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Abstract

A mathematical notation is introduced to represent, at a symbolic level, different mechanisms of DNA
recombination, and a ‘PCR lemma’ is proven by analytically describing the combinatorial properties of the
polymerase chain reaction process. This approach led to the discovery of novel techniques, based on a form
of PCR which we called cross pairing PCR (briefly XPCR). They were mathematically analyzed and
already experimentally proven in different contexts, such as DNA extraction and recombination. Thus, a
mathematical analysis of standard methodologies may highlight novel mechanisms of DNA recombination
and this can provide new technologies for DNA manipulation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In 1994 Leonard Adleman started the new research field of DNA computing [1]. He showed
that an instance of a famous combinatorial problem can be translated in terms of DNA strands,
put in a test tube in such a way that, by means of typical laboratory manipulations, a final DNA
pool is obtained where the solution of the problem is encoded. Since then, a great deal of research
has been carried on and many technical and theoretical achievements have been reached in DNA
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computing [12,3-5]. Recently, new research perspectives have emerged that widen the possibilities
of this field, among them: DNA self-assembly [21,22,15], DNA automata [2], and tools for DNA
and RNA manipulation inspired by algorithmic analyses [17,11].

In the attempt to implement algorithms over a DNA-based ‘bio-ware’, along to the DNA com-
puting trend, it became increasingly apparent that the logic of DNA operations presents deep
combinatorial and algorithmic aspects [8,13]. In particular, polymerase chain reaction, which is
a milestone in DNA recombinant technology [19], shows many interesting combinatorial proper-
ties. In fact, despite improved methodologies, it remains in some cases a confounding process, and
when used in non-standard ways it yields very complex behaviors [20]. Very often, anomalies are
ascribed to experimental noise, but, if we frame the process within a rigorous symbolic notation,
then non-trivial combinatorial aspects appear and, under suitable hypotheses, a formula can be
derived which describes the general form of sequences that are exponentially amplified. This ap-
proach is not of merely mathematical interest. On the contrary, it can suggest new methods that
enjoy biological relevance for in vitro DNA manipulation. In fact, starting from DNA computing
problems [14], we investigated specific methods for DNA extraction and recombination [7,9]. In
these attempts, where theoretical issues were supported by the experiments, we realized that a spe-
cial kind of PCR, called Cross Pairing PCR or shortly XPCR, can be the basis for new algorithms
that solve a wide class of DNA extraction and recombination problems. Within a basic DNA
symbolic notation, we will show a crucial computational property of polymerase chain reaction,
referred to as PCR Lemma, which suggested us the idea of Cross Pairing PCR.

2. DNA notation

Firstly, we recall and extend some standard notation from Formal Language Theory (FLT) [18]
in order to formalize fundamental operations related to the structure of DNA molecules (see
Table 1).

Let us consider the usual alphabet of bases B = {4,T,C,G}. The set B" of strings over this
alphabet is comprised of the sequences (words) that can be arranged with these four symbols (let-
ters). Strings of B* will be indicated by Greek letters. On these strings, a binary associative oper-
ation of concatenation is defined, that given two strings of B* yields a new string where all the
symbols of the second sequence are put, in the given order, after the last symbol of the first
one. Concatenation between two strings « and f is denoted by the juxtaposition «ff. The length
of a string o is the number of its symbol occurrences (each symbol is counted as many times as
it occurs) and is indicated by |o|. A special string is that of length 0, denoted by /, that is the empty
string, where no symbol occurs (an abstract notion similar to zero for numbers). Symbols are spe-
cial strings of length 1. Mathematically speaking, the structure B is referred to as the free monoid
over the alphabet B. Any subset of B” is a (formal) language over the alphabet 5. Since languages
are sets, all the usual set theoretical notions extend to languages (such as membership €, inclusion
C, empty set 0).

