slicing – p.10/15

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:�

incrementally find the set X of variables which are enough to
determine the value of e

X determines e if any change to other variables can be ignored
(needs to go into the state space)

Data Dependencies and Program Slicing – p.11/15

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:�

incrementally find the set X of variables which are enough to
determine the value of e�

X determines e if any change to other variables can be ignored
(needs to go into the state space)x 1 x 2 x 3 x 4

Data Dependencies and Program Slicing – p.11/15

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:�

incrementally find the set X of variables which are enough to
determine the value of e�

X determines e if any change to other variables can be ignored
(needs to go into the state space)x 1 x 2 x 3 x 4

Data Dependencies and Program Slicing – p.11/15

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:�

incrementally find the set X of variables which are enough to
determine the value of e�

X determines e if any change to other variables can be ignored
(needs to go into the state space)x 1 x 2 x 3 x 4

Data Dependencies and Program Slicing – p.11/15

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:#

incrementally find the set X of variables which are enough to
determine the value of e$

X determines e if any change to other variables can be ignored
(needs to go into the state space)x 1 x 2 x 3 x 4 No n e e d t o c o m p u t e

Data Dependencies and Program Slicing – p.11/15

DERIVING ABSTRACT DEPENDENCIES (2)

A systematic way to go through the (variables and states)-space:4

incrementally find the set X of variables which are enough to
determine the value of e5

X determines e if any change to other variables can be ignored
(needs to go into the state space)x 1 x 2 x 3 x 4

Data Dependencies and Program Slicing – p.11/15

REMOVING ABSTRACT DEPENDENCIES

Another application: simplifying a domain in order to remove dependencies on
a set of variables

Basically, systematically removing from ρ the abstract values which are
responsible for the distinguishability of two statesx 1 x 2 x 3 x 4

Data Dependencies and Program Slicing – p.12/15

ABSTRACT NON-INTERFERENCE

[Giacobazzi & Mastroeni ’04]

H

Secret H
External observer

Secret H Public L

Public L

L

SW

Data Dependencies and Program Slicing – p.13/15

ABSTRACT NON-INTERFERENCE

[Giacobazzi & Mastroeni ’04]

H
L

Secret H

SW

External observer

Observer:

Public L

Secret H Public L

ρ

ρ

Data Dependencies and Program Slicing – p.13/15

ABSTRACT NON-INTERFERENCE

[Giacobazzi & Mastroeni ’04]

Secret

SW

External observer

Observable:

Public L

Secret H Public L

L

ρ

φ(H)

φ

φ(H)

Data Dependencies and Program Slicing – p.13/15

CERTIFYING PROGRAMS FOR ANI

We certify the security degree of programs relatively to an output
observation [Giacobazzi & Mastroeni].

We can derive the certification inductively on the syntax of programs
[Giacobazzi & Mastroeni ’04].

PROBLEM: This system of rules has a semantic rule!

Data Dependencies and Program Slicing – p.14/15

CERTIFYING PROGRAMS FOR ANI

We certify the security degree of programs relatively to an output
observation [Giacobazzi & Mastroeni].

We can derive the certification inductively on the syntax of programs
[Giacobazzi & Mastroeni ’04].

PROBLEM: This system of rules has a semantic rule!

We can avoid the semantic rule by computing
ABSTRACT DEPENDENCIESfor assignment!

Data Dependencies and Program Slicing – p.14/15

CONCLUSIONS

We provide an insight on the strong relation between slicing and
dependency;

A new point of view: Slicing parametric on a notion of dependency;

Still we are not able to get the most precise semantic slicing;

Still there is a lot of work to do towards a real implementation.

Data Dependencies and Program Slicing – p.15/15

	Slicing vs dependencies
	Related works
	Abstract Interpretation
	Dependencies in PDG
	Slicing vs dependencies
	A logic for (in)Dependencies
	Semantic (Abstract)
dependencies
	Pruning dependencies
	Deriving abstract dependencies (1)
	Deriving abstract dependencies (2)
	Removing abstract dependencies
	Abstract Non-Interference
	Certifying programs for ANI
	Conclusions