The symbol of « that occurs in position 7 (1 < 7 < |«) is denoted by (i), the sequence of symbols
of o occurring (in the given order) from position i to position j (1 < 7 <j < |«|) is denoted by «[i, /]
and is called a substring of «. In particular, it is called a prefix if i =1, and a suffix if j = |«|. A
string with prefix « and suffix f§ is also denoted by «. ... The complementation function, denoted
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Table 1

Basic DNA operations

ofi, ] Substring

of Concatenation
()€ Complementation
rev(o) Reversing

mir(o) Mirroring

a<af Overlapping

oc—[[)’ Overlap Concatenation
oJip Hybridization

‘/% Pairing

(o) Blunt Pairing

by the superscript ¢, is defined on Bby A“= T, T° = 4, C° = G, G° = C. It extends naturally to B
by the conditions A°= 1 and (af})° = a“f°. Another operation on B* is the reverse operation rev
such that, for every X € B, rev(X) = X, rev(aX) = Xrev(a), and rev(A) = A. Of course, reversing
and complementation are involutive and commute, that is, rev(rev(o)) = o, (o) = o and rev(a) =
(rev(e)). The mirroring of o is defined by mir(a) = rev(a) and it is an involutive operation; we
abbreviate mir(a) as . In DNA molecules, an intrinsic concatenation verse is given which goes
from the Phosphate to the Oxydryl (that, respectively, correspond to Carbon 5’ and 3’ positions
in the sugar DNA backbone). This verse is symbolically denoted by an arrow at one side of non-
null strings o, like in o—, that can be seen as an indication of the extremity where Oxydryl termi-
nal is located (while Phosphate being at the other extremity). However, when we omit the arrow, it
is intended that it is on the right end of the string (i.e., usual reading from the left to the right
corresponds to the 5-3’ verse).

An exact pairing (symmetric) relation || is defined over B* such that «||f if f = mir(a). Let y be
the longest string such that « and f include y and 7, respectively. Let /iy, be a non-null length that
we call hybridization threshold (it represents a biological parameter we leave unspecified). If
7| > hnybr, then we say that « and f pair by hybridizing on y (or shortly, that they hybridize)
and write oJy[S. In this case a double DNA string composed of o and f is defined, that will be
denoted by B In this fraction notation the following concatenation verses are implicitly as-
sumed o that is, the Oxydryl terminal of the inferior string is located on the opposite side with
respect to that of the superior string. Sometimes fraction notation is a way to make explicit the
verse of single strings. In fact, we put # = o — (superior notation), £ =« rev(«) (inferior notation),
and for notation completeness it is assumed that £ = 4.

We write o] if « and f§ hybridize and «}ff when they do not hybridize. Pairing is a crucial oper-
ation of double strings formation, where the phenomena of bilinearity, complementarity and anti-
parallelism are jointly involved [8]. It is a partial operation because it is defined on two strings only
when they hybridize. The set of single or double DNA strings will be denoted by 5*/B". By the
symmetry of the pairing relation, double strings satisfy the following equation: mfz 5= mﬂ(a) . This is
an important aspect of double strings, that formalizes the mobility of DNA strands in a liquid
environment. On the other hand, any o hybridizes exactly with & by definition of exact pairing,
hence the double string ) is defined, which is called a blunt double string and is denoted by
(o). We note that
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Fig. 1. Two strings which overlap and their overlap concatenation.

[0 04 04

() = =

 rev(a) B rev(rev(ac)) o€

and as a consequence of the equations above we obtain () = («), in fact we have that

o o o o

(@)= == = — (a).

“rev(a)  rev(w) rev(a)  rev(rev(ac))

The overlapping of o, f8, indicated by « < f§ is defined as the longest substring y such that o = ¢y
and f = yy for some strings ¢, . If o< f # 4 we say that « and S overlap. Let ¢ and  be the
strings such that o = ¢y, y = a < 8, and B =y, then «] B is the string @yy which is called the
overlap concatenation of o and f. Fig. 1 shows two strings which overlap and their overlap con-
catenation. Of course if o and f§ overlap, then |pyy| < |af].

We call strand any object s on which an operation type is defined which assigns to it a string of
B*/B" . In particular, if type(s) is a single string, then we say that s is a single strand, while if type(s)
is a double string, then we say that s is a double strand. Intuitively, strands are DNA molecules,
which as physical objects are different from the base sequence they realize. In our terminology,
strands having the same base sequence are strands with the same type, as they are associated
by type operation to one formal string. We restrict ourselves to consider only single or double
strands. In fact, for the needs of the following discussion, we may avoid to consider more complex
forms of DNA strands which combine more than two strands in a single DNA molecule.

We consider a DNA pool P as a set of strands, or equivalently, as a multiset of single or double
strings of B*/B", which is specified by a multiplicity function multp from B*/B" to natural num-
bers. In fact, multp(n) = n means that the pool P contains # (indiscernible) strands of type . We
write P = {ny:n,nno, ..., mciy when multp(n) = ny, multp(n,) = no, . .., multp(n,) = n, and
multp(n) =0 for n & {n1,ns,...,nr}. Being DNA pools multisets, standard multiset operations
of sum and difference, denoted by +, —, correspond to the sum and difference of their multiplicity
functions.

In virtue of these two ways of considering a pool, we can use (ambiguously) both notations:
n € P, for a string n € B*/B*, meaning multp(n) # 0, and s € P, when s is a strand of P. The type
of a pool P is the set of strings (a language):

Type(P) = {n € B*/B"|n € P} = {type(s) € B /B"|s € P}.

We remark the difference between type, which assigns to a strand a string, and Type (with capital
T) which assigns, to a pool of DNA strands, the set of types of its strands. Although strings and
strands are different things, very often the two terms are used almost synonymously. In fact, any
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Fig. 2. From the top, according to the usual sticky end notation: Left: 3'3’,3’,3'5’, 5’5/, Blunt; Right: Y, 3'Y, 5'Y, 5", YY.

string is physically implemented by strands having its type, and conversely, the expression ‘a
string’, in a given context, could refer to a physical occurrence of a string, which is just a strand.

Fig. 2 shows 10 different forms of double DNA strings, where parallelism between lines refers to
hybridization between strings. Y forms are double strands where corresponding extremal parts of
single strings do not hybridize (in YY forms this happens on both sides). Of course, these forms
do not cover all possible DNA forms, but they identify all the possibilities of pairing two different
strands (circular forms, heteroduples and hairpins are not considered).

The DNA pool operations defined in Table 2 are to be considered as high level mechanisms,
analogous to the basic operations of a high level programming language. This implies that the
algorithms we specify by means of them are not exactly experimental protocols, but rather com-
putational procedures, implementable by laboratory procedures. These DNA algorithms are nat-
urally expressed in terms of a Test Tube register Language (shortly TTL), where registers are Test
Tubes which contain DNA pools, rather than numbers, and DNA pool operations apply to them.
The symbol := denotes the usual assignment command typical of imperative languages. In an

Table 2
Basic requirements on DNA pool operations

iniX(Pl,Pz):P1+P2

split(P) = (Py,Py) <= P = Pi + P2, Type(P1) = Type(P2) = Type(P)
length(P) = {[n||(n) € Type(P)}

separate(P,n) = {s € P|type(s) =n, |n| = n}

Type(denature(P)) 2 {«| § € Type(P)}

Tope(hybridize(P)) 2 {27 |, € Type(P), 2[5}

Type(extend(P)) 2 {7 | ok € P}

Type(infix(P,y,9))| C {(yx )| («) € P}
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assignment P := op(Q), the operation op is intended to be applied to the content of the test tube O
and the resulting DNA pool becomes the content of the test tube P.

The exact ‘microscopic’ effect of operations in Table 2 is not defined, because in many cases it is
hard to say exactly what are the multisets before and/or after the application of these operations.
However, despite such a kind of incomplete knowledge at a microscopic level, DNA algorithms
can be designed which are based on these operations. In fact, it is enough to assume that, after
performing a given DNA operation, an input pool P is transformed into a pool P’ where a specific
relationship holds between the types of P and P’ (see Table 2).

3. Cross pairing PCR

PCR is one of the most important and efficient tool in biotechnological manipulation and analysis
of DNA molecules, where the polymerase enzyme implements a very simple and efficient duplication
algorithm on double oriented strings. The bilinearity of DNA molecules and the antiparallel orien-
tation of their two linear components are essential aspects of the logic underlying the polymerase
chain reaction process [8,13]. The computational schema of PCR in TTL notation is given in Table
3, while its combinatorial schema in terms of string transformations is given in Table 4.

We denote by PCR(P,n) the DNA pool obtained by applying to the pool P the procedure of
Table 3 (that express the usual PCR process). The parameter n denotes the number of cycles of the
fundamental PCR step. We avoid to mention it when its value is not essential in the discussion.
We write also PCR(P,y,0) as an abbreviation of PCR(P U {p:y,q:6}), for some numbers p, g. It is
well known that if P = {m : (ypd),p : y,p : 8}, where (y90) is called the target molecule of PCR

Table 3
PCR algorithm

PCR(P,n)=
let Type(P) = {(y...d8),7,6},n integer;
input P;
for i=1,n do
begin
P := denature(P);
P := hybridize(P);
P := extend(P);
end;
output P.

Table 4

Combinatorial schema of polymerase chain reaction
(o O

"/CCC(sc ) ycgz‘éc

wWe Ay 4 7 96

R L T
y 8o yfo o

V(rCC 56‘, 5(; — y(J C(r(sc, yc ([T&C

template denaturation

primer hybridization

polymerase extension
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and y, 6 are called primers, then PCR(P,n) =~ {p+m : (ypd)} where n =~ logs(p) (the symbol ~
means equal with some approximation), and only a minor quantity of strands in P have types dif-
ferent from (y@d). In general, when at end of a PCR process, the amount of strands of type 7 is
increased according to a ratio which is a power of the number n of the performed steps, then we
say that n has been exponentially amplified by that PCR.

The polymerase extension ext of a single string oy according to a template # is properly defined
as ext(ay, ) = ayf when n = 6 and ay]y[p7d (by assuming that y does not occur as a substring of
o, f, and o), that is

ext <ocy, ﬁ) =uyp

otherwise, the extension is not proper and we set

ext(oy,n) = ext ocy,L = ay.
rev(n)

When ][ it is helpful to use, in combination with the fraction notation, a more concise nota-
ext(a) ext(o,f) . .
reo(B) el and Il instead of el " It follows directly
from antiparallelism of double strings that, when a5, then ext#(«, ) = ext(a, ext(f,)); this consis-
tently allows us to set

ext(w)  ext(a,p)

rev(ext(B))  rev(ext(B,a))’
With this notation the pool extend(P), previously defined (see Table 2), turns to be:

{(t(t()ﬁ)) ) © P}'

The main feature of classical PCR can be expressed in terms of ext by the following schema which
explains the exponential power of this process:

tion for ext, by writing instead of

e eXt(y) 'y".é A oe e “ e
(v 5>$(ym5)c, rev(ext@»:‘(/ 0), (y---0).

PCR processes are easily representable by diagrams like those in Figs. 3 and 4, where dotted ar-
rows represent the extend operation performed by polymerase enzyme.

All the possible PCR diagrams which result from the different forms of target strings and from
the different positions where primers may hybridize, are close to 100. Therefore a natural question
arises: in which cases does PCR provide exponential amplification? And, in these cases, is it pos-
sible to characterize, in general terms, the form of strings that are exponentially amplified? Our
DNA notation allows us to answer these questions with the following lemma, which exactly de-
scribes the form of those blunt strings which are exponentially amplified by a PCR process.

PCR Lemma. Let P be a DNA pool such that Type(P) = {Fﬁﬁ)} and let y and 6 be two strings such
that y[5. Then PCR(P,v,d) exponentially amplifies if and only if one of the following cases holds:
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Fig. 3. PCR ona 3’3’ form along with one internal and one external primer. Reading from the top: after the hybridization of
the primers (short arrows), and the formation of their extensions, these extensions overlap and, with the further extensions
of the overlapping strings, a blunt string is formed where primers corresponds to the two (up and down) extremities.

=

Y. 8
y . -
/ 3
5 a ‘\‘

Fig. 4. Standard PCR with two internal primers. From the top. (First level) The target double string and the primers put
in correspondence of the corresponding portion they can hybridize with. (Second level) Hybridization of the primers.
(Third level) Extensions of the primers with respect to the corresponding templates. (Fourth level) On left and right
primers hybridize with the templates of the previous level, while on the center primers hybridize with the extensions
formed at the previous level. (Fifth level) The extensions of primers hybridized at the previous level which came from the
center forms are blunt form with a primer as a prefix (up string) and the other primer as a suffix (down string).



290 V. Manca, G. Franco | Mathematical Biosciences 211 (2008) 282-298

o) #

provzdes an exponential amplification of the following type

Case I ext(y, p) 0<t ext
The PCR(P,

{ext(y, B)ext(9,)).
Case Il ava fp # A,y ><ext(f,a) # A, o< ext(a, f) # A
The PCR(P, 7, 0) provides an exponential amplification of the following type
ext(y, ext(B, o) )] {ext(, ext(x, B)))-

Case III & <ext(y,f) #
The PCR(P,v,0) provides an exponential amplification of the following type

(0lext(y, B))-

Case IV y><i ext(0,a) # A
The PCR(P, 7, 0) provides an exponential amplification of the following type

(y]ext(d, ).

Proof. If: In all the cases we are in the situation of overlapping illustrated by Fig. 1, and it follows
immediately that a further extension of each string with respect to its paired string provides a
blunt string having y as prefix and ¢ as suffix. Thus an exponential amplification of this blunt
string is a direct consequence of the basic PCR mechanism reported in Table 4. Four cases cor-
responding to the cases of this lemma are reported in Fig. 7.

(9,
7,9)

Only if: First at all, we notice that, in order to get an exponential amplification by PCR, the
process has to necessarily generate a strand of a type which is a proper extension of a primer
and, at same time, hybridizes with the other primer. Now we show that if PCR(P,7,0) provides
an exponential amplification of some type, then we are necessarily in one of the cases given in
the lemma. In fact, we consider the following possibilities:

(i) ext(y,p) # y and ext(5 %) =6
(i) ext(y,B) =y and ext(0,a) # &
(i) ext(y,p) # y and ext( %) # 6
(iv) ext(y,B) =y and ext(0,a) = &

If the possibility (i) holds, we can distinguish two alternative situations: (ia) the primer 6 hybrid-
izes with ext(y, f) or (ib) no such a hybridization happens. If (ia) holds, then we are in the Case III.
If (ib) holds, since primer J does not extend with respect to the template o, then the only chance for
an extension of 6 could be an hybridization of it with an extension of ex#(y, ), but the only pos-
sible extension of ext(y, f) is ext(ext(y, B),p) = ext(y, B), and according to (ib) 6 does not hybridize
with ext(y, f). Therefore in the case (ib) no exponential amplification can occur.

The situation of (ii) can be analyzed in a way analogous to (i) which provides the case IV.

If the possibility (iii) holds, both extensions of primers are proper. Let us consider the exten-
sion ext(y, f) and the primer 0, these two stings may hybridize or not. If they hybridize we are in
the Case I of the lemma. If they do not hybridize, then consider ext(d, o) and the primer y. Again,
if they hybridize we are in the Case I of the lemma, but if they do not hybridize no primer exten-
sion can hybridize with the other primer, therefore no exponential amplification can occur.
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In the last possibility (iv), if some of the hypotheses of Case II is not valid, then no extension
process can occur, but if all these hypotheses occur, then we fall in this case. [

The phenomenon of the blunt form of PCR exponential amplification is empirically well
known, but it is interesting that it is a mathematical consequence of the combinatorial mech-
anism on which PCR is based. The following corollary is a direct consequence of PCR
lemma.

Corollary. If there is any exponential amplification, then at most at third level of the PCR process a
blunt string appears which is a seed of exponential amplification.

The content of the previous lemma and corollary may be informally paraphrased in this way:
the first or the second primer extensions overlap each other or with the primers if and only if, at
most at the third PCR step, a blunt strand is produced which is a seed of an exponential ampli-
fication. For example, if we consider PCR diagrams such as those in Fig. 4, where each level rep-
resents both the hybridization and extension of strands and branching represents denaturation,
from the equation (@|y) = m‘zxe’;t‘@)) one may deduce that, at most at third level in the diagram,
a blunt string appears which is a seed of exponential amplification.

An interesting example where PCR lemma does not apply is displayed in Fig. 5 which is the case
of a YY form such that both the primers y and ¢ hybridize with it, but no amplification is pro-
vided by PCR(P, 7, ).

The analysis developed by PCR Lemma points out the importance of overlap concatenation in
the string recombination producing PCR amplification.

The importance of the overlap concatenation in some string recombination producing PCR
amplification suggested us an interesting form of PCR where, rather than just one amplifi-
cation target string, we put two target DNA double strings of types (a@y) and (yyff) in a
test tube.

Let us analyze what happens if, starting from such a pool, a PCR with primers a, f8, is per-
formed. In this case, after denaturation the following strings will be present in the pool:

7

= Tml -ew"‘l Q
ol
|

=4
|
ol :
=

alh
AN
@ |
-

|

Fig. 5. A YY form where PCR lemma does not apply.
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apy A WB A -
P G 4 G 2P

If the temperatures at which «, f and y hybridize with their mirror strings are ‘close enough’, then
the following hybridizations are obtained:
oy o WP
Gwp) " (ay)™ B
At this point polymerase can directly extend strings in such a way that the blunt string (x@yy/f) is
produced, which results from the overlap concatenation of agpy and y B (that is apy] yf = o)
with two more strings equal to the initial target strings. We call this special kind of PCR cross pair-
ing PCR or shortly XPCR; its combinatorial schema is displayed in Table 5. It is a technique imple-
menting an operation which theoretically can be seen as a special kind of Tom Head’s null context
splicing rule given in his seminal paper [10], where a Formal Language Theory perspective of DNA
strings was introduced (see also [16]).
In conclusion,

ift Type(P) = {{x@y), (y¥B)}, then
Type(PCR(P, o, B)) = { (o B)}

(types of strands different from (x@yyf5) are present in a minor quantity). From an experimental
point of view, we observe that, if a PCR of primers o, f is applied to a pool containing both
strings &; = (aoy) and (y0f), then { = (xdy0f) is a product of this PCR (see the combinatorial
schema of XPCR in Table 5). We tested XPCR in several different experimental conditions and
all the times it provided correct results [7,9]. In most cases, the amplification signal is very clear
and a small noise consisting of unspecific products is reported in the electrophoresis results. Sur-
prisingly enough, on the basis of the simple mechanism of XPCR, we have been able to build
more sophisticated procedures, which find two main kinds of applications in DNA Extraction
and DNA Recombination.

Table 5
Combinatorial schema of cross pairing polymerase chain reaction

(a@y), (yWPB), o, B

(8
wpy 4 W 3
7 T 2o G % P
(8
opy B 7
Wi e P

(0pyyB), {2y B)
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4. DNA extraction by XPCR

DNA extraction is a fundamental procedure where the ‘good solutions’ are discriminated in a
space of possible solutions. For example, given a DNA pool consisting of a family of genes with
an indefinite identity (their sequences are not known), one might be interested in extracting the
subfamily of those genes where a given subsequence y occurs, that for instance enjoys an impor-
tant biological meaning. The classic extraction procedure by affinity uses a probe 7 which is
‘marked’ in such a way that, after denaturation, single strands where y occurs hybridize with
the probe, and so are selected from the original pool. Here we show a different way of performing
extraction, based on XPCR [7], as it is outlined in Table 6.

The main idea of the algorithm is as follows. Consider all the lengths of strands in a given pool.
For each length n, pieces of strands which include the substring y in their types are copied. This is
performed by means of usual PCR to amplify both strands of type (xy) and (yf). Strings shorter
than n are then separated by length and finally joined by an overlapping concatenation performed
by XPCR. In the joining process, pieces that do not reach a suitable length are removed. For this
reason, the process must be iterated for each length of strings of the initial pool. The algorithm
reported in Table 6 provides all the strings where y occurs, elongated by the prefix « and by
the suffix . This algorithm was tested in vitro where, from a very heterogeneous pool, all and only
the types of strands having substrands of a given type were extracted, that is, extraction resulted
to be correct and complete [7].

A worthwhile warning about the XPCR-Extract algorithm is given by the following observa-
tion. If in a family of initial genes there are two different genes, say (@) and (oyp), that have
the same length and where the substring y occurs in exactly the same position, then the method
will give, as extracted genes, also their chimeric combinations (ayy) and (@yp). In other words,

Table 6
A DNA extraction algorithm

XPCR — Extract(P,y)=
1. S:=0;
2. L := length(P);
3. for each n € L do
4. Ry :=0,Ry:=0, Q:=0, P, :=0, P,:=0;

5. begin

6.  P:=separate(P,n);
7. P:=infix(P,ap);
8. (Py,P») := split(P);

9. P, :=PCR(Py,0,7);
10.  for each m <n do Ry := mix(R;,separate(P,m));
11. P, :=PCR(P,,7,p)
12.  for each m <n do R, := mix(R,,separate(P»,m));
13. Q = miX(R|,R2);
14.  Q:=PCR(Q,a,p);
15.  Q:=separate(Q,n + |o| + |B));
16.  S:=mix(S,Q);
17. end
18. output S.
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Table 7
A DNA extraction algorithm avoiding chimers
XPCR — PureExtract(P,y)=

1. input P;

2. L := length(P);

3. for eachn € Ldo

5 P := separate( P, n);
6. (P,Q):=split(P);
7. P:=infix(P,a,1);
8. Q:=infix(Q,/,p);
9. P:=PCR(P,a,yd);
10. P :=mix(P,Q);
11.  P:=PCR(P,a,p);
12.  P:=separate(P,n+ |o| + |B]);
13. output P;
14. end.

if we define Recombine(L,y) = L+ {{oyf), (nyo)|{ayd), (nyf) € L}, then Extract(P,y) coincides
with Recombine(Type(P),7). For this case a further check is necessary, and it could be done for
example as follows. When the extracted genes are sequenced, if a sequence before y and a sequence
after y are chosen, then a PCR with them as primers, applied to a copy of the initial pool, will
produce an exponential amplification of only those sequences which belong to a gene of the initial
pool.

The extraction algorithm in Table 7, where 0 is any sufficiently long string that does not occur in
the pool P after y, has a more sophisticated logic; differently from the previous extraction algo-
rithm, it avoids the production of chimeric forms. Its correctness follows from the PCR lemma,
while a graphical description of it (for any length of strings in the given pool) is displayed both in
Table 8 and in Fig. 6.

As a consequence of the PCR Lemma, the last PCR of the XPCR-PureExtract Algorithm does
not (exponentially) amplify double strings such as those on the right side of Fig. 6, which would
generate chimers. On the contrary, double strings on the left side of Fig. 6 are (exponentially)
amplified (after an extension) by the algorithm, and they generate the y-superstrings of the initial
pool.

Proposition 1 (Pure Extract Method Correctness). Pure Extract-XPCR(P,v) algorithm extracts

only the y-superstrings of P (that is, with no production of new y-superstrings which do not belong to
P).

Proof. Consider ‘genes’ with a given length, they are split in two pools P, Q. The pool P is elon-
gated with o and the pool Q with B. If PCR(P, «,yé) is applied to the pool P after elongation, a
string (anyd) is amplified coming from genes including y to which ¢ is added after y. Let us call
again P the pool generated by this PCR. When P is mixed to Q and again we call P the resulting
pool, then PCR(P, o, §), due to the presence of 8, will provide Y forms. To these forms, according
to PCR lemma, an exponential amplification applies, when a strand s; of type anyd of P hybridizes

with a strand s, of type W of O, but this happens only if # = 0, that is, if s; and s,, apart the



V. Manca, G. Franco | Mathematical Biosciences 211 (2008) 282-298 295
Table 8
The computation flow of XPCR-PureExtract algorithm
T={&,....&}y
U split(T)
Pi={&,....8) Q:={&1,-. . ¢}
U infix(P,o, A) U infix (Q,4,p)
Pi={acy,..., a0} Q:={&p.....P}
 PCR(P,a,79) \

P:={anyo|myl e T}
J R :=mix(P, Q)
R:={&pB,.... ¢, amyo|myl e T}
| R:=PCR(R,u,p)
R = {amy(B|nyC € T}

amplification no amplification
0 5
41 Y /
o ¥
o
- = o —
B S p

— D I
. — I
< 11

//
— v

Fig. 7. Four cases of PCR corresponding to the four cases of PCR Lemma.
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elongations, are pieces of genes of the same type. In fact, in the case that these pieces come from
different genes, the part 5 of s5; does not hybridize with the corresponding part 0 of s,, so that a
YY form arises with primers possibly put as in the case illustrated in Fig. 6, where no exponential
amplification is possible. In conclusion, as overall effect of the procedure, only genes including vy
will be elongated with both strings « and  and so are separable by length from the pool. [

5. DNA recombination by XPCR

Let P a DNA pool of type {ay,%,...,a,} and Q a pool of type {1, f2,...,,}. The problem of
generating all possible recombinations of pools P and Q is that of obtaining a pool of type
L={mna...n,|m € {o1,f1},n2 € {o, fa}...0, € {0, B} }. Of course L contains 2" different
strings; we call it the » dimensional complete recombination of P and Q. In DNA computing this
is an important step for encoding all the possible solutions of a combinatorial problem. For exam-
ple, if a;, ; encode the two possible values of a Boolean variable x;, then any string of L usually
encodes a possible solution of the problem. True solutions are obtained by generating L and then
by extracting strings which satisfy the requirements of the problem. But, apart this DNA comput-
ing interest, DNA recombination has an important biological meaning. For example, in the
immunological system recombination is a key feature for generating the antibody repertory which
is essential to the security system preserving the biological identity. However, in general, DNA
pools generated by XPCR recombination could be very useful in the analysis of many aspects re-
lated to DNA hypervariability.

Let us present a DNA recombination method based on XPCR [9]. We show that a simple and
efficient algorithm based on XPCR can provide the n» dimensional complete recombination of P
and Q. The main intuition behind our recombination method was inspired by Braich et al. [3],
where only particular sequences were studied to avoid mismatch phenomena. Let us consider
the following four initial sequences, where n is an odd number (if 7 is even, the roles of «, and
B, are inverted in the last two sequences):

Positive: ny = (0000304 . . . 0ly)

Negative: 1y = (B1B2B3Pa- - - Bn)
Positive-Negative: 13 = (o034 . - %)
Negative—Positive: 4 = (B1020304. .. ).

Let us call a-string any element of {o, 0, . . ., a,} and f-string any element of { 1, f», ..., B..}. Type
L is the set of all the possiple ordered combinations of n «-strings and f-strings. We call XPCR rule
r,, and write it as &;, &, — ¢, the relation between strings &;, &, { that holds when & = (ady...),
& = {(...y0p), and { = (xdy0p). Any string that is a combination of a-strings and f-strings can be
obtained from 5y, 12, 13, 4 by suitable XPCR rules r, where 7 is an «-string or a ff-string. For exam-
ple, with n = 7, the string o0, 304567, can be obtained in the following way:

Py rg
My Na — oo f304Bsosfr, Mo — o1 % B304 Bs B 7

It can be easily shown that the order of application of the rules is not relevant because the same
string can be also obtained by permuting the order of application of the rules (from the same ini-
tial strings).
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Table 9

The quaternary recombination algorithm

XPCR — Recombination({ay,d,. . .,%,},{P1, P2, - Pn})=
let Type(P) = {11,12,13,14};

P := infix(P,a, p);
fori=2,n—1do
begin
P := PCR(P, o, &;);
P := PCR(P,, p);
P := PCR(P,u, f,);
P := PCR(P, B;, 7)?
P := PCR(P,u, B);
end;
output P.

Let us consider the set of XPCR rules R = {r,,, 75, ..., 75,7, s>+ --»7p, , }- A ‘quaternary
XPCR recombination’ which produces the type L from {#,7,,13,714]} is effectively specified by
the algorithm displayed in Table 9. A completeness claim of our quaternary XPCR recombi-
nation method is given by the following proposition which is an easy consequence of XPCR
definition and of the particular structure of the pool to which we apply this recombination
method [9].

Proposition 2 (Recombination Method Correctness). If all the XPCR rules of R are sequentially
applied to a DNA pool of Type {ni,12,n3,14}, then a final DNA pool is obtained of Type
L={&&. &l € o, Bits &€ {on, B} - & € 0w, B} )

The quaternary recombination algorithm has the additional advantage to be equipped by a
couple of special strings, called recombination witnesses [9], such that, if they are present in the
final pool then the whole library L is present too. This information guarantees that no experimen-
tal error has occurred during the implementation of the algorithm. A combinatorial analysis of
the mechanism underlying this property has been developed in [6].

6. Conclusion

The paper showed that concepts rooted in ‘Formal Language Theory’ are capable of a surprising
explicative power with respect to basic biological phenomena. In principle, this is not so strange,
being DNA molecules special words of a four-symbol alphabet, but the passage from this intuition
to a rigorous mathematical description is not so evident. We showed that this is possible by means of
a symbolic notation which translates recombination mechanisms into appropriate mathematical
operations. We demonstrated that a mathematical abstraction of DNA recombination may high-
light novel, unexpected, properties of PCR leading to the discovery of XPCR based methodologies
in different contexts, such as DNA extraction and recombination. Our algorithms were validated by
laboratory experiments, to verify that some transformations are performed according to some com-
binatorial schemata [7,9]. In this context, computations are not only pure theoretical constructs, but
somewhat with a physical content, testable like mathematical equations describing motions. DNA
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test tubes are the reality where algorithms on multisets of double strings become real processes obey-
ing to specific rules, that are intrinsically related to a special kind of discrete operations.
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